Turnbull et al., 2007 - Google Patents
Towards musical query-by-semantic-description using the cal500 data setTurnbull et al., 2007
View PDF- Document ID
- 15300392380319890408
- Author
- Turnbull D
- Barrington L
- Torres D
- Lanckriet G
- Publication year
- Publication venue
- Proceedings of the 30th annual international ACM SIGIR conference on Research and development in information retrieval
External Links
Snippet
Query-by-semantic-description (QBSD) is a natural paradigm for retrieving content from large databases of music. A major impediment to the development of good QBSD systems for music information retrieval has been the lack of a cleanly-labeled, publicly-available …
- 239000000203 mixture 0 abstract description 25
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/30—Information retrieval; Database structures therefor; File system structures therefor
- G06F17/3074—Audio data retrieval
- G06F17/30749—Audio data retrieval using information manually generated or using information not derived from the audio data, e.g. title and artist information, time and location information, usage information, user ratings
- G06F17/30752—Audio data retrieval using information manually generated or using information not derived from the audio data, e.g. title and artist information, time and location information, usage information, user ratings using information manually generated, e.g. tags, keywords, comments, title or artist information, time, location or usage information, user ratings
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/30—Information retrieval; Database structures therefor; File system structures therefor
- G06F17/3074—Audio data retrieval
- G06F17/30755—Query formulation specially adapted for audio data retrieval
- G06F17/30758—Query by example, e.g. query by humming
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/30—Information retrieval; Database structures therefor; File system structures therefor
- G06F17/30017—Multimedia data retrieval; Retrieval of more than one type of audiovisual media
- G06F17/30023—Querying
- G06F17/30038—Querying based on information manually generated or based on information not derived from the media content, e.g. tags, keywords, comments, usage information, user ratings
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/30—Information retrieval; Database structures therefor; File system structures therefor
- G06F17/3074—Audio data retrieval
- G06F17/30743—Audio data retrieval using features automatically derived from the audio content, e.g. descriptors, fingerprints, signatures, MEP-cepstral coefficients, musical score, tempo
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/30—Information retrieval; Database structures therefor; File system structures therefor
- G06F17/30017—Multimedia data retrieval; Retrieval of more than one type of audiovisual media
- G06F17/30023—Querying
- G06F17/30029—Querying by filtering; by personalisation, e.g. querying making use of user profiles
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/30—Information retrieval; Database structures therefor; File system structures therefor
- G06F17/3061—Information retrieval; Database structures therefor; File system structures therefor of unstructured textual data
- G06F17/30634—Querying
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/30—Information retrieval; Database structures therefor; File system structures therefor
- G06F17/3061—Information retrieval; Database structures therefor; File system structures therefor of unstructured textual data
- G06F17/30705—Clustering or classification
- G06F17/3071—Clustering or classification including class or cluster creation or modification
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/30—Information retrieval; Database structures therefor; File system structures therefor
- G06F17/30861—Retrieval from the Internet, e.g. browsers
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/30—Information retrieval; Database structures therefor; File system structures therefor
- G06F17/30286—Information retrieval; Database structures therefor; File system structures therefor in structured data stores
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/30—Information retrieval; Database structures therefor; File system structures therefor
- G06F17/30781—Information retrieval; Database structures therefor; File system structures therefor of video data
- G06F17/30784—Information retrieval; Database structures therefor; File system structures therefor of video data using features automatically derived from the video content, e.g. descriptors, fingerprints, signatures, genre
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06N—COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N99/00—Subject matter not provided for in other groups of this subclass
- G06N99/005—Learning machines, i.e. computer in which a programme is changed according to experience gained by the machine itself during a complete run
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10H—ELECTROPHONIC MUSICAL INSTRUMENTS
- G10H2210/00—Aspects or methods of musical processing having intrinsic musical character, i.e. involving musical theory or musical parameters or relying on musical knowledge, as applied in electrophonic musical tools or instruments
- G10H2210/031—Musical analysis, i.e. isolation, extraction or identification of musical elements or musical parameters from a raw acoustic signal or from an encoded audio signal
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10H—ELECTROPHONIC MUSICAL INSTRUMENTS
- G10H1/00—Details of electrophonic musical instruments
- G10H1/0008—Associated control or indicating means
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10H—ELECTROPHONIC MUSICAL INSTRUMENTS
- G10H2240/00—Data organisation or data communication aspects, specifically adapted for electrophonic musical tools or instruments
- G10H2240/121—Musical libraries, i.e. musical databases indexed by musical parameters, wavetables, indexing schemes using musical parameters, musical rule bases or knowledge bases, e.g. for automatic composing methods
- G10H2240/131—Library retrieval, i.e. searching a database or selecting a specific musical piece, segment, pattern, rule or parameter set
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Turnbull et al. | Towards musical query-by-semantic-description using the cal500 data set | |
Turnbull et al. | Semantic annotation and retrieval of music and sound effects | |
Ramírez et al. | Machine learning for music genre: multifaceted review and experimentation with audioset | |
Li et al. | Music data mining | |
Raffel | Learning-based methods for comparing sequences, with applications to audio-to-midi alignment and matching | |
Celma | Music recommendation | |
Wang et al. | Improving content-based and hybrid music recommendation using deep learning | |
Bertin-Mahieux et al. | Automatic tagging of audio: The state-of-the-art | |
Miotto et al. | A generative context model for semantic music annotation and retrieval | |
Celma Herrada | Music recommendation and discovery in the long tail | |
US20090281906A1 (en) | Music Recommendation using Emotional Allocation Modeling | |
Sordo et al. | Annotating Music Collections: How Content-Based Similarity Helps to Propagate Labels. | |
Xia et al. | Construction of music teaching evaluation model based on weighted naïve bayes | |
Liang et al. | Music genre classification with the million song dataset | |
Zhang et al. | Compositemap: a novel framework for music similarity measure | |
Turnbull et al. | Modelling music and words using a multi-class naıve bayes approach | |
Velarde et al. | Convolution-based classification of audio and symbolic representations of music | |
Kim et al. | Using Artist Similarity to Propagate Semantic Information. | |
Miotto et al. | Improving Auto-tagging by Modeling Semantic Co-occurrences. | |
Buccoli et al. | A music search engine based on semantic text-based query | |
Chen et al. | On the use of anti-word models for audio music annotation and retrieval | |
Karydis et al. | Comparing content and context based similarity for musical data | |
Turnbull | Design and development of a semantic music discovery engine | |
Tulisalmi-Eskola | Automatic Music Genre Classification-Supervised Learning Approach | |
Turnbull et al. | Exploring the semantic annotation and retrieval of sound |