Ogweno et al., 2015 - Google Patents

Power gating in asynchronous micropiplines for low power data driven computing

Ogweno et al., 2015

View PDF
Document ID
10115989535113757759
Author
Ogweno A
Yakovlev A
Degenaar P
Publication year
Publication venue
2015 11th Conference on Ph. D. Research in Microelectronics and Electronics (PRIME)

External Links

Snippet

In this work we explore the extent at which power gating in asynchronous micropipelines is beneficial at low operating voltages at different input data rates. In addition we present a further improvement to previous techniques by adding the delay blocks to the power gated …
Continue reading at www.researchgate.net (PDF) (other versions)

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F1/00Details of data-processing equipment not covered by groups G06F3/00 - G06F13/00, e.g. cooling, packaging or power supply specially adapted for computer application
    • G06F1/26Power supply means, e.g. regulation thereof
    • G06F1/32Means for saving power
    • G06F1/3203Power Management, i.e. event-based initiation of power-saving mode
    • G06F1/3234Action, measure or step performed to reduce power consumption
    • G06F1/3237Power saving by disabling clock generation or distribution
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F1/00Details of data-processing equipment not covered by groups G06F3/00 - G06F13/00, e.g. cooling, packaging or power supply specially adapted for computer application
    • G06F1/26Power supply means, e.g. regulation thereof
    • G06F1/32Means for saving power
    • G06F1/3203Power Management, i.e. event-based initiation of power-saving mode
    • G06F1/3234Action, measure or step performed to reduce power consumption
    • G06F1/3287Power saving by switching off individual functional units in a computer system, i.e. selective power distribution
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K19/00Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
    • H03K19/0008Arrangements for reducing power consumption
    • H03K19/0016Arrangements for reducing power consumption by using a control or a clock signal, e.g. in order to apply power supply
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BINDEXING SCHEME RELATING TO CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. INCLUDING HOUSING AND APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B60/00Information and communication technologies [ICT] aiming at the reduction of own energy use
    • Y02B60/10Energy efficient computing
    • Y02B60/12Reducing energy-consumption at the single machine level, e.g. processors, personal computers, peripherals, power supply
    • Y02B60/1278Power management
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BINDEXING SCHEME RELATING TO CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. INCLUDING HOUSING AND APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B60/00Information and communication technologies [ICT] aiming at the reduction of own energy use
    • Y02B60/10Energy efficient computing
    • Y02B60/12Reducing energy-consumption at the single machine level, e.g. processors, personal computers, peripherals, power supply
    • Y02B60/1207Reducing energy-consumption at the single machine level, e.g. processors, personal computers, peripherals, power supply acting upon the main processing unit
    • Y02B60/1217Frequency modification
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BINDEXING SCHEME RELATING TO CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. INCLUDING HOUSING AND APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B60/00Information and communication technologies [ICT] aiming at the reduction of own energy use
    • Y02B60/10Energy efficient computing
    • Y02B60/12Reducing energy-consumption at the single machine level, e.g. processors, personal computers, peripherals, power supply
    • Y02B60/1232Acting upon peripherals
    • Y02B60/1235Acting upon peripherals the peripheral being a bus
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K19/00Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
    • H03K19/02Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components
    • H03K19/08Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components using semiconductor devices
    • H03K19/094Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components using semiconductor devices using field-effect transistors
    • H03K19/096Synchronous circuits, i.e. using clock signals
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K3/00Circuits for generating electric pulses; Monostable, bistable or multistable circuits
    • H03K3/02Generators characterised by the type of circuit or by the means used for producing pulses
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F7/00Methods or arrangements for processing data by operating upon the order or content of the data handled
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F9/00Arrangements for programme control, e.g. control unit
    • G06F9/06Arrangements for programme control, e.g. control unit using stored programme, i.e. using internal store of processing equipment to receive and retain programme
    • G06F9/30Arrangements for executing machine-instructions, e.g. instruction decode
    • G06F9/38Concurrent instruction execution, e.g. pipeline, look ahead
    • G06F9/3867Concurrent instruction execution, e.g. pipeline, look ahead using instruction pipelines

Similar Documents

Publication Publication Date Title
US9450578B2 (en) Integrated clock gater (ICG) using clock cascode complimentary switch logic
US8018247B2 (en) Apparatus and method for reducing power consumption using selective power gating
Reddy Low power-area Pass Transistor Logic based ALU design using low power full adder design
Ogweno et al. Power gating in asynchronous micropiplines for low power data driven computing
US20190052254A1 (en) Supply tracking delay element in multiple power domain designs
Shapiro et al. Adaptive power gating of 32-bit Kogge Stone adder
Samanth et al. Power reduction of a functional unit using rt-level clock-gating and operand isolation
Reynders et al. Variation-resilient sub-threshold circuit solutions for ultra-low-power Digital Signal Processors with 10MHz clock frequency
Miyagi et al. Low-powered self-timed pipeline with runtime fine-grain power supply
JP4698787B2 (en) Performance-driven multi-variable variable supply voltage system for low power design of VLSI circuits and systems
Kawano et al. Adjacent-state monitoring based fine-grained power-gating scheme for a low-power asynchronous pipelined system
Tamang et al. A sub-threshold operation of XOR based energy efficient full adder
US9548735B1 (en) System and method for adaptive power management
Tzartzanis et al. Clock-powered CMOS VLSI graphics processor for embedded display controller application
Gupta et al. Design and implementation of low power clock gated 64-bit ALU on ultra scale FPGA
Gupta et al. Power efficient, clock gated multiplexer based full adder cell using 28 nm technology
Lee et al. Comprehensive analysis and control of design parameters for power gated circuits
Singh et al. Design and FPGA Synthesis of an Efficient Synchronous Counter with Clock-Gating Techniques
Nag et al. An Autonomous Power and Clock Gating Technique in SRAM-Based FPGA
Nadella et al. A dual threshold voltage modified dynamic power cutoff technique to consolidate leakage and speed in a VLSI subsystem
Khindria et al. Low Power ALU using Wave Shaping Diode Adiabatic Logic
Mogheer A new technology for reducing power consumption in synchronous digital design using tri-state buffer
Margala Low-voltage adders for power-efficient arithmetic circuits
Dabholkar et al. Optimised completion detection circuits for null convention logic pipelines
Kennedy et al. Performance Analysis of a Low Power and High Speed Carry Select Adder