Dwivedi, 2023 - Google Patents

Metamaterials-Based Antenna for 5G and Beyond

Dwivedi, 2023

View PDF
Document ID
6595830148008007912
Author
Dwivedi S
Publication year
Publication venue
Metamaterial Technology and Intelligent Metasurfaces for Wireless Communication Systems

External Links

Snippet

As per demand of high speed and wide bandwidth, there is a wide need to improve the antenna performances and take advantage of a new technology; nevertheless, passive and active devices operating at high frequencies are a big challenge. In the present era of the …
Continue reading at www.academia.edu (PDF) (other versions)

Classifications

    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01QAERIALS
    • H01Q1/00Details of, or arrangements associated with, aerials
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/242Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use
    • H01Q1/243Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use with built-in antennas
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01QAERIALS
    • H01Q9/00Electrically-short aerials having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant aerials
    • H01Q9/16Resonant aerials with feed intermediate between the extremities of the aerial, e.g. centre-fed dipole
    • H01Q9/26Resonant aerials with feed intermediate between the extremities of the aerial, e.g. centre-fed dipole with folded element or elements, the folded parts being spaced apart a small fraction of operating wavelength
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01QAERIALS
    • H01Q9/00Electrically-short aerials having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant aerials
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • H01Q9/0414Substantially flat resonant element parallel to ground plane, e.g. patch antenna in a stacked or folded configuration
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01QAERIALS
    • H01Q9/00Electrically-short aerials having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant aerials
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • H01Q9/0428Substantially flat resonant element parallel to ground plane, e.g. patch antenna radiating a circular polarised wave
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01QAERIALS
    • H01Q1/00Details of, or arrangements associated with, aerials
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01QAERIALS
    • H01Q1/00Details of, or arrangements associated with, aerials
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/364Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith using a particular conducting material, e.g. supraconductor
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01QAERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction, or polarisation of waves radiated from an aerial, e.g. quasi-optical devices
    • H01Q15/0006Devices acting selectively as reflecting surface, as diffracting or as refracting device, e.g. frequency filtering or angular spatial filtering devices
    • H01Q15/0086Devices acting selectively as reflecting surface, as diffracting or as refracting device, e.g. frequency filtering or angular spatial filtering devices said selective devices having materials with a synthesized negative refractive index, e.g. metamaterials or left-handed materials
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01QAERIALS
    • H01Q9/00Electrically-short aerials having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant aerials
    • H01Q9/0485Dielectric resonator antennas
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01QAERIALS
    • H01Q9/00Electrically-short aerials having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant aerials
    • H01Q9/30Resonant aerials with feed to end of elongated active element, e.g. unipole
    • H01Q9/40Element having extended radiating surface
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01QAERIALS
    • H01Q21/00Aerial arrays or systems
    • H01Q21/06Arrays of individually energised active aerial units similarly polarised and spaced apart
    • H01Q21/061Two dimensional planar arrays
    • H01Q21/065Patch antenna array
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01QAERIALS
    • H01Q13/00Waveguide horns or mouths; Slot aerials; Leaky-waveguide aerials; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/10Resonant slot aerials
    • H01Q13/18Resonant slot aerials the slot being backed by, or formed in boundary wall of, a resonant cavity ; Open cavity antennas
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01QAERIALS
    • H01Q21/00Aerial arrays or systems
    • H01Q21/28Combinations of substantially independent non-interacting aerial units or systems
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01QAERIALS
    • H01Q21/00Aerial arrays or systems
    • H01Q21/24Combinations of aerial elements or aerial units polarised in different directions for transmitting or receiving circularly and elliptically polarised waves or waves linearly polarised in any direction
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01QAERIALS
    • H01Q19/00Combinations of primary active aerial elements and units with secondary devices, e.g. with quasi-optical devices, for giving the aerial a desired directional characteristic
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01QAERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an aerial or aerial system
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices

Similar Documents

Publication Publication Date Title
Milias et al. Metamaterial-inspired antennas: A review of the state of the art and future design challenges
Kramer et al. Vertically multilayer-stacked Yagi antenna with single and dual polarizations
Karthika et al. Reconfigurable antennas for advanced wireless communications: A review
WO2010021854A1 (en) Metamaterial antennas for wideband operations
Dong et al. Broadband circularly polarized filtering antennas
Yang et al. Dual-band shared-aperture multiple antenna system with beam steering for 5G applications
Dwivedi Metamaterials-Based Antenna for 5G and Beyond
Nahar et al. Efficiency enhancement techniques of microwave and millimeter‐wave antennas for 5G communication: A survey
Bhattacharyya Metamaterials and metasurfaces for high-frequency applications
Khajeh‐Khalili et al. High‐gain bow‐tie antenna using array of two‐sided planar metamaterial loading for H‐band applications
Upadhyaya et al. Left-Handed material inspired multi-layer planar antenna design for satellite communication applications
Malekpoor et al. High gain, high isolation, and low‐profile two‐element MIMO array loaded by the Giuseppe Peano AMC reflector for wireless communication systems
Mehta et al. Metamaterial technology and intelligent Metasurfaces for wireless communication systems
Huang et al. A new adjustable frequency waveguide circularly polarized antenna based on the solid-state plasma
Khoutar et al. Gain and directivity enhancement of a rectangular microstrip patch antenna using a single layer metamaterial superstrate
Manage et al. A Survey on applications of Metamaterials in Antenna Design
Sheeja et al. Compact tri-band metamaterial antenna for wireless applications
Alqadami et al. Left-handed compact MIMO antenna array based on wire spiral resonator for 5-GHz wireless applications
Chomtong et al. A dual-band metasurface reflector using ring resonator with interdigital capacitor
Rexhepi et al. A study of composite substrates for VHF and UHF artificial magnetic conductors and their application to a SATCOM antenna
Dwivedi Metamaterial Antennas for Wireless Communication Systems
Patel et al. Investigation on Radiation Characteristics of µ-Negative Material Array Loaded Planar Resonator
Khajeh-Khalili et al. High-gain multi-layer antenna using metasurface for application in terahertz communication systems
Abdelkarim et al. Improvement of the Frequency Characteristics for RFID Patch Antenna based on C-Shaped Split Ring Resonator
Borhani-Kakhki et al. Metamaterial enabled FSS for beam-tilting mm-Wave antenna applications