Tiwari et al., 2022 - Google Patents
Energy Cognizant Scheduling in Three-Layer Cloud Architecture: A Systematic ReviewTiwari et al., 2022
- Document ID
- 15058640406627734357
- Author
- Tiwari S
- Beena B
- Publication year
- Publication venue
- 2022 3rd International Conference on Issues and Challenges in Intelligent Computing Techniques (ICICT)
External Links
Snippet
Today's era is of intelligent devices connected to serve various real-time applications. These numerous IoT devices collect enormous amounts of data, which are then transferred to the cloud for further processing and analysis. Most of these tasks are delay-sensitive and …
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F9/00—Arrangements for programme control, e.g. control unit
- G06F9/06—Arrangements for programme control, e.g. control unit using stored programme, i.e. using internal store of processing equipment to receive and retain programme
- G06F9/46—Multiprogramming arrangements
- G06F9/50—Allocation of resources, e.g. of the central processing unit [CPU]
- G06F9/5005—Allocation of resources, e.g. of the central processing unit [CPU] to service a request
- G06F9/5027—Allocation of resources, e.g. of the central processing unit [CPU] to service a request the resource being a machine, e.g. CPUs, Servers, Terminals
- G06F9/505—Allocation of resources, e.g. of the central processing unit [CPU] to service a request the resource being a machine, e.g. CPUs, Servers, Terminals considering the load
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F9/00—Arrangements for programme control, e.g. control unit
- G06F9/06—Arrangements for programme control, e.g. control unit using stored programme, i.e. using internal store of processing equipment to receive and retain programme
- G06F9/46—Multiprogramming arrangements
- G06F9/50—Allocation of resources, e.g. of the central processing unit [CPU]
- G06F9/5083—Techniques for rebalancing the load in a distributed system
- G06F9/5088—Techniques for rebalancing the load in a distributed system involving task migration
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F9/00—Arrangements for programme control, e.g. control unit
- G06F9/06—Arrangements for programme control, e.g. control unit using stored programme, i.e. using internal store of processing equipment to receive and retain programme
- G06F9/46—Multiprogramming arrangements
- G06F9/50—Allocation of resources, e.g. of the central processing unit [CPU]
- G06F9/5005—Allocation of resources, e.g. of the central processing unit [CPU] to service a request
- G06F9/5011—Allocation of resources, e.g. of the central processing unit [CPU] to service a request the resources being hardware resources other than CPUs, Servers and Terminals
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F9/00—Arrangements for programme control, e.g. control unit
- G06F9/06—Arrangements for programme control, e.g. control unit using stored programme, i.e. using internal store of processing equipment to receive and retain programme
- G06F9/46—Multiprogramming arrangements
- G06F9/50—Allocation of resources, e.g. of the central processing unit [CPU]
- G06F9/5005—Allocation of resources, e.g. of the central processing unit [CPU] to service a request
- G06F9/5027—Allocation of resources, e.g. of the central processing unit [CPU] to service a request the resource being a machine, e.g. CPUs, Servers, Terminals
- G06F9/5044—Allocation of resources, e.g. of the central processing unit [CPU] to service a request the resource being a machine, e.g. CPUs, Servers, Terminals considering hardware capabilities
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F9/00—Arrangements for programme control, e.g. control unit
- G06F9/06—Arrangements for programme control, e.g. control unit using stored programme, i.e. using internal store of processing equipment to receive and retain programme
- G06F9/46—Multiprogramming arrangements
- G06F9/50—Allocation of resources, e.g. of the central processing unit [CPU]
- G06F9/5061—Partitioning or combining of resources
- G06F9/5072—Grid computing
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F9/00—Arrangements for programme control, e.g. control unit
- G06F9/06—Arrangements for programme control, e.g. control unit using stored programme, i.e. using internal store of processing equipment to receive and retain programme
- G06F9/46—Multiprogramming arrangements
- G06F9/48—Programme initiating; Programme switching, e.g. by interrupt
- G06F9/4806—Task transfer initiation or dispatching
- G06F9/4843—Task transfer initiation or dispatching by program, e.g. task dispatcher, supervisor, operating system
- G06F9/4881—Scheduling strategies for dispatcher, e.g. round robin, multi-level priority queues
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F9/00—Arrangements for programme control, e.g. control unit
- G06F9/06—Arrangements for programme control, e.g. control unit using stored programme, i.e. using internal store of processing equipment to receive and retain programme
- G06F9/46—Multiprogramming arrangements
- G06F9/48—Programme initiating; Programme switching, e.g. by interrupt
- G06F9/4806—Task transfer initiation or dispatching
- G06F9/4843—Task transfer initiation or dispatching by program, e.g. task dispatcher, supervisor, operating system
- G06F9/485—Task life-cycle, e.g. stopping, restarting, resuming execution
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—INDEXING SCHEME RELATING TO CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. INCLUDING HOUSING AND APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B60/00—Information and communication technologies [ICT] aiming at the reduction of own energy use
- Y02B60/10—Energy efficient computing
- Y02B60/16—Reducing energy-consumption in distributed systems
- Y02B60/167—Resource sharing
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—INDEXING SCHEME RELATING TO CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. INCLUDING HOUSING AND APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B60/00—Information and communication technologies [ICT] aiming at the reduction of own energy use
- Y02B60/10—Energy efficient computing
- Y02B60/14—Reducing energy-consumption by means of multiprocessor or multiprocessing based techniques, other than acting upon the power supply
- Y02B60/142—Resource allocation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F2209/00—Indexing scheme relating to G06F9/00
- G06F2209/50—Indexing scheme relating to G06F9/50
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Huang et al. | SSUR: an approach to optimizing virtual machine allocation strategy based on user requirements for cloud data center | |
Yadav et al. | Adaptive energy-aware algorithms for minimizing energy consumption and SLA violation in cloud computing | |
Alqahtani et al. | Reliable scheduling and load balancing for requests in cloud-fog computing | |
Yadav et al. | Managing overloaded hosts for energy-efficiency in cloud data centers | |
Tarafdar et al. | Energy and quality of service-aware virtual machine consolidation in a cloud data center | |
Kansal et al. | Classification of resource management approaches in fog/edge paradigm and future research prospects: A systematic review | |
Ma et al. | Dynamic task scheduling in cloud computing based on greedy strategy | |
Wang et al. | An energy saving based on task migration for mobile edge computing | |
Li et al. | Cost-aware automatic scaling and workload-aware replica management for edge-cloud environment | |
Al-Sinayyid et al. | Job scheduler for streaming applications in heterogeneous distributed processing systems | |
Tao et al. | Load feedback-based resource scheduling and dynamic migration-based data locality for virtual hadoop clusters in openstack-based clouds | |
Ashraf et al. | Smart grid management using cloud and fog computing | |
Geetha et al. | RETRACTED ARTICLE: An advanced artificial intelligence technique for resource allocation by investigating and scheduling parallel-distributed request/response handling | |
Saravanan et al. | Advance Map Reduce Task Scheduling algorithm using mobile cloud multimedia services architecture | |
Tiwari et al. | Energy Cognizant Scheduling in Three-Layer Cloud Architecture: A Systematic Review | |
Singh et al. | A survey on load balancing techniques in fog computing | |
Durga et al. | Context-aware adaptive resource provisioning for mobile clients in intra-cloud environment | |
Goel et al. | Workflow scheduling using optimization algorithm in fog computing | |
Vatsal et al. | Virtual machine migration based algorithmic approach for safeguarding environmental sustainability by renewable energy usage maximization in Cloud data centres | |
Srivastava et al. | An Energy‐Efficient Strategy and Secure VM Placement Algorithm in Cloud Computing | |
Patel et al. | An improved approach for load balancing among heterogeneous resources in computational grids | |
Chang et al. | Low-latency controller load balancing strategy and offloading decision generation algorithm based on lyapunov optimization in SDN mobile edge computing environment | |
Singh et al. | Multicriteria decision making based optimum virtual machine selection technique for smart cloud environment | |
Aung et al. | Data processing model for mobile IoT systems | |
Divya et al. | RETRACTED ARTICLE: Efficient optimal resource allocation for profit maximization in software defined network approach to improve quality of service in cloud environments |