Furukawa et al., 1956 - Google Patents
Thermal properties of aluminum oxide from 0 to 1200 KFurukawa et al., 1956
View PDF- Document ID
- 17461977299408201664
- Author
- Furukawa G
- Douglas T
- McCoskey R
- Ginnings D
- Publication year
- Publication venue
- Journal of research of the National Bureau of Standards
External Links
Snippet
Accurate measurements of the heat capacity of a-aluminum oxide (corundum) from 13 to 1,170 K are described. An adiabatic calorimeter was used from 13 to 380 K and a drop method was used with a Bunsen ice calorimeter from 273 to 1,170 K. The results are …
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane   O=[Al]O[Al]=O 0 title description 29
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N25/00—Investigating or analyzing materials by the use of thermal means
- G01N25/20—Investigating or analyzing materials by the use of thermal means by investigating the development of heat, i.e. calorimetry, e.g. by measuring specific heat, by measuring thermal conductivity
- G01N25/48—Investigating or analyzing materials by the use of thermal means by investigating the development of heat, i.e. calorimetry, e.g. by measuring specific heat, by measuring thermal conductivity on solution, sorption, or a chemical reaction not involving combustion or catalytic oxidation
- G01N25/4846—Investigating or analyzing materials by the use of thermal means by investigating the development of heat, i.e. calorimetry, e.g. by measuring specific heat, by measuring thermal conductivity on solution, sorption, or a chemical reaction not involving combustion or catalytic oxidation for a motionless, e.g. solid sample
- G01N25/4866—Investigating or analyzing materials by the use of thermal means by investigating the development of heat, i.e. calorimetry, e.g. by measuring specific heat, by measuring thermal conductivity on solution, sorption, or a chemical reaction not involving combustion or catalytic oxidation for a motionless, e.g. solid sample by using a differential method
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01K—MEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
- G01K1/00—Details of thermometers not specially adapted for particular types of thermometer
- G01K1/08—Protective devices, e.g. casings
- G01K1/10—Protective devices, e.g. casings for preventing chemical attack
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01K—MEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
- G01K7/00—Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply, e.g. by thermoelectric elements
- G01K7/16—Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply, e.g. by thermoelectric elements using resistive elements
- G01K7/18—Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply, e.g. by thermoelectric elements using resistive elements the element being a linear resistance, e.g. platinum resistance thermometer
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01K—MEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
- G01K7/00—Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply, e.g. by thermoelectric elements
- G01K7/02—Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply, e.g. by thermoelectric elements using thermoelectric elements, e.g. thermocouples
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01K—MEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
- G01K1/00—Details of thermometers not specially adapted for particular types of thermometer
- G01K1/14—Supports; Fastening devices; Mounting thermometers in particular locations
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01K—MEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
- G01K1/00—Details of thermometers not specially adapted for particular types of thermometer
- G01K1/02—Special applications of indicating or recording means, e.g. for remote indications
- G01K1/026—Special applications of indicating or recording means, e.g. for remote indications arrangements for monitoring a plurality of temperatures, e.g. by multiplexing
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01K—MEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
- G01K1/00—Details of thermometers not specially adapted for particular types of thermometer
- G01K1/02—Special applications of indicating or recording means, e.g. for remote indications
- G01K1/022—Special applications of indicating or recording means, e.g. for remote indications recording means
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01K—MEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
- G01K7/00—Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply, e.g. by thermoelectric elements
- G01K7/42—Circuits for reducing thermal inertia; Circuits for predicting the stationary value of temperature
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01K—MEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
- G01K1/00—Details of thermometers not specially adapted for particular types of thermometer
- G01K1/02—Special applications of indicating or recording means, e.g. for remote indications
- G01K1/024—Special applications of indicating or recording means, e.g. for remote indications for remote indication
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N25/00—Investigating or analyzing materials by the use of thermal means
- G01N25/18—Investigating or analyzing materials by the use of thermal means by investigating thermal conductivity
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01K—MEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
- G01K17/00—Measuring quantity of heat
- G01K17/06—Measuring quantity of heat conveyed by flowing mediums, e.g. in heating systems e.g. the quantity of heat in a transporting medium, delivered to or consumed in an expenditure device
- G01K17/08—Measuring quantity of heat conveyed by flowing mediums, e.g. in heating systems e.g. the quantity of heat in a transporting medium, delivered to or consumed in an expenditure device based upon measurement of temperature difference or of a temperature
- G01K17/20—Measuring quantity of heat conveyed by flowing mediums, e.g. in heating systems e.g. the quantity of heat in a transporting medium, delivered to or consumed in an expenditure device based upon measurement of temperature difference or of a temperature across a radiating surface, combined with ascertainment of the heat transmission coefficient
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N25/00—Investigating or analyzing materials by the use of thermal means
- G01N25/02—Investigating or analyzing materials by the use of thermal means by investigating changes of state or changes of phase; by investigating sintering
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N25/00—Investigating or analyzing materials by the use of thermal means
- G01N25/56—Investigating or analyzing materials by the use of thermal means by investigating moisture content
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01K—MEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
- G01K5/00—Measuring temperature based on the expansion or contraction of a material
- G01K5/32—Measuring temperature based on the expansion or contraction of a material the material being a fluid contained in a hollow body having parts which are deformable or displaceable
- G01K5/46—Measuring temperature based on the expansion or contraction of a material the material being a fluid contained in a hollow body having parts which are deformable or displaceable with electric conversion means for final indication
- G01K5/465—Measuring temperature based on the expansion or contraction of a material the material being a fluid contained in a hollow body having parts which are deformable or displaceable with electric conversion means for final indication using electrical contact making or breaking devices
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N25/00—Investigating or analyzing materials by the use of thermal means
- G01N25/16—Investigating or analyzing materials by the use of thermal means by investigating thermal coefficient of expansion
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electro-chemical, or magnetic means
- G01N27/26—Investigating or analysing materials by the use of electric, electro-chemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
- G01N27/403—Cells and electrode assemblies
- G01N27/406—Cells and probes with solid electrolytes
- G01N27/411—Cells and probes with solid electrolytes for investigating liquid metals
- G01N27/4115—Composition or fabrication of the electrodes and coatings thereon, e.g. catalysts
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electro-chemical, or magnetic means
- G01N27/02—Investigating or analysing materials by the use of electric, electro-chemical, or magnetic means by investigating the impedance of the material
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01K—MEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
- G01K13/00—Adaptations of thermometers for specific purposes
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01K—MEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
- G01K11/00—Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Furukawa et al. | Thermal properties of aluminum oxide from 0 to 1200 K | |
Stimson | The international temperature scale of 1948 | |
Hoge et al. | Establishment of a temperature scale for the calibration of thermometers between 14 and 83 K | |
Ginnings et al. | Heat capacity of sodium between 0 and 900 C, the triple point and heat of fusion | |
Finnemore et al. | Superconducting properties of tin, indium, and mercury below 1 K | |
Preston-Thomas | The international practical temperature scale of 1968 amended edition of 1975 | |
Allen et al. | Spectral emissivity, total emissivity, and thermal conductivity of molybdenum, tantalum, and tungsten above 2300 K | |
Clayton et al. | Temperature and volume dependence of the thermal conductivity of solid argon | |
Ginnings et al. | Enthalpy, specific heat, and entropy of aluminum oxide from 0 to 900 C | |
Andrews et al. | An adiabatic calorimeter for use at superambient temperatures. The heat capacity of synthetic sapphire (α-Al2O3) from 300 to 550 K | |
Douglas | High-temperature drop calorimetry | |
US3266307A (en) | Adiabatic calorimeter | |
Stølen et al. | Heat capacity of the reference material synthetic sapphire (α-Al2O3) at temperatures from 298.15 K to 1000 K by adiabatic calorimetry. Increased accuracy and precision through improved instrumentation and computer control | |
Challoner et al. | An electrically calibrated bomb calorimeter | |
Douglas | Anhydrous Sodium Hydroxide: 0 to 700 C, the Transition Melting Point | |
Ditmars et al. | Thermal conductivity of beryllium oxide from 40 to 750 C | |
Oishi et al. | New Determination of the Temperature of Gold and Silver Points on the Thermodynamic Temperature Scale | |
Evans et al. | An intercomparison of high temperature platinum resistance thermometers and standard thermocouples | |
Kemp et al. | The boiling points and Triple points of Oxygen and Argon | |
Day et al. | ART. VIII.--The Nitrogen Thermometer from Zinc to Palladium | |
Barber | The sublimation temperature of carbon dioxide | |
Smith Jr et al. | The critical temperatures of isomeric pentanols and heptanols | |
Mangum et al. | On the International Temperature Scale of 1990 (ITS-90). Part II: Recommended techniques for comparisons, at the highest level of accuracy, of fixed-point cells used for contact thermometry | |
Douglasr et al. | Thermal Properties of Aluminum Oxide From 0 to 1,200 K | |
Westrum Jr | High Temperature adiabatic calorimetry |