Lien et al., 2007 - Google Patents
Analysis of polycyclic aromatic hydrocarbons by liquid chromatography/tandem mass spectrometry using atmospheric pressure chemical ionization or electrospray …Lien et al., 2007
- Document ID
- 2321728321909662379
- Author
- Lien G
- Chen C
- Wu C
- Publication year
- Publication venue
- Rapid Communications in Mass Spectrometry: An International Journal Devoted to the Rapid Dissemination of Up‐to‐the‐Minute Research in Mass Spectrometry
External Links
Snippet
Polycyclic aromatic hydrocarbons (PAHs) with four to six rings are potent carcinogens. This study analyzed ten of the sixteen US EPA priority PAHs using reversed‐phase liquid chromatography/tandem mass spectrometry (LC/MS/MS) in selected reaction monitoring …
- 125000005575 polycyclic aromatic hydrocarbon group 0 title abstract description 64
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N30/00—Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
- G01N30/02—Column chromatography
- G01N30/62—Detectors specially adapted therefor
- G01N30/72—Mass spectrometers
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by the preceding groups
- G01N33/48—Investigating or analysing materials by specific methods not covered by the preceding groups biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/68—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
- G01N33/6803—General methods of protein analysis not limited to specific proteins or families of proteins
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N30/00—Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
- G01N30/02—Column chromatography
- G01N30/04—Preparation or injection of sample to be analysed
- G01N30/06—Preparation
- G01N30/08—Preparation using an enricher
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N30/00—Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
- G01N30/02—Column chromatography
- G01N30/86—Signal analysis
- G01N30/8665—Signal analysis for calibrating the measuring apparatus
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N30/00—Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
- G01N30/02—Column chromatography
- G01N30/88—Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86
- G01N2030/8809—Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86 analysis specially adapted for the sample
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N30/00—Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
- G01N30/02—Column chromatography
- G01N30/26—Conditioning of the fluid carrier; Flow patterns
- G01N30/38—Flow patterns
- G01N30/46—Flow patterns using more than one column
- G01N30/461—Flow patterns using more than one column with serial coupling of separation columns
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N30/00—Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
- G01N30/90—Plate chromatography, e.g. thin layer or paper chromatography
- G01N30/94—Development
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electro-chemical, or magnetic means
- G01N27/62—Investigating or analysing materials by the use of electric, electro-chemical, or magnetic means by investigating the ionisation of gases; by investigating electric discharges, e.g. emission of cathode
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using infra-red, visible or ultra-violet light
- G01N21/62—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
- G01N21/71—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light thermally excited
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N1/00—Sampling; Preparing specimens for investigation
- G01N1/28—Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
- G01N1/40—Concentrating samples
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by the preceding groups
- G01N33/26—Investigating or analysing materials by specific methods not covered by the preceding groups oils; viscous liquids; paints; inks
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J49/00—Particle spectrometer or separator tubes
- H01J49/02—Details
- H01J49/04—Arrangements for introducing or extracting samples to be analysed, e.g. vacuum locks; Arrangements for external adjustment of electron- or ion-optical components
- H01J49/0409—Sample holders or containers
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J49/00—Particle spectrometer or separator tubes
- H01J49/02—Details
- H01J49/10—Ion sources; Ion guns
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Fedorova et al. | Comparison of the quantitative performance of a Q‐Exactive high‐resolution mass spectrometer with that of a triple quadrupole tandem mass spectrometer for the analysis of illicit drugs in wastewater | |
Dams et al. | Urine drug testing for opioids, cocaine, and metabolites by direct injection liquid chromatography/tandem mass spectrometry | |
Lien et al. | Analysis of polycyclic aromatic hydrocarbons by liquid chromatography/tandem mass spectrometry using atmospheric pressure chemical ionization or electrospray ionization with tropylium post‐column derivatization | |
Remane et al. | Systematic investigation of ion suppression and enhancement effects of fourteen stable‐isotope‐labeled internal standards by their native analogues using atmospheric‐pressure chemical ionization and electrospray ionization and the relevance for multi‐analyte liquid chromatographic/mass spectrometric procedures | |
Steuer et al. | Development and validation of an ultra‐fast and sensitive microflow liquid chromatography‐tandem mass spectrometry (MFLC‐MS/MS) method for quantification of LSD and its metabolites in plasma and application to a controlled LSD administration study in humans | |
Sabino et al. | Analysis of Cocaine and Crack Cocaine via Thin Layer Chromatography Coupled to Easy Ambient Sonic Spray Ionization Mass Spectrometry | |
Chen et al. | Simultaneous determination of vinblastine and its monomeric precursors vindoline and catharanthine in Catharanthus roseus by capillary electrophoresis–mass spectrometry | |
Kuwayama et al. | Micro‐pulverized extraction pretreatment for highly sensitive analysis of 11‐nor‐9‐carboxy‐Δ9‐tetrahydrocannabinol in hair by liquid chromatography/tandem mass spectrometry | |
Armenta et al. | Analytical methods to determine cocaine contamination of banknotes from around the world | |
Hayama et al. | Determination of polar organophosphorus pesticides in water samples by hydrophilic interaction liquid chromatography with tandem mass spectrometry | |
Lin et al. | Simultaneous determination of amphetamines and ketamines in urine by gas chromatography/mass spectrometry | |
Leuthold et al. | Simultaneous selected reaction monitoring, MS/MS and MS3 quantitation for the analysis of pharmaceutical compounds in human plasma using chip‐based infusion | |
CN110044998B (en) | Quantification of tamoxifen and its metabolites by mass spectrometry | |
Duvivier et al. | Critical comparison of mass analyzers for forensic hair analysis by ambient ionization mass spectrometry | |
Kokkonen et al. | Determination of ergot alkaloids from grains with UPLC‐MS/MS | |
Ashri et al. | Microextraction by packed sorbent and liquid chromatography–tandem mass spectrometry as a tool for quantification of peptides in plasma samples: determination of sensory neuron‐specific receptors agonist BAM8‐22 and antagonist BAM22‐8 in plasma samples | |
Li et al. | An enhanced LC‐MS/MS method for microcystin‐LR in lake water | |
Shin | Trace‐level analysis of polychlorinated biphenyls, organochlorine pesticides and polycyclic aromatic hydrocarbons in human plasma or serum by dispersive liquid–liquid microextraction and gas chromatography–tandem mass spectrometry | |
Wang et al. | Determination of 17 illicit drugs in oral fluid using isotope dilution ultra-high performance liquid chromatography/tandem mass spectrometry with three atmospheric pressure ionizations | |
Wickremsinhe et al. | Validating regulatory‐compliant wide dynamic range bioanalytical assays using chip‐based nanoelectrospray tandem mass spectrometry | |
Motoyama et al. | Direct determination of endogenous melatonin in human saliva by column‐switching semi‐microcolumn liquid chromatography/mass spectrometry with on‐line analyte enrichment | |
Long et al. | Determination and pharmacokinetics of geniposidic acid in rat plasma after oral administration of Gardenia jasminoides fruit crude extract and Zhi‐zi‐chi decoction | |
Pérez-Parada et al. | Analytical improvements of hybrid LC-MS/MS techniques for the efficient evaluation of emerging contaminants in river waters: a case study of the Henares River (Madrid, Spain) | |
Minamide et al. | A highly sensitive LC‐MS/MS method capable of simultaneously quantitating celiprolol and atenolol in human plasma for a cassette cold‐microdosing study | |
Zhang et al. | Determination of four main components of gentamicin in animal tissues after solid‐phase extraction by high‐performance liquid chromatography/tandem mass spectrometry |