He et al., 2019 - Google Patents

Between-speaker variability and temporal organization of the first formant

He et al., 2019

View HTML
Document ID
5767669615422657555
Author
He L
Zhang Y
Dellwo V
Publication year
Publication venue
The Journal of the Acoustical Society of America

External Links

Snippet

First formant (F1) trajectories of vocalic intervals were divided into positive and negative dynamics. Positive F1 dynamics were defined as the speeds of F1 increases to reach the maxima, and negative F1 dynamics as the speeds of F1 decreases away from the maxima …
Continue reading at pubs.aip.org (HTML) (other versions)

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS OR SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING; SPEECH OR AUDIO CODING OR DECODING
    • G10L21/00Processing of the speech or voice signal to produce another audible or non-audible signal, e.g. visual or tactile, in order to modify its quality or its intelligibility
    • G10L21/003Changing voice quality, e.g. pitch or formants
    • G10L21/007Changing voice quality, e.g. pitch or formants characterised by the process used
    • G10L21/013Adapting to target pitch
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS OR SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING; SPEECH OR AUDIO CODING OR DECODING
    • G10L21/00Processing of the speech or voice signal to produce another audible or non-audible signal, e.g. visual or tactile, in order to modify its quality or its intelligibility
    • G10L21/06Transformation of speech into a non-audible representation, e.g. speech visualisation or speech processing for tactile aids
    • G10L21/10Transformation of speech into a non-audible representation, e.g. speech visualisation or speech processing for tactile aids transforming into visible information
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS OR SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING; SPEECH OR AUDIO CODING OR DECODING
    • G10L13/00Speech synthesis; Text to speech systems
    • G10L13/02Methods for producing synthetic speech; Speech synthesisers
    • G10L13/033Voice editing, e.g. manipulating the voice of the synthesiser
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS OR SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING; SPEECH OR AUDIO CODING OR DECODING
    • G10L25/00Speech or voice analysis techniques not restricted to a single one of groups G10L15/00-G10L21/00
    • G10L25/48Speech or voice analysis techniques not restricted to a single one of groups G10L15/00-G10L21/00 specially adapted for particular use
    • G10L25/51Speech or voice analysis techniques not restricted to a single one of groups G10L15/00-G10L21/00 specially adapted for particular use for comparison or discrimination
    • G10L25/66Speech or voice analysis techniques not restricted to a single one of groups G10L15/00-G10L21/00 specially adapted for particular use for comparison or discrimination for extracting parameters related to health condition
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS OR SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING; SPEECH OR AUDIO CODING OR DECODING
    • G10L17/00Speaker identification or verification
    • G10L17/26Recognition of special voice characteristics, e.g. for use in lie detectors; Recognition of animal voices
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS OR SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING; SPEECH OR AUDIO CODING OR DECODING
    • G10L21/00Processing of the speech or voice signal to produce another audible or non-audible signal, e.g. visual or tactile, in order to modify its quality or its intelligibility
    • G10L21/02Speech enhancement, e.g. noise reduction or echo cancellation
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS OR SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING; SPEECH OR AUDIO CODING OR DECODING
    • G10L15/00Speech recognition
    • G10L15/06Creation of reference templates; Training of speech recognition systems, e.g. adaptation to the characteristics of the speaker's voice
    • G10L15/065Adaptation
    • G10L15/07Adaptation to the speaker
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS OR SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING; SPEECH OR AUDIO CODING OR DECODING
    • G10L15/00Speech recognition
    • G10L15/02Feature extraction for speech recognition; Selection of recognition unit
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS OR SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING; SPEECH OR AUDIO CODING OR DECODING
    • G10L13/00Speech synthesis; Text to speech systems
    • G10L13/06Elementary speech units used in speech synthesisers; Concatenation rules
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS OR SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING; SPEECH OR AUDIO CODING OR DECODING
    • G10L25/00Speech or voice analysis techniques not restricted to a single one of groups G10L15/00-G10L21/00
    • G10L25/03Speech or voice analysis techniques not restricted to a single one of groups G10L15/00-G10L21/00 characterised by the type of extracted parameters
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS OR SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING; SPEECH OR AUDIO CODING OR DECODING
    • G10L19/00Speech or audio signal analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signal, using source filter models or psychoacoustic analysis
    • G10L19/04Speech or audio signal analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signal, using source filter models or psychoacoustic analysis using predictive techniques
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/20Handling natural language data

Similar Documents

Publication Publication Date Title
Alghamdi et al. A corpus of audio-visual Lombard speech with frontal and profile views
He et al. Between-speaker variability and temporal organization of the first formant
Sandoval et al. Automatic assessment of vowel space area
Bent et al. The influence of talker and foreign-accent variability on spoken word identification
Jin et al. The vowel inherent spectral change of English vowels spoken by native and non-native speakers
US20210335364A1 (en) Computer program, server, terminal, and speech signal processing method
Tu et al. The relationship between perceptual disturbances in dysarthric speech and automatic speech recognition performance
Ge et al. How Reliable Are Phonetic Data Collected Remotely? Comparison of Recording Devices and Environments on Acoustic Measurements.
He et al. Between-speaker variability in temporal organizations of intensity contours
Chen et al. Development of a glottal area index that integrates glottal gap size and open quotient
Smith et al. Faciliation of Mandarin tone perception by visual speech in clear and degraded audio: Implications for cochlear implants
Weirich et al. Investigating the relationship between average speaker fundamental frequency and acoustic vowel space size
Huang et al. Evidence for the central origin of lexical tone normalization (L)
Zhang et al. Adjustment of cue weighting in speech by speakers and listeners: Evidence from amplitude and duration modifications of Mandarin Chinese tone
Koenig et al. Effects of consonant manner and vowel height on intraoral pressure and articulatory contact at voicing offset and onset for voiceless obstruents
Reilly et al. The role of vowel perceptual cues in compensatory responses to perturbations of speech auditory feedback
Loakes et al. Voice quality in Australian English
Assmann et al. Identification of frequency-shifted vowels
White et al. Evaluating automatic creaky voice detection methods
Samlan et al. Perceptual consequences of changes in epilaryngeal area and shape
Johnson et al. The structure of acoustic voice variation in bilingual speech
Li et al. Effects of speaking style on speech intelligibility for Mandarin-speaking cochlear implant users
Han et al. Fundamental frequency range and other acoustic factors that might contribute to the clear-speech benefit
Gilbert et al. Restoring speech following total removal of the larynx by a learned transformation from sensor data to acoustics
Remez et al. Estimating speech spectra for copy synthesis by linear prediction and by hand