Jiang et al., 2005 - Google Patents
Parallel-coupled microstrip filters with over-coupled stages for multispurious suppressionJiang et al., 2005
View PDF- Document ID
- 1809558363597447866
- Author
- Jiang M
- Wu M
- Kuo J
- Publication year
- Publication venue
- IEEE MTT-S International Microwave Symposium Digest, 2005.
External Links
Snippet
An inherent zero of a microstrip coupled stage near twice the design frequency (2f/sub 0/) is found tunable by varying its coupling length. This zero is used to suppress the unwanted response of parallel-coupled line filters at this frequency by using over-coupled end stages …
- 230000001629 suppression 0 title abstract description 15
Classifications
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01P—WAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
- H01P1/00—Auxiliary devices
- H01P1/20—Frequency-selective devices, e.g. filters
- H01P1/201—Filters for transverse electromagnetic waves
- H01P1/203—Strip line filters
- H01P1/20327—Electromagnetic interstage coupling
- H01P1/20354—Non-comb or non-interdigital filters
- H01P1/20381—Special shape resonators
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01P—WAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
- H01P1/00—Auxiliary devices
- H01P1/20—Frequency-selective devices, e.g. filters
- H01P1/201—Filters for transverse electromagnetic waves
- H01P1/203—Strip line filters
- H01P1/20327—Electromagnetic interstage coupling
- H01P1/20354—Non-comb or non-interdigital filters
- H01P1/20372—Hairpin resonators
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01P—WAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
- H01P1/00—Auxiliary devices
- H01P1/20—Frequency-selective devices, e.g. filters
- H01P1/201—Filters for transverse electromagnetic waves
- H01P1/203—Strip line filters
- H01P1/2039—Galvanic coupling between Input/Output
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01P—WAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
- H01P1/00—Auxiliary devices
- H01P1/20—Frequency-selective devices, e.g. filters
- H01P1/213—Frequency-selective devices, e.g. filters combining or separating two or more different frequencies
- H01P1/2135—Frequency-selective devices, e.g. filters combining or separating two or more different frequencies using strip line filters
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01P—WAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
- H01P1/00—Auxiliary devices
- H01P1/20—Frequency-selective devices, e.g. filters
- H01P1/213—Frequency-selective devices, e.g. filters combining or separating two or more different frequencies
- H01P1/2136—Frequency-selective devices, e.g. filters combining or separating two or more different frequencies using comb or interdigital filters; using cascaded coaxial cavities
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01P—WAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
- H01P1/00—Auxiliary devices
- H01P1/20—Frequency-selective devices, e.g. filters
- H01P1/215—Frequency-selective devices, e.g. filters using ferromagnetic material
- H01P1/217—Frequency-selective devices, e.g. filters using ferromagnetic material the ferromagnetic material acting as a tuning element in resonators
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01P—WAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
- H01P5/00—Coupling devices of the waveguide type
- H01P5/12—Coupling devices having more than two ports
- H01P5/16—Conjugate devices, i.e. devices having at least one port decoupled from one other port
- H01P5/18—Conjugate devices, i.e. devices having at least one port decoupled from one other port consisting of two coupled guides, e.g. directional couplers
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01P—WAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
- H01P1/00—Auxiliary devices
- H01P1/20—Frequency-selective devices, e.g. filters
- H01P1/207—Hollow waveguide filters
- H01P1/208—Cascaded cavities; Cascaded resonators inside a hollow waveguide structure
- H01P1/2084—Cascaded cavities; Cascaded resonators inside a hollow waveguide structure with dielectric resonators
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01P—WAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
- H01P1/00—Auxiliary devices
- H01P1/32—Non-reciprocal transmission devices
- H01P1/38—Circulators
- H01P1/383—Junction circulators, e.g. Y-circulators
- H01P1/387—Strip line circulators
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H7/00—Multiple-port networks comprising only passive electrical elements as network components
- H03H7/01—Frequency selective two-port networks
- H03H7/17—Structural details of sub-circuits of frequency selective networks
- H03H7/1741—Comprising typical LC combinations, irrespective of presence and location of additional resistors
- H03H7/1775—Parallel LC in shunt or branch path
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01P—WAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
- H01P7/00—Resonators of the waveguide type
- H01P7/08—Strip line resonators
- H01P7/084—Triplate line resonators
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01P—WAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
- H01P5/00—Coupling devices of the waveguide type
- H01P5/08—Coupling devices of the waveguide type for linking dissimilar lines or devices
- H01P5/10—Coupling devices of the waveguide type for linking dissimilar lines or devices for coupling balanced with unbalanced lines or devices
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01P—WAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
- H01P7/00—Resonators of the waveguide type
- H01P7/04—Coaxial resonators
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H7/00—Multiple-port networks comprising only passive electrical elements as network components
- H03H7/01—Frequency selective two-port networks
- H03H7/075—Ladder networks, e.g. electric wave filters
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H7/00—Multiple-port networks comprising only passive electrical elements as network components
- H03H7/01—Frequency selective two-port networks
- H03H7/0115—Frequency selective two-port networks comprising only inductors and capacitors
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01P—WAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
- H01P11/00—Apparatus or processes specially adapted for manufacturing waveguides or resonators, lines, or other devices of the waveguide type
- H01P11/007—Manufacturing frequency-selective devices
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01P—WAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
- H01P3/00—Waveguides; Transmission lines of the waveguide type
- H01P3/02—Waveguides; Transmission lines of the waveguide type with two longitudinal conductors
- H01P3/08—Microstrips; Strip lines
- H01P3/081—Micro-striplines
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Chen et al. | Design of miniaturized filtering power dividers for system-in-a-package | |
Zhang et al. | A compact half-mode substrate integrated waveguide bandpass filter with wide out-of-band rejection | |
KR102022579B1 (en) | A coupled line type of power divider with flexible bandwidth and out-of-band rejection performance | |
Chiou et al. | Dual-band microstrip bandstop filter using dual-mode loop resonator | |
Mao et al. | Coplanar waveguide bandpass filters with compact size and wide spurious-free stopband using electromagnetic bandgap resonators | |
Jiang et al. | Parallel-coupled microstrip filters with over-coupled stages for multispurious suppression | |
CN111384534B (en) | Three-way band-pass power division filter | |
Weng et al. | A dual-band bandpass filter having wide and narrow bands simultaneously using multilayered stepped impedance resonators | |
Wu et al. | A compact LTCC ultra-wideband bandpass filter using semi-lumped parallel-resonance circuits for spurious suppression | |
Kim et al. | A design of a ring bandpass filters with wide rejection band using DGS and spur-line coupling structures | |
Chang et al. | Novel microstrip periodic structure and its application to microwave filter design | |
Sánchez-Soriano et al. | Reconfigurable lowpass filter based on signal interference techniques | |
Kumar et al. | Design of miniaturized Wilkinson power divider with higher order harmonic suppression for GSM application | |
Marzah et al. | Design and analysis of high performance and miniaturized bandpass filter using meander line and, Minkowski fractal geometry | |
Elelimy et al. | Novel compact dual-mode tri-band bandpass filter for WiMAX & GSM applications | |
Pelluri et al. | Miniaturized wide stopband half-mode SIW bandpass filter | |
Yang et al. | Compact CPW bandpass filter with ultra-wide stopband using slow-wave structure | |
Kumar et al. | Compact Wilkinson power divider with higher order harmonics suppression for LTE application | |
Yang et al. | Compact bandpass filter with wide stopband using slow-wave CPW resonator with back-to-back coupled-scheme | |
CN113451722B (en) | Three-passband power division filter based on microstrip coupling line | |
Kuo et al. | High selectivity ultra-wideband (UWB) mutimode stepped-impedance resonators (SIRS) bandpass filter with two-layer broadside-coupled structure | |
Zhou et al. | Novel miniature slow-wave resonator filter using multilayer LCP circuit technology | |
Görür et al. | Design of microstrip bandstop filter with adjustable wide passband using folded open-circuited stub resonators | |
Khalid et al. | Design of highly selective ultra-wideband bandpass filter using multiple resonance resonator | |
Kerketta et al. | Dual Channel Diplexer based on Stepped Impedance Filter and Microstrip Open-Loop Resonator |