Felix et al., 2020 - Google Patents
Predicting the number of defects in a new software versionFelix et al., 2020
View HTML- Document ID
- 4069367501980593423
- Author
- Felix E
- Lee S
- Publication year
- Publication venue
- PloS one
External Links
Snippet
Predicting the number of defects in software at the method level is important. However, little or no research has focused on method-level defect prediction. Therefore, considerable efforts are still required to demonstrate how method-level defect prediction can be achieved …
- 238000007781 pre-processing 0 abstract description 46
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06Q—DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTING PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTING PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q10/00—Administration; Management
- G06Q10/06—Resources, workflows, human or project management, e.g. organising, planning, scheduling or allocating time, human or machine resources; Enterprise planning; Organisational models
- G06Q10/063—Operations research or analysis
- G06Q10/0639—Performance analysis
- G06Q10/06393—Score-carding, benchmarking or key performance indicator [KPI] analysis
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06N—COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N99/00—Subject matter not provided for in other groups of this subclass
- G06N99/005—Learning machines, i.e. computer in which a programme is changed according to experience gained by the machine itself during a complete run
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06N—COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N5/00—Computer systems utilising knowledge based models
- G06N5/02—Knowledge representation
- G06N5/022—Knowledge engineering, knowledge acquisition
- G06N5/025—Extracting rules from data
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F11/00—Error detection; Error correction; Monitoring
- G06F11/07—Error detection; Error correction; Monitoring responding to the occurence of a fault, e.g. fault tolerance
- G06F11/0703—Error or fault processing not based on redundancy, i.e. by taking additional measures to deal with the error or fault not making use of redundancy in operation, in hardware, or in data representation
- G06F11/0706—Error or fault processing not based on redundancy, i.e. by taking additional measures to deal with the error or fault not making use of redundancy in operation, in hardware, or in data representation the processing taking place on a specific hardware platform or in a specific software environment
- G06F11/0721—Error or fault processing not based on redundancy, i.e. by taking additional measures to deal with the error or fault not making use of redundancy in operation, in hardware, or in data representation the processing taking place on a specific hardware platform or in a specific software environment within a central processing unit [CPU]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06N—COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N5/00—Computer systems utilising knowledge based models
- G06N5/04—Inference methods or devices
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06Q—DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTING PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTING PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q10/00—Administration; Management
- G06Q10/10—Office automation, e.g. computer aided management of electronic mail or groupware; Time management, e.g. calendars, reminders, meetings or time accounting
- G06Q10/101—Collaborative creation of products or services
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06Q—DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTING PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTING PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q50/00—Systems or methods specially adapted for a specific business sector, e.g. utilities or tourism
- G06Q50/01—Social networking
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F9/00—Arrangements for programme control, e.g. control unit
- G06F9/06—Arrangements for programme control, e.g. control unit using stored programme, i.e. using internal store of processing equipment to receive and retain programme
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F19/00—Digital computing or data processing equipment or methods, specially adapted for specific applications
- G06F19/30—Medical informatics, i.e. computer-based analysis or dissemination of patient or disease data
- G06F19/34—Computer-assisted medical diagnosis or treatment, e.g. computerised prescription or delivery of medication or diets, computerised local control of medical devices, medical expert systems or telemedicine
- G06F19/345—Medical expert systems, neural networks or other automated diagnosis
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06N—COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computer systems based on biological models
- G06N3/02—Computer systems based on biological models using neural network models
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06N—COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N7/00—Computer systems based on specific mathematical models
- G06N7/005—Probabilistic networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06Q—DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTING PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTING PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q30/00—Commerce, e.g. shopping or e-commerce
- G06Q30/02—Marketing, e.g. market research and analysis, surveying, promotions, advertising, buyer profiling, customer management or rewards; Price estimation or determination
- G06Q30/0202—Market predictions or demand forecasting
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F15/00—Digital computers in general; Data processing equipment in general
- G06F15/18—Digital computers in general; Data processing equipment in general in which a programme is changed according to experience gained by the computer itself during a complete run; Learning machines
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06Q—DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTING PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTING PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q40/00—Finance; Insurance; Tax strategies; Processing of corporate or income taxes
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Felix et al. | Predicting the number of defects in a new software version | |
Mehdiyev et al. | Explainable artificial intelligence for process mining: A general overview and application of a novel local explanation approach for predictive process monitoring | |
Zhang et al. | Towards building a universal defect prediction model with rank transformed predictors | |
Jiarpakdee et al. | The impact of automated feature selection techniques on the interpretation of defect models | |
Czibula et al. | Software defect prediction using relational association rule mining | |
Suresh Kumar et al. | Bootstrap aggregation ensemble learning-based reliable approach for software defect prediction by using characterized code feature | |
Hernández-González et al. | Learning to classify software defects from crowds: a novel approach | |
Choetkiertikul et al. | Characterization and prediction of issue-related risks in software projects | |
Yousef | Extracting software static defect models using data mining | |
Ali et al. | Discriminating features-based cost-sensitive approach for software defect prediction | |
Panichella et al. | A search-based training algorithm for cost-aware defect prediction | |
Kastro et al. | A defect prediction method for software versioning | |
Malhotra et al. | An empirical comparison of machine learning techniques for software defect prediction | |
Malhotra et al. | An empirical study on predictability of software maintainability using imbalanced data | |
Almhana et al. | Method-level bug localization using hybrid multi-objective search | |
Lee et al. | Evaluating borrowers’ default risk with a spatial probit model reflecting the distance in their relational network | |
Mojica-Hanke et al. | What are the machine learning best practices reported by practitioners on stack exchange? | |
Chamlal et al. | Elastic net-based high dimensional data selection for regression | |
Jarman et al. | Legion: Massively composing rankers for improved bug localization at adobe | |
Sinha et al. | Voting-based integration algorithm improves causal network learning from interventional and observational data: An application to cell signaling network inference | |
Zhou et al. | Bridging Expert Knowledge with Deep Learning Techniques for Just-In-Time Defect Prediction | |
Yang et al. | A hierarchical ensemble causal structure learning approach for wafer manufacturing | |
Aarti et al. | Empirical validation of object-oriented metrics on cross-projects with different severity levels | |
Hanagal et al. | Introduction to Software Reliability Models | |
Akbarinasaji | Partially observable Markov Decision Process to prioritize software defects |