Yuan et al., 2018 - Google Patents

A thiazole–naphthalene diimide based n-channel donor–acceptor conjugated polymer

Yuan et al., 2018

Document ID
5708869162663488155
Author
Yuan Z
Buckley C
Thomas S
Zhang G
Bargigia I
Wang G
Fu B
Silva C
Brédas J
Reichmanis E
Publication year
Publication venue
Macromolecules

External Links

Snippet

Conjugated monomers and polymers containing 2, 2′-bithiazole (BTz) and naphthalene diimide (NDI) units in the main chain were prepared. Polymer PNDI2Tz was obtained via palladium-catalyzed Stille polycondensation of a dibromo-substituted NDI derivative with …
Continue reading at pubs.acs.org (other versions)

Classifications

    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L51/00Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof
    • H01L51/05Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof specially adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential- jump barrier or surface barrier multistep processes for their manufacture
    • H01L51/0504Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof specially adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential- jump barrier or surface barrier multistep processes for their manufacture the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or swiched, e.g. three-terminal devices
    • H01L51/0508Field-effect devices, e.g. TFTs
    • H01L51/0512Field-effect devices, e.g. TFTs insulated gate field effect transistors
    • H01L51/0545Lateral single gate single channel transistors with inverted structure, i.e. the organic semiconductor layer is formed after the gate electrode
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L51/00Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof
    • H01L51/0032Selection of organic semiconducting materials, e.g. organic light sensitive or organic light emitting materials
    • H01L51/0034Organic polymers or oligomers
    • H01L51/0035Organic polymers or oligomers comprising aromatic, heteroaromatic, or arrylic chains, e.g. polyaniline, polyphenylene, polyphenylene vinylene
    • H01L51/0036Heteroaromatic compounds comprising sulfur or selene, e.g. polythiophene
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L51/00Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof
    • H01L51/0032Selection of organic semiconducting materials, e.g. organic light sensitive or organic light emitting materials
    • H01L51/005Macromolecular systems with low molecular weight, e.g. cyanine dyes, coumarine dyes, tetrathiafulvalene
    • H01L51/0052Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L51/00Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof
    • H01L51/0032Selection of organic semiconducting materials, e.g. organic light sensitive or organic light emitting materials
    • H01L51/005Macromolecular systems with low molecular weight, e.g. cyanine dyes, coumarine dyes, tetrathiafulvalene
    • H01L51/0062Macromolecular systems with low molecular weight, e.g. cyanine dyes, coumarine dyes, tetrathiafulvalene aromatic compounds comprising a hetero atom, e.g.: N,P,S
    • H01L51/0071Polycyclic condensed heteroaromatic hydrocarbons
    • H01L51/0072Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ringsystem, e.g. phenanthroline, carbazole
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L51/00Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof
    • H01L51/0032Selection of organic semiconducting materials, e.g. organic light sensitive or organic light emitting materials
    • H01L51/0045Carbon containing materials, e.g. carbon nanotubes, fullerenes
    • H01L51/0046Fullerenes, e.g. C60, C70
    • H01L51/0047Fullerenes, e.g. C60, C70 comprising substituents, e.g. PCBM
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L51/00Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof
    • H01L51/42Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof specially adapted for sensing infra-red radiation, light, electro-magnetic radiation of shorter wavelength or corpuscular radiation and adapted for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation using organic materials as the active part, or using a combination of organic materials with other material as the active part; Multistep processes for their manufacture
    • H01L51/4253Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof specially adapted for sensing infra-red radiation, light, electro-magnetic radiation of shorter wavelength or corpuscular radiation and adapted for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation using organic materials as the active part, or using a combination of organic materials with other material as the active part; Multistep processes for their manufacture comprising bulk hetero-junctions, e.g. interpenetrating networks
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L51/00Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof
    • H01L51/0001Processes specially adapted for the manufacture or treatment of devices or of parts thereof
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L51/00Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof
    • H01L51/50Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof specially adapted for light emission, e.g. organic light emitting diodes [OLED] or polymer light emitting devices [PLED];
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GASES [GHG] EMISSION, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/54Material technologies
    • Y02E10/549Material technologies organic PV cells

Similar Documents

Publication Publication Date Title
Shi et al. Imide-functionalized thiazole-based polymer semiconductors: Synthesis, structure–property correlations, charge carrier polarity, and thin-film transistor performance
Feng et al. Cyano-functionalized bithiophene imide-based n-type polymer semiconductors: Synthesis, structure–property correlations, and thermoelectric performance
Yuan et al. A thiazole–naphthalene diimide based n-channel donor–acceptor conjugated polymer
Yuan et al. Unipolar electron transport polymers: a thiazole based all-electron acceptor approach
Wang et al. Naphthodithiophenediimide–benzobisthiadiazole-based polymers: versatile n-type materials for field-effect transistors and thermoelectric devices
Lee et al. Importance of solubilizing group and backbone planarity in low band gap polymers for high performance ambipolar field-effect transistors
Hong et al. Thiophene-phenylene and thiophene-thiazole oligomeric semiconductors with high field-effect transistor on/off ratios
Guo et al. Bithiophene-imide-based polymeric semiconductors for field-effect transistors: Synthesis, structure− property correlations, charge carrier polarity, and device stability
Jiang et al. Synthesis and characterization of isoindigo [7, 6-g] isoindigo-based donor–acceptor conjugated polymers
Li et al. Annealing-Free High-Mobility Diketopyrrolopyrrole− Quaterthiophene Copolymer for Solution-Processed Organic Thin Film Transistors
Fu et al. High charge carrier mobility, low band gap donor–acceptor benzothiadiazole-oligothiophene based polymeric semiconductors
Fallon et al. Indolo-naphthyridine-6, 13-dione thiophene building block for conjugated polymer electronics: molecular origin of ultrahigh n-type mobility
Lee et al. Fluorinated benzothiadiazole (BT) groups as a powerful unit for high-performance electron-transporting polymers
Chen et al. π-Extended naphthalene diimide derivatives for n-Type semiconducting polymers
Eckstein et al. Buta-1, 3-diyne-based π-conjugated polymers for organic transistors and solar cells
Zhang et al. Efficient naphthalenediimide-based hole semiconducting polymer with vinylene linkers between donor and acceptor units
Chen et al. Thiazole-flanked diketopyrrolopyrrole polymeric semiconductors for ambipolar field-effect transistors with balanced carrier mobilities
Chen et al. Donor–acceptor conjugated polymers based on bisisoindigo: energy level modulation toward unipolar n-type semiconductors
Bulumulla et al. Thieno [3, 2-b] pyrrole-benzothiadiazole banana-shaped small molecules for organic field-effect transistors
Shi et al. Bichalcogenophene imide-based homopolymers: chalcogen-atom effects on the optoelectronic property and device performance in organic thin-film transistors
Mikie et al. Extended π-electron delocalization in quinoid-based conjugated polymers boosts intrachain charge carrier transport
Bianchi et al. New Benzo [1, 2-d: 4, 5-d′] bis ([1, 2, 3] thiadiazole)(iso-BBT)-Based Polymers for Application in Transistors and Solar Cells
Zhang et al. Conjugated polymers based on thiazole flanked naphthalene diimide for unipolar n-type organic field-effect transistors
Pan et al. Multicomponent blend systems used in organic field-effect transistors: charge transport properties, large-area preparation, and functional devices
Mukhopadhyay et al. Air-stable n-channel diketopyrrolopyrrole− diketopyrrolopyrrole oligomers for high performance ambipolar organic transistors