Lambert et al., 2001 - Google Patents

A review of oil-in-water monitoring techniques

Lambert et al., 2001

View PDF
Document ID
13169943675610100052
Author
Lambert P
Goldthorp M
Fieldhouse B
Wang Z
Fingas M
Pearson L
Collazzi E
Publication year
Publication venue
International Oil Spill Conference

External Links

Snippet

ABSTRACT A comprehensive laboratory study of the Turner Instrument flow-through fluorometers was conducted to review their ability to measure real-time oil-in-water concentrations, to compare the results to alternative total petroleum hydrocarbon (TPH) …
Continue reading at meridian.allenpress.com (PDF) (other versions)

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by the preceding groups
    • G01N33/26Investigating or analysing materials by specific methods not covered by the preceding groups oils; viscous liquids; paints; inks
    • G01N33/28Oils, i.e. hydrocarbon liquids
    • G01N33/2835Oils, i.e. hydrocarbon liquids specific substances contained in the oil or fuel
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by the preceding groups
    • G01N33/26Investigating or analysing materials by specific methods not covered by the preceding groups oils; viscous liquids; paints; inks
    • G01N33/28Oils, i.e. hydrocarbon liquids
    • G01N33/2823Oils, i.e. hydrocarbon liquids raw oil, drilling fluid or polyphasic mixtures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using infra-red, visible or ultra-violet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • G01N21/643Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes" non-biological material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using infra-red, visible or ultra-violet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/71Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light thermally excited
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/62Detectors specially adapted therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by the preceding groups
    • G01N33/02Investigating or analysing materials by specific methods not covered by the preceding groups food
    • G01N33/14Investigating or analysing materials by specific methods not covered by the preceding groups food beverages
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using infra-red, visible or ultra-violet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by the preceding groups
    • G01N33/24Investigating or analysing materials by specific methods not covered by the preceding groups earth materials
    • G01N33/241Investigating or analysing materials by specific methods not covered by the preceding groups earth materials for hydrocarbon content
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by the preceding groups
    • G01N33/48Investigating or analysing materials by specific methods not covered by the preceding groups biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/10Devices for withdrawing samples in the liquid or fluent state
    • G01N1/20Devices for withdrawing samples in the liquid or fluent state for flowing or falling materials
    • G01N1/2035Devices for withdrawing samples in the liquid or fluent state for flowing or falling materials by deviating part of a fluid stream, e.g. by drawing-off or tapping
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N25/00Investigating or analyzing materials by the use of thermal means
    • G01N25/02Investigating or analyzing materials by the use of thermal means by investigating changes of state or changes of phase; by investigating sintering
    • G01N25/08Investigating or analyzing materials by the use of thermal means by investigating changes of state or changes of phase; by investigating sintering of boiling point
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electro-chemical, or magnetic means

Similar Documents

Publication Publication Date Title
Daling et al. Improved and standardized methodology for oil spill fingerprinting
de Souza et al. Determination of Mo, Zn, Cd, Ti, Ni, V, Fe, Mn, Cr and Co in crude oil using inductively coupled plasma optical emission spectrometry and sample introduction as detergentless microemulsions
Wang et al. Developments in the analysis of petroleum hydrocarbons in oils, petroleum products and oil-spill-related environmental samples by gas chromatography
Mills et al. Method for quantifying the fate of petroleum in the environment
CA2724760C (en) Method of monitoring and optimizing additive concentration in fuel ethanol
US20190204224A1 (en) Method for Monitoring and Control of a Wastewater Process Stream
CN102939529B (en) For the apparatus and method for the ratio for recognizing liquid component
Park et al. A rapid gas chromatography tandem mass spectrometry method for the determination of 50 PAHs for application in a marine environment
Wagner et al. Quantitative produced water analysis using mobile 1H NMR
US20050019939A1 (en) Combination marker for liquids and method identification thereof
Lambert A literature review of portable fluorescence-based oil-in-water monitors
Cassella et al. Determination of arsenic in petroleum refinery streams by electrothermal atomic absorption spectrometry after multivariate optimization based on Doehlert design
Cao et al. Raman spectroscopic and microscopic monitoring of on-site and in-situ remediation dynamics in petroleum contaminated soil and groundwater
He et al. Application of extraction induced by emulsion breaking for trace multi-element determination in jet fuel by inductively coupled plasma-mass spectrometry
Girling et al. A guideline supplement for determining the aquatic toxicity of poorly water-soluble complex mixtures using water-accommodated fractions
CN108548888A (en) The accurate monitoring and evaluation method of organic contamination place petroleum hydrocarbon
Lambert et al. An evaluation of field total petroleum hydrocarbon (TPH) systems
Wagner et al. Simultaneous quantification of aliphatic and aromatic hydrocarbons in produced water analysis using mobile 1H NMR
Chikwe et al. Evaluation of the physico-chemical properties of produced water from oil producing well in the Niger Delta Area, Nigeria
Lambert et al. A review of oil-in-water monitoring techniques
US20240044794A1 (en) Method for Monitoring and Control of a Wastewater Process Stream
Lambert et al. Field fluorometers as dispersed oil-in-water monitors
Fan¹ et al. A critical review of analytical approaches for petroleum contaminated soil
CN105954369B (en) Benzo in a kind of homogeneous liquid-liquid extraction Water By High Performance Liquid of ionic liquid(α)The analysis method of pyrene
Wait Evolution of organic analytical methods in environmental forensic chemistry