Sun et al., 2021 - Google Patents
Distributed Microstructured Optical Fiber (DMOF) Based Ultrahigh Sensitive Distributed Acoustic Sensing (DAS) for Borehole Seismic SurveysSun et al., 2021
View PDF- Document ID
- 8338758553823243747
- Author
- Sun Q
- Yan Z
- Li H
- Fan C
- Ai F
- Zhang W
- Li X
- Liu D
- Li F
- Yu G
- Publication year
- Publication venue
- Distributed Acoustic Sensing in Geophysics: Methods and Applications
External Links
Snippet
Distributed acoustic sensing (DAS) can record acoustic or seismic waves along the optical fiber with advantages of long distance, short operation time, full well coverage, and cost saving, which has important significance in borehole seismic surveys. By designing and …
- 239000003365 glass fiber 0 title abstract description 25
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01V—GEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS
- G01V1/00—Seismology; Seismic or acoustic prospecting or detecting
- G01V1/16—Receiving elements for seismic signals; Arrangements or adaptations of receiving elements
- G01V1/20—Arrangements of receiving elements, e.g. geophone pattern
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01V—GEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS
- G01V1/00—Seismology; Seismic or acoustic prospecting or detecting
- G01V1/16—Receiving elements for seismic signals; Arrangements or adaptations of receiving elements
- G01V1/18—Receiving elements, e.g. seismometer, geophone or torque detectors, for localised single point measurements
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01V—GEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS
- G01V1/00—Seismology; Seismic or acoustic prospecting or detecting
- G01V1/40—Seismology; Seismic or acoustic prospecting or detecting specially adapted for well-logging
- G01V1/42—Seismology; Seismic or acoustic prospecting or detecting specially adapted for well-logging using generators in one well and receivers elsewhere or vice versa
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01V—GEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS
- G01V1/00—Seismology; Seismic or acoustic prospecting or detecting
- G01V1/22—Transmitting seismic signals to recording or processing apparatus
- G01V1/226—Optoseismic systems
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01V—GEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS
- G01V1/00—Seismology; Seismic or acoustic prospecting or detecting
- G01V1/003—Seismic data acquisition in general, e.g. survey design
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01V—GEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS
- G01V3/00—Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation
- G01V3/18—Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation specially adapted for well-logging
- G01V3/30—Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation specially adapted for well-logging operating with electromagnetic waves
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using infra-red, visible or ultra-violet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/41—Refractivity; Phase-affecting properties, e.g. optical path length
- G01N21/43—Refractivity; Phase-affecting properties, e.g. optical path length by measuring critical angle
- G01N21/431—Dip refractometers, e.g. using optical fibres
- G01N2021/432—Dip refractometers, e.g. using optical fibres comprising optical fibres
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01H—MEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
- G01H9/00—Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by using radiation-sensitive means, e.g. optical means
- G01H9/004—Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by using radiation-sensitive means, e.g. optical means using fibre optic sensors
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01M—TESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING STRUCTURES OR APPARATUS NOT OTHERWISE PROVIDED FOR
- G01M11/00—Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
- G01M11/30—Testing of optical devices, constituted by fibre optics or optical waveguides
- G01M11/31—Testing of optical devices, constituted by fibre optics or optical waveguides with a light emitter and a light receiver being disposed at the same side of a fibre or waveguide end-face, e.g. reflectometers
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01D—MEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
- G01D5/00—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
- G01D5/26—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infra-red, visible, or ultra-violet light
- G01D5/32—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infra-red, visible, or ultra-violet light with attenuation or whole or partial obturation of beams of light
- G01D5/34—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infra-red, visible, or ultra-violet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
- G01D5/353—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infra-red, visible, or ultra-violet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01K—MEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
- G01K11/00—Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Fenta et al. | Fibre optic methods of prospecting: A comprehensive and modern branch of geophysics | |
US11079511B2 (en) | Angular response compensation for DAS VSP | |
US10113902B2 (en) | Detection of seismic signals using fiber optic distributed sensors | |
US9140815B2 (en) | Signal stacking in fiber optic distributed acoustic sensing | |
Daley et al. | Field testing of fiber-optic distributed acoustic sensing (DAS) for subsurface seismic monitoring | |
US9702244B2 (en) | Distributed acoustic sensing gauge length effect mitigation | |
AU2015414754A1 (en) | Fiber optic distributed acoustic sensor omnidirectional antenna for use in downhole and marine applications | |
CN101680295A (en) | Method and apparatus for fluid migration profiling | |
Nakstad et al. | Realisation of a full-scale fibre optic ocean bottom seismic system | |
US11906682B2 (en) | Retrievable fiber optic vertical seismic profiling data acquisition system with integrated logging tool for geophone-equivalent depth accuracy | |
Ellmauthaler et al. | Real-time DAS VSP acquisition and processing on single-and multi-mode fibers | |
AU2016433510A1 (en) | Creating 3C distributed acoustic sensing data | |
Kislov et al. | Distributed acoustic sensing: a new tool or a new paradigm | |
US20220283330A1 (en) | Gauge Length Correction For Seismic Attenuation From Distributed Acoustic System Fiber Optic Data | |
Willis et al. | Important aspects of acquiring distributed acoustic sensing (DAS) data for geoscientists | |
Sun et al. | Distributed Microstructured Optical Fiber (DMOF) Based Ultrahigh Sensitive Distributed Acoustic Sensing (DAS) for Borehole Seismic Surveys | |
Lindsey | Geophysical Applications of φ-OTDR/DAS | |
Xiao et al. | Acoustic, electromagnetic and optical sensing and monitoring methods | |
Sova | Fibre Optic Sensing as Borehole Seismic Method | |
ZHONG et al. | Review of fiber-optic distributed acoustic sensing technology | |
Dean et al. | Seismic without sensors–distributed vibration sensing | |
Nasralla | Distributed Acoustic Sensing (DAS) As a New Tool For Subsurface Imaging | |
Xue et al. | Developing and demonstrating distributed fiber optic sensing for industrial deployment | |
Ahmed | Critical Analysis and Application of Optical Fiber Sensors in Oil and Gas Industry. | |
Mohd Noh et al. | Application of Distributed Acoustic Sensing in Geophysics Exploration: Comparative Analysis of Single-Mode (Smf) and Multi-Mode Fiber (Mmf) Optic Cable |