Malekloo et al., 2018 - Google Patents

An energy efficient and SLA compliant approach for resource allocation and consolidation in cloud computing environments

Malekloo et al., 2018

Document ID
17237421862703401146
Author
Malekloo M
Kara N
El Barachi M
Publication year
Publication venue
Sustainable Computing: Informatics and Systems

External Links

Snippet

Cloud computing is a promising paradigm that enables a “computing-as-a-service” model, in which a dynamic pool of virtualized computational resources (eg CPU) can be leased and released on demand. With the increased demand for cloud computing infrastructures and …
Continue reading at www.sciencedirect.com (other versions)

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F9/00Arrangements for programme control, e.g. control unit
    • G06F9/06Arrangements for programme control, e.g. control unit using stored programme, i.e. using internal store of processing equipment to receive and retain programme
    • G06F9/46Multiprogramming arrangements
    • G06F9/50Allocation of resources, e.g. of the central processing unit [CPU]
    • G06F9/5005Allocation of resources, e.g. of the central processing unit [CPU] to service a request
    • G06F9/5027Allocation of resources, e.g. of the central processing unit [CPU] to service a request the resource being a machine, e.g. CPUs, Servers, Terminals
    • G06F9/505Allocation of resources, e.g. of the central processing unit [CPU] to service a request the resource being a machine, e.g. CPUs, Servers, Terminals considering the load
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F9/00Arrangements for programme control, e.g. control unit
    • G06F9/06Arrangements for programme control, e.g. control unit using stored programme, i.e. using internal store of processing equipment to receive and retain programme
    • G06F9/46Multiprogramming arrangements
    • G06F9/50Allocation of resources, e.g. of the central processing unit [CPU]
    • G06F9/5061Partitioning or combining of resources
    • G06F9/5072Grid computing
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F9/00Arrangements for programme control, e.g. control unit
    • G06F9/06Arrangements for programme control, e.g. control unit using stored programme, i.e. using internal store of processing equipment to receive and retain programme
    • G06F9/46Multiprogramming arrangements
    • G06F9/48Programme initiating; Programme switching, e.g. by interrupt
    • G06F9/4806Task transfer initiation or dispatching
    • G06F9/4843Task transfer initiation or dispatching by program, e.g. task dispatcher, supervisor, operating system
    • G06F9/4881Scheduling strategies for dispatcher, e.g. round robin, multi-level priority queues
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F9/00Arrangements for programme control, e.g. control unit
    • G06F9/06Arrangements for programme control, e.g. control unit using stored programme, i.e. using internal store of processing equipment to receive and retain programme
    • G06F9/46Multiprogramming arrangements
    • G06F9/50Allocation of resources, e.g. of the central processing unit [CPU]
    • G06F9/5005Allocation of resources, e.g. of the central processing unit [CPU] to service a request
    • G06F9/5011Allocation of resources, e.g. of the central processing unit [CPU] to service a request the resources being hardware resources other than CPUs, Servers and Terminals
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F9/00Arrangements for programme control, e.g. control unit
    • G06F9/06Arrangements for programme control, e.g. control unit using stored programme, i.e. using internal store of processing equipment to receive and retain programme
    • G06F9/46Multiprogramming arrangements
    • G06F9/50Allocation of resources, e.g. of the central processing unit [CPU]
    • G06F9/5061Partitioning or combining of resources
    • G06F9/5077Logical partitioning of resources; Management or configuration of virtualized resources
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F9/00Arrangements for programme control, e.g. control unit
    • G06F9/06Arrangements for programme control, e.g. control unit using stored programme, i.e. using internal store of processing equipment to receive and retain programme
    • G06F9/46Multiprogramming arrangements
    • G06F9/50Allocation of resources, e.g. of the central processing unit [CPU]
    • G06F9/5083Techniques for rebalancing the load in a distributed system
    • G06F9/5088Techniques for rebalancing the load in a distributed system involving task migration
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F9/00Arrangements for programme control, e.g. control unit
    • G06F9/06Arrangements for programme control, e.g. control unit using stored programme, i.e. using internal store of processing equipment to receive and retain programme
    • G06F9/46Multiprogramming arrangements
    • G06F9/50Allocation of resources, e.g. of the central processing unit [CPU]
    • G06F9/5094Allocation of resources, e.g. of the central processing unit [CPU] where the allocation takes into account power or heat criteria
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BINDEXING SCHEME RELATING TO CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. INCLUDING HOUSING AND APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B60/00Information and communication technologies [ICT] aiming at the reduction of own energy use
    • Y02B60/10Energy efficient computing
    • Y02B60/16Reducing energy-consumption in distributed systems
    • Y02B60/167Resource sharing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BINDEXING SCHEME RELATING TO CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. INCLUDING HOUSING AND APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B60/00Information and communication technologies [ICT] aiming at the reduction of own energy use
    • Y02B60/10Energy efficient computing
    • Y02B60/14Reducing energy-consumption by means of multiprocessor or multiprocessing based techniques, other than acting upon the power supply
    • Y02B60/142Resource allocation

Similar Documents

Publication Publication Date Title
Malekloo et al. An energy efficient and SLA compliant approach for resource allocation and consolidation in cloud computing environments
Ala’Anzy et al. Load balancing and server consolidation in cloud computing environments: a meta-study
Chaurasia et al. Comprehensive survey on energy-aware server consolidation techniques in cloud computing
Zakarya Energy, performance and cost efficient datacenters: A survey
Wu et al. A green energy-efficient scheduling algorithm using the DVFS technique for cloud datacenters
Addya et al. Simulated annealing based VM placement strategy to maximize the profit for Cloud Service Providers
Patel et al. VM provisioning method to improve the profit and SLA violation of cloud service providers
Al-Dulaimy et al. Type-aware virtual machine management for energy efficient cloud data centers
Zhang et al. Minimizing communication traffic in data centers with power-aware VM placement
Chen et al. Improving resource utilization via virtual machine placement in data center networks
Kaur et al. Optimization techniques for resource provisioning and load balancing in cloud environment: a review
Gul et al. CPU and RAM energy-based SLA-aware workload consolidation techniques for clouds
Hussein et al. Green cloud computing: Datacenters power management policies and algorithms
Remesh Babu et al. Service‐level agreement–aware scheduling and load balancing of tasks in cloud
Li et al. A dynamic I/O sensing scheduling scheme in Kubernetes
Mehta et al. Energy conservation in cloud infrastructures
Lin et al. Novel resource allocation model and algorithms for cloud computing
Gul et al. CPU–RAM-based energy-efficient resource allocation in clouds
Barlaskar et al. Energy-efficient virtual machine placement using enhanced firefly algorithm
Bermejo et al. Improving the energy efficiency in cloud computing data centres through resource allocation techniques
Verma et al. MADLVF: an energy efficient resource utilization approach for cloud computing
Kumar et al. A swarm intelligence-based quality of service aware resource allocation for clouds
Vatsal et al. Virtual machine migration based algorithmic approach for safeguarding environmental sustainability by renewable energy usage maximization in Cloud data centres
Nadjar et al. Hierarchical VM scheduling to improve energy and performance efficiency in IaaS Cloud data centers
Rajnikant et al. Improving energy efficiency and minimizing service-level agreement violation in mobile cloud computing environment