Toet et al., 2009 - Google Patents
TRICLOBS portable triband color lowlight observation systemToet et al., 2009
View PDF- Document ID
- 11329899966058172844
- Author
- Toet A
- Hogervorst M
- Publication year
- Publication venue
- Multisensor, Multisource Information Fusion: Architectures, Algorithms, and Applications 2009
External Links
Snippet
We present the design and first test results of the TRICLOBS (TRI-band Color Low-light OBServation) system The TRICLOBS is an all-day all-weather surveillance and navigation tool. Its sensor suite consists of two digital image intensifiers (Photonis ICU's) and an …
- 230000000007 visual effect 0 abstract description 22
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N5/00—Details of television systems
- H04N5/30—Transforming light or analogous information into electric information
- H04N5/33—Transforming infra-red radiation
- H04N5/332—Multispectral imaging comprising at least a part of the infrared region
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N5/00—Details of television systems
- H04N5/222—Studio circuitry; Studio devices; Studio equipment; Cameras comprising an electronic image sensor, e.g. digital cameras, video cameras, TV cameras, video cameras, camcorders, webcams, camera modules for embedding in other devices, e.g. mobile phones, computers or vehicles
- H04N5/225—Television cameras; Cameras comprising an electronic image sensor, e.g. digital cameras, video cameras, video cameras, camcorders, webcams, camera modules for embedding in other devices, e.g. mobile phones, computers or vehicles
- H04N2005/2255—Television cameras; Cameras comprising an electronic image sensor, e.g. digital cameras, video cameras, video cameras, camcorders, webcams, camera modules for embedding in other devices, e.g. mobile phones, computers or vehicles for picking-up images in sites, inaccessible due to their dimensions or hazardous conditions, e.g. endoscope, borescope
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N5/00—Details of television systems
- H04N5/222—Studio circuitry; Studio devices; Studio equipment; Cameras comprising an electronic image sensor, e.g. digital cameras, video cameras, TV cameras, video cameras, camcorders, webcams, camera modules for embedding in other devices, e.g. mobile phones, computers or vehicles
- H04N5/225—Television cameras; Cameras comprising an electronic image sensor, e.g. digital cameras, video cameras, video cameras, camcorders, webcams, camera modules for embedding in other devices, e.g. mobile phones, computers or vehicles
- H04N5/2251—Constructional details
- H04N5/2254—Mounting of optical parts, e.g. lenses, shutters, filters; optical parts peculiar to the presence of use of an electronic image sensor
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N5/00—Details of television systems
- H04N5/222—Studio circuitry; Studio devices; Studio equipment; Cameras comprising an electronic image sensor, e.g. digital cameras, video cameras, TV cameras, video cameras, camcorders, webcams, camera modules for embedding in other devices, e.g. mobile phones, computers or vehicles
- H04N5/225—Television cameras; Cameras comprising an electronic image sensor, e.g. digital cameras, video cameras, video cameras, camcorders, webcams, camera modules for embedding in other devices, e.g. mobile phones, computers or vehicles
- H04N5/232—Devices for controlling television cameras, e.g. remote control; Control of cameras comprising an electronic image sensor, e.g. digital cameras, video cameras, TV cameras, video cameras, camcorders, webcams, camera modules for embedding in, e.g. mobile phones, computers or vehicles
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRA-RED, VISIBLE OR ULTRA-VIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J3/00—Spectrometry; Spectrophotometry; Monochromators; Measuring colour
- G01J3/28—Investigating the spectrum
- G01J3/30—Measuring the intensity of spectral line directly on the spectrum itself
- G01J3/36—Investigating two or more bands of a spectrum by separate detectors
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N7/00—Television systems
- H04N7/18—Closed circuit television systems, i.e. systems in which the signal is not broadcast
- H04N7/183—Closed circuit television systems, i.e. systems in which the signal is not broadcast for receiving images from a single remote source
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRA-RED, VISIBLE OR ULTRA-VIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J5/00—Radiation pyrometry
- G01J2005/0077—Imaging
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRA-RED, VISIBLE OR ULTRA-VIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J5/00—Radiation pyrometry
- G01J5/02—Details
- G01J5/08—Optical features
- G01J5/0803—Optical elements not provided otherwise, e.g. optical manifolds, gratings, holograms, cubic beamsplitters, prisms, particular coatings
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N7/00—Television systems
- H04N7/18—Closed circuit television systems, i.e. systems in which the signal is not broadcast
- H04N7/181—Closed circuit television systems, i.e. systems in which the signal is not broadcast for receiving images from a plurality of remote sources
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRA-RED, VISIBLE OR ULTRA-VIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J5/00—Radiation pyrometry
- G01J5/10—Radiation pyrometry using electric radiation detectors
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS, OR APPARATUS
- G02B23/00—Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
- G02B23/12—Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices with means for image conversion or intensification
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRA-RED, VISIBLE OR ULTRA-VIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J3/00—Spectrometry; Spectrophotometry; Monochromators; Measuring colour
- G01J3/28—Investigating the spectrum
- G01J3/2823—Imaging spectrometer
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Hogervorst et al. | Fast natural color mapping for night-time imagery | |
US6781127B1 (en) | Common aperture fused reflective/thermal emitted sensor and system | |
TWI434574B (en) | Imaging apparatus | |
US5555324A (en) | Method and apparatus for generating a synthetic image by the fusion of signals representative of different views of the same scene | |
US4751571A (en) | Composite visible/thermal-infrared imaging apparatus | |
AU2010236651B2 (en) | Vehicle-mountable imaging systems and methods | |
US7541588B2 (en) | Infrared laser illuminated imaging systems and methods | |
US20110079713A1 (en) | Uni-axis type lens module for thermal imaging camera | |
Hogervorst et al. | Method for applying daytime colors to nighttime imagery in realtime | |
Coffey | Multispectral imaging moves into the mainstream | |
Gerken et al. | Military reconnaissance platform for the spectral range from the visible to the MWIR | |
Toet et al. | Portable real-time color night vision | |
Perić et al. | Analysis of SWIR imagers application in electro-optical systems | |
CN113538314A (en) | Four-waveband coaxial-axis photoelectric imaging platform and image fusion processing method thereof | |
Toet et al. | TRICLOBS portable triband color lowlight observation system | |
US20030231245A1 (en) | Ingaas image intensifier camera | |
Hogervorst et al. | Presenting nighttime imagery in daytime colours | |
Toet et al. | Towards an optimal color representation for multiband nightvision systems | |
Kriesel et al. | True-color night vision (TCNV) fusion system using a VNIR EMCCD and a LWIR microbolometer camera | |
Le Noc et al. | Towards very high-resolution infrared camera core | |
Hogervorst et al. | Fast and true-to-life application of daytime colours to night-time imagery | |
RU2697062C1 (en) | Method of objects observation | |
Chenault et al. | Pyxis: enhanced thermal imaging with a division of focal plane polarimeter | |
Schreer et al. | Dual-band camera system with advanced image processing capability | |
Toet et al. | Real-time full color multiband night vision |