WO2024225584A1 - 가교결합층을 가지는 광소자 - Google Patents

가교결합층을 가지는 광소자 Download PDF

Info

Publication number
WO2024225584A1
WO2024225584A1 PCT/KR2024/001682 KR2024001682W WO2024225584A1 WO 2024225584 A1 WO2024225584 A1 WO 2024225584A1 KR 2024001682 W KR2024001682 W KR 2024001682W WO 2024225584 A1 WO2024225584 A1 WO 2024225584A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
cross
transport layer
electrode
optical device
Prior art date
Application number
PCT/KR2024/001682
Other languages
English (en)
French (fr)
Inventor
김영윤
전남중
유소민
김범수
박은영
홍순일
김준석
Original Assignee
한국화학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020230055819A external-priority patent/KR20240158720A/ko
Application filed by 한국화학연구원 filed Critical 한국화학연구원
Publication of WO2024225584A1 publication Critical patent/WO2024225584A1/ko

Links

Images

Definitions

  • the present disclosure relates to an optical device having a cross-linked layer, and more particularly, to an optical device in which a cross-linked layer is formed by GTMACl.
  • Photovoltaic devices include both photoelectric conversion devices and electro-optical conversion devices.
  • solar cells are receiving attention as a solution that can actively respond to future energy demands as a sustainable energy technology.
  • Solar cells are semiconductor devices that convert solar energy into electrical energy and utilize the photovoltaic effect.
  • perovskite solar cells have emerged as one of the thin-film solar cells that will replace conventional silicon solar cells.
  • Perovskite solar cells which include hole transport materials, light absorbing materials, and electron transport materials, exhibit remarkably high photovoltaic effects by using perovskite materials as light absorbing materials.
  • perovskite solar cells have problems in that the charge transport ability is reduced due to defects in the charge transport layer that occur during the manufacturing process, and the stability of the solar cell is also reduced.
  • the present disclosure aims to provide an optical device having improved stability and efficiency by including a cross-linking layer.
  • An optical device having a cross-linked layer comprising: a first electrode, an electron transport layer formed on the first electrode, a cross-linked layer formed on the electron transport layer, a perovskite layer formed on the cross-linked layer, a hole transport layer formed on the perovskite layer, and a second electrode formed on the hole transport layer, wherein the cross-linked layer is formed by cross-linking of GTMACl (Glycidyltrimethylammonium chloride).
  • GTMACl Globallycidyltrimethylammonium chloride
  • crosslinks of GTMACl are formed by annealing.
  • An optical module is provided, manufactured by combining a plurality of optical elements according to one embodiment of the present disclosure.
  • a method for manufacturing an optical device having a cross-linked layer comprising: a step of forming an electrode; a step of forming an electron transport layer on the electrode; and a step of forming a cross-linked layer on the electron transport layer.
  • the step of forming a cross-linking layer includes the step of introducing GTMACl onto the electron transport layer and the step of annealing the GTMACl at 100 degrees Celsius.
  • the electron transport ability of the electron transport layer can be improved by suppressing defects in the electron transport layer by introducing a cross-linking layer.
  • the blocking effect of the electrode for minority carriers can be improved.
  • the efficiency and stability of optical devices can be improved.
  • FIG. 1 is a drawing showing the structure of an optical device according to one embodiment of the present disclosure.
  • FIG. 2 is a diagram showing a cyclic voltammetry (CV) graph of an optical device according to one embodiment of the present disclosure.
  • FIG. 3 is a diagram showing a TCSPC (Time-Correlated Single Photon Counting) spectrum of an optical device according to one embodiment of the present disclosure.
  • TCSPC Time-Correlated Single Photon Counting
  • FIG. 4 is a diagram showing the current density and efficiency of an optical device according to one embodiment of the present disclosure.
  • FIG. 5 is a diagram showing the current density of an optical module manufactured by combining a plurality of optical elements according to one embodiment of the present disclosure.
  • FIGS. 6 to 8 are drawings showing electrical characteristics of an optical device according to one embodiment of the present disclosure.
  • FIG. 9 is a diagram showing an FT-IR spectrum of a cross-linked layer according to one embodiment of the present disclosure.
  • FIG. 10 is a diagram showing capacitance when light is irradiated on an optical device according to one embodiment of the present disclosure.
  • the term "at least one" included in a Markush format expression means including one or more selected from the group consisting of elements described in the Markush format expression.
  • references to “A and/or B” mean “A, or B, or A and B.”
  • the term "at least one" included in a Markush format expression means including one or more selected from the group consisting of components described in the Markush format expression.
  • perovskite or “PE” means a material having a perovskite crystal structure, and may have various perovskite crystal structures in addition to the crystal structure of ABX 3 .
  • the term "optical device” is used to mean both a photoelectric conversion device and an electro-optical conversion device.
  • the optical device includes, but is not limited to, a solar cell, a light emitting diode (LED), a photodetector, an X-ray detector, and a laser.
  • halide means a material or composition containing a halogen atom belonging to group 17 of the periodic table in the form of a functional group, which may include, for example, chlorine, bromine, fluorine or iodine compounds.
  • the term "layer” means a layer having a thickness.
  • the layer may be porous or non-porous. Porosity means having a void ratio.
  • the layer may have a bulk form as a whole or may correspond to a single crystal thin film, but is not limited thereto.
  • the efficiency may mean Power Conversion Efficiency (PCE).
  • PCE Power Conversion Efficiency
  • An optical device may include a first electrode, a first charge transport layer formed on the first electrode, a perovskite layer formed on the first charge transport layer, a second charge transport layer formed on the perovskite layer, and a second electrode formed on the second charge transport layer.
  • the photonic device when the photonic device is used in a solar cell having an n-i-p structure, the photonic device may have a structure in which a first electrode, an electron transport layer (a first charge transport layer), a perovskite layer, a hole transport layer (a second charge transport layer), and a second electrode are sequentially stacked.
  • the photonic device when the photonic device corresponds to a solar cell having a p-i-n structure, the photonic device may have a structure in which a first electrode, a hole transport layer (a first charge transport layer), a perovskite layer, an electron transport layer (a second charge transport layer), and a second electrode are sequentially stacked.
  • the photonic device may have a planar structure, a bilayer structure, or a meso-superstructure structure.
  • the shapes of the electrode, charge transport layer, and perovskite layer may be modified.
  • the perovskite layer may have a bi-layer structure formed by filling perovskite into porous TiO 2 to form a layer.
  • the bi-layer may mean a structure composed of a first layer of a TiO 2 : Perovskite mixed layer in which all of the pores of the porous TiO 2 are filled with perovskite, and a second layer of a pure perovskite layer thereon.
  • the electrode comprises a first electrode and/or a second electrode, and can be an anode or a cathode.
  • the electrode can be an anode or a cathode.
  • the second electrode can be a cathode.
  • the first electrode is a cathode
  • the second electrode can be an anode.
  • the electrode can be a conductive oxide, such as indium-tin oxide (ITO), indium-zinc oxide (IZO), flourine-doped tin oxide (FTO), or the like.
  • the electrode can comprise a material selected from the group consisting of silver (Ag), gold (Au), magnesium (Mg), aluminum (Al), platinum (Pt), tungsten (W), copper (Cu), molybdenum (Mo), nickel (Ni), palladium (Pd), chromium (Cr), calcium (Ca), samarium (Sm), and lithium (Li), and combinations thereof.
  • the electrode may correspond to a flexible and transparent material such as plastic, such as polyethylene terephthalate (PET), polyethylene naphthelate (PEN), polyperopylene (PP), polyimide (PI), polycarbornate (PC), polystylene (PS), or polyoxyethylene (POM), doped with a conductive material.
  • PET polyethylene terephthalate
  • PEN polyethylene naphthelate
  • PP polyperopylene
  • PI polyimide
  • PC polycarbornate
  • PS polystylene
  • POM polyoxyethylene
  • the electrode may correspond to a material typically used as an electrode material for a front electrode or a back electrode in a photonic device.
  • the electrode may be a material selected from one or more of gold, silver, platinum, palladium, copper, aluminum, carbon, cobalt sulfide, copper sulfide, nickel oxide, and composites thereof, but is not limited thereto.
  • the electrode may be one or more inorganic conductive electrodes selected from fluorine doped tin oxide (FTO), indium doped tin oxide (ITO), ZnO, carbon nanotubes (CNT), and graphene, or may correspond to an organic conductive electrode such as PEDOT:PSS, but is not limited thereto.
  • an electron transport layer ETL
  • a hole transport layer HTL
  • the second charge transport layer may correspond to a hole transport layer.
  • the second charge transport layer may correspond to an electron transport layer.
  • the electron transport layer may correspond to a semiconductor comprising an "n-type material."
  • the "n-type material” means an electron transport material.
  • the electron transport material may be a single electron transport compound or elemental material, or a mixture of two or more electron transport compounds or elemental materials.
  • the electron transport compound or elemental material may be undoped or may be doped with one or more dopant elements.
  • the electron transport layer can be an electron conductive organic layer or an electron conductive inorganic layer.
  • the electron conductive organic layer can be an organic layer used as an n-type semiconductor in a typical organic solar cell.
  • the electron conductive organic layer can include, but is not limited to, fullerene (C60, C70, C74, C76, C78, C82, C95), PCBM ([6,6]-phenyl-C61butyric acid methyl ester)), and fullerene-derivatives including C71-PCBM, C84-PCBM, PC70BM ([6,6]-phenyl C70-butyric acid methyl ester), PBI (polybenzimidazole), PTCBI (3,4,9,10-perylenetetracarboxylic bisbenzimidazole), F4-TCNQ (tetrafluorotetracyanoquinodimethane) or mixtures thereof.
  • the electron-conducting inorganic material can be an electron-conducting metal oxide used for electron transport in conventional quantum dot-based solar cells, dye-sensitized solar cells or perovskite-based solar cells.
  • the electron-conducting metal oxide can be an n-type metal oxide semiconductor.
  • the n-type metal oxide semiconductor can be a material selected from, but not limited to, one or more of Ti oxide, Zn oxide, In oxide, Sn oxide, W oxide, Nb oxide, Mo oxide, Mg oxide, Ba oxide, Zr oxide, Sr oxide, Yr oxide, La oxide, V oxide, Al oxide, Y oxide, Sc oxide, Sm oxide, Ga oxide, In oxide and SrTi oxide, a mixture thereof or a composite thereof.
  • the electron transport layer may be a dense layer (dense film) or a porous layer (porous film).
  • the dense electron transport layer may be a film of the above-described electron-conducting organic material or a dense film of the above-described electron-conducting inorganic material.
  • the electron transport layer of the porous film may be a porous film formed of particles of the above-described electron-conducting inorganic material.
  • the hole transport layer may correspond to a semiconductor comprising a "p-type material".
  • the "p-type material” means a hole transporting material.
  • the hole transporting material may be a single hole transporting compound or elemental material, or a mixture of two or more hole transporting compounds or elemental materials.
  • the hole transporting compound or elemental material may be undoped or doped with one or more dopant elements.
  • the hole transporting material may be an organic hole transporting material, an inorganic hole transporting material, or a combination thereof.
  • the hole transport layer may be manufactured by a solution process.
  • the hole transport layer may be a thin film of an organic hole transport material.
  • the thickness of the hole transport layer thin film may be, but is not limited to, 10 nm to 500 nm.
  • the hole transport material may correspond to an organic hole transport material, specifically, a single molecule or polymer organic hole transport material (hole conducting organic material).
  • the polymer organic hole transport material may include one or more materials selected from thiophene series, paraphenylene vinylene series, carbazole series, and triphenylamine series.
  • Single-molecule to small-molecule organic hole transport materials include pentacene, coumarin 6 (coumarin 6, 3- (2-benzothiazolyl)-7- (diethylamino)coumarin), zinc phthalocyanine (ZnPC), copper phthalocyanine (CuPC), titanium oxide phthalocyanine (TiOPC), Spiro-MeOTAD (2,2',7,7'-tetrakis(N,N-p-dimethoxyphenylamino)- 9,9'-spirobifluorene), F16CuPC (copper(II) 1,2,3,4,8,9,10,11,15,16,17,18,22,23,24,25-hexadecafluoro29H,31H-phthalocyanine), SubPc (boron subphthalocyanine chloride), and It may contain one or more substances selected from N3(cis-di(thiocyanato)-bis(2,2'-bipyridyl-4,4'-dicarbox
  • Polymeric organic hole transport materials include P3HT (poly[3-hexylthiophene]), MDMO-PPV (poly[2-methoxy-5-(3',7'- dimethyloctyloxyl)]-1,4-phenylene vinylene), MEH- PPV(poly[2-methoxy -5-(2''-ethylhexyloxy)-p-phenylene vinylene]), P3OT(poly(3-octyl thiophene)), POT(poly(octyl thiophene)), P3DT(poly(3-octyl thiophene)) -decyl thiophene)), P3DDT (poly(3-dodecyl thiophene)), PPV(poly(p-phenylene vinylene)), TFB(poly(9,9'-dioctylfluorene-co-N-(
  • the electron transport layer or hole transport layer can be surface modified by doping.
  • the electron transport layer or hole transport layer can be formed by applying it to one surface of the electrode or coating it in the form of a film by spin coating, dip coating, inkjet printing, gravure printing, spray coating, bar coating, gravure coating, brush painting, thermal evaporation, sputtering, E-Beam, screen printing, blade process, etc.
  • the perovskite layer can be formed through various processes, including a vapor deposition process or a solution process.
  • the perovskite layer can be formed using a vapor deposition process.
  • the vapor deposition process may correspond to a process of supplying a material in a vaporized state or a plasma state into a vacuum chamber and depositing the material on a surface of a target object (e.g., a substrate).
  • the perovskite layer can be formed through a coating process during the solution process.
  • the coating process may be selected from the group consisting of spin coating, bar coating, nozzle printing, spray coating, slot die coating, gravure printing, inkjet printing, screen printing, electrohydrodynamic jet printing, electrospray, and combinations thereof, but is not limited thereto.
  • the perovskite may contain a monovalent organic cation, a divalent metal cation, and a halogen anion.
  • the perovskite of the present invention may satisfy the following chemical formula:
  • A is a monovalent cation, which may correspond to an organic ammonium ion, an amidinium group ion, or a combination of an organic ammonium ion and an amidinium group ion.
  • an organic cation as A can have the chemical formula (R 1 R 2 R 3 R 4 N) + .
  • R 1 to R 4 can correspond to hydrogen, unsubstituted or substituted C1-C20 alkyl, or unsubstituted or substituted aryl.
  • an organic cation as A may have the chemical formula (R 5 NH 3 ) + , where R 5 may correspond to hydrogen, or a substituted or unsubstituted C1-C20 alkyl.
  • M can be a divalent metal ion.
  • M includes a metal cation selected from the group consisting of Cu 2+ , Ni 2+ , Co 2+ , Fe 2+ , Mn 2+ , Cr 2+ , Pd 2+ , Cd 2+ , Ge 2+ , Sn 2+ , Pb 2+ , and Yb 2+ and combinations thereof, but is not limited thereto.
  • X may correspond to a halogen ion.
  • the halogen ion includes, but is not limited to, a halogen ion selected from the group consisting of I - , Br - , F - , Cl - , and combinations thereof.
  • the perovskite can be one or a mixture of two or more selected from CH 3 NH 3 PbI 3 (methylammonium lead iodide, MAPbI 3 ) and CH(NH 2 ) 2 PbI 3 (formamidinium lead iodide, FAPbI 3 ).
  • FIG. 1 is a drawing showing the structure of an optical device according to one embodiment of the present disclosure.
  • the first electrode and the second electrode may be composed of FTO (Fluorine doped Tin Oxide) and Au, respectively.
  • the electron transport layer may include tin oxide.
  • the electron transport layer may be composed of a bilayer structure of a sol-gel based SnO 2 layer and a SnO 2 nanoparticle layer, but is not limited thereto.
  • a cross-linked layer is formed between the electron transport layer and the perovskite layer to suppress defects in the electron transport layer and enhance the blocking effect for minority carriers of the electrode.
  • the cross-linked layer can be formed as a uniform thin film (uniform/conformal coating) over the entire area on the electron transport layer.
  • the cross-linking layer disposed between the electron transport layer and the perovskite layer can be formed by cross-linking of GTMACl (Glycidyltrimethylammonium chloride).
  • GTMACl Glycidyltrimethylammonium chloride
  • the cross-linking layer can be generated by cross-linking between GTMACl molecules through annealing after GTMACl is coated on the electron transport layer. At this time, the annealing can be performed at 100 degrees Celsius.
  • the hole transport layer can include Spiro-OMeTAD. Holes generated in the perovskite layer can travel to the electrode through the hole transport layer.
  • a diffusion barrier layer (not shown in the drawing) is disposed between the hole transport layer and the electrode to suppress diffusion of the electrode, thereby improving the stability of the optical device.
  • the diffusion barrier layer may be disposed between the hole transport layer and the electrode Au.
  • the performance of the optical device was evaluated according to the presence or absence of a cross-linking layer using GTMACl using the following method using a perovskite optical device, and the results of the test on the optical device structure below are shown in Table 1 below.
  • Photonic device structure Glass / FTO / Sol-gel SnO 2 / SnO 2 NPs / Cross-linked layer by GTMACl / (FAPbI 3 ) 0.95 (MAPbBr 3 ) 0.05 Perovskite / Spiro-OMeTAD / MoO 3 / ITO / Au
  • PCE Power conversion efficiency
  • ⁇ 0 represents the initial photoelectric conversion efficiency of the perovskite photonic device immediately after the stability test begins
  • ⁇ 1 represents the photoelectric conversion efficiency measured after a certain period of time after continuously irradiating the same perovskite photonic device with the AM1.5G spectrum and 1 Sun light intensity of an artificial solar device.
  • MPPT Maximum power point tracking
  • FIG. 2 is a diagram showing a cyclic voltammetry (CV) graph of the optical device according to an embodiment of the present disclosure.
  • FIG. 2 shows the degree to which the redox reaction of the Fe(CN) 6 3-/4- couple is blocked on bare FTO.
  • FIG. 2 it can be confirmed that the blocking ability in FTO is improved as a uniform cross-linking layer is formed by GTMACl compared to the case where only SnO 2 is present without a cross-linking layer, thereby effectively suppressing the accumulation of unwanted holes and non-luminescent recombination of electrons and holes.
  • FIG. 3 is a diagram showing a TCSPC (Time-Correlated Single Photon Counting) spectrum of a photonic device according to one embodiment of the present disclosure.
  • TCSPC Time-Correlated Single Photon Counting
  • FIG. 4 is a diagram showing the current density and efficiency of an optical device according to one embodiment of the present disclosure.
  • FIG. 4 it can be confirmed that, compared to an optical device to which a cross-linking layer is not introduced, the current density and efficiency of an optical device in which defects are suppressed by introducing a cross-linking layer using GTMACl are improved, and the deviation of the measured efficiency is reduced and the reproducibility is increased.
  • FIG. 5 is a diagram showing the current density of an optical module manufactured by combining a plurality of optical elements according to one embodiment of the present disclosure. Although FIG. 5 illustrates that five optical elements are combined, the present invention is not limited thereto and an optical module may be manufactured by combining any number of optical elements.
  • a cross-linking layer using GTMACl according to one embodiment described above may be disposed on each of the optical elements included in the optical module illustrated in FIG. 5.
  • Fig. 5 it can be confirmed that the current density of the optical module manufactured by combining optical elements formed with a cross-linked layer by GTMACl is further improved. That is, it can be confirmed that defects within the optical element are suppressed and efficiency is improved by introducing a uniform cross-linked layer even in a large-area module.
  • FIGS. 6 to 8 are diagrams showing electrical characteristics of an optical device according to an embodiment of the present disclosure.
  • FIG. 6 shows the results of measuring the transient photocurrent (TPC) of the optical device. It can be confirmed that by introducing a cross-linking layer into the optical device, the transport of electrons generated by optical excitation (optical pumping) is smooth, thereby reducing the lifetime of the generated carriers.
  • FIG. 7 shows the results of measuring the transient photovoltage (TPV) of the optical device. It can be confirmed that by introducing a cross-linking layer into the optical device, defects in the electron transport layer are suppressed, thereby maintaining the photovoltage for a longer period of time.
  • FIG. 8 shows the results of measuring the light irradiation stability of the optical device over time. It can be confirmed that by introducing a uniform cross-linking layer, electron transport is improved, defects in the electron transport layer are suppressed, thereby improving the stability of the optical device.
  • FIG. 9 is a diagram showing an FT-IR spectrum of a cross-linked layer according to one embodiment of the present disclosure.
  • the peak (epoxy peak) near 1100 cm -1 is reduced. That is, it can be confirmed that the epoxy structure of GTMACl is broken and cross-linked bonds are formed by annealing.
  • Fig. 10 is a diagram showing the capacitance when light is irradiated on an optical device according to one embodiment of the present disclosure. It can be confirmed that the capacitance in the low frequency band decreases with the introduction of the cross-linking layer. That is, it can be confirmed that the stability of the optical device is improved by suppressing ion migration with the introduction of the cross-linking layer.

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

본 개시는 가교결합층을 가지는 광소자에 관한 것이다. 가교결합층을 가지는 광소자는, 제1 전극, 제1 전극 상에 형성된 전자수송층, 전자 수송층 상에 형성된 가교결합층, 가교결합층 상에 형성되는 페로브스카이트층, 페로브스카이트층 상에 형성된 정공수송층 및 정공수송층 상에 형성된 제2 전극을 포함하고, 가교결합층은 GTMACl(Glycidyltrimethylammonium chloride)의 가교결합에 의해 형성된다.

Description

가교결합층을 가지는 광소자
본 개시는 가교결합층을 가지는 광소자에 관한 것으로, 보다 상세하게는 GTMACl에 의해 가교결합층이 형성된 광소자에 관한 것이다.
기후변화에 대응할 수 있는 환경 친화적이고 지속 가능한 에너지 기술 개발의 필요성이 증가하고 있다. 광소자는 광전변환소자 및 전광변환소자를 모두 포괄하는데, 광전변환소자 중 하나인 태양전지는 지속 가능한 에너지 기술로서 미래의 에너지 수요에 능동적으로 대응할 수 있는 해결책으로 각광받고 있다. 태양전지는 태양광에너지를 전기에너지로 변환시켜주는 반도체 소자로서, 광기전력효과(Photovoltaic Effect)를 이용한다.
하지만 오늘날 태양전지 기술은 미래의 에너지 수요를 대체할 정도의 효율을 보이지 못하기 때문에, 현재의 기술 수준을 뛰어넘는 기술 혁신이 필요한 상황이다. 이에 차세대 태양전지로서 염료감응 태양전지, 유기물 태양전지, 양자점 태양전지, 페로브스카이트 태양전지(Perovskite Solar Cell, PSC)와 같은 혁신적 소재를 바탕으로 한 기술들이 개발되어 왔다.
그 중에서도 페로브스카이트 태양전지는 종래 실리콘 태양전지를 대체할 박막 태양전지의 한 축으로 도약하였다. 정공 수송물질, 광흡수물질, 및 전자 수송물질을 포함하는 페로브스카이트 태양전지는 페로브스카이트 물질을 광흡수물질로 이용하여 현저히 높은 광기전 효과를 나타낸다. 그러나, 페로브스카이트 태양전지는 제조 과정에서 발생하는 전하수송층 상의 결함으로 전하 수송 능력이 저하되고, 태양전지의 안정성 또한 저하되는 문제가 있다.
본 개시는 가교결합층을 포함함으로써 안정성 및 효율이 향상된 광소자를 제공하는 것을 목적으로 한다.
본 개시의 일 실시예에 따른 가교결합층을 가지는 광소자로서, 제1 전극, 제1 전극 상에 형성된 전자수송층, 전자수송층 상에 형성되는 가교결합층, 가교결합층 상에 형성되는 페로브스카이트층, 페로브스카이트층 상에 형성된 정공수송층 및 정공수송층 상에 형성된 제2 전극을 포함하고, 가교결합층은 GTMACl(Glycidyltrimethylammonium chloride)의 가교결합에 의해 형성된다.
본 개시의 일 실시예에 있어서, GTMACl의 가교결합은 어닐링에 의해 형성된다.
본 개시의 일 실시예에 따른 광소자가 복수 개 결합됨으로써 제조되는 광모듈이 제공된다.
본 개시의 일 실시예에 따른 가교결합층을 가지는 광소자 제조 방법으로서, 전극을 형성하는 단계, 전극 상에 전자수송층을 형성하는 단계 및 전자수송층 상에 가교결합층을 형성하는 단계를 포함한다.
본 개시의 일 실시예에 있어서, 가교결합층을 형성하는 단계는, GTMACl을 전자수송층 상에 도입하는 단계 및 GTMACl을 섭씨 100도에서 어닐링하는 단계를 포함한다.
본 개시의 다양한 실시예를 이용하여, 가교결합층을 도입함으로써 전자수송층의 결함을 억제하여 전자수송층의 전자수송 능력을 향상시킬 수 있다.
본 개시의 다양한 실시예를 이용하여, 전극의 소수 캐리어(carrier)에 대한 블로킹(blocking) 효과를 향상시킬 수 있다.
본 개시의 다양한 실시예를 이용하여, 광소자의 효율 및 안정성을 향상시킬 수 있다.
본 개시의 효과는 이상에서 언급한 효과로 제한되지 않으며, 언급되지 않은 다른 효과들은 청구범위의 기재로부터 본 개시가 속하는 기술분야에서 통상의 지식을 가진 자(이하, '통상의 기술자'라 함)에게 명확하게 이해될 수 있을 것이다.
도 1은 본 개시의 일 실시예에 따른 광소자의 구조를 나타내는 도면이다.
도 2는 본 개시의 일 실시예에 따른 광소자의 순환 전압전류법(Cyclic Voltammetry, CV) 그래프를 나타내는 도면이다.
도 3은 본 개시의 일 실시예에 따른 광소자의 TCSPC(Time-Correlated Single Photon Counting) 스펙트럼을 나타내는 도면이다.
도 4는 본 개시의 일 실시예에 따른 광소자의 전류 밀도 및 효율을 나타내는 도면이다.
도 5는 본 개시의 일 실시예에 따른 광소자의 복수 개가 결합됨으로써 제조되는 광모듈의 전류 밀도를 나타내는 도면이다.
도 6 내지 도 8은 본 개시의 일 실시예에 따른 광소자의 전기적 특성을 나타내는 도면이다.
도 9는 본 개시의 일 실시예에 따른 가교결합층의 FT-IR 스펙트럼을 나타내는 도면이다.
도 10은 본 개시의 일 실시예에 따른 광소자에의 광 조사 시 커패시턴스(capacitance)를 나타내는 도면이다.
이하, 본 개시의 실시를 위한 구체적인 내용을 첨부된 도면을 참조하여 상세히 설명한다. 다만, 이하의 설명에서는 본 개시의 요지를 불필요하게 흐릴 우려가 있는 경우, 널리 알려진 기능이나 구성에 관한 구체적 설명은 생략하기로 한다.
본원 명세서 전체에서, 어떤 부분이 어떤 구성 요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성 요소를 제외하는 것이 아니라 다른 구성 요소를 더 포함할 수 있는 것을 의미한다.
본원 명세서 전체에서 사용되는 정도의 용어 "약" 등은 허용오차가 존재할 때 허용오차를 포괄하는 의미로 사용된 것이다.
본원 명세서 전체에서, 마쿠쉬 형식의 표현에 포함된 "적어도 어느 하나"의 용어는 마쿠쉬 형식의 표현에 기재된 구성 요소들로 이루어진 군에서 선택되는 하나 이상을 포함하는 것을 의미한다.
본원 명세서 전체에서, "A 및/또는 B"의 기재는 "A, 또는 B, 또는 A 및 B"를 의미한다.
본 개시에서 사용되는 정도의 용어 "약" 등은 허용오차가 존재할 때 허용오차를 포괄하는 의미로 사용된 것이다.
본 개시에서, 마쿠쉬 형식의 표현에 포함된 "적어도 어느 하나"의 용어는 마쿠쉬 형식의 표현에 기재된 구성 요소들로 이루어진 군에서 선택되는 하나 이상을 포함하는 것을 의미한다.
본 개시에서, "페로브스카이트" 또는 "PE"는 페로브스카이트 결정구조를 가지는 물질을 의미하며, ABX3의 결정구조 외에도 다양한 페로브스카이트 결정구조를 가질 수 있다.
본 개시에서, "광소자"는 광전변환 소자와 전광변환 소자를 모두 포함하는 의미로 사용된다. 예컨대, 광소자는 태양광 전지(Solar Cell), LED(Light Emitting Diode), 광검출기(Photodetector), X-선 검출기(X-ray detector), 레이저(Laser)를 포함하며, 이에 제한되는 것은 아니다.
본 개시에서, 용어 "할라이드", "할로겐", "할로겐화물" 또는 "할로"는 주기율표의 17 족에 속하는 할로겐 원자가 작용기의 형태로 포함되어 있는 재질 또는 조성물을 의미하는 것으로서, 예를 들어, 염소, 브롬, 불소 또는 요오드 화합물을 포함할 수 있다.
본 명세서 전체에서, 용어 "층"은 두께를 가지는 레이어(layer) 형태를 의미한다. 층은 다공성에 해당하거나 비-다공성에 해당할 수 있다. 다공성은 공극률을 가지는 것을 의미한다. 층은 전체적으로 벌크(bulk) 형태를 가지거나 또는 단결정 박막(single crystal thin film)에 해당할 수 있으며, 이에 제한되는 것은 아니다.
본 명세서 전체에서, 어떤 부재가 다른 부재 "상"에 위치하고 있다고 할 때, 이는 특별히 반대되는 기재가 없는 한 어떤 부재가 다른 부재에 접해 있는 경우뿐 아니라 두 부재 사이에 또 다른 부재가 존재하는 경우도 포함한다.
본 명세서 전체에서, 별다른 추가 설명 없이 단순히 효율로만 기재되어 있는 경우, 해당 효율은 전력 변환 효율(Power Conversion Efficiency, PCE)을 의미할 수 있다.
이하, 본 개시의 실시를 위한 구체적인 내용을 첨부된 도면을 참조하여 상세히 설명한다. 다만, 이하의 설명에서는 본 개시의 요지를 불필요하게 흐릴 우려가 있는 경우, 널리 알려진 기능이나 구성에 관한 구체적 설명은 생략하기로 한다.
개시된 실시예의 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 후술되어 있는 실시예들을 참조하면 명확해질 것이다. 그러나, 본 개시는 이하에서 개시되는 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있으며, 단지 본 실시예들은 본 개시가 완전하도록 하고, 본 개시가 통상의 기술자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것일 뿐이다.
첨부된 도면에서, 동일하거나 대응하는 구성요소에는 동일한 참조부호가 부여되어 있다. 또한, 이하의 실시예들의 설명에 있어서, 동일하거나 대응되는 구성요소를 중복하여 기술하는 것이 생략될 수 있다. 그러나, 구성요소에 관한 기술이 생략되어도, 그러한 구성요소가 어떤 실시예에 포함되지 않는 것으로 의도되지는 않는다.
본 개시의 일 실시예에 따르는 광소자는, 제1 전극, 제1 전극 상에 형성된 제1 전하수송층, 제1 전하수송층 상에 형성되는 페로브스카이트층, 페로브스카이트층 상에 형성된 제2 전하수송층, 및 제2 전하수송층 상에 형성된 제2 전극을 포함할 수 있다.
예컨대, 광소자가 n-i-p 구조의 태양 전지에 사용되는 경우, 해당 광소자는 제1 전극, 전자수송층(제1 전하 수송층), 페로브스카이트층, 정공수송층(제2 전하 수송층) 및 제2 전극이 순차적으로 적층된 구조를 가질 수 있다. 또는 광소자가 p-i-n 구조의 태양 전지에 해당하는 경우, 해당 광소자는 제1 전극, 정공수송층(제1 전하 수송층), 페로브스카이트층, 전자수송층(제2 전하 수송층) 및 제2 전극이 순차적으로 적층된 구조를 가질 수 있다.
예컨대, 광소자는 평판형 구조(Planar Structure)를 가질 수 있고, 또는 Bi-Layer 구조, 또는 Meso-Superstructure 구조를 가질 수 있다. 광소자의 구조에 따라 전극, 전하수송층, 및 페로브스카이트층의 형태가 변형될 수 있다.
예컨대, 광소자가 Bi-Layer 구조를 가지는 경우, 페로브스카이트층은 다공성 TiO2에 페로브스카이트를 채워 넣어 층 형태를 가지도록 형성된 이중층(Bi-layer) 구조를 가질 수 있다. 이중층은, 다공성 TiO2의 기공을 페로브스카이트로 모두 채운 TiO2 : Perovskite 혼합층의 제1 층과 그 위의 순수한 페로브스카이트층의 제2 층으로 이루어진 구조를 의미할 수 있다.
전극은 제1 전극 및/또는 제2 전극을 포함하고, 애노드 또는 캐소드일 수 있다. 전극은 애노드 또는 캐소드일 수 있다. 제1 전극이 애노드인 경우, 제2 전극은 캐소드일 수 있다. 또는, 제1 전극이 캐소드인 경우, 제2 전극은 애노드일 수 있다. 예컨대, 전극은 인듐주석산화물(indium-tin oxide, ITO) 또는 인듐아연산화물(IZO), 불소함유 산화주석(flourine-doped tin oxide, FTO)등과 같은 전도성 산화물일 수 있다. 또는, 전극은 은(Ag), 금(Au), 마그네슘(Mg), 알루미늄 (Al), 백금(Pt), 텅스텐(W), 구리(Cu), 몰리브덴(Mo), 니켈(Ni), 팔라듐(Pd), 크롬 (Cr), 칼슘(Ca), 사마륨(Sm) 및 리튬 (Li), 및 이들의 조합들로 이루어지는 군으로부터 선택되는 물질을 포함할 수 있다. 또는, 전극은 폴리에틸렌 PET(polyethylene terephthalate), PEN(polyethylene naphthelate), PP(polyperopylene), PI(polyimide), PC(polycarbornate), PS(polystylene), POM(polyoxyethylene) 등과 같이 플라스틱과 같은 유연하고 투명한 물질 위에 도전성을 갖는 물질이 도핑된 것에 해당할 수 있다.
전극은 광소자에서 전면전극 또는 후면전극의 전극물질로 통상적으로 사용되는 물질에 해당할 수 있다. 전극은 금, 은, 백금, 팔라듐, 구리, 알루미늄, 탄소, 황화코발트, 황화구리, 산화니켈 및 이들의 복합물에서 하나 이상에서 선택되는 물질일 수 있으나, 이에 한정되지는 않는다. 예컨대, 전극은 불소 함유 산화주석(FTO; Fluorine doped Tin Oxide), 인듐 함유 산화주석(ITO; Indium doped Tin Oxide), ZnO, CNT(카본 나노튜브) 및 그래핀(Graphene) 등에서 선택되는 어느 하나 또는 둘 이상의 무기계 전도성 전극이거나, PEDOT:PSS 등과 같은 유기계 전도성 전극에 해당할 수 있으나, 이에 한정되지는 않는다.
전하수송층으로서, 전자수송층(Electron Transport Layer, ETL) 또는 정공수송층(Hole Transport Layer, HTL)이 제1 전극 상에 형성될 수 있다. 제1 전하수송층이 전자수송층일 경우, 제2 전하수송층은 정공수송층에 해당할 수 있다. 또는, 제1 전하수송층이 정공수송층일 경우, 제2 전하수송층은 전자수송층에 해당할 수 있다.
전자수송층은 "n형 물질"을 포함하는 반도체에 해당할 수 있다. "n형 물질"은 전자 수송물질을 의미한다. 전자 수송물질은 단일의 전자 수송 화합물 또는 원소 물질, 또는 둘 또는 그 이상의 전자 수송 화합물이나 원소 물질들의 혼합물일 수 있다. 전자 수송 화합물 또는 원소 물질은 도핑되지 않거나 또는 하나 또는 그 이상의 도펀트(dopant) 원소들로 도핑될 수 있다.
예컨대, 전자수송층은 전자 전도성 유기물층 또는 전자 전도성 무기물층일 수 있다. 전자 전도성 유기물은 통상의 유기 태양전지에서, n형 반도체로 사용되는 유기물일 수 있다. 예를 들어, 전자 전도성 유기물은 풀러렌(C60, C70, C74, C76, C78, C82, C95), PCBM([6,6]-phenyl-C61butyric acid methyl ester)). 및 C71-PCBM, C84-PCBM, PC70BM([6,6]-phenyl C70-butyric acid methyl ester)을 포함하는 풀러렌-유도체(Fulleren-derivative), PBI(polybenzimidazole), PTCBI(3,4,9,10-perylenetetracarboxylic bisbenzimidazole), F4-TCNQ(tetrafluorotetracyanoquinodimethane) 또는 이들의 혼합물을 포함할 수 있으나, 이에 한정되지 않는다.
전자 전도성 무기물은 통상의 양자점 기반 태양전지, 염료 감응형 태양전지 또는 페로브스카이트계 태양전지에서, 전자 전달을 위해 사용되는 전자전도성 금속산화물일 수 있다. 일 실시예에서, 전자전도성 금속산화물은 n형 금속산화물 반도체일 수 있다. 예를 들어, n-형 금속산화물 반도체는 Ti산화물, Zn산화물, In산화물, Sn산화물, W산화물, Nb산화물, Mo산화물, Mg산화물, Ba산화물, Zr산화물, Sr산화물, Yr산화물, La산화물, V산화물, Al산화물, Y산화물, Sc산화물, Sm산화물, Ga산화물, In산화물 및 SrTi산화물에서 하나 또는 둘 이상 선택된 물질, 이들의 혼합물 또는 이들의 복합체(composite)일 수 있으나, 이에 한정되지 않는다.
전자수송층은 치밀층(치밀막) 또는 다공층(다공막)일 수 있다. 치밀한 전자수송층은 상술한 전자 전도성 유기물의 막 또는 전자 전도성 무기물의 치밀막일 수 있다. 다공막의 전자수송층은 상술한 전자 전도성 무기물의 입자들로 이루어진 다공막일 수 있다.
정공수송층은 "p형 물질"을 포함하는 반도체에 해당할 수 있다. "p형 물질"은 정공 수송(hole transporting) 물질을 의미한다. 정공 수송물질은 단일의 정공 수송 화합물 또는 원소 물질, 또는 둘 또는 그 이상의 정공 수송 화합물이나 원소 물질들의 혼합물일 수 있다. 정공 수송 화합물 또는 원소 물질은 도핑되지 않거나 또는 하나 또는 그 이상의 도펀트 원소들로 도핑될 수 있다. 정공 수송물질은, 유기 정공 수송물질, 무기 정공 수송물질 또는 이들의 조합일 수 있다.
정공수송층은 용액 공정으로 제조 가능할 수 있다. 정공수송층은 유기 정공 수송물질의 박막일 수 있다. 정공수송층 박막의 두께는 10 nm 내지 500 nm일 수 있으나, 이에 한정되는 것은 아니다.
정공 수송물질은 유기 정공 수송물질, 구체적으로 단분자 내지 고분자 유기 정공 수송물질(정공전도성 유기물)에 해당할 수 있다. 고분자 유기 정공 수송물질로, 티오펜계, 파라페닐렌비닐렌계, 카바졸계 및 트리페닐아민계에서 하나 또는 둘 이상 선택된 물질을 포함할 수 있다.
단분자 내지 저분자 유기 정공 수송물질은, 펜타센(pentacene), 쿠마린 6(coumarin 6, 3- (2-benzothiazolyl)-7-(diethylamino)coumarin), ZnPC(zinc phthalocyanine), CuPC(copper phthalocyanine), TiOPC(titanium oxide phthalocyanine), Spiro-MeOTAD(2,2',7,7'-tetrakis(N,N-p-dimethoxyphenylamino)- 9,9'-spirobifluorene), F16CuPC(copper(II) 1,2,3,4,8,9,10,11,15,16,17,18,22,23,24,25-hexadecafluoro29H,31H-phthalocyanine), SubPc(boron subphthalocyanine chloride) 및 N3(cis-di(thiocyanato)-bis(2,2'- bipyridyl-4,4'-dicarboxylic acid)-ruthenium(II)) 중에서 하나 또는 둘 이상 선택되는 물질을 포함할 있으나, 이에 한정되는 것은 아니다.
고분자 유기 정공 수송물질은, P3HT(poly[3-hexylthiophene]), MDMO-PPV(poly[2-methoxy-5-(3',7'- dimethyloctyloxyl)]-1,4-phenylene vinylene), MEH-PPV(poly[2-methoxy -5-(2''-ethylhexyloxy)-p-phenylene vinylene]), P3OT(poly(3-octyl thiophene)), POT( poly(octyl thiophene)), P3DT(poly(3-decyl thiophene)), P3DDT(poly(3-dodecyl thiophene), PPV(poly(p-phenylene vinylene)), TFB(poly(9,9'-dioctylfluorene-co-N-(4-butylphenyl)diphenyl amine), Polyaniline, SpiroMeOTAD ([2,22′,7,77′-tetrkis (N,N-di-p-methoxyphenyl amine)-9,9,9′-spirobi fluorine]), PCPDTBT(Poly[2,1,3-benzothiadiazole- 4,7-diyl[4,4-bis(2-ethylhexyl-4H- cyclopenta [2,1-b:3,4- b']dithiophene-2,6-diyl]], Si-PCPDTBT(poly[(4,4′-bis(2-ethylhexyl)dithieno[3,2-b:2′,3′-d]silole)- 2,6-diyl-alt-(2,1,3-benzothiadiazole)-4,7-diyl]), PBDTTPD(poly((4,8-diethylhexyloxyl) benzo([1,2- b:4,5-b']dithiophene)-2,6-diyl)-alt-((5-octylthieno[3,4-c]pyrrole-4,6-dione)-1,3-diyl)), PFDTBT(poly[2,7-(9-(2-ethylhexyl)-9-hexyl-fluorene)-alt-5,5-(4', 7, -di-2-thienyl-2',1', 3'- benzothiadiazole)]), PFO-DBT(poly[2,7-.9,9-(dioctyl-fluorene)-alt-5,5-(4',7'-di-2-.thienyl-2', 1', 3'- benzothiadiazole)]), PSiFDTBT(poly[(2,7-dioctylsilafluorene)-2,7-diyl-alt-(4,7-bis(2-thienyl)-2,1,3- benzothiadiazole)-5,5′-diyl]), PSBTBT(poly[(4,4′-bis(2-ethylhexyl)dithieno[3,2-b:2′,3′-d]silole)- 2,6-diyl-alt-(2,1,3-benzothiadiazole)-4,7-diyl]), PCDTBT(Poly [[9-(1-octylnonyl)-9H-carbazole-2,7- diyl] -2,5-thiophenediyl -2,1,3-benzothiadiazole-4,7-diyl-2,5-thiophenediyl]), PFB(poly(9,9′- dioctylfluorene-co-bis(N,N′-(4,butylphenyl))bis(N,N′-phenyl-1,4-phenylene)diamine), F8BT(poly(9,9′- dioctylfluorene-co-benzothiadiazole), PEDOT (poly(3,4-ethylenedioxythiophene)), PEDOT:PSS (poly(3,4- ethylenedioxythiophene) poly(styrenesulfonate)), PTAA (poly(triarylamine)), Poly(4-butylphenyldiphenyl-amine) 및 이들의 공중합체에서 하나 또는 둘 이상 선택된 물질을 포함할 수 있으나, 이에 한정되는 것은 아니다.
전자수송층 또는 정공수송층은 도핑을 이용하여 표면이 개질될 수 있다. 전자수송층 또는 정공수송층은 스핀 코팅, 딥 코팅, 잉크젯 프린팅, 그라비아 프린팅, 스프레이 코팅, 바 코팅, 그라비아 코팅, 브러쉬 페인팅, 열증착, 스퍼터링, E-Beam, 스크린 프린팅, 블레이드 공정 등을 통해 전극의 일면에 도포되거나 필름 형태로 코팅됨으로써 형성될 수 있다.
페로브스카이트층은 기상 증착 공정 또는 용액 공정 등을 포함한 다양한 공정을 통해 형성될 수 있다. 페로브스카이트층은 기상 증착 공정을 이용하여 형성될 수 있다. 기상 증착 공정은 진공 챔버 내로 물질을 증기화된 상태 또는 플라즈마 상태로 공급하여, 타겟 물체 표면(예컨대, 기판) 상에 해당 물질을 증착시키는 공정에 해당할 수 있다. 페로브스카이트층은 용액 공정 중 코팅 공정을 통해 형성될 수 있다. 코팅 공정은 스핀 코팅, 바코팅, 노즐 프린팅, 스프레이 코팅, 슬롯다이코팅, 그라비아 프린팅, 잉크젯 프린팅, 스크린 프린팅, 전기수력학적 젯 프린팅(electrohydrodynamic jet printing), 전기분무(electrospray), 및 이들의 조합들로 이루어진 군으로부터 선택되어 이루어지는 것일 수 있으나, 이에 제한되는 것은 아니다.
예를 들어, 페로브스카이트는 1가의 유기 양이온, 2가의 금속 양이온 및 할로겐 음이온을 함유할 수 있다. 일 실시예에서, 본 발명의 페로브스카이트는 하기 화학식을 만족할 수 있다.
[화학식 1]
AMX3
화학식 1에서, A는 1가의 양이온으로, 유기 암모늄 이온, 아미디니움계(amidinium group) 이온, 또는 유기 암모늄 이온 및 아미디니움계 이온의 조합에 해당할 수 있다.
예컨대, A로서 유기 양이온은 화학식 (R1R2R3R4N)+을 가질 수 있다. 이 경우, R1~R4는 수소, 치환되지 않거나 치환된 C1-C20 알킬(alkyl), 또는 치환되지 않거나 치환된 아릴(aryl)에 해당할 수 있다.
예컨대, A로서 유기 양이온은 화학식 (R5NH3)+을 가질 수 있으며, 이 때 R5는 수소, 또는 치환된 또는 치환되지 않은 C1-C20 알킬에 해당할 수 있다.
예컨대, A로서 유기 양이온은 화학식 (R6R7N=CH-NR8R9)+을 가지며, 이 경우에 R6~R9는 수소, 메틸, 또는 에틸에 해당할 수 있다.
M은 2가의 금속 이온일 수 있다. 예컨대, M은 Cu2+, Ni2+, Co2+, Fe2+, Mn2+, Cr2+, Pd2+, Cd2+, Ge2+, Sn2+, Pb2+ 및 Yb2+에서 및 이들의 조합들로 이루어진 군으로부터 선택되는 금속 양이온을 포함하는 것이나, 이에 제한되는 것은 아니다.
X는 할로겐 이온에 해당할 수 있다. 예컨대, 할로겐 이온은 I-, Br-, F-, Cl- 및 이들의 조합들로 이루어진 군으로부터 선택되는 할로겐 이온을 포함하는 것이나, 이에 제한되는 것은 아니다.
예컨대, 페로브스카이트는 CH3NH3PbI3(methylammonium lead iodide, MAPbI3) 및 CH(NH2)2PbI3(formamidinium lead iodide, FAPbI3)에서 선택되는 어느 하나 또는 둘 이상의 혼합물일 수 있다.
도 1은 본 개시의 일 실시예에 따른 광소자의 구조를 나타내는 도면이다. 일 실시예에서, 제1 전극 및 제2 전극은 각각 FTO(Fluorine doped Tin Oxide) 및 Au로 구성될 수 있다.
일 실시예에서, 전자수송층은 주석 산화물을 포함할 수 있다. 예를 들어, 전자수송층은 Sol-gel 기반 SnO2 층 및 SnO2 나노 입자 층의 이중층 구조로 구성될 수 있으나 이에 한정되지 않는다.
일 실시예에서, 가교결합층이 전자수송층과 페로브스카이트 층 사이에 형성되어, 전자수송층의 결함을 억제하고 전극의 소수캐리어에 대한 블로킹(blocking) 효과를 향상시킬 수 있다. 이러한 구성을 통해, 전자수송층의 전자 수송 능력이 향상되고, 광소자의 효율 및 안정성이 향상될 수 있다. 이 때, 가교결합층은 전자수송층 상에 전 영역에 걸쳐 균일한 박막으로(uniform/conformal coating) 형성될 수 있다.
일 실시예에서, 전자수송층과 페로브스카이트 층 사이에 배치되는 가교결합층은 GTMACl(Glycidyltrimethylammonium chloride)의 가교 결합(cross-link)에 의해 형성될 수 있다. 구체적으로, 가교결합층은 GTMACl이 전자수송층 상에 코팅된 뒤 어닐링을 통해 GTMACl 분자 간 가교 결합됨으로써 생성될 수 있다. 이 때, 어닐링은 섭씨 100도에서 진행될 수 있다.
일 실시예에서, 정공수송층은 Spiro-OMeTAD를 포함할 수 있다. 페로브스카이트층에서 생성된 정공은 정공수송층을 거쳐 전극으로 이동할 수 있다.
일 실시예에서, 확산장벽층(도면에 미도시)은 정공수송층과 전극의 사이에 배치되어, 전극의 디퓨전(diffusion)을 억제함으로써 광소자의 안정성을 향상시킬 수 있다. 일 실시예에 따르면, 확산장벽층은 정공수송층과 전극 Au의 사이에 배치될 수 있다.
성능 비교
페로브스카이트 광소자를 이용하여 하기 방법을 통해 GTMACl에 의한 가교결합층 유무에 따른 광소자의 성능을 평가하였으며, 아래 광소자 구조에서 테스트한 결과를 하기 표 1에 표기하였다.
광소자 구조: Glass / FTO / Sol-gel SnO2 / SnO2 NPs / GTMACl에 의한 가교결합층 / (FAPbI3)0.95(MAPbBr3)0.05 Perovskite / Spiro-OMeTAD / MoO3 / ITO / Au
1) 전류-전압 특성: 인공태양장치(ORIEL class A solar simulator, Newport, model 91195A)와 소스-미터(source-meter, Kethley, model 2420)를 사용하여, 인공 태양장치를 통해 AM1.5G 스펙트럼의 빛을 1,000 W/㎡의 일조 강도 로 조사한 후 전압을 양방향으로 (Reverse/forward) 인가하며 전류를 측정하고, 이를 통해 개방전압(VOC), 단락전류 밀도(JSC) 및 필 팩터(fill factor, FF)를 측정하였다.
2) 광전변환효율(power conversion efficiency, PCE): 전류-전압 특성에서 계산된 개방전압, 단락전류밀도 및 필팩터의 값을 곱하여 최종 광전변환효율을 얻었다.
3) 안정성: 측정된 PCE 값을 하기 계산식에 대입하여 안정성을 평가하였다.
계산식 = (η1/ η0) x 100
계산식에서 η0는 안정성 시험을 시작한 직후의 페로브스카이트 광소자의 초기 광전변환효율을 의미하며, η1은 동일 페로브스카이트 광소자를 인공태양장치의 AM1.5G 스펙트럼, 1 Sun 광량에 맞추어 연속조사시킨 후 일정 시간 후 측정한 광전변환효율을 의미한다.
4) 최대출력점추적(Maximum powerpoint tracking, MPPT): 광조사안정성 결과의 경우 최대출력을 나타내는 전압을 꾸준히 감지하여 추적함에 따라 시간에 따라 변화하는 최대 출력 상대값을 나타내었다.
Reverse Forward
V OC (V) J SC
(mA/cm2)
FF PCE (%) V OC (V) J SC
(mA/cm2)
FF PCE (%)
Reference 1.14 (1.12) 24.41 (24.20) 0.81 (0.78) 22.69 (21.11) 1.14 (1.13) 24.40 (24.34) 0.80 (0.76) 22.48 (20.98)
가교결합층 도입 1.16 (1.14) 24.85 (24.65) 0.82 (0.80) 23.39 (22.46) 1.15 (1.14) 24.83 (24.57) 0.80 (0.79) 22.92 (22.07)
표 1에서, GTMACl에 의한 가교결합층의 도입에 따라 광소자의 효율이 증가한 것을 확인할 수 있다.도 2는 본 개시의 일 실시예에 따른 광소자의 순환 전압전류법(Cyclic Voltammetry, CV) 그래프를 나타내는 도면이다. 도 2는, Bare FTO 위에서 Fe(CN)6 3-/4- couple의 redox reaction이 블로킹되는 정도를 나타낸다. 도 2에서, GTMACl에 의해 균일한 가교결합층이 형성됨에 따라 가교결합층이 없이 SnO2만 존재하는 경우와 비교해서 FTO에서의 블로킹(blocking) 능력이 향상되어, 원하지 않는 정공의 축적 및 전자와 정공의 비발광 재결합이 효과적으로 억제됨을 확인할 수 있다.
n-i-p 구조의 광소자에서는, n―type 측에서는 (-) 전하인 전자를 받아들이고, (+) 전하인 정공은 반대편 전극(p-type 측)에서 모아야 하는데, 전자는 그대로 잘 받아들이되, 정공과 직접 닿아서 전자와의 재결합을 유도하지 않도록 하는 것을 블로킹 효과라 한다.
도 3은 본 개시의 일 실시예에 따른 광소자의 TCSPC(Time-Correlated Single Photon Counting) 스펙트럼을 나타내는 도면이다. 도 3에서 도시된 바와 같이, GTMACl에 의한 가교결합층을 도입함에 따라, 결함 패시베이션(defect passivation)을 통해 생성된 캐리어 수명(carrier lifetime)이 증대될 수 있다. 즉, 전자수송층의 결함이 억제되고 보상됨으로써, 전자와 정공의 비발광 재결합이 억제되어 더 오랜 시간동안 유지되는 것을 확인할 수 있다.
도 4는 본 개시의 일 실시예에 따른 광소자의 전류 밀도 및 효율을 나타내는 도면이다. 도 4에서, 가교결합층이 도입되지 않은 광소자와 비교하였을 때, GTMACl에 의한 가교결합층의 도입으로 결함이 억제된 광소자의 전류 밀도 및 효율이 향상됨은 물론, 측정된 효율의 편차가 감소하고 재현성이 증대되는 것을 확인할 수 있다.
도 5는 본 개시의 일 실시예에 따른 광소자의 복수 개가 결합됨으로써 제조되는 광모듈의 전류 밀도를 나타내는 도면이다. 도 5에서는 5개의 광소자가 결합한 것으로 도시되어 있으나, 이에 한정되지 않고 임의의 개수의 광소자가 결합됨으로써 광모듈이 제조될 수 있다. 도 5에 도시된 광모듈에 포함된 광소자 각각에는 앞서 설명한 일 실시예에 따른 GTMACl에 의한 가교결합층이 배치될 수 있다.
도 5에서, GTMACl에 의한 가교결합층이 형성된 광소자가 결합하여 제조되는 광모듈의 전류 밀도가 더욱 향상되는 것을 확인할 수 있다. 즉, 대면적 모듈에서도 균일한 가교결합층의 도입으로 광소자 내 결함이 억제되고 효율이 향상되는 것을 확인할 수 있다.
도 6 내지 도 8은 본 개시의 일 실시예에 따른 광소자의 전기적 특성을 나타내는 도면이다. 도 6은 광소자의 TPC(Transient Photocurrent)를 측정한 것이다. 광소자에 가교결합층을 도입함에 따라, 광 여기(optical pumping)로 생성된 전자의 수송이 원활하게 이루어져 생성된 캐리어의 수명(lifetime)이 감소하는 것을 확인할 수 있다. 도 7은 광소자의 TPV(Transient Photovoltage)를 측정한 것이다. 광소자에 가교결합층을 도입함에 따라, 전자수송층의 결함이 억제되어 광전압이 더 오래 유지됨을 확인할 수 있다. 도 8은 광소자의 시간 경과에 따른 광조사 안정성을 측정한 것이다. 균일한 가교결합층의 도입으로 전자 수송이 향상되고 전자수송층의 결함이 억제되어 광소자의 안정성이 향상됨을 확인할 수 있다.
도 9는 본 개시의 일 실시예에 따른 가교결합층의 FT-IR 스펙트럼을 나타내는 도면이다. 도 9에서는 1100cm-1 부근의 피크(epoxy peak)가 감소한 것을 확인할 수 있다. 즉, 어닐링에 의해 GTMACl의 에폭시 구조가 끊어지고 가교 결합이 형성되는 것을 확인할 수 있다.
도 10은 본 개시의 일 실시예에 따른 광소자에의 광 조사 시 커패시턴스(capacitance)를 나타내는 도면이다. 가교결합층 도입에 따라, 저주파수 대에서의 커패시턴스가 감소하는 것을 확인할 수 있다. 즉, 가교결합층 도입으로 이온 마이그레이션(ion migration)이 억제되어 광소자의 안정성이 향상되는 것을 확인할 수 있다.
본 개시의 앞선 설명은 당업자들이 본 개시를 행하거나 이용하는 것을 가능하게 하기 위해 제공된다. 본 개시의 다양한 수정예들이 당업자들에게 쉽게 자명할 것이고, 본원에 정의된 일반적인 원리들은 본 개시의 취지 또는 범위를 벗어나지 않으면서 다양한 변형예들에 적용될 수도 있다. 따라서, 본 개시는 본원에 설명된 예들에 제한되도록 의도된 것이 아니고, 본원에 개시된 원리들 및 신규한 특징들과 일관되는 최광의의 범위가 부여되도록 의도된다.
본 명세서에서는 본 개시가 일부 실시예들과 관련하여 설명되었지만, 본 개시가 속하는 기술분야의 통상의 기술자가 이해할 수 있는 본 개시의 범위를 벗어나지 않는 범위에서 다양한 변형 및 변경이 이루어질 수 있다는 점을 알아야 할 것이다. 또한, 그러한 변형 및 변경은 본 명세서에 첨부된 특허청구의 범위 내에 속하는 것으로 생각되어야 한다.

Claims (5)

  1. 가교결합층을 가지는 광소자로서,
    제1 전극;
    상기 제1 전극 상에 형성된 전자수송층;
    상기 전자수송층 상에 형성된 가교결합층
    상기 가교결합층 상에 형성되는 페로브스카이트층;
    상기 페로브스카이트층 상에 형성된 정공수송층; 및
    상기 정공수송층 상에 형성된 제2 전극
    을 포함하고,
    상기 가교결합층은 GTMACl(Glycidyltrimethylammonium chloride)의 가교결합에 의해 형성되는, 광소자.
  2. 제1항에 있어서,
    상기 GTMACl의 가교결합은 어닐링에 의해 형성되는, 광소자.
  3. 제1항 또는 제2항에 따른 광소자가 복수 개 결합됨으로써 제조되는, 광모듈.
  4. 가교결합층을 가지는 광소자 제조 방법으로서,
    전극을 형성하는 단계;
    상기 전극 상에 전자수송층을 형성하는 단계; 및
    상기 전자수송층 상에 가교결합층을 형성하는 단계를 포함하는, 광소자 제조 방법.
  5. 제4항에 있어서,
    상기 가교결합층을 형성하는 단계는,
    GTMACl을 상기 전자수송층 상에 도입하는 단계; 및
    상기 GTMACl을 섭씨 100도에서 어닐링하는 단계를 포함하는, 광소자 제조 방법.
PCT/KR2024/001682 2023-04-27 2024-02-06 가교결합층을 가지는 광소자 WO2024225584A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2023-0055819 2023-04-27
KR1020230055819A KR20240158720A (ko) 2023-04-27 가교결합층을 가지는 광소자

Publications (1)

Publication Number Publication Date
WO2024225584A1 true WO2024225584A1 (ko) 2024-10-31

Family

ID=93256684

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2024/001682 WO2024225584A1 (ko) 2023-04-27 2024-02-06 가교결합층을 가지는 광소자

Country Status (1)

Country Link
WO (1) WO2024225584A1 (ko)

Similar Documents

Publication Publication Date Title
ES2399798T3 (es) Módulo fotovoltaico y procesado del mismo
US20100224252A1 (en) Photovoltaic Cell Having Multiple Electron Donors
EP2466664B1 (en) Method for producing a hole blocking layer and method for manufacturing a photoelectric conversion element comprising the hole blocking layer
KR101082910B1 (ko) 접합고리계 화합물을 포함하는 유기태양전지
KR20150122598A (ko) 유-무기 하이브리드 태양 전지
EP3010053B1 (en) Organic photovoltaic cell and method for manufacturing same
US20140053897A1 (en) Tandem Photovoltaic Cells
Pan et al. All-solution processed double-decked PEDOT: PSS/V2O5 nanowires as buffer layer of high performance polymer photovoltaic cells
US20130061928A1 (en) Organic solar cell and method of manufacturing the same
US9660193B2 (en) Material composition for organic photoelectric conversion layer, organic photoelectric conversion element, method for producing organic photoelectric conversion element, and solar cell
US9246115B2 (en) Organic solar cell and method of manufacturing the same
KR101097090B1 (ko) 트리페닐렌 화합물을 포함하는 유기태양전지
JP2014103153A (ja) 太陽電池及び太陽電池モジュール
WO2017135705A1 (ko) 유무기 하이브리드 페로브스카이트 태양 전지
KR101033304B1 (ko) 발광특성을 가지는 유기 태양전지 및 그 제조방법
KR20070067861A (ko) 광전변환 소자
JP2014053383A (ja) タンデム型の有機光電変換素子およびこれを用いた太陽電池
WO2023058979A1 (ko) Ptaa 및 pif8를 포함하는 정공 수송물질 및 이를 이용한 광소자
WO2022019618A1 (ko) 보호층을 가지는 광소자
EP4181223A1 (en) Organic hole transport material doped with acid-base by-product, and optical device using same
WO2024225584A1 (ko) 가교결합층을 가지는 광소자
KR20110098300A (ko) 바이페닐 화합물을 포함하는 유기태양전지
CN101882664B (zh) 功能层为单层有机材料的有机太阳能电池
KR20150121407A (ko) 텐덤형 유기태양전지 및 이의 제조방법
KR20240158720A (ko) 가교결합층을 가지는 광소자