Chen et al., 2009 - Google Patents
Study of the noise-reduction problem in the Karhunen–Loève expansion domainChen et al., 2009
View PDF- Document ID
- 5621857971523875304
- Author
- Chen J
- Benesty J
- Huang Y
- Publication year
- Publication venue
- IEEE transactions on audio, speech, and language processing
External Links
Snippet
Noise reduction, which aims at estimating a clean speech from a noisy observation, has long been an active research area. The standard approach to this problem is to obtain the clean speech estimate by linearly filtering the noisy signal. The core issue, then, becomes how to …
- 238000004140 cleaning 0 abstract description 22
Classifications
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10L—SPEECH ANALYSIS OR SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING; SPEECH OR AUDIO CODING OR DECODING
- G10L21/00—Processing of the speech or voice signal to produce another audible or non-audible signal, e.g. visual or tactile, in order to modify its quality or its intelligibility
- G10L21/02—Speech enhancement, e.g. noise reduction or echo cancellation
- G10L21/0208—Noise filtering
- G10L21/0216—Noise filtering characterised by the method used for estimating noise
- G10L2021/02161—Number of inputs available containing the signal or the noise to be suppressed
- G10L2021/02166—Microphone arrays; Beamforming
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10L—SPEECH ANALYSIS OR SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING; SPEECH OR AUDIO CODING OR DECODING
- G10L21/00—Processing of the speech or voice signal to produce another audible or non-audible signal, e.g. visual or tactile, in order to modify its quality or its intelligibility
- G10L21/02—Speech enhancement, e.g. noise reduction or echo cancellation
- G10L21/0208—Noise filtering
- G10L21/0216—Noise filtering characterised by the method used for estimating noise
- G10L21/0232—Processing in the frequency domain
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10L—SPEECH ANALYSIS OR SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING; SPEECH OR AUDIO CODING OR DECODING
- G10L21/00—Processing of the speech or voice signal to produce another audible or non-audible signal, e.g. visual or tactile, in order to modify its quality or its intelligibility
- G10L21/02—Speech enhancement, e.g. noise reduction or echo cancellation
- G10L21/0208—Noise filtering
- G10L21/0216—Noise filtering characterised by the method used for estimating noise
- G10L2021/02168—Noise filtering characterised by the method used for estimating noise the estimation exclusively taking place during speech pauses
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10L—SPEECH ANALYSIS OR SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING; SPEECH OR AUDIO CODING OR DECODING
- G10L21/00—Processing of the speech or voice signal to produce another audible or non-audible signal, e.g. visual or tactile, in order to modify its quality or its intelligibility
- G10L21/02—Speech enhancement, e.g. noise reduction or echo cancellation
- G10L21/0272—Voice signal separating
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10L—SPEECH ANALYSIS OR SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING; SPEECH OR AUDIO CODING OR DECODING
- G10L25/00—Speech or voice analysis techniques not restricted to a single one of groups G10L15/00-G10L21/00
- G10L25/03—Speech or voice analysis techniques not restricted to a single one of groups G10L15/00-G10L21/00 characterised by the type of extracted parameters
- G10L25/18—Speech or voice analysis techniques not restricted to a single one of groups G10L15/00-G10L21/00 characterised by the type of extracted parameters the extracted parameters being spectral information of each sub-band
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10L—SPEECH ANALYSIS OR SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING; SPEECH OR AUDIO CODING OR DECODING
- G10L25/00—Speech or voice analysis techniques not restricted to a single one of groups G10L15/00-G10L21/00
- G10L25/03—Speech or voice analysis techniques not restricted to a single one of groups G10L15/00-G10L21/00 characterised by the type of extracted parameters
- G10L25/09—Speech or voice analysis techniques not restricted to a single one of groups G10L15/00-G10L21/00 characterised by the type of extracted parameters the extracted parameters being zero crossing rates
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10L—SPEECH ANALYSIS OR SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING; SPEECH OR AUDIO CODING OR DECODING
- G10L21/00—Processing of the speech or voice signal to produce another audible or non-audible signal, e.g. visual or tactile, in order to modify its quality or its intelligibility
- G10L21/003—Changing voice quality, e.g. pitch or formants
- G10L21/007—Changing voice quality, e.g. pitch or formants characterised by the process used
- G10L21/013—Adapting to target pitch
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10L—SPEECH ANALYSIS OR SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING; SPEECH OR AUDIO CODING OR DECODING
- G10L15/00—Speech recognition
- G10L15/20—Speech recognition techniques specially adapted for robustness in adverse environments, e.g. in noise, of stress induced speech
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10L—SPEECH ANALYSIS OR SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING; SPEECH OR AUDIO CODING OR DECODING
- G10L25/00—Speech or voice analysis techniques not restricted to a single one of groups G10L15/00-G10L21/00
- G10L25/78—Detection of presence or absence of voice signals
- G10L25/84—Detection of presence or absence of voice signals for discriminating voice from noise
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10L—SPEECH ANALYSIS OR SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING; SPEECH OR AUDIO CODING OR DECODING
- G10L17/00—Speaker identification or verification
- G10L17/04—Training, enrolment or model building
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10L—SPEECH ANALYSIS OR SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING; SPEECH OR AUDIO CODING OR DECODING
- G10L19/00—Speech or audio signal analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signal, using source filter models or psychoacoustic analysis
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Erkelens et al. | Minimum mean-square error estimation of discrete Fourier coefficients with generalized Gamma priors | |
Benesty et al. | On the importance of the Pearson correlation coefficient in noise reduction | |
TWI420509B (en) | Noise variance estimator for speech enhancement | |
Jensen et al. | Noise reduction with optimal variable span linear filters | |
Gazor et al. | Speech enhancement employing Laplacian-Gaussian mixture | |
Schasse et al. | Estimation of subband speech correlations for noise reduction via MVDR processing | |
Chen et al. | Fundamentals of noise reduction | |
Huang et al. | A family of maximum SNR filters for noise reduction | |
WO2009043066A1 (en) | Method and device for low-latency auditory model-based single-channel speech enhancement | |
Islam et al. | Speech enhancement based on a modified spectral subtraction method | |
Chen et al. | Study of the noise-reduction problem in the Karhunen–Loève expansion domain | |
Togami et al. | Simultaneous optimization of acoustic echo reduction, speech dereverberation, and noise reduction against mutual interference | |
JP6190373B2 (en) | Audio signal noise attenuation | |
Hendriks et al. | MAP estimators for speech enhancement under normal and Rayleigh inverse Gaussian distributions | |
Taşmaz et al. | Speech enhancement based on undecimated wavelet packet-perceptual filterbanks and MMSE–STSA estimation in various noise environments | |
Bavkar et al. | PCA based single channel speech enhancement method for highly noisy environment | |
Benesty et al. | Noise reduction algorithms in a generalized transform domain | |
Thiagarajan et al. | Pitch-based voice activity detection for feedback cancellation and noise reduction in hearing aids | |
Gui et al. | Adaptive subband Wiener filtering for speech enhancement using critical-band gammatone filterbank | |
Saleem et al. | Machine Learning Approach for Improving the Intelligibility of Noisy Speech | |
Saleem et al. | Regularized sparse decomposition model for speech enhancement via convex distortion measure | |
Vu et al. | An EM approach to integrated multichannel speech separation and noise suppression | |
Esch et al. | Model-based speech enhancement exploiting temporal and spectral dependencies | |
Djendi | An efficient wavelet-based adaptive filtering algorithm for automatic blind speech enhancement | |
Sunnydayal et al. | Speech enhancement using sub-band wiener filter with pitch synchronous analysis |