Wolff et al., 2013 - Google Patents
Combining sources of description for approximating music similarity ratingsWolff et al., 2013
View PDF- Document ID
- 11023553996790093724
- Author
- Wolff D
- Weyde T
- Publication year
- Publication venue
- Adaptive Multimedia Retrieval. Large-Scale Multimedia Retrieval and Evaluation: 9th International Workshop, AMR 2011, Barcelona, Spain, July 18-19, 2011, Revised Selected Papers 9
External Links
Snippet
In this paper, we compare the effectiveness of basic acoustic features and genre annotations when adapting a music similarity model to user ratings. We use the Metric Learning to Rank algorithm to learn a Mahalanobis metric from comparative similarity ratings in in the …
- 230000000052 comparative effect 0 abstract description 3
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/30—Information retrieval; Database structures therefor; File system structures therefor
- G06F17/3061—Information retrieval; Database structures therefor; File system structures therefor of unstructured textual data
- G06F17/30705—Clustering or classification
- G06F17/3071—Clustering or classification including class or cluster creation or modification
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/30—Information retrieval; Database structures therefor; File system structures therefor
- G06F17/3061—Information retrieval; Database structures therefor; File system structures therefor of unstructured textual data
- G06F17/30705—Clustering or classification
- G06F17/30707—Clustering or classification into predefined classes
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/30—Information retrieval; Database structures therefor; File system structures therefor
- G06F17/30861—Retrieval from the Internet, e.g. browsers
- G06F17/30864—Retrieval from the Internet, e.g. browsers by querying, e.g. search engines or meta-search engines, crawling techniques, push systems
- G06F17/30867—Retrieval from the Internet, e.g. browsers by querying, e.g. search engines or meta-search engines, crawling techniques, push systems with filtering and personalisation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/30—Information retrieval; Database structures therefor; File system structures therefor
- G06F17/3074—Audio data retrieval
- G06F17/30749—Audio data retrieval using information manually generated or using information not derived from the audio data, e.g. title and artist information, time and location information, usage information, user ratings
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/62—Methods or arrangements for recognition using electronic means
- G06K9/6267—Classification techniques
- G06K9/6279—Classification techniques relating to the number of classes
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/62—Methods or arrangements for recognition using electronic means
- G06K9/6267—Classification techniques
- G06K9/6268—Classification techniques relating to the classification paradigm, e.g. parametric or non-parametric approaches
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/30—Information retrieval; Database structures therefor; File system structures therefor
- G06F17/30017—Multimedia data retrieval; Retrieval of more than one type of audiovisual media
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/62—Methods or arrangements for recognition using electronic means
- G06K9/6217—Design or setup of recognition systems and techniques; Extraction of features in feature space; Clustering techniques; Blind source separation
- G06K9/6228—Selecting the most significant subset of features
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06N—COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N99/00—Subject matter not provided for in other groups of this subclass
- G06N99/005—Learning machines, i.e. computer in which a programme is changed according to experience gained by the machine itself during a complete run
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/36—Image preprocessing, i.e. processing the image information without deciding about the identity of the image
- G06K9/46—Extraction of features or characteristics of the image
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F19/00—Digital computing or data processing equipment or methods, specially adapted for specific applications
- G06F19/10—Bioinformatics, i.e. methods or systems for genetic or protein-related data processing in computational molecular biology
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06Q—DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTING PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTING PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q30/00—Commerce, e.g. shopping or e-commerce
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Oramas et al. | Multimodal deep learning for music genre classification | |
Bergstra et al. | Aggregate features and a da b oost for music classification | |
Flexer et al. | The problem of limited inter-rater agreement in modelling music similarity | |
US8190663B2 (en) | Method and a system for identifying similar audio tracks | |
Bertin-Mahieux et al. | Automatic tagging of audio: The state-of-the-art | |
Miotto et al. | A generative context model for semantic music annotation and retrieval | |
US8686272B2 (en) | Method and system for music recommendation based on immunology | |
Schnitzer et al. | A fast audio similarity retrieval method for millions of music tracks | |
Mandel et al. | Contextual tag inference | |
da Silva et al. | A Music Classification model based on metric learning applied to MP3 audio files | |
West et al. | A model-based approach to constructing music similarity functions | |
Miotto et al. | A probabilistic model to combine tags and acoustic similarity for music retrieval | |
Wolff et al. | Learning music similarity from relative user ratings | |
Zhang et al. | Compositemap: a novel framework for music similarity measure | |
Patel et al. | A comparative study of music recommendation systems | |
Shen et al. | Accurate online video tagging via probabilistic hybrid modeling | |
Yang et al. | Music retagging using label propagation and robust principal component analysis | |
Panagakis et al. | Music classification by low-rank semantic mappings | |
Borjian et al. | A query-by-example music retrieval system using feature and decision fusion | |
Wolff et al. | Combining sources of description for approximating music similarity ratings | |
Ji et al. | Analysis of music/speech via integration of audio content and functional brain response | |
Bahatti et al. | An efficient audio classification approach based on support vector machines | |
West | Novel techniques for audio music classification and search | |
Coviello et al. | Multivariate Autoregressive Mixture Models for Music Auto-Tagging. | |
West et al. | Incorporating machine-learning into music similarity estimation |