Sohail et al., 2019 - Google Patents

Design and analysis of a novel patch antenna array for 5G and millimeter wave applications

Sohail et al., 2019

Document ID
2960911857463526905
Author
Sohail A
Khan H
Khan U
Khattak M
Saleem N
Nasir J
Publication year
Publication venue
2019 2nd International Conference on Computing, Mathematics and Engineering Technologies (iCoMET)

External Links

Snippet

Multiband high gain antennas are the essence of future wireless communication networks. This paper presents a detailed investigation and design of 1× 4 linear and 2× 2 planar array antennas. Arrays are designed using Rogers RT/duroid5880 (lossy) substrate. Thickness …
Continue reading at ieeexplore.ieee.org (other versions)

Classifications

    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01QAERIALS
    • H01Q1/00Details of, or arrangements associated with, aerials
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/242Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use
    • H01Q1/243Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use with built-in antennas
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01QAERIALS
    • H01Q9/00Electrically-short aerials having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant aerials
    • H01Q9/16Resonant aerials with feed intermediate between the extremities of the aerial, e.g. centre-fed dipole
    • H01Q9/26Resonant aerials with feed intermediate between the extremities of the aerial, e.g. centre-fed dipole with folded element or elements, the folded parts being spaced apart a small fraction of operating wavelength
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01QAERIALS
    • H01Q9/00Electrically-short aerials having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant aerials
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • H01Q9/0428Substantially flat resonant element parallel to ground plane, e.g. patch antenna radiating a circular polarised wave
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01QAERIALS
    • H01Q21/00Aerial arrays or systems
    • H01Q21/06Arrays of individually energised active aerial units similarly polarised and spaced apart
    • H01Q21/061Two dimensional planar arrays
    • H01Q21/065Patch antenna array
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01QAERIALS
    • H01Q9/00Electrically-short aerials having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant aerials
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • H01Q9/0442Substantially flat resonant element parallel to ground plane, e.g. patch antenna with particular tuning means
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01QAERIALS
    • H01Q9/00Electrically-short aerials having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant aerials
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • H01Q9/0414Substantially flat resonant element parallel to ground plane, e.g. patch antenna in a stacked or folded configuration
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01QAERIALS
    • H01Q9/00Electrically-short aerials having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant aerials
    • H01Q9/16Resonant aerials with feed intermediate between the extremities of the aerial, e.g. centre-fed dipole
    • H01Q9/28Conical, cylindrical, cage, strip, gauze, or like elements having an extended radiating surface; Elements comprising two conical surfaces having collinear axes and adjacent apices and fed by two-conductor transmission lines
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01QAERIALS
    • H01Q9/00Electrically-short aerials having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant aerials
    • H01Q9/30Resonant aerials with feed to end of elongated active element, e.g. unipole
    • H01Q9/40Element having extended radiating surface
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01QAERIALS
    • H01Q13/00Waveguide horns or mouths; Slot aerials; Leaky-waveguide aerials; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/10Resonant slot aerials
    • H01Q13/18Resonant slot aerials the slot being backed by, or formed in boundary wall of, a resonant cavity ; Open cavity antennas
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01QAERIALS
    • H01Q1/00Details of, or arrangements associated with, aerials
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01QAERIALS
    • H01Q1/00Details of, or arrangements associated with, aerials
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/364Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith using a particular conducting material, e.g. supraconductor
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01QAERIALS
    • H01Q21/00Aerial arrays or systems
    • H01Q21/24Combinations of aerial elements or aerial units polarised in different directions for transmitting or receiving circularly and elliptically polarised waves or waves linearly polarised in any direction
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01QAERIALS
    • H01Q21/00Aerial arrays or systems
    • H01Q21/28Combinations of substantially independent non-interacting aerial units or systems
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01QAERIALS
    • H01Q19/00Combinations of primary active aerial elements and units with secondary devices, e.g. with quasi-optical devices, for giving the aerial a desired directional characteristic
    • H01Q19/22Combinations of primary active aerial elements and units with secondary devices, e.g. with quasi-optical devices, for giving the aerial a desired directional characteristic using a secondary device in the form of a single substantially straight conductive element
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01QAERIALS
    • H01Q19/00Combinations of primary active aerial elements and units with secondary devices, e.g. with quasi-optical devices, for giving the aerial a desired directional characteristic
    • H01Q19/28Combinations of primary active aerial elements and units with secondary devices, e.g. with quasi-optical devices, for giving the aerial a desired directional characteristic using a secondary device in the form of two or more substantially straight conductive elements
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01QAERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction, or polarisation of waves radiated from an aerial, e.g. quasi-optical devices
    • H01Q15/0006Devices acting selectively as reflecting surface, as diffracting or as refracting device, e.g. frequency filtering or angular spatial filtering devices
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01QAERIALS
    • H01Q25/00Aerials or aerial systems providing at least two radiating patterns

Similar Documents

Publication Publication Date Title
Murthy Improved isolation metamaterial inspired mm-Wave MIMO dielectric resonator antenna for 5G application
Rafique et al. Dual-band microstrip patch antenna array for 5G mobile communications
Sohail et al. Design and analysis of a novel patch antenna array for 5G and millimeter wave applications
Alieldin et al. A dual-broadband dual-polarized fylfot-shaped antenna for mobile base stations using MIMO over-lapped antenna subarrays
Ali et al. Dual-band millimeter-wave microstrip patch array antenna for 5G smartphones
Patel et al. A comprehensive review on multi-band microstrip patch antenna comprising 5G wireless communication
Liu et al. Omni-directional antenna array with improved gain for 5G communication systems
Tiwari et al. Simulated design and analysis of highly isolated 5G millimeter-waves MIMO antenna with wideband characteristic
Prabhu et al. Design and Implementation of T-Shaped Planar Antenna for MIMO Applications.
Huang et al. Miniaturized 5G module of wideband dual-polarized mm-Wave antennas-in-package integrating non-mm-Wave antennas (AiPiA) for MIMO in cellular phones
Jose et al. Compact dual-band millimeter-wave antenna for 5G WLAN
Paul et al. A wideband inset-fed simple patch antenna for sub-6 GHz band Applications
Vadlamudi et al. Triple-Band DP, Low Profile and High Gain Antenna with High Isolation for 4G (Band 40/41) and 5G BTS Applications
Thakur et al. Compact microstrip antenna design at 60 GHz for next generation communication systems
Parchin et al. Small-clearance phased array antenna design with miniaturized elements for 5G communications
Parchin et al. Phased array 5G antenna design with petal-shaped beams and improved radiation coverage
Parchin et al. Vertically-Polarized/End-Fire Phased Array with Folded-Slot Resonators for Cellular Communications
Jehangir et al. A miniaturized dual UWB quasi-Yagi based MIMO antenna system using a defected ground structure
Pandey et al. Design of millimeter-wave spectrum microstrip patch antenna array for 5G wireless systems
Kulkarni Design and Analysis of Beam Forming Microstrip-Fed Antenna for 5G NR Applications
Ruan et al. Research on Decoupling of a Dual-band Antenna
Shetty et al. Multiple Circular Slot Loaded Compact Circular Micro-Patch Antenna for V-Band Applications
Parchin et al. Dielectric-insensitive phased array with improved characteristics for 5g mobile handsets
Nagendra et al. Design and analysis of MIMO antenna for IOT applications
Allah et al. A Novel High Gain Array Approach MIMO Antenna Operating at 28 GHz for 5G mm Wave Applications