Finney, 1948 - Google Patents

Reflection of sound from submerged plates

Finney, 1948

Document ID
7489916359461518675
Author
Finney W
Publication year
Publication venue
The Journal of the Acoustical Society of America

External Links

Snippet

HEN asound wave strikes a plate which is submerged in a liquid medium, rather complex interchanges of energy may take place. Some associated phenomena, such as the high transmission ratio of submerged plates to sound waves incident at oblique angles, have …
Continue reading at pubs.aip.org (other versions)

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/028Material parameters
    • G01N2291/02827Elastic parameters, strength or force
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/07Analysing solids by measuring propagation velocity or propagation time of acoustic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/24Probes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/221Arrangements for directing or focusing the acoustical waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B17/00Measuring arrangements characterised by the use of subsonic, sonic or ultrasonic vibrations
    • G01B17/02Measuring arrangements characterised by the use of subsonic, sonic or ultrasonic vibrations for measuring thickness
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/10Number of transducers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S1/00Beacons or beacon systems transmitting signals having a characteristic or characteristics capable of being detected by non-directional receivers and defining directions, positions, or position lines fixed relatively to the beacon transmitters; Receivers co-operating therewith
    • G01S1/72Beacons or beacon systems transmitting signals having a characteristic or characteristics capable of being detected by non-directional receivers and defining directions, positions, or position lines fixed relatively to the beacon transmitters; Receivers co-operating therewith using ultrasonic, sonic or infrasonic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/18Methods or devices for transmitting, conducting, or directing sound
    • G10K11/26Sound-focusing or directing, e.g. scanning

Similar Documents

Publication Publication Date Title
Roderick et al. The measurement of ultrasonic attenuation in solids by the pulse technique and some results in steel
US4080836A (en) Method of measuring stress in a material
US4065958A (en) Method of controlling physical characteristics of fluid medium
US4218924A (en) Ultrasonic ellipsometer
Reynolds The determination of the elastic constants of metals by the ultrasonic pulse technique
Brendel et al. Calibration of ultrasonic standard probe transducers
Lee et al. Experimental verification of the Kramers-Kronig relationship for acoustic waves
Moran et al. Electromagnetic generation of electronically steered ultrasonic bulk waves
Fay et al. Transmission of sound through steel plates immersed in water
US4033182A (en) Method for measuring biaxial stress in a body subjected to stress inducing loads
Finney Reflection of sound from submerged plates
US3587297A (en) Apparatus for precise stress measurement
US3101608A (en) Method and apparatus for stress analysis
Hsu et al. Time and polarization resolved ultrasonic measurements using a lensless line-focus transducer
Fountain Experimental Evaluation of the Total‐Reflection Method of Determining Ultrasonic Velocity
Ogi et al. Absolute measurement of ultrasonic attenuation by electromagnetic acoustic resonance
Bifulco et al. Ultrasonic pulse spectroscopy of a solid inclusion in an elastic solid
JPH06347449A (en) Crystal grain size evaluation method for metallic sheet
EP0610043A1 (en) Ultrasonic interferometer
Thompson et al. An elastic‐wave ellipsometer for measurement of material property variations
JPH06148148A (en) Ultrasonic attenuation measuring method, and material characteristic evaluating method
Hsu et al. Generation and detection of plane‐polarized ultrasound with a rotatable transducer
Hickman et al. Properties of Sandwich‐Type Structures as Acoustic Windows
Rose et al. Wave profile analysis in a unidirectional graphite-epoxy plate
Colclough A theoretical criterion for end face alignment in the cylindrical acoustic interferometer