Liu et al., 2019 - Google Patents
A cation/anion co-doped Li1. 12Na0. 08Ni0. 2Mn0. 6O1. 95F0. 05 cathode for lithium ion batteriesLiu et al., 2019
- Document ID
- 7642740085270675090
- Author
- Liu D
- Fan X
- Li Z
- Liu T
- Sun M
- Qian C
- Ling M
- Liu Y
- Liang C
- Publication year
- Publication venue
- Nano Energy
External Links
Snippet
Lithium-rich layered structure cathode materials are arousing significant attention in the next- generation commercial lithium ion batteries owing to their high capacity and energy density. However, the poor rate performance and inferior cycle stability stand in the way of its large …
- 229910001416 lithium ion 0 title abstract description 42
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GASES [GHG] EMISSION, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage
- Y02E60/12—Battery technology
- Y02E60/122—Lithium-ion batteries
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of or comprising active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/50—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
- H01M4/505—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GASES [GHG] EMISSION, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage
- Y02E60/13—Ultracapacitors, supercapacitors, double-layer capacitors
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of or comprising active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/58—Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of or comprising active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/362—Composites
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of or comprising active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/136—Electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GASES [GHG] EMISSION, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/50—Fuel cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Liu et al. | A cation/anion co-doped Li1. 12Na0. 08Ni0. 2Mn0. 6O1. 95F0. 05 cathode for lithium ion batteries | |
Li et al. | Retarded phase transition by fluorine doping in Li-rich layered Li1. 2Mn0. 54Ni0. 13Co0. 13O2 cathode material | |
Chen et al. | Synthesis and electrochemical study of Zr-doped Li [Li0. 2Mn0. 54Ni0. 13Co0. 13] O2 as cathode material for Li-ion battery | |
Yoon et al. | Development of a high-performance anode for lithium ion batteries using novel ordered mesoporous tungsten oxide materials with high electrical conductivity | |
Li et al. | Uniform LiNi1/3Co1/3Mn1/3O2 hollow microspheres: designed synthesis, topotactical structural transformation and their enhanced electrochemical performance | |
Liang et al. | New understanding of Li3VO4/C as potential anode for Li-ion batteries: Preparation, structure characterization and lithium insertion mechanism | |
Park et al. | Improvement of the rate capability of LiMn2O4 by surface coating with LiCoO2 | |
Jin et al. | Excellent rate capability of Mg doped Li [Li0. 2Ni0. 13Co0. 13Mn0. 54] O2 cathode material for lithium-ion battery | |
Zhao et al. | Synthesis and electrochemical characterization of Zn-doped Li-rich layered Li [Li0. 2Mn0. 54Ni0. 13Co0. 13] O2 cathode material | |
Santhanam et al. | High rate cycling performance of Li1. 05Ni1/3Co1/3Mn1/3O2 materials prepared by sol–gel and co-precipitation methods for lithium-ion batteries | |
Ming et al. | Effect of Nb and F co-doping on Li1. 2Mn0. 54Ni0. 13Co0. 13O2 cathode material for high-performance lithium-ion batteries | |
Arumugam et al. | Synthesis and electrochemical characterizations of nano-scaled Zn doped LiMn2O4 cathode materials for rechargeable lithium batteries | |
Wei et al. | Electrochemical performance of high-capacity nanostructured Li [Li0. 2Mn0. 54Ni0. 13Co0. 13] O2 cathode material for lithium ion battery by hydrothermal method | |
Luo et al. | Improving the electrochemical performance of LiNi1/3Co1/3Mn1/3O2 cathode material via tungsten modification | |
Na et al. | The effect of Si doping on the electrochemical characteristics of LiNixMnyCo (1− x− y) O2 | |
Li et al. | LiNi0. 5Mn1. 5O4 microrod with ultrahigh Mn3+ content: A high performance cathode material for lithium ion battery | |
Jin et al. | Synthesis, characterization and electrochemical performance of Li [Li0. 2Mn0. 54Ni0. 13Co0. 13] O2cathode materials for lithium-ion batteries | |
Cho et al. | Sulfur anion doping and surface modification with LiNiPO4 of a Li [Co0. 1Ni0. 15Li0. 2Mn0. 55] O2 cathode material for Li-ion batteries | |
Zhong et al. | Low temperature combustion synthesis and performance of spherical 0.5 Li2MnO3–LiNi0. 5Mn0. 5O2 cathode material for Li-ion batteries | |
Sun et al. | The preparation and electrochemical performance of solid solutions LiCoO2–Li2MnO3 as cathode materials for lithium ion batteries | |
Cong et al. | (PO4) 3− polyanions doped LiNi1/3Co1/3Mn1/3O2: an ultrafast-rate, long-life and high-voltage cathode material for Li-ion rechargeable batteries | |
Hu et al. | Revisiting the initial irreversible capacity loss of LiNi0. 6Co0. 2Mn0. 2O2 cathode material batteries | |
Zeng et al. | Effect of cationic and anionic substitutions on the electrochemical properties of LiNi0. 5Mn1. 5O4 spinel cathode materials | |
Pan et al. | Effect of molybdenum substitution on electrochemical performance of Li [Li0. 2Mn0. 54Co0. 13Ni0. 13] O2 cathode material | |
Bai et al. | A novel approach to improve the electrochemical performances of layered LiNi1/3Co1/3Mn1/3O2 cathode by YPO4 surface coating |