Gupta et al., 2015 - Google Patents

Small molecules containing rigidified thiophenes and a cyanopyridone acceptor unit for solution-processable bulk-heterojunction solar cells

Gupta et al., 2015

View PDF
Document ID
2905501398583597454
Author
Gupta A
Ali A
Gao M
Singh T
Bilic A
Watkins S
Bach U
Evans R
Publication year
Publication venue
Dyes and Pigments

External Links

Snippet

We designed two solution processable small molecules, 5-((5-(4-(diphenylamino) phenyl) thieno [3, 2-b] thiophene-2-yl) methylene)-1-(2-ethylhexyl)-4-methyl-2, 6-dioxo-1, 2, 5, 6- tetrahydropyridine-3-carbonitrile (1) and 5-((6-(4-(diphenylamino) phenyl)-4-(2-ethylhexyl) …
Continue reading at www.researchgate.net (PDF) (other versions)

Classifications

    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L51/00Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof
    • H01L51/0032Selection of organic semiconducting materials, e.g. organic light sensitive or organic light emitting materials
    • H01L51/005Macromolecular systems with low molecular weight, e.g. cyanine dyes, coumarine dyes, tetrathiafulvalene
    • H01L51/0062Macromolecular systems with low molecular weight, e.g. cyanine dyes, coumarine dyes, tetrathiafulvalene aromatic compounds comprising a hetero atom, e.g.: N,P,S
    • H01L51/0071Polycyclic condensed heteroaromatic hydrocarbons
    • H01L51/0072Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ringsystem, e.g. phenanthroline, carbazole
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L51/00Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof
    • H01L51/0032Selection of organic semiconducting materials, e.g. organic light sensitive or organic light emitting materials
    • H01L51/0034Organic polymers or oligomers
    • H01L51/0035Organic polymers or oligomers comprising aromatic, heteroaromatic, or arrylic chains, e.g. polyaniline, polyphenylene, polyphenylene vinylene
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L51/00Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof
    • H01L51/05Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof specially adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential- jump barrier or surface barrier multistep processes for their manufacture
    • H01L51/0504Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof specially adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential- jump barrier or surface barrier multistep processes for their manufacture the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or swiched, e.g. three-terminal devices
    • H01L51/0508Field-effect devices, e.g. TFTs
    • H01L51/0512Field-effect devices, e.g. TFTs insulated gate field effect transistors
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L51/00Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof
    • H01L51/0032Selection of organic semiconducting materials, e.g. organic light sensitive or organic light emitting materials
    • H01L51/005Macromolecular systems with low molecular weight, e.g. cyanine dyes, coumarine dyes, tetrathiafulvalene
    • H01L51/0052Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L51/00Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof
    • H01L51/0032Selection of organic semiconducting materials, e.g. organic light sensitive or organic light emitting materials
    • H01L51/005Macromolecular systems with low molecular weight, e.g. cyanine dyes, coumarine dyes, tetrathiafulvalene
    • H01L51/0059Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GASES [GHG] EMISSION, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/54Material technologies
    • Y02E10/549Material technologies organic PV cells
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L51/00Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof
    • H01L51/0032Selection of organic semiconducting materials, e.g. organic light sensitive or organic light emitting materials
    • H01L51/0077Coordination compounds, e.g. porphyrin
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L51/00Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof
    • H01L51/42Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof specially adapted for sensing infra-red radiation, light, electro-magnetic radiation of shorter wavelength or corpuscular radiation and adapted for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation using organic materials as the active part, or using a combination of organic materials with other material as the active part; Multistep processes for their manufacture
    • H01L51/4253Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof specially adapted for sensing infra-red radiation, light, electro-magnetic radiation of shorter wavelength or corpuscular radiation and adapted for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation using organic materials as the active part, or using a combination of organic materials with other material as the active part; Multistep processes for their manufacture comprising bulk hetero-junctions, e.g. interpenetrating networks
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L51/00Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof
    • H01L51/50Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof specially adapted for light emission, e.g. organic light emitting diodes [OLED] or polymer light emitting devices [PLED];
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate

Similar Documents

Publication Publication Date Title
US10892421B2 (en) Organic small molecule semiconducting chromophores for use in organic electronic devices
US11312819B2 (en) Narrow band gap conjugated polymers employing cross-conjugated donors useful in electronic devices
Haid et al. Dicyanovinylene-substituted selenophene–thiophene co-oligomers for small-molecule organic solar cells
Qian et al. Family of diazapentalene chromophores and narrow-band-gap polymers: synthesis, halochromism, halofluorism, and visible–near infrared photodetectivity
Lu et al. 3, 6-Dithiophen-2-yl-diketopyrrolo [3, 2-b] pyrrole (isoDPPT) as an acceptor building block for organic opto-electronics
Zhang et al. Low bandgap π‐conjugated copolymers based on fused thiophenes and benzothiadiazole: Synthesis and structure‐property relationship study
US9809594B2 (en) Non-fullerene electron acceptors for organic photovoltaic devices
Brebels et al. An effective strategy to enhance the dielectric constant of organic semiconductors–CPDTTPD-based low bandgap polymers bearing oligo (ethylene glycol) side chains
Kim et al. Benzotriazole-based donor–acceptor type semiconducting polymers with different alkyl side chains for photovoltaic devices
Maglione et al. Novel low bandgap phenothiazine functionalized DPP derivatives prepared by direct heteroarylation: Application in bulk heterojunction organic solar cells
US20130032791A1 (en) Conjugated polymers having an imine group at the intrachain electron donor bridgehead position useful in electronic devices
Gupta et al. Small molecules containing rigidified thiophenes and a cyanopyridone acceptor unit for solution-processable bulk-heterojunction solar cells
Dutta et al. Novel naphtho [1, 2-b: 5, 6-b′] dithiophene core linear donor–π–acceptor conjugated small molecules with thiophene-bridged bithiazole acceptor: design, synthesis, and their application in bulk heterojunction organic solar cells
Do et al. Efficient planar organic semiconductors containing fused triphenylamine for solution processed small molecule organic solar cells
Schulz et al. Functional tuning of A–D–A oligothiophenes: the effect of solvent vapor annealing on blend morphology and solar cell performance
Busireddy et al. Dithienopyrrole-benzodithiophene based donor materials for small molecular BHJSCs: Impact of side chain and annealing treatment on their photovoltaic properties
Ke et al. Substituents on the end group subtle tuning the energy levels and absorptions of small-molecule nonfullerene acceptors
Ashraf et al. Fused ring thiophene-based poly (heteroarylene ethynylene) s for organic solar cells
Adhikari et al. Solid-state showdown: Comparing the photovoltaic performance of amorphous and crystalline small-molecule diketopyrrolopyrrole acceptors
Liang et al. Donor–acceptor conjugates-functionalized zinc phthalocyanine: Towards broad absorption and application in organic solar cells
Kim et al. Photovoltaic properties of a new quinoxaline-based copolymer with Thieno [3, 2-b] thiophene side chain for organic photovoltaic cell applications
Ouhib et al. Linear and propeller-like fluoro-isoindigo based donor–acceptor small molecules for organic solar cells
Kim et al. 2, 2-dimethyl-2 H-benzimidazole based small molecules for organic solar cells
Kim et al. High open-circuit voltage organic photovoltaic cells fabricated using semiconducting copolymers consisting of bithiophene and fluorinated quinoxaline or triazole derivatives
Gupta et al. Crowning of dibenzosilole with a naphthalenediimide functional group to prepare an electron acceptor for organic solar cells