Sahin et al., 2022 - Google Patents
Polyoxazoline‐modified graphene oxides with improved water and epoxy resin dispersibility and stability towards composite applicationsSahin et al., 2022
- Document ID
- 2022548477010660261
- Author
- Sahin Z
- Kohlan T
- Atespare A
- Yildiz M
- Unal S
- Dizman B
- Publication year
- Publication venue
- Journal of Applied Polymer Science
External Links
Snippet
Graphene oxide (GO) is modified with poly (2‐ethyl‐2‐oxazoline)(PEOZ) and poly [(2‐ethyl‐ 2‐oxazoline‐co‐(ethylenimine)](PEOZ‐PEI) to enhance its dispersibility in water and epoxy resin. PEOZ with a terminal primary amine and POZ‐PEI with multiple backbone secondary …
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water   O 0 title abstract description 49
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G83/00—Macromolecular compounds not provided for in groups C08G2/00 - C08G81/00
- C08G83/002—Dendritic macromolecules
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G73/00—Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
- C08G73/02—Polyamines
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G
- C08J3/00—Processes of treating or compounding macromolecular substances
- C08J3/02—Making solutions, dispersions or lattices by other methods than by solution, emulsion or suspension polymerisation techniques
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G73/00—Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
- C08G73/06—Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G81/00—Macromolecular compounds obtained by interreacting polymers in the absence of monomers, e.g. block polymers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L71/00—Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G2261/00—Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L79/00—Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
- C08L79/04—Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
- C08L79/08—Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L33/00—Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
- C08L33/24—Homopolymers or copolymers of amides or imides
- C08L33/26—Homopolymers or copolymers of acrylamide or methacrylamide
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L101/00—Compositions of unspecified macromolecular compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G63/00—Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
- C08G63/91—Polymers modified by chemical after-treatment
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G65/00—Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L53/00—Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F8/00—Chemical modification by after-treatment
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Zeinali et al. | Synthesis of dual thermo‐and pH‐sensitive poly (N‐isopropylacrylamide‐co‐acrylic acid)‐grafted cellulose nanocrystals by reversible addition‐fragmentation chain transfer polymerization | |
Yuan et al. | Synthesis, characterization, and controllable drug release of dendritic star-block copolymer by ring-opening polymerization and atom transfer radical polymerization | |
Sahin et al. | Polyoxazoline‐modified graphene oxides with improved water and epoxy resin dispersibility and stability towards composite applications | |
Yu et al. | Synthesis and characterization of the biodegradable polycaprolactone‐graft‐chitosan amphiphilic copolymers | |
Yao et al. | Amphiphilic β‐cyclodextrin‐based star‐like block copolymer unimolecular micelles for facile in situ preparation of gold nanoparticles | |
EP2121796A1 (en) | Brush copolymers | |
Hong et al. | Synthesis and self‐assembly of stimuli‐responsive amphiphilic block copolymers based on polyhedral oligomeric silsesquioxane | |
Feng et al. | A versatile strategy for uniform hybrid nanoparticles and nanocapsules | |
Liu et al. | Controlled ROMP Synthesis of Ferrocene‐Containing Amphiphilic Dendronized Diblock Copolymers as Redox‐Controlled Polymer Carriers | |
Gou et al. | Calixarene‐centered amphiphilic A2B2 miktoarm star copolymers based on poly (ε‐caprolactone) and poly (ethylene glycol): synthesis and self‐assembly behaviors in water | |
Wang et al. | Polymer brushes grafted from graphene via bioinspired polydopamine chemistry and activators regenerated by electron transfer atom transfer radical polymerization | |
Zhou et al. | Efficient grafting of hyperbranched polyglycerol from hydroxyl‐functionalized multiwalled carbon nanotubes by surface‐initiated anionic ring‐opening polymerization | |
Zhao et al. | Synthesis of Novel Thermo‐and pH‐Responsive Poly (L‐lysine)‐Based Copolymer and its Micellization in Water | |
Shen et al. | Dual-responsive recurrent self-assembly of a supramolecular polymer based on the host–guest complexation interaction between β-cyclodextrin and azobenzene | |
Yang et al. | Hybrid amphiphilic block copolymers containing polyhedral oligomeric silsesquioxane: Synthesis, characterization, and self‐assembly in solutions | |
Habibi | Functional biocompatible magnetite–cellulose nanocomposite fibrous networks: characterization by fourier transformed infrared spectroscopy, X-ray powder diffraction and field emission scanning electron microscopy analysis | |
Ji et al. | Amphiphilic Janus Twin Single‐Chain Nanoparticles | |
Mallakpour et al. | Preparation and characterization of optically active poly (amide-imide)/TiO2 bionanocomposites containing N-trimellitylimido-L-isoleucine linkages: using ionic liquid and ultrasonic irradiation | |
Zou et al. | Well‐defined drug‐conjugated biodegradable nanoparticles by azide–alkyne click crosslinking in miniemulsion | |
Jia et al. | Amphiphilic star‐shaped poly (ε‐caprolactone)‐block‐poly (l‐lysine) copolymers with porphyrin core: Synthesis, self‐assembly, and cell viability assay | |
Bao et al. | Stepped association of comb‐like and stimuli‐responsive graft chitosan copolymer synthesized using ATRP and active ester conjugation methods | |
Xia et al. | Surface modification of MWNTs with BA‐MMA‐GMA terpolymer by single‐step grafting technique | |
Xie et al. | Amphiphilic ABA triblock copolymers via combination of ROMP and ATRP in ionic liquid: Synthesis, characterization, and self-assembly | |
Kocak et al. | Preparation of Cross‐Linked Micelles from Glycidyl Methacrylate Based Block Copolymers and Their Usages as Nanoreactors in the Preparation of Gold Nanoparticles | |
Kuo et al. | Star Poly (N‐isopropylacrylamide) Tethered to Polyhedral Oligomeric Silsesquioxane (POSS) Nanoparticles by a Combination of ATRP and Click Chemistry |