Dutta et al., 2009 - Google Patents

A nonlinear acoustic technique for crack detection in metallic structures

Dutta et al., 2009

View PDF
Document ID
11283724749980789957
Author
Dutta D
Sohn H
Harries K
Rizzo P
Publication year
Publication venue
Structural Health Monitoring

External Links

Snippet

A crack detection technique based on nonlinear acoustics is investigated in this study. Acoustic waves at a chosen frequency are generated using an actuating lead zirconate titanate (PZT) transducer, and they travel through the target structure before being received …
Continue reading at www.academia.edu (PDF) (other versions)

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/028Material parameters
    • G01N2291/02827Elastic parameters, strength or force
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/24Probes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/028Material parameters
    • G01N2291/02881Temperature
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/028Material parameters
    • G01N2291/02818Density, viscosity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/042Wave modes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/07Analysing solids by measuring propagation velocity or propagation time of acoustic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/10Number of transducers
    • G01N2291/106Number of transducers one or more transducer arrays
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/44Processing the detected response signal, e.g. electronic circuits specially adapted therefor
    • G01N29/46Processing the detected response signal, e.g. electronic circuits specially adapted therefor by spectral analysis, e.g. Fourier analysis or wavelet analysis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/044Internal reflections (echoes), e.g. on walls or defects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/12Analysing solids by measuring frequency or resonance of acoustic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/02Analysing fluids
    • G01N29/036Analysing fluids by measuring frequency or resonance of acoustic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0058Kind of property studied
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/01Indexing codes associated with the measuring variable
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H11/00Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by detecting changes in electric or magnetic properties, e.g. capacitance or reluctance

Similar Documents

Publication Publication Date Title
Dutta et al. A nonlinear acoustic technique for crack detection in metallic structures
Park et al. Multiple crack detection of concrete structures using impedance-based structural health monitoring techniques
Sun et al. Bolt preload measurement based on the acoustoelastic effect using smart piezoelectric bolt
Kundu et al. Fundamentals of nonlinear acoustical techniques and sideband peak count
Duffour et al. A study of the vibro-acoustic modulation technique for the detection of cracks in metals
Bhalla et al. High frequency piezoelectric signatures for diagnosis of seismic/blast induced structural damages
Na et al. Resonant frequency range utilized electro-mechanical impedance method for damage detection performance enhancement on composite structures
Shi et al. In situ estimation of applied biaxial loads with Lamb waves
Gulizzi et al. An integrated structural health monitoring system based on electromechanical impedance and guided ultrasonic waves
Song et al. Electromechanical impedance measurement from large structures using a dual piezoelectric transducer
Ryles et al. Comparative study of nonlinear acoustic and Lamb wave techniques for fatigue crack detection in metallic structures
Wang et al. Early bolt looseness monitoring using the leading waves energy in piezoelectric active sensing
Park et al. Impedance-based damage detection for civil infrastructures
Altammar et al. Ultrasonic structural health monitoring approach to predict delamination in a laminated beam using d15 piezoelectric sensors
Kędra et al. Research on assessment of bolted joint state using elastic wave propagation
Liu et al. Metal core piezoelectric ceramic fiber rosettes for acousto-ultrasonic source localization in plate structures
Liu et al. Effect of piezoelectric sensor debonding failure on structural health monitoring system based on lamb wave signals
Djemana et al. Numerical Simulation of Electromechanical Impedance Based Crack Detection of Heated Metallic Structures
He et al. Assessing the severity of fatigue crack using acoustics modulated by hysteretic vibration for a cantilever beam
Lee et al. Piezoelectric transducer diagnostics via linear reciprocity for guided wave structural health monitoring
Dutta et al. A nonlinear acoustic technique for crack detection in metallic structures
Zagrai et al. Acousto-elastic measurements and baseline-free assessment of bolted joints using guided waves in space structures
Perrin et al. Closed cracks characterization in a steel sample applying a pump probe waves ultrasonic method
Mohsenzadeh et al. Analytical model of the electro-mechanical impedance response of frame structures with L-shaped beams
Chen et al. Quantifying fatigue cracks in TC4 titanium alloy using a nonlinear modulation ultrasonic testing method