Cui et al., 2011 - Google Patents
A sequential triggering technique in cascaded current source for low power 12‐b D/A converterCui et al., 2011
- Document ID
- 13184745908303650000
- Author
- Cui Z
- Choi H
- Cho T
- Kim N
- Publication year
- Publication venue
- Microelectronics international
External Links
Snippet
Purpose–The purpose of this paper is to introduce a low power digital‐to‐analog converter (DAC) by using a sequential triggering technique in cascaded current source. Design/methodology/approach–The block of current cell consists of current switch and …
- 238000000034 method 0 title abstract description 21
Classifications
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M1/00—Analogue/digital conversion; Digital/analogue conversion
- H03M1/66—Digital/analogue converters
- H03M1/68—Digital/analogue converters with conversions of different sensitivity, i.e. one conversion relating to the more significant digital bits and another conversion to the less significant bits
- H03M1/682—Digital/analogue converters with conversions of different sensitivity, i.e. one conversion relating to the more significant digital bits and another conversion to the less significant bits both converters being of the unary decoded type
- H03M1/685—Digital/analogue converters with conversions of different sensitivity, i.e. one conversion relating to the more significant digital bits and another conversion to the less significant bits both converters being of the unary decoded type the quantisation value generators of both converters being arranged in a common two-dimensional array
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M1/00—Analogue/digital conversion; Digital/analogue conversion
- H03M1/66—Digital/analogue converters
- H03M1/74—Simultaneous conversion
- H03M1/80—Simultaneous conversion using weighted impedances
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M1/00—Analogue/digital conversion; Digital/analogue conversion
- H03M1/06—Continuously compensating for, or preventing, undesired influence of physical parameters
- H03M1/0617—Continuously compensating for, or preventing, undesired influence of physical parameters characterised by the use of methods or means not specific to a particular type of detrimental influence
- H03M1/0634—Continuously compensating for, or preventing, undesired influence of physical parameters characterised by the use of methods or means not specific to a particular type of detrimental influence by averaging out the errors, e.g. using sliding scale
- H03M1/0656—Continuously compensating for, or preventing, undesired influence of physical parameters characterised by the use of methods or means not specific to a particular type of detrimental influence by averaging out the errors, e.g. using sliding scale in the time domain
- H03M1/066—Continuously compensating for, or preventing, undesired influence of physical parameters characterised by the use of methods or means not specific to a particular type of detrimental influence by averaging out the errors, e.g. using sliding scale in the time domain by continuously permuting the elements used, i.e. dynamic element matching
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M1/00—Analogue/digital conversion; Digital/analogue conversion
- H03M1/06—Continuously compensating for, or preventing, undesired influence of physical parameters
- H03M1/0617—Continuously compensating for, or preventing, undesired influence of physical parameters characterised by the use of methods or means not specific to a particular type of detrimental influence
- H03M1/0675—Continuously compensating for, or preventing, undesired influence of physical parameters characterised by the use of methods or means not specific to a particular type of detrimental influence using redundancy
- H03M1/0678—Continuously compensating for, or preventing, undesired influence of physical parameters characterised by the use of methods or means not specific to a particular type of detrimental influence using redundancy using additional components or elements, e.g. dummy components
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M1/00—Analogue/digital conversion; Digital/analogue conversion
- H03M1/66—Digital/analogue converters
- H03M1/74—Simultaneous conversion
- H03M1/76—Simultaneous conversion using switching tree
- H03M1/765—Simultaneous conversion using switching tree using a single level of switches which are controlled by unary decoded digital signals
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M1/00—Analogue/digital conversion; Digital/analogue conversion
- H03M1/66—Digital/analogue converters
- H03M1/74—Simultaneous conversion
- H03M1/742—Simultaneous conversion using current sources as quantisation value generators
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M1/00—Analogue/digital conversion; Digital/analogue conversion
- H03M1/12—Analogue/digital converters
- H03M1/34—Analogue value compared with reference values
- H03M1/36—Analogue value compared with reference values simultaneously only, i.e. parallel type
- H03M1/361—Analogue value compared with reference values simultaneously only, i.e. parallel type having a separate comparator and reference value for each quantisation level, i.e. full flash converter type
- H03M1/362—Analogue value compared with reference values simultaneously only, i.e. parallel type having a separate comparator and reference value for each quantisation level, i.e. full flash converter type the reference values being generated by a resistive voltage divider
- H03M1/365—Analogue value compared with reference values simultaneously only, i.e. parallel type having a separate comparator and reference value for each quantisation level, i.e. full flash converter type the reference values being generated by a resistive voltage divider the voltage divider being a single resistor string
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M1/00—Analogue/digital conversion; Digital/analogue conversion
- H03M1/66—Digital/analogue converters
- H03M1/74—Simultaneous conversion
- H03M1/78—Simultaneous conversion using ladder network
- H03M1/785—Simultaneous conversion using ladder network using resistors, i.e. R-2R ladders
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M1/00—Analogue/digital conversion; Digital/analogue conversion
- H03M1/12—Analogue/digital converters
- H03M1/14—Conversion in steps with each step involving the same or a different conversion means and delivering more than one bit
- H03M1/145—Conversion in steps with each step involving the same or a different conversion means and delivering more than one bit the steps being performed sequentially in series-connected stages
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M1/00—Analogue/digital conversion; Digital/analogue conversion
- H03M1/10—Calibration or testing
- H03M1/1009—Calibration
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M1/00—Analogue/digital conversion; Digital/analogue conversion
- H03M1/004—Reconfigurable analogue/digital or digital/analogue converters
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M7/00—Conversion of a code where information is represented by a given sequence or number of digits to a code where the same information or similar information or a subset of information is represented by a different sequence or number of digits
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Bastos et al. | A 12-bit intrinsic accuracy high-speed CMOS DAC | |
O'Sullivan et al. | A 12-bit 320-MSample/s current-steering CMOS D/A converter in 0.44 mm/sup 2 | |
Lee et al. | A 100-nW 9.1-ENOB 20-kS/s SAR ADC for portable pulse oximeter | |
Moon et al. | A 9.1-ENOB 6-mW 10-bit 500-MS/s pipelined-SAR ADC with current-mode residue processing in 28-nm CMOS | |
Yi | An 8-bit current-steering digital to analog converter | |
Kim et al. | A SUC-Based Full-Binary 6-bit 3.1-GS/s 17.7-mW Current-Steering DAC in 0.038 mm $^{2} $ | |
US7825843B2 (en) | D/A converter and semiconductor integrated circuit including the same | |
US7369076B1 (en) | High precision DAC with thermometer coding | |
Greenley et al. | A low-Voltage 10-bit CMOS DAC in 0.01-mm/sup 2/die area | |
Esmaili et al. | A robust calibration method for R-2R ladder-based current-steering DAC | |
Gupta et al. | Improved performance 6-bit 3.5 GS/s unary CS-DAC using glitch reduction | |
Chung et al. | A 12‐bit 10‐MS/s SAR ADC with a binary‐window DAC switching scheme in 180‐nm CMOS | |
Sarkar et al. | An 8-bit 1.8 V 500 MSPS CMOS segmented current steering DAC | |
Chou et al. | A low-glitch binary-weighted DAC with delay compensation scheme | |
Cui et al. | A sequential triggering technique in cascaded current source for low power 12‐b D/A converter | |
Aliparast et al. | A 12-Bit 1-Gsample/s Nyquist Current-Steering DAC in 0.35 µm CMOS for Wireless Transmitter | |
Yenuchenko | Alternative structures of a segmented current-steering DAC | |
Sarkar et al. | A 10 bit 1 GSPS Nyquist DAC in 180 nm CMOS with high FOM | |
Ghasemian et al. | Implement of a 10-bit 7.49 mW 1.2 GS/s DAC with a new segmentation method | |
Aliparast et al. | Very high-speed and high-accuracy current-steering CMOS D/A converter using a novel 3-D decoder | |
Marche et al. | An improved switch compensation technique for inverted R-2R ladder DACs | |
Kommangunta et al. | Low Power 10-bit 100 MSPS Segmented Current Steering DAC with> 78 dB SFDR | |
EP4238221A1 (en) | Digitally enhanced digital-to-analog converter resolution | |
Moody et al. | 10 bit current steering DAC in 90 nm technology | |
Baranwal et al. | Design and analysis of 8 bit fully segmented digital to analog converter |