Li et al., 2018 - Google Patents

Dual or multi carbonaceous coating strategies for next-generation batteries

Li et al., 2018

Document ID
14339542143676804132
Author
Li P
Zhang K
Park J
Publication year
Publication venue
Journal of Materials Chemistry A

External Links

Snippet

Lithium-ion batteries (LIBs) have become energy storage tools in our daily lives, and high energy and power densities as well as long lifespan are necessary for next-generation batteries for transportation technologies and smart grids. Newly emerging electrode …
Continue reading at pubs.rsc.org (other versions)

Classifications

    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of or comprising active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GASES [GHG] EMISSION, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage
    • Y02E60/12Battery technology
    • Y02E60/122Lithium-ion batteries
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of or comprising active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • H01M4/5825Oxygenated metallic slats or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of or comprising active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of or comprising active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/136Electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GASES [GHG] EMISSION, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage
    • Y02E60/13Ultracapacitors, supercapacitors, double-layer capacitors
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of or comprising active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GASES [GHG] EMISSION, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/50Fuel cells
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes

Similar Documents

Publication Publication Date Title
Li et al. Surface and interface engineering of nanoarrays toward advanced electrodes and electrochemical energy storage devices
Zhang et al. Nanostructured host materials for trapping sulfur in rechargeable Li–S batteries: structure design and interfacial chemistry
Yan et al. Design, synthesis, and application of metal sulfides for Li–S batteries: progress and prospects
Wang et al. Structural design of anode materials for sodium-ion batteries
Lou et al. Ti‐based oxide anode materials for advanced electrochemical energy storage: lithium/sodium ion batteries and hybrid pseudocapacitors
Wu et al. A review: enhanced anodes of Li/Na-ion batteries based on yolk–shell structured nanomaterials
Li et al. Graphene hybridization for energy storage applications
Rehman et al. Nanostructured cathode materials for lithium–sulfur batteries: progress, challenges and perspectives
Shen et al. Research progress on silicon/carbon composite anode materials for lithium-ion battery
Li et al. Dual or multi carbonaceous coating strategies for next-generation batteries
Ould Ely et al. Lithium–sulfur batteries: state of the art and future directions
Xiong et al. Recent advances in graphene-based hybrid nanostructures for electrochemical energy storage
Liu et al. Porous carbon composites for next generation rechargeable lithium batteries
Zhu et al. Novel non‐carbon sulfur hosts based on strong chemisorption for lithium–sulfur batteries
Cao et al. Recent progress in conversion reaction metal oxide anodes for Li-ion batteries
Reddy et al. Hybrid nanostructures for energy storage applications
Yuan et al. The applications of carbon nanotubes and graphene in advanced rechargeable lithium batteries
Manthiram et al. Challenges and prospects of lithium–sulfur batteries
Vu et al. Porous electrode materials for lithium‐ion batteries–how to prepare them and what makes them special
Ji et al. Recent developments in nanostructured anode materials for rechargeable lithium-ion batteries
Song et al. Nanostructured electrodes for lithium-ion and lithium-air batteries: the latest developments, challenges, and perspectives
Xin et al. Nanocarbon networks for advanced rechargeable lithium batteries
Liu et al. Heterogeneous nanostructured electrode materials for electrochemical energy storage
Cao et al. Commercialization‐driven electrodes design for lithium batteries: basic guidance, opportunities, and perspectives
Rahman et al. A review on porous negative electrodes for high performance lithium-ion batteries