Lee et al., 2019 - Google Patents
An enhanced prediction model for the on-line monitoring of the sensors using the Gaussian process regressionLee et al., 2019
View PDF- Document ID
- 12772833394710970636
- Author
- Lee S
- Chai J
- Publication year
- Publication venue
- Journal of Mechanical Science and Technology
External Links
Snippet
The auto-associative kernel regression (AAKR) and Gaussian process regression (GPR) have been used for estimating the condition of the sensors in the on-line monitoring system of the nuclear power plants. The estimations of the condition could be biased by the data of …
- 238000000034 method 0 title abstract description 14
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B23/00—Testing or monitoring of control systems or parts thereof
- G05B23/02—Electric testing or monitoring
- G05B23/0205—Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults
- G05B23/0218—Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterised by the fault detection method dealing with either existing or incipient faults
- G05B23/0224—Process history based detection method, e.g. whereby history implies the availability of large amounts of data
- G05B23/024—Quantitative history assessment, e.g. mathematical relationships between available data; Functions therefor; Principal component analysis [PCA]; Partial least square [PLS]; Statistical classifiers, e.g. Bayesian networks, linear regression or correlation analysis; Neural networks
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B23/00—Testing or monitoring of control systems or parts thereof
- G05B23/02—Electric testing or monitoring
- G05B23/0205—Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults
- G05B23/0218—Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterised by the fault detection method dealing with either existing or incipient faults
- G05B23/0243—Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterised by the fault detection method dealing with either existing or incipient faults model based detection method, e.g. first-principles knowledge model
- G05B23/0254—Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterised by the fault detection method dealing with either existing or incipient faults model based detection method, e.g. first-principles knowledge model based on a quantitative model, e.g. mathematical relationships between inputs and outputs; functions: observer, Kalman filter, residual calculation, Neural Networks
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using infra-red, visible or ultra-violet light
- G01N21/01—Arrangements or apparatus for facilitating the optical investigation
- G01N21/15—Preventing contamination of the components of the optical system or obstruction of the light path
- G01N2021/155—Monitoring cleanness of window, lens, or other parts
- G01N2021/157—Monitoring by optical means
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06N—COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N99/00—Subject matter not provided for in other groups of this subclass
- G06N99/005—Learning machines, i.e. computer in which a programme is changed according to experience gained by the machine itself during a complete run
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F11/00—Error detection; Error correction; Monitoring
- G06F11/07—Error detection; Error correction; Monitoring responding to the occurence of a fault, e.g. fault tolerance
- G06F11/0703—Error or fault processing not based on redundancy, i.e. by taking additional measures to deal with the error or fault not making use of redundancy in operation, in hardware, or in data representation
- G06F11/0706—Error or fault processing not based on redundancy, i.e. by taking additional measures to deal with the error or fault not making use of redundancy in operation, in hardware, or in data representation the processing taking place on a specific hardware platform or in a specific software environment
- G06F11/0721—Error or fault processing not based on redundancy, i.e. by taking additional measures to deal with the error or fault not making use of redundancy in operation, in hardware, or in data representation the processing taking place on a specific hardware platform or in a specific software environment within a central processing unit [CPU]
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by the preceding groups
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N17/00—Investigating resistance of materials to the weather, to corrosion, or to light
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N29/00—Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
- G01N29/44—Processing the detected response signal, e.g. electronic circuits specially adapted therefor
- G01N29/46—Processing the detected response signal, e.g. electronic circuits specially adapted therefor by spectral analysis, e.g. Fourier analysis or wavelet analysis
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N25/00—Investigating or analyzing materials by the use of thermal means
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06N—COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computer systems based on biological models
- G06N3/02—Computer systems based on biological models using neural network models
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11314242B2 (en) | Methods and systems for fault detection and identification | |
Baraldi et al. | Ensemble neural network-based particle filtering for prognostics | |
JP4528335B2 (en) | Sensor performance verification apparatus and method | |
KR100355970B1 (en) | Ultrasensitive surveillance of sensors and processes | |
US7941701B2 (en) | Fuzzy classification approach to fault pattern matching | |
US7640145B2 (en) | Automated model configuration and deployment system for equipment health monitoring | |
Harrou et al. | Statistical fault detection using PCA-based GLR hypothesis testing | |
Harrou et al. | An improved multivariate chart using partial least squares with continuous ranked probability score | |
Lee et al. | An enhanced prediction model for the on-line monitoring of the sensors using the Gaussian process regression | |
US8700550B1 (en) | Adaptive model training system and method | |
US8712929B1 (en) | Dynamic data filtering system and method | |
Li et al. | A novel diagnostic and prognostic framework for incipient fault detection and remaining service life prediction with application to industrial rotating machines | |
EP2342603B1 (en) | Method and apparatus for creating state estimation models in machine condition monitoring | |
Gobbato et al. | A recursive Bayesian approach for fatigue damage prognosis: An experimental validation at the reliability component level | |
Chen et al. | Status self-validation of sensor arrays using gray forecasting model and bootstrap method | |
CN111611294B (en) | Star sensor data anomaly detection method | |
Jäger et al. | Assessing neural networks for sensor fault detection | |
Godoy et al. | New contributions to non-linear process monitoring through kernel partial least squares | |
Quiñones-Grueiro et al. | An unsupervised approach to leak detection and location in water distribution networks | |
KR20170127430A (en) | Method and system for detecting, classifying and / or mitigating sensor error | |
CN110083593B (en) | Power station operation parameter cleaning and repairing method and repairing system | |
Rato et al. | On-line process monitoring using local measures of association. Part II: Design issues and fault diagnosis | |
Lou et al. | Enhanced fault diagnosis method using conditional gaussian network for dynamic processes | |
Manikandan et al. | Takagi Sugeno fuzzy expert model based soft fault diagnosis for two tank interacting system | |
Steiner et al. | A support vector regression-based approach towards decentralized fault diagnosis in wireless structural health monitoring systems |