Durdodt et al., 2002 - Google Patents
Comparison of an inductorless low-IF and zero-IF receiver for BluetoothDurdodt et al., 2002
- Document ID
- 12434377980328603711
- Author
- Durdodt C
- Hanke A
- Heinen S
- Langmann U
- Publication year
- Publication venue
- The 2002 45th Midwest Symposium on Circuits and Systems, 2002. MWSCAS-2002.
External Links
Snippet
Low-IF and zero-IF receiver architectures benefit from the high integration level and are well suited for low-cost Bluetooth single-chip solutions. The low power consumption and cost associated with zero-IF receivers contrast with simple DC offset compensation and reduced …
- 238000007906 compression 0 abstract description 4
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B1/00—Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
- H04B1/06—Receivers
- H04B1/16—Circuits
- H04B1/26—Circuits for superheterodyne receivers
- H04B1/28—Circuits for superheterodyne receivers the receiver comprising at least one semiconductor device having three or more electrodes
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03D—DEMODULATION OR TRANSFERENCE OF MODULATION FROM ONE CARRIER TO ANOTHER
- H03D7/00—Transference of modulation from one carrier to another, e.g. frequency-changing
- H03D7/14—Balanced arrangements
- H03D7/1425—Balanced arrangements with transistors
- H03D7/1441—Balanced arrangements with transistors using field-effect transistors
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03D—DEMODULATION OR TRANSFERENCE OF MODULATION FROM ONE CARRIER TO ANOTHER
- H03D2200/00—Indexing scheme relating to details of demodulation or transference of modulation from one carrier to another covered by H03D
- H03D2200/0041—Functional aspects of demodulators
- H03D2200/0088—Reduction of intermodulation, nonlinearities, adjacent channel interference; intercept points of harmonics or intermodulation products
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B1/00—Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
- H04B1/06—Receivers
- H04B1/10—Means associated with receiver for limiting or suppressing noise or interference induced by transmission
- H04B1/12—Neutralising, balancing, or compensation arrangements
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B1/00—Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
- H04B1/06—Receivers
- H04B1/16—Circuits
- H04B1/30—Circuits for homodyne or synchrodyne receivers
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B1/00—Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
- H04B1/06—Receivers
- H04B1/10—Means associated with receiver for limiting or suppressing noise or interference induced by transmission
- H04B1/109—Means associated with receiver for limiting or suppressing noise or interference induced by transmission by improving strong signal performance of the receiver when strong unwanted signals are present at the receiver input
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03D—DEMODULATION OR TRANSFERENCE OF MODULATION FROM ONE CARRIER TO ANOTHER
- H03D7/00—Transference of modulation from one carrier to another, e.g. frequency-changing
- H03D7/16—Multiple-frequency-changing
- H03D7/165—Multiple-frequency-changing at least two frequency changers being located in different paths, e.g. in two paths with carriers in quadrature
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03D—DEMODULATION OR TRANSFERENCE OF MODULATION FROM ONE CARRIER TO ANOTHER
- H03D7/00—Transference of modulation from one carrier to another, e.g. frequency-changing
- H03D7/14—Balanced arrangements
- H03D7/1408—Balanced arrangements with diodes
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03D—DEMODULATION OR TRANSFERENCE OF MODULATION FROM ONE CARRIER TO ANOTHER
- H03D7/00—Transference of modulation from one carrier to another, e.g. frequency-changing
- H03D7/14—Balanced arrangements
- H03D7/1425—Balanced arrangements with transistors
- H03D7/1433—Balanced arrangements with transistors using bipolar transistors
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B1/00—Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
- H04B1/38—Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
- H04B1/40—Circuits
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03D—DEMODULATION OR TRANSFERENCE OF MODULATION FROM ONE CARRIER TO ANOTHER
- H03D3/00—Demodulation of angle-, frequency- or phase- modulated oscillations
- H03D3/007—Demodulation of angle-, frequency- or phase- modulated oscillations by converting the oscillations into two quadrature related signals
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03D—DEMODULATION OR TRANSFERENCE OF MODULATION FROM ONE CARRIER TO ANOTHER
- H03D3/00—Demodulation of angle-, frequency- or phase- modulated oscillations
- H03D3/006—Demodulation of angle-, frequency- or phase- modulated oscillations by sampling the oscillations and further processing the samples, e.g. by computing techniques
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03D—DEMODULATION OR TRANSFERENCE OF MODULATION FROM ONE CARRIER TO ANOTHER
- H03D2200/00—Indexing scheme relating to details of demodulation or transference of modulation from one carrier to another covered by H03D
- H03D2200/0001—Circuit elements of demodulators
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B1/00—Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
- H04B1/0003—Software-defined radio [SDR] systems, i.e. systems wherein components typically implemented in hardware, e.g. filters or modulators/demodulators, are implented using software, e.g. by involving an AD or DA conversion stage such that at least part of the signal processing is performed in the digital domain
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B1/00—Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
- H04B1/005—Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Razavi | Architectures and circuits for RF CMOS receivers | |
US9209910B2 (en) | Blocker filtering for noise-cancelling receiver | |
Kluge et al. | A fully integrated 2.4-GHz IEEE 802.15. 4-compliant transceiver for ZigBee™ applications | |
Nguyen et al. | A Low-Power RF Direct-Conversion Receiver/Transmitter for 2.4-GHz-Band IEEE 802.15. 4 Standard in 0.18-$\mu {\hbox {m}} $ CMOS Technology | |
KR100539978B1 (en) | Circuits and method for mixing frequency, and circuits and method for receiving radio frequency | |
US7474885B2 (en) | Passive subharmonic mixer | |
Orsatti et al. | A 20-mA-receive, 55-mA-transmit, single-chip GSM transceiver in 0.25-/spl mu/m CMOS | |
US20030114129A1 (en) | System and method for a radio frequency receiver front end utilizing a balun to couple a low-noise amplifier to a mixer | |
US8503963B2 (en) | Amplifier with on-chip filter | |
US20070287403A1 (en) | Radio-Receiver Front-End and A Method For Frequency Converting An Input Signal | |
Beffa et al. | A 6.5-mw receiver front-end for bluetooth in 0.18-/spl mu/m cmos | |
JP3686074B1 (en) | Wireless receiving circuit and wireless portable device | |
Razavi | RF IC design challenges | |
Seo et al. | A low power fully CMOS integrated RF transceiver IC for wireless sensor networks | |
Jiang et al. | A low-power sub-GHz RF receiver front-end with enhanced blocker tolerance | |
Durdodt et al. | Comparison of an inductorless low-IF and zero-IF receiver for Bluetooth | |
US20060091944A1 (en) | I/Q quadrature demodulator | |
Huang | CMOS RF design-the low power dimension | |
CN112003571B (en) | Anti-interference network and application thereof | |
Khatri et al. | A SAW-less CMOS CDMA receiver with active TX filtering | |
Moosavifar et al. | A 320μW Receiver with-58dB SIR Leveraging a Time-Varying N-Path Filter | |
US20040116087A1 (en) | Radio frequency receiver architecture with on-chip tracking intermediate frequency filtering | |
Zito | A novel low‐power receiver topology for RF and microwave applications | |
Zhao et al. | A 0.65 V 4 dB NF 2.4 GHz Sub-Passive RF Down-Converter With Trans-Frequency Current-Reusing Scheme Achieving Low Flicker Noise and High Linearity | |
Jo et al. | IIP2-Calibration-Free 5G NR Cellular Receiver Front-End With Mixer-Sharing Global $ N $-Path Notch Filter Feedback Achieving $+ $72 dBm IIP2 |