Gluekler, 1997 - Google Patents
US advanced liquid metal reactor (ALMR)Gluekler, 1997
- Document ID
- 312614874613638164
- Author
- Gluekler E
- Publication year
- Publication venue
- Progress in Nuclear Energy
External Links
Snippet
The Integral Fast Reactor (IFR) technology development program has been complemented by an industrial team, led by the General Electric Company, who have developed advanced liquid-metal reactor (ALMR) designs based on the IFR technology. These practical designs …
- 229910001338 liquidmetal 0 title abstract description 18
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GASES [GHG] EMISSION, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E30/00—Energy generation of nuclear origin
- Y02E30/30—Nuclear fission reactors
- Y02E30/40—Other aspects relating to nuclear fission
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GASES [GHG] EMISSION, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E30/00—Energy generation of nuclear origin
- Y02E30/30—Nuclear fission reactors
- Y02E30/34—Fast breeder reactors
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GASES [GHG] EMISSION, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E30/00—Energy generation of nuclear origin
- Y02E30/30—Nuclear fission reactors
- Y02E30/33—Gas cooled reactors
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21C—NUCLEAR REACTORS
- G21C3/00—Reactor fuel elements and their assemblies; Selection of substances for use as reactor fuel elements
- G21C3/02—Fuel elements
- G21C3/04—Constructional details
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21C—NUCLEAR REACTORS
- G21C19/00—Arrangements for treating, for handling, or for facilitating the handling of, fuel or other materials which are used within the reactor, e.g. within its pressure vessel
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21C—NUCLEAR REACTORS
- G21C1/00—Reactors
- G21C1/04—Thermal reactors; Epithermal reactors
- G21C1/06—Heterogeneous reactors, i.e. in which fuel and moderator are separated
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21C—NUCLEAR REACTORS
- G21C15/00—Cooling arrangements within the pressure vessel containing the core; Selection of specific coolants
- G21C15/18—Emergency cooling arrangements; Removing shut-down heat
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21C—NUCLEAR REACTORS
- G21C1/00—Reactors
- G21C1/02—Fast fission reactors, i.e. reactors not using a moderator; Metal cooled reactors; Fast breeders
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21Y—INDEXING SCHEME RELATING TO NUCLEAR REACTORS, POWER PLANTS AND EXPLOSIVES, TO PROTECTION AGAINST RADIATION, TO THE TREATMENT OF RADIOACTIVELY CONTAMINATED MATERIAL, TO APPLICATIONS OF RADIOACTIVE SOURCES AND TO THE UTILISATION OF COSMIC RADIATION
- G21Y2002/00—PROBLEM
- G21Y2002/201—Inadequate efficiency
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21Y—INDEXING SCHEME RELATING TO NUCLEAR REACTORS, POWER PLANTS AND EXPLOSIVES, TO PROTECTION AGAINST RADIATION, TO THE TREATMENT OF RADIOACTIVELY CONTAMINATED MATERIAL, TO APPLICATIONS OF RADIOACTIVE SOURCES AND TO THE UTILISATION OF COSMIC RADIATION
- G21Y2004/00—SOLUTION
- G21Y2004/30—Improving a design
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21C—NUCLEAR REACTORS
- G21C5/00—Moderator or core structure; Selection of materials for use as moderator
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21D—NUCLEAR POWER PLANT
- G21D1/00—Details of nuclear power plant
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21C—NUCLEAR REACTORS
- G21C7/00—Control of nuclear reaction
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21C—NUCLEAR REACTORS
- G21C17/00—Monitoring; Testing ; Maintaining
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21F—PROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
- G21F5/00—Transportable or portable shielded containers
- G21F5/005—Containers for solid radioactive wastes, e.g. for ultimate disposal
- G21F5/008—Containers for fuel elements
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21D—NUCLEAR POWER PLANT
- G21D3/00—Control of nuclear power plant
- G21D3/04—Safety arrangements
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21F—PROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
- G21F9/00—Treating radioactively contaminated material; Decontamination arrangements therefor
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Kok | Nuclear engineering handbook | |
Kessides | The future of the nuclear industry reconsidered: Risks, uncertainties, and continued promise | |
Chetal et al. | The design of the prototype fast breeder reactor | |
Kugeler et al. | Modular high-temperature gas-cooled reactor power plant | |
Gluekler | US advanced liquid metal reactor (ALMR) | |
LeBlanc et al. | Integral molten salt reactor | |
Choi | Small modular reactors (SMRs): The case of the Republic of Korea | |
Berglund et al. | PRISM: a safe, economic, and testable liquid-metal fast breeder reactor plant | |
Bhowmik et al. | Book Chapter: Small Modular Reactors | |
Petrochenko et al. | SVBR-100 nuclear technology as a possible option for developing countries | |
Forsberg | Goals, requirements, and design implications for the advanced high-temperature reactor | |
Reyes Jr et al. | Why the Unique Safety Features of Advanced Reactors Matter | |
Weinberg et al. | The second nuclear era: A nuclear renaissance | |
Kessides | The future of the nuclear industry reconsidered: Risks, uncertainties, and continued potential | |
Kugeler et al. | General Aspects of High-Temperature Reactors | |
Koster et al. | Pebble-bed modular reactor: a generation IV high-temperature gas-cooled reactor | |
Shenoy et al. | Steam cycle modular helium reactor | |
Hill et al. | Sodium-Cooled Fast Reactor Proliferation Resistance and Physical Protection White Paper | |
Cummins et al. | Westinghouse AP1000 advanced passive plant | |
Short et al. | Deployability of Small Modular Nuclear Reactors for Alberta Applications | |
Berglund et al. | Progress on PRISM, an advanced liquid metal reactor power plant concept for the future | |
Kastenberg | On design criteria for afterheat and decay heat removal in fusion and fusion—fission power plants | |
Li | Advanced boiling water reactor (ABWR) | |
Ragheb | INHERENTLY SAFE REACTORS DESIGNS | |
Greenspan | STAR: The Secure Transportable Autonomous Reactor System-Encapsulated Fission Heat Source |