Lee et al., 2024 - Google Patents

IIP2-Calibration-Free Receiver Front End With Notch-Filtered Low-Noise Transconductance Amplifier for 5G New Radio Cellular Applications

Lee et al., 2024

Document ID
6423813389643903391
Author
Lee D
Yun S
Kwon K
Publication year
Publication venue
IEEE Transactions on Circuits and Systems I: Regular Papers

External Links

Snippet

This paper presents an input-referred second-order intercept point (IIP2)-calibration-free receiver (RX) front end with a notch-filtered low-noise transconductance amplifier (LNTA) for 5G new radio (NR) cellular applications. The LNTA adopts a proposed dual-band third-order …
Continue reading at ieeexplore.ieee.org (other versions)

Classifications

    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/45Differential amplifiers
    • H03F3/45071Differential amplifiers with semiconductor devices only
    • H03F3/45076Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier
    • H03F3/45179Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier using MOSFET transistors as the active amplifying circuit
    • H03F3/45183Long tailed pairs
    • H03F3/45188Non-folded cascode stages
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/189High frequency amplifiers, e.g. radio frequency amplifiers
    • H03F3/19High frequency amplifiers, e.g. radio frequency amplifiers with semiconductor devices only
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2203/00Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
    • H03F2203/45Indexing scheme relating to differential amplifiers
    • H03F2203/45704Indexing scheme relating to differential amplifiers the LC comprising one or more parallel resonance circuits
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03DDEMODULATION OR TRANSFERENCE OF MODULATION FROM ONE CARRIER TO ANOTHER
    • H03D7/00Transference of modulation from one carrier to another, e.g. frequency-changing
    • H03D7/14Balanced arrangements
    • H03D7/1425Balanced arrangements with transistors
    • H03D7/1441Balanced arrangements with transistors using field-effect transistors
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/01Frequency selective two-port networks
    • H03H7/17Structural details of sub-circuits of frequency selective networks
    • H03H7/1741Comprising typical LC combinations, irrespective of presence and location of additional resistors
    • H03H7/1775Parallel LC in shunt or branch path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits
    • H04B1/50Circuits using different frequencies for the two directions of communication
    • H04B1/52Hybrid arrangements, i.e. arrangements for transition from single-path two-direction transmission to single-direction transmission on each of two paths or vice versa
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H11/00Networks using active elements
    • H03H11/02Multiple-port networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits
    • H04B1/44Transmit/receive switching
    • H04B1/48Transmit/receive switching in circuits for connecting transmitter and receiver to a common transmission path, e.g. by energy of transmitter
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • H04B1/16Circuits
    • H04B1/26Circuits for superheterodyne receivers
    • H04B1/28Circuits for superheterodyne receivers the receiver comprising at least one semiconductor device having three or more electrodes
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03DDEMODULATION OR TRANSFERENCE OF MODULATION FROM ONE CARRIER TO ANOTHER
    • H03D2200/00Indexing scheme relating to details of demodulation or transference of modulation from one carrier to another covered by H03D
    • H03D2200/0041Functional aspects of demodulators
    • H03D2200/0088Reduction of intermodulation, nonlinearities, adjacent channel interference; intercept points of harmonics or intermodulation products
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • H04B1/10Means associated with receiver for limiting or suppressing noise or interference induced by transmission
    • H04B1/12Neutralising, balancing, or compensation arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/005Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges
    • H04B1/0053Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges with common antenna for more than one band
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/294Indexing scheme relating to amplifiers the amplifier being a low noise amplifier [LNA]

Similar Documents

Publication Publication Date Title
Hedayati et al. A 1.8 dB NF blocker-filtering noise-canceling wideband receiver with shared TIA in 40 nm CMOS
US8130872B2 (en) Frequency and Q-factor tunable filters using frequency translatable impedance structures
US9209910B2 (en) Blocker filtering for noise-cancelling receiver
US9246438B2 (en) Receiver architecture for a compact and low power receiver
US9154170B2 (en) TIA-to-ADC interface with low-noise and a wide-range of passive gain control
Ramella et al. A SAW-less 2.4-GHz receiver front-end with 2.4-mA battery current for SoC coexistence
Singh et al. A millimeter-wave receiver using a wideband low-noise amplifier with one-port coupled resonator loads
Shin et al. A blocker-tolerant receiver front end employing dual-band N-path balun-LNA for 5G new radio cellular applications
US10263574B2 (en) Radio frequency receiver
Kwon et al. A 2G/3G/4G SAW-less receiver front-end adopting switchable front-end architecture
Lee et al. CMOS channel-selection LNA with a feedforward N-path filter and calibrated blocker cancellation path for FEM-less cellular transceivers
Bhat et al. A baseband-matching-resistor noise-canceling receiver with a three-stage inverter-only OpAmp for high in-band IIP3 and wide IF applications
Kim et al. A reconfigurable balun-LNA and tunable filter with frequency-optimized harmonic rejection for sub-GHz and 2.4 GHz IoT receivers
Lee et al. A 50–450 MHz Tunable RF Biquad Filter Based on a Wideband Source Follower With> 26 dBm IIP $ _ {3} $,+ 12 dBm P $ _ {1 {\rm dB}} $, and 15 dB Noise Figure
Zhang et al. An interference-robust reconfigurable receiver with automatic frequency-calibrated LNA in 65-nm CMOS
Aneja et al. Multiband LNAs for software-defined radios: recent advances in the design of multiband reconfigurable LNAs for SDRs in CMOS, microwave integrated circuits technology
Lee et al. IIP2-Calibration-Free Receiver Front End With Notch-Filtered Low-Noise Transconductance Amplifier for 5G New Radio Cellular Applications
Lee et al. IIP2-enhanced receiver front-end with notch-filtered low-noise transconductance amplifier for 5G new radio cellular applications
Park et al. 2.4 GHz BLE receiver with power-efficient quadrature RF-to-baseband-current-reuse architecture for low-power IoT applications
Das et al. A four-phase passive mixer-first receiver with a low-power complementary common-gate TIA
Jeong et al. Calibration-free blocker rejection broadband CMOS low noise amplifier for advanced cellular applications
Slimane et al. A reconfigurable inductor-less CMOS low noise amplifier for multi-standard applications
Waite et al. A CDMA2000 zero-IF receiver with low-leakage integrated front-end
Kim et al. A Sub-GHz/2.4 GHz Highly Selective Reconfigurable RF Front-End Employing an $ N $-Path Complementary Balun-LNA and Linearized RF-to-BB Current-Reuse Mixer
Jo et al. IIP2-Calibration-Free 5G NR Cellular Receiver Front-End With Mixer-Sharing Global $ N $-Path Notch Filter Feedback Achieving $+ $72 dBm IIP2