Durdodt et al., 2002 - Google Patents

Comparison of an inductorless low-IF and zero-IF receiver for Bluetooth

Durdodt et al., 2002

Document ID
12434377980328603711
Author
Durdodt C
Hanke A
Heinen S
Langmann U
Publication year
Publication venue
The 2002 45th Midwest Symposium on Circuits and Systems, 2002. MWSCAS-2002.

External Links

Snippet

Low-IF and zero-IF receiver architectures benefit from the high integration level and are well suited for low-cost Bluetooth single-chip solutions. The low power consumption and cost associated with zero-IF receivers contrast with simple DC offset compensation and reduced …
Continue reading at ieeexplore.ieee.org (other versions)

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • H04B1/16Circuits
    • H04B1/26Circuits for superheterodyne receivers
    • H04B1/28Circuits for superheterodyne receivers the receiver comprising at least one semiconductor device having three or more electrodes
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03DDEMODULATION OR TRANSFERENCE OF MODULATION FROM ONE CARRIER TO ANOTHER
    • H03D7/00Transference of modulation from one carrier to another, e.g. frequency-changing
    • H03D7/14Balanced arrangements
    • H03D7/1425Balanced arrangements with transistors
    • H03D7/1441Balanced arrangements with transistors using field-effect transistors
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03DDEMODULATION OR TRANSFERENCE OF MODULATION FROM ONE CARRIER TO ANOTHER
    • H03D2200/00Indexing scheme relating to details of demodulation or transference of modulation from one carrier to another covered by H03D
    • H03D2200/0041Functional aspects of demodulators
    • H03D2200/0088Reduction of intermodulation, nonlinearities, adjacent channel interference; intercept points of harmonics or intermodulation products
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • H04B1/10Means associated with receiver for limiting or suppressing noise or interference induced by transmission
    • H04B1/12Neutralising, balancing, or compensation arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • H04B1/16Circuits
    • H04B1/30Circuits for homodyne or synchrodyne receivers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • H04B1/10Means associated with receiver for limiting or suppressing noise or interference induced by transmission
    • H04B1/109Means associated with receiver for limiting or suppressing noise or interference induced by transmission by improving strong signal performance of the receiver when strong unwanted signals are present at the receiver input
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03DDEMODULATION OR TRANSFERENCE OF MODULATION FROM ONE CARRIER TO ANOTHER
    • H03D7/00Transference of modulation from one carrier to another, e.g. frequency-changing
    • H03D7/16Multiple-frequency-changing
    • H03D7/165Multiple-frequency-changing at least two frequency changers being located in different paths, e.g. in two paths with carriers in quadrature
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03DDEMODULATION OR TRANSFERENCE OF MODULATION FROM ONE CARRIER TO ANOTHER
    • H03D7/00Transference of modulation from one carrier to another, e.g. frequency-changing
    • H03D7/14Balanced arrangements
    • H03D7/1408Balanced arrangements with diodes
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03DDEMODULATION OR TRANSFERENCE OF MODULATION FROM ONE CARRIER TO ANOTHER
    • H03D7/00Transference of modulation from one carrier to another, e.g. frequency-changing
    • H03D7/14Balanced arrangements
    • H03D7/1425Balanced arrangements with transistors
    • H03D7/1433Balanced arrangements with transistors using bipolar transistors
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03DDEMODULATION OR TRANSFERENCE OF MODULATION FROM ONE CARRIER TO ANOTHER
    • H03D3/00Demodulation of angle-, frequency- or phase- modulated oscillations
    • H03D3/007Demodulation of angle-, frequency- or phase- modulated oscillations by converting the oscillations into two quadrature related signals
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03DDEMODULATION OR TRANSFERENCE OF MODULATION FROM ONE CARRIER TO ANOTHER
    • H03D3/00Demodulation of angle-, frequency- or phase- modulated oscillations
    • H03D3/006Demodulation of angle-, frequency- or phase- modulated oscillations by sampling the oscillations and further processing the samples, e.g. by computing techniques
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03DDEMODULATION OR TRANSFERENCE OF MODULATION FROM ONE CARRIER TO ANOTHER
    • H03D2200/00Indexing scheme relating to details of demodulation or transference of modulation from one carrier to another covered by H03D
    • H03D2200/0001Circuit elements of demodulators
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/0003Software-defined radio [SDR] systems, i.e. systems wherein components typically implemented in hardware, e.g. filters or modulators/demodulators, are implented using software, e.g. by involving an AD or DA conversion stage such that at least part of the signal processing is performed in the digital domain
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/005Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges

Similar Documents

Publication Publication Date Title
Razavi Architectures and circuits for RF CMOS receivers
US9209910B2 (en) Blocker filtering for noise-cancelling receiver
Kluge et al. A fully integrated 2.4-GHz IEEE 802.15. 4-compliant transceiver for ZigBee™ applications
Nguyen et al. A Low-Power RF Direct-Conversion Receiver/Transmitter for 2.4-GHz-Band IEEE 802.15. 4 Standard in 0.18-$\mu {\hbox {m}} $ CMOS Technology
KR100539978B1 (en) Circuits and method for mixing frequency, and circuits and method for receiving radio frequency
US7474885B2 (en) Passive subharmonic mixer
Orsatti et al. A 20-mA-receive, 55-mA-transmit, single-chip GSM transceiver in 0.25-/spl mu/m CMOS
US20030114129A1 (en) System and method for a radio frequency receiver front end utilizing a balun to couple a low-noise amplifier to a mixer
US8503963B2 (en) Amplifier with on-chip filter
US20070287403A1 (en) Radio-Receiver Front-End and A Method For Frequency Converting An Input Signal
Beffa et al. A 6.5-mw receiver front-end for bluetooth in 0.18-/spl mu/m cmos
JP3686074B1 (en) Wireless receiving circuit and wireless portable device
Razavi RF IC design challenges
Seo et al. A low power fully CMOS integrated RF transceiver IC for wireless sensor networks
Jiang et al. A low-power sub-GHz RF receiver front-end with enhanced blocker tolerance
Durdodt et al. Comparison of an inductorless low-IF and zero-IF receiver for Bluetooth
US20060091944A1 (en) I/Q quadrature demodulator
Huang CMOS RF design-the low power dimension
CN112003571B (en) Anti-interference network and application thereof
Khatri et al. A SAW-less CMOS CDMA receiver with active TX filtering
Moosavifar et al. A 320μW Receiver with-58dB SIR Leveraging a Time-Varying N-Path Filter
US20040116087A1 (en) Radio frequency receiver architecture with on-chip tracking intermediate frequency filtering
Zito A novel low‐power receiver topology for RF and microwave applications
Zhao et al. A 0.65 V 4 dB NF 2.4 GHz Sub-Passive RF Down-Converter With Trans-Frequency Current-Reusing Scheme Achieving Low Flicker Noise and High Linearity
Jo et al. IIP2-Calibration-Free 5G NR Cellular Receiver Front-End With Mixer-Sharing Global $ N $-Path Notch Filter Feedback Achieving $+ $72 dBm IIP2