Thelander et al., 2004 - Google Patents

Electron transport in InAs nanowires and heterostructure nanowire devices

Thelander et al., 2004

Document ID
117086637226677903
Author
Thelander C
Björk M
Larsson M
Hansen A
Wallenberg L
Samuelson L
Publication year
Publication venue
Solid State Communications

External Links

Snippet

Nanowires in the InAs/InP material system are grown with catalyst-assisted chemical beam epitaxy. Ohmic contacts are then fabricated to selected wires, allowing electron transport measurements to be carried out at room-temperature as well as at low T. InAs nanowires …
Continue reading at www.sciencedirect.com (other versions)

Classifications

    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0657Semiconductor bodies; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body
    • H01L29/0665Semiconductor bodies; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body the shape of the body defining a nanostructure
    • H01L29/0669Nanowires or nanotubes
    • H01L29/0673Nanowires or nanotubes oriented parallel to a substrate
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/122Single quantum well structures
    • H01L29/127Quantum box structures
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies; Multistep manufacturing processes therefor
    • H01L29/36Semiconductor bodies; Multistep manufacturing processes therefor characterised by the concentration or distribution of impurities in the bulk material
    • H01L29/365Planar doping, e.g. atomic-plane doping, delta-doping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANO-TECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANO-STRUCTURES; MEASUREMENT OR ANALYSIS OF NANO-STRUCTURES; MANUFACTURE OR TREATMENT OF NANO-STRUCTURES
    • B82Y10/00Nano-technology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L51/00Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof
    • H01L51/0032Selection of organic semiconducting materials, e.g. organic light sensitive or organic light emitting materials
    • H01L51/0045Carbon containing materials, e.g. carbon nanotubes, fullerenes
    • H01L51/0048Carbon nanotubes
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANO-TECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANO-STRUCTURES; MEASUREMENT OR ANALYSIS OF NANO-STRUCTURES; MANUFACTURE OR TREATMENT OF NANO-STRUCTURES
    • B82Y40/00Manufacture or treatment of nano-structures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANO-TECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANO-STRUCTURES; MEASUREMENT OR ANALYSIS OF NANO-STRUCTURES; MANUFACTURE OR TREATMENT OF NANO-STRUCTURES
    • B82Y30/00Nano-technology for materials or surface science, e.g. nano-composites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANO-TECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANO-STRUCTURES; MEASUREMENT OR ANALYSIS OF NANO-STRUCTURES; MANUFACTURE OR TREATMENT OF NANO-STRUCTURES
    • B82Y20/00Nano-optics, e.g. quantum optics or photonic crystals

Similar Documents

Publication Publication Date Title
Thelander et al. Electron transport in InAs nanowires and heterostructure nanowire devices
Samuelson et al. Semiconductor nanowires for 0D and 1D physics and applications
Zhang et al. Monolithic growth of ultrathin Ge nanowires on Si (001)
Lu et al. Semiconductor nanowires
Samuelson Self-forming nanoscale devices
JP4948766B2 (en) Optoelectronic device, solar cell, and photodetector
US20080191196A1 (en) Nanowire heterostructures
Samuelson et al. Semiconductor nanowires for novel one-dimensional devices
Wirths et al. Effect of Si-doping on InAs nanowire transport and morphology
Piccin et al. Growth by molecular beam epitaxy and electrical characterization of GaAs nanowires
JP2005532181A5 (en)
Ratnikov et al. Two-dimensional graphene electronics: current status and prospects
Lucot et al. Quasi one-dimensional transport in single GaAs/AlGaAs core-shell nanowires
Knutsson et al. Electronic structure changes due to crystal phase switching at the atomic scale limit
Taupin et al. InAs nanowire with epitaxial aluminum as a single-electron transistor with fixed tunnel barriers
Dragoman et al. Atomic-scale electronics beyond CMOS
Kamiya et al. Resonant tunneling through a single self-assembled InAs quantum dot in a micro-RTD structure
Badawy et al. Electronic Transport and Quantum Phenomena in Nanowires
Chen et al. Precise Ge quantum dot placement for quantum tunneling devices
Sørensen et al. Ambipolar transistor behavior in p-doped InAs nanowires grown by molecular beam epitaxy
Pfund et al. Fabrication of semiconductor nanowires for electronic transport measurements
Simmons et al. Atomic-scale silicon device fabrication
Grabecki et al. PbTe—A new medium for quantum ballistic devices
Talin et al. Electrical transport in GaN nanowires grown by selective epitaxy
Kim et al. GaN Nanorods Doped by Hydride Vapor‐Phase Epitaxy: Optical and Electrical Properties