Chen, 2009 - Google Patents

Intelligent ISFET sensory system for water quality monitoring

Chen, 2009

View PDF
Document ID
11525094569254506070
Author
Chen D
Publication year

External Links

Snippet

This thesis presents a new intelligent ISFET sensory system dedicated to a precision pH sensory function as well as long-term monitoring capability without being jeopardized by temperature and drift fluctuations in the water-quality monitoring environment. The research …
Continue reading at dr.ntu.edu.sg (PDF) (other versions)

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electro-chemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electro-chemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/414Ion-sensitive or chemical field-effect transistors, i.e. ISFETS or CHEMFETS
    • G01N27/4148Integrated circuits therefor, e.g. fabricated by CMOS processing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electro-chemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electro-chemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electro-chemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electro-chemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/404Cells with anode, cathode and cell electrolyte on the same side of a permeable membrane which separates them from the sample fluid, e.g. Clark-type oxygen sensors
    • G01N27/4045Cells with anode, cathode and cell electrolyte on the same side of a permeable membrane which separates them from the sample fluid, e.g. Clark-type oxygen sensors for gases other than oxygen
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by the preceding groups
    • G01N33/0004Gaseous mixtures, e.g. polluted air
    • G01N33/0009General constructional details of gas analysers, e.g. portable test equipment
    • G01N33/0027General constructional details of gas analysers, e.g. portable test equipment concerning the detector
    • G01N33/0036Specially adapted to detect a particular component
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electro-chemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electro-chemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/4166Systems measuring a particular property of an electrolyte
    • G01N27/4167Systems measuring a particular property of an electrolyte pH
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electro-chemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electro-chemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/4163Systems checking the operation of, or calibrating, the measuring apparatus
    • G01N27/4165Systems checking the operation of, or calibrating, the measuring apparatus for pH meters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by the preceding groups
    • G01N33/0004Gaseous mixtures, e.g. polluted air
    • G01N33/0006Calibrating gas analysers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electro-chemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electro-chemical, or magnetic means by investigating the impedance of the material
    • G01N27/22Investigating or analysing materials by the use of electric, electro-chemical, or magnetic means by investigating the impedance of the material by investigating capacitance
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F3/00Non-retroactive systems for regulating electric variables by using an uncontrolled element, or an uncontrolled combination of elements, such element or such combination having self-regulating properties
    • G05F3/02Regulating voltage or current
    • G05F3/08Regulating voltage or current wherein the variable is dc
    • G05F3/10Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics
    • G05F3/16Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices

Similar Documents

Publication Publication Date Title
Chung et al. ISFET performance enhancement by using the improved circuit techniques
JP5509118B2 (en) Signal processing circuit including ion sensitive field effect transistors and method for monitoring fluid properties
Shepherd et al. A biochemical translinear principle with weak inversion ISFETs
Shepherd et al. Weak inversion ISFETs for ultra-low power biochemical sensing and real-time analysis
Chan et al. An integrated ISFETs instrumentation system in standard CMOS technology
Chen et al. An intelligent ISFET sensory system with temperature and drift compensation for long-term monitoring
US7368917B2 (en) Electronic circuit for ion sensor with body effect reduction
Naimi et al. Temperature influence on pH-ISFET sensor operating in weak and moderate inversion regime: Model and circuitry
Bhardwaj et al. Temperature compensation of ISFET based pH sensor using artificial neural networks
Rani et al. ISFET pH sensor characterization: towards biosensor microchip application
Van Der Schoot et al. The use of a multi-ISFET sensor fabricated in a single substrate
Chung et al. CMOS readout circuit developments for ion sensitive field effect transistor based sensor applications
Chen Intelligent ISFET sensory system for water quality monitoring
Podlepetsky et al. Influence of electrical modes on performance of MISFET hydrogen sensors
Cruz et al. ISFET Bridge Type Readout Circuit with Programmable Voltage and Current
Tiwari et al. Temperature compensation circuit for ISFET based pH sensor
Tan et al. ISFET readout circuit using flipped voltage follower with temperature compensation
Chen et al. A CMOS ISFET interface circuit for water quality monitoring
Cruz et al. Application specific integrated circuit (ASIC) for Ion Sensitive Field Effect Transistor (ISFET) L-Asparagine biosensor
Handa et al. SPICE design and analysis of composite based ISFET readout circuits with Al 2 O 3 sensing film
de Castro et al. Improved ISFET Readout Circuit: Characterization and Comparison
US20240310321A1 (en) Differential pmos isfet-based ph sensor
Fernández et al. Portable measurement system for FET type microsensors based on PSoC microcontroller
Asgari et al. Highly linear bridge-based ISFET pH sensor readout circuit
Douthwaite et al. Temperature compensation for ISFETs using a floating gate current mirror