Gluekler, 1997 - Google Patents

US advanced liquid metal reactor (ALMR)

Gluekler, 1997

Document ID
312614874613638164
Author
Gluekler E
Publication year
Publication venue
Progress in Nuclear Energy

External Links

Snippet

The Integral Fast Reactor (IFR) technology development program has been complemented by an industrial team, led by the General Electric Company, who have developed advanced liquid-metal reactor (ALMR) designs based on the IFR technology. These practical designs …
Continue reading at www.sciencedirect.com (other versions)

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GASES [GHG] EMISSION, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors
    • Y02E30/40Other aspects relating to nuclear fission
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GASES [GHG] EMISSION, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors
    • Y02E30/34Fast breeder reactors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GASES [GHG] EMISSION, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors
    • Y02E30/33Gas cooled reactors
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C3/00Reactor fuel elements and their assemblies; Selection of substances for use as reactor fuel elements
    • G21C3/02Fuel elements
    • G21C3/04Constructional details
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C19/00Arrangements for treating, for handling, or for facilitating the handling of, fuel or other materials which are used within the reactor, e.g. within its pressure vessel
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C1/00Reactors
    • G21C1/04Thermal reactors; Epithermal reactors
    • G21C1/06Heterogeneous reactors, i.e. in which fuel and moderator are separated
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C15/00Cooling arrangements within the pressure vessel containing the core; Selection of specific coolants
    • G21C15/18Emergency cooling arrangements; Removing shut-down heat
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C1/00Reactors
    • G21C1/02Fast fission reactors, i.e. reactors not using a moderator; Metal cooled reactors; Fast breeders
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21YINDEXING SCHEME RELATING TO NUCLEAR REACTORS, POWER PLANTS AND EXPLOSIVES, TO PROTECTION AGAINST RADIATION, TO THE TREATMENT OF RADIOACTIVELY CONTAMINATED MATERIAL, TO APPLICATIONS OF RADIOACTIVE SOURCES AND TO THE UTILISATION OF COSMIC RADIATION
    • G21Y2002/00PROBLEM
    • G21Y2002/201Inadequate efficiency
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21YINDEXING SCHEME RELATING TO NUCLEAR REACTORS, POWER PLANTS AND EXPLOSIVES, TO PROTECTION AGAINST RADIATION, TO THE TREATMENT OF RADIOACTIVELY CONTAMINATED MATERIAL, TO APPLICATIONS OF RADIOACTIVE SOURCES AND TO THE UTILISATION OF COSMIC RADIATION
    • G21Y2004/00SOLUTION
    • G21Y2004/30Improving a design
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C5/00Moderator or core structure; Selection of materials for use as moderator
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21DNUCLEAR POWER PLANT
    • G21D1/00Details of nuclear power plant
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C7/00Control of nuclear reaction
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C17/00Monitoring; Testing ; Maintaining
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F5/00Transportable or portable shielded containers
    • G21F5/005Containers for solid radioactive wastes, e.g. for ultimate disposal
    • G21F5/008Containers for fuel elements
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21DNUCLEAR POWER PLANT
    • G21D3/00Control of nuclear power plant
    • G21D3/04Safety arrangements
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F9/00Treating radioactively contaminated material; Decontamination arrangements therefor

Similar Documents

Publication Publication Date Title
Kok Nuclear engineering handbook
Kessides The future of the nuclear industry reconsidered: Risks, uncertainties, and continued promise
Chetal et al. The design of the prototype fast breeder reactor
Kugeler et al. Modular high-temperature gas-cooled reactor power plant
Gluekler US advanced liquid metal reactor (ALMR)
LeBlanc et al. Integral molten salt reactor
Choi Small modular reactors (SMRs): The case of the Republic of Korea
Berglund et al. PRISM: a safe, economic, and testable liquid-metal fast breeder reactor plant
Bhowmik et al. Book Chapter: Small Modular Reactors
Petrochenko et al. SVBR-100 nuclear technology as a possible option for developing countries
Forsberg Goals, requirements, and design implications for the advanced high-temperature reactor
Reyes Jr et al. Why the Unique Safety Features of Advanced Reactors Matter
Weinberg et al. The second nuclear era: A nuclear renaissance
Kessides The future of the nuclear industry reconsidered: Risks, uncertainties, and continued potential
Kugeler et al. General Aspects of High-Temperature Reactors
Koster et al. Pebble-bed modular reactor: a generation IV high-temperature gas-cooled reactor
Shenoy et al. Steam cycle modular helium reactor
Hill et al. Sodium-Cooled Fast Reactor Proliferation Resistance and Physical Protection White Paper
Cummins et al. Westinghouse AP1000 advanced passive plant
Short et al. Deployability of Small Modular Nuclear Reactors for Alberta Applications
Berglund et al. Progress on PRISM, an advanced liquid metal reactor power plant concept for the future
Kastenberg On design criteria for afterheat and decay heat removal in fusion and fusion—fission power plants
Li Advanced boiling water reactor (ABWR)
Ragheb INHERENTLY SAFE REACTORS DESIGNS
Greenspan STAR: The Secure Transportable Autonomous Reactor System-Encapsulated Fission Heat Source