Wu et al., 2022 - Google Patents
Ggvit: Multistream vision transformer network in face2face facial reenactment detectionWu et al., 2022
View PDF- Document ID
- 7272415813011966087
- Author
- Wu H
- Wang P
- Wang X
- Xiang J
- Gong R
- Publication year
- Publication venue
- 2022 26th International Conference on Pattern Recognition (ICPR)
External Links
Snippet
Detecting manipulated facial images and videos on social networks has been an urgent problem to be solved. The compression of videos on social media has destroyed some pixel details that could be used to detect forgeries. Hence, it is crucial to detect manipulated faces …
- 230000001815 facial 0 title abstract description 13
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/00221—Acquiring or recognising human faces, facial parts, facial sketches, facial expressions
- G06K9/00268—Feature extraction; Face representation
- G06K9/00281—Local features and components; Facial parts ; Occluding parts, e.g. glasses; Geometrical relationships
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/62—Methods or arrangements for recognition using electronic means
- G06K9/6217—Design or setup of recognition systems and techniques; Extraction of features in feature space; Clustering techniques; Blind source separation
- G06K9/6232—Extracting features by transforming the feature space, e.g. multidimensional scaling; Mappings, e.g. subspace methods
- G06K9/6247—Extracting features by transforming the feature space, e.g. multidimensional scaling; Mappings, e.g. subspace methods based on an approximation criterion, e.g. principal component analysis
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/00221—Acquiring or recognising human faces, facial parts, facial sketches, facial expressions
- G06K9/00268—Feature extraction; Face representation
- G06K9/00275—Holistic features and representations, i.e. based on the facial image taken as a whole
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/00221—Acquiring or recognising human faces, facial parts, facial sketches, facial expressions
- G06K9/00228—Detection; Localisation; Normalisation
- G06K9/00248—Detection; Localisation; Normalisation using facial parts and geometric relationships
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/00221—Acquiring or recognising human faces, facial parts, facial sketches, facial expressions
- G06K9/00228—Detection; Localisation; Normalisation
- G06K9/00234—Detection; Localisation; Normalisation using pixel segmentation or colour matching
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/62—Methods or arrangements for recognition using electronic means
- G06K9/6267—Classification techniques
- G06K9/6268—Classification techniques relating to the classification paradigm, e.g. parametric or non-parametric approaches
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/36—Image preprocessing, i.e. processing the image information without deciding about the identity of the image
- G06K9/46—Extraction of features or characteristics of the image
- G06K9/4604—Detecting partial patterns, e.g. edges or contours, or configurations, e.g. loops, corners, strokes, intersections
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/00221—Acquiring or recognising human faces, facial parts, facial sketches, facial expressions
- G06K9/00288—Classification, e.g. identification
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/10—Image acquisition modality
- G06T2207/10024—Color image
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/62—Methods or arrangements for recognition using electronic means
- G06K9/6201—Matching; Proximity measures
- G06K9/6202—Comparing pixel values or logical combinations thereof, or feature values having positional relevance, e.g. template matching
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/00597—Acquiring or recognising eyes, e.g. iris verification
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/40—Analysis of texture
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/00624—Recognising scenes, i.e. recognition of a whole field of perception; recognising scene-specific objects
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/30—Subject of image; Context of image processing
- G06T2207/30196—Human being; Person
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Yang et al. | MSTA-Net: Forgery detection by generating manipulation trace based on multi-scale self-texture attention | |
Liu et al. | Learning deep models for face anti-spoofing: Binary or auxiliary supervision | |
CN108537743B (en) | Face image enhancement method based on generation countermeasure network | |
Yang et al. | Detecting fake images by identifying potential texture difference | |
CN105138954B (en) | A kind of image automatic screening inquiry identifying system | |
Han et al. | Fighting fake news: two stream network for deepfake detection via learnable SRM | |
Nirkin et al. | Deepfake detection based on the discrepancy between the face and its context | |
Wang et al. | LiSiam: Localization invariance Siamese network for deepfake detection | |
CN104951773A (en) | Real-time face recognizing and monitoring system | |
Yuan et al. | MFFFLD: A multimodal-feature-fusion-based fingerprint liveness detection | |
Huang et al. | Deepfake mnist+: a deepfake facial animation dataset | |
Wu et al. | Ggvit: Multistream vision transformer network in face2face facial reenactment detection | |
Lu et al. | Detection of deepfake videos using long-distance attention | |
Yu et al. | Detecting deepfake-forged contents with separable convolutional neural network and image segmentation | |
Charitidis et al. | Investigating the impact of pre-processing and prediction aggregation on the deepfake detection task | |
CN113537027B (en) | Face depth counterfeiting detection method and system based on face division | |
Peng et al. | BDC-GAN: Bidirectional conversion between computer-generated and natural facial images for anti-forensics | |
Wang et al. | Face forgery detection based on the improved siamese network | |
Li et al. | Chinese face dataset for face recognition in an uncontrolled classroom environment | |
Peng et al. | Presentation attack detection based on two-stream vision transformers with self-attention fusion | |
Catruna et al. | Gaitpt: Skeletons are all you need for gait recognition | |
Parkin et al. | Creating artificial modalities to solve RGB liveness | |
Tian et al. | Fakepoi: A large-scale fake person of interest video detection benchmark and a strong baseline | |
Quan et al. | CGFormer: ViT-Based Network for Identifying Computer-Generated Images with Token Labeling | |
Jaison et al. | A review on facial emotion recognition and classification analysis with deep learning |