WO2024224769A1 - Drill and manufacturing method of cutting workpiece - Google Patents
Drill and manufacturing method of cutting workpiece Download PDFInfo
- Publication number
- WO2024224769A1 WO2024224769A1 PCT/JP2024/005717 JP2024005717W WO2024224769A1 WO 2024224769 A1 WO2024224769 A1 WO 2024224769A1 JP 2024005717 W JP2024005717 W JP 2024005717W WO 2024224769 A1 WO2024224769 A1 WO 2024224769A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- rotation axis
- drill
- discharge groove
- cross
- section
- Prior art date
Links
- 238000005520 cutting process Methods 0.000 title claims abstract description 76
- 238000004519 manufacturing process Methods 0.000 title description 9
- 230000002093 peripheral effect Effects 0.000 claims abstract description 13
- 230000007423 decrease Effects 0.000 claims description 3
- 238000000034 method Methods 0.000 description 7
- 238000003754 machining Methods 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- MTPVUVINMAGMJL-UHFFFAOYSA-N trimethyl(1,1,2,2,2-pentafluoroethyl)silane Chemical compound C[Si](C)(C)C(F)(F)C(F)(F)F MTPVUVINMAGMJL-UHFFFAOYSA-N 0.000 description 5
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 239000011195 cermet Substances 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 229910000851 Alloy steel Inorganic materials 0.000 description 2
- 229910000975 Carbon steel Inorganic materials 0.000 description 2
- 229910001018 Cast iron Inorganic materials 0.000 description 2
- NRTOMJZYCJJWKI-UHFFFAOYSA-N Titanium nitride Chemical compound [Ti]#N NRTOMJZYCJJWKI-UHFFFAOYSA-N 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- 239000010962 carbon steel Substances 0.000 description 2
- 238000005229 chemical vapour deposition Methods 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 238000012937 correction Methods 0.000 description 2
- -1 ferrous metals Chemical class 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000005240 physical vapour deposition Methods 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 229910009043 WC-Co Inorganic materials 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 229910052593 corundum Inorganic materials 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 150000003609 titanium compounds Chemical group 0.000 description 1
- 229910001845 yogo sapphire Inorganic materials 0.000 description 1
Images
Definitions
- This disclosure relates to a drill used in cutting and a method for manufacturing a cut product.
- Patent Documents 1 to 3 are known as drills used in cutting workpieces such as metal members.
- the drills described in these patent documents each have a cutting edge and a discharge groove.
- the discharge grooves described in these patent documents have a radial width that is not constant but changes in the direction along the rotation axis in order to improve chip discharge.
- a drill as a non-limiting example in the present disclosure has a rod shape that can rotate around a rotation axis and a body that extends from the tip to the rear end along the rotation axis.
- the body has a first cutting edge located at the tip and a first discharge groove extending from the first cutting edge.
- the first discharge groove has a first portion located on the tip side and a second portion located on the rear end side of the first portion.
- the end of the first discharge groove located most forward in the rotation direction of the rotation axis is the front end
- the portion of the first discharge groove from the front end to the end on the heel side is the outer portion
- the end of the outer portion located most rearward in the rotation direction is the return end
- the angle formed by the imaginary line connecting the rotation axis and the front end and the imaginary line connecting the rotation axis and the return end is the return amount.
- the return amount at the first portion is greater than the return amount at the second portion.
- FIG. 1 is a perspective view of a drill according to an embodiment of the present disclosure.
- FIG. 2 is an enlarged view of region II shown in FIG.
- FIG. 2 is a view of the drill shown in FIG. 1 as seen from the tip side.
- FIG. 4 is a side view of the drill shown in FIG. 3 as viewed from a direction IV.
- FIG. 5 is an enlarged view of region V shown in FIG. 4 .
- FIG. 6 is a side view of the drill shown in FIG. 3 as viewed from a direction VI.
- 7 is a cross-sectional view taken along line VII-VII of the drill shown in FIG. 6.
- 8 is a cross-sectional view of the drill taken along line VIII-VIII in FIG. 6.
- FIG. 9 is a cross-sectional view taken along line IX-IX of the drill shown in FIG. 6. This is the same cross-sectional view as FIG. This is the same cross-sectional view as FIG.
- FIG. 2 is a schematic diagram showing a step of a manufacturing method of a machined product according to an embodiment of the present disclosure.
- FIG. 2 is a schematic diagram showing a step of a manufacturing method of a machined product according to an embodiment of the present disclosure.
- FIG. 2 is a schematic diagram showing a step of a manufacturing method of a machined product according to an embodiment of the present disclosure.
- each of the drawings referred to below shows a simplified view of only the main components of the embodiment that are necessary to explain the present invention. Therefore, the drill of the present disclosure may include any component not shown in each of the drawings referred to in this specification. Furthermore, the dimensions of the components in each drawing do not faithfully represent the actual dimensions of the components or the dimensional ratios of each component.
- chips generated at the tip of the drill are sent from the tip to the rear end through the discharge groove, and are discharged to the outside at the rear end part of the discharge groove.
- attention is only paid to simply improving the chip discharge performance.
- the chips will fly out to the outside before being sent to the rear end part of the discharge groove. This can cause damage to the inner surface of the drilled hole.
- One aspect of the present disclosure aims to provide a drill that improves chip removal while minimizing the impact on the inner surface of the drilled hole.
- FIG. 1 is a perspective view showing a drill according to an embodiment of the present disclosure.
- Figure 2 is an enlarged view of region II shown in Figure 1.
- Figure 3 is a front view of the insert shown in Figure 2 as viewed from the tip side.
- a drill 1 has a rod-shaped body 3 that is rotatable around a rotation axis O1.
- the body 3 extends from the tip 3a to the rear end 3b along the rotation axis O1.
- the body 3 has a gripping portion 5 called a shank that is gripped by a rotating spindle of a machine tool or the like, and a cutting portion 7 called a body that is located on the tip 3a side of the gripping portion 5.
- the gripping portion 5 is a portion that is designed according to the shape of the spindle, etc., in the machine tool.
- the cutting portion 7 is a portion that comes into contact with the workpiece, and is a portion that plays a major role in cutting the workpiece.
- the arrow Y1 shown in Figure 1 indicates the rotation direction Y1 of the drill 1 (main body 3).
- the portion of the cutting portion 7 on the side of the tip 3a is detachable from the portion on the side of the rear end 3b.
- the portion of the body 3 on the side of the tip 3a is called the insert 9
- the portion of the body 3 on the side of the rear end 3b is called the holder 11.
- the body 3 is not configured as described above but is configured from a single member, that is, has a configuration generally known as a solid drill.
- the drill 1 having a body 3 with an insert 9 attached to a holder 11 will be described in detail below.
- the body 3, cutting portion 7, and insert 9 may be interchanged as long as there is no contradiction.
- the configuration (technical concept) of the body 3 having the insert 9 described below can also be applied to a body 3 (or cutting portion 7) having the configuration of a solid drill.
- the reference symbol for the body 3 is shown alongside the drill 1.
- the main body 3 (cutting portion 7 or insert 9) has a cutting edge 13 located at the tip 3a and a discharge groove 15 extending from the cutting edge 13.
- the main body 3 also has a clearance surface 17 located at the tip 3a.
- the cutting edge 13 is located at the front edge of the clearance surface 17 in the rotational direction Y1. In other words, the clearance surface 17 extends from the cutting edge 13 toward the rear in the rotational direction Y1 (the opposite side to the rotational direction Y1).
- flanks 17, cutting edges 13, and discharge grooves 15 is not limited to a specific number.
- the cutting portion 7 has three flanks 17, three cutting edges 13, and three discharge grooves 15, which is a so-called triple-blade drill configuration.
- the cutting portion 7 has two flanks 17, two cutting edges 13, and two discharge grooves 15, which is a so-called double-blade drill configuration.
- the multiple clearance faces 17, cutting edges 13, and discharge grooves 15 may each be positioned in a rotationally symmetrical relationship about the rotation axis O1.
- the three clearance faces 17 are positioned to have 120° rotational symmetry.
- the three cutting edges 13 are positioned to have 120° rotational symmetry, and the three discharge grooves 15 are positioned to have 120° rotational symmetry.
- the three flanks 17 are configured with rotational symmetry, attention will be given to one of the three flanks 17, and a detailed description of the other two flanks 17 will be omitted.
- the three cutting edges 13 and the three discharge grooves 15 are each configured with rotational symmetry, attention will be given to one of the three cutting edges 13 and one of the three discharge grooves 15.
- the cutting edge 13 and discharge groove 15 of interest will be referred to as the first cutting edge 13a and the first discharge groove 19. There is no problem with the other two cutting edges 13 and two discharge grooves 15 having the configuration described below.
- the first cutting edge 13a is located at the tip 3a of the main body 3, and when the main body 3 is viewed from the tip 3a side, in other words when viewed from the tip, it extends from the rotation axis O1 toward the outer periphery.
- the cutting edge 13 is located at the intersection of the clearance 17 and the rake face.
- the cutting edge 13 is formed by the intersection of multiple clearance faces 17 corresponding to the multiple cutting edges 13.
- Such a portion is called the chisel edge 21.
- the portion of the first cutting edge 13a that is located near the rotation axis O1 is the chisel edge 21.
- Figure 4 is a side view of the drill shown in Figure 2 as viewed from the IV direction.
- Figure 5 is an enlarged view of region V shown in Figure 4.
- Figure 6 is a side view of the drill shown in Figure 2 as viewed from the VI direction.
- Figure 7 is a cross-sectional view of the drill shown in Figure 6 taken along line VII-VII.
- Figure 8 is a cross-sectional view of the drill shown in Figure 6 taken along line VIII-VIII.
- Figure 9 is a cross-sectional view of the drill shown in Figure 6 taken along line IX-IX.
- Figure 10 is the same cross-sectional view as Figure 7.
- Figure 11 is the same cross-sectional view as Figure 8.
- the first discharge groove 19 of the cutting portion 7 extends from the first cutting edge 13a toward the rear end 3b.
- the first discharge groove 19 is a portion used to discharge chips generated by the first cutting edge 13a to the outside.
- the first discharge groove 19 does not need to extend to the rear end 3b of the main body 3.
- the first discharge groove 19 may be formed only in the cutting portion 7 and not in the gripping portion 5.
- the first discharge groove 19 may extend in a spiral shape around the rotation axis O1, as shown in the non-limiting example in Figure 1.
- the first discharge groove 19 has a first portion 23 located on the tip 3a side, and a second portion 25 located on the rear end 3b side of the first portion 23.
- the first portion 23 may include a groove extending from the rake face located along the outer peripheral portion of the first cutting edge 13a of the insert 9 toward the rear end 3b, and a groove located on the tip 3a side of the holder 11.
- the front end 27, outer portion 29, return end 31, and return amount ⁇ for the first discharge groove 19 are defined as follows:
- the front end 27 is the end of the first discharge groove 19 located most forward in the rotation direction Y1 of the rotation axis O1 in the above cross section S.
- the front end 27 is specified for each cross section. Specifically, in each cross section, the front end 27 is the point of contact when a tangent is drawn from the center point corresponding to the rotation axis O1 to the concave curve corresponding to the surface of the first discharge groove 19.
- the outer portion 29 is the portion of the first discharge groove 19 extending from the front end 27 to the heel end 32 (see Figures 7 and 8) in the above cross section S. At least a portion of the outer portion 29 is formed to be positioned rearward in the direction of rotation Y1 as it extends from the front end 27 toward the outer periphery, and is configured as what is known as a "turned portion (hooking portion)."
- the "heel side end 32" mentioned above means the end of the first discharge groove 19 that forms the opening, located forward in the rotational direction Y1, in the above cross section S.
- the part where the first discharge groove 19 and the outer circumferential surface of the body 3 intersect is the edge (rim) of the opening formed by the first discharge groove 19.
- the opening of the first discharge groove 19 has two edges, one located in front of the rotational direction Y1 and the other located in the rear of the rotational direction Y1. Of the two edges of the opening in the cross section S above, the one located in front of the rotational direction Y1 is the "heel side end 32."
- the return end 31 is the end of the outer portion 29 located furthest to the rear in the rotation direction Y1 in the cross section S.
- the return amount ⁇ is the angle between an imaginary line connecting the rotation axis O1 and the front end 27 and an imaginary line connecting the rotation axis O1 and the return end 31.
- the return amount ⁇ 1 in the first portion 23 may be greater than the return amount ⁇ 2 in the second portion 25.
- the front end 27, outer portion 29, and barb end 31 are each specified as part of the holder 11.
- the outer portion 29 can act as a barrier to prevent chips from flying out when they attempt to fly out to the outside. This makes it difficult for chips to fly out inadvertently, and reduces the impact of chips on the inner surface of the machined hole.
- the chips flow immediately after they are generated by the first cutting edge 13a, and so the flow of the chips is prone to become unstable, but the return amount ⁇ 1 in this first portion 23 is relatively large. This makes it possible to prevent the chips from accidentally flying out.
- the chips are prone to curl due to the outer portion 29. This makes it easy for the chips to gather together and be sent through the first discharge groove 19 from the tip 3a side to the rear end 3b side.
- the chips are easily discharged to the outside on the rear end 3b side. In this way, when the amount of return ⁇ 1 in the first portion 23 is greater than the amount of return ⁇ 2 in the second portion 25, the chips are more easily discharged while minimizing the impact on the inner surface of the machined hole.
- the amount of return ⁇ 2 in the second portion 25 may be 0, i.e., the outer portion 29 may not be formed in the second portion 25.
- the heel side end 32 in the second portion 25 may be located at the frontmost position in the rotational direction Y1 in the second portion 25.
- the return amount ⁇ ( ⁇ 1, ⁇ 2) can be measured in each of the cross section S1 of the first portion 23 perpendicular to the rotation axis O1 (for example, the cross section shown in FIG. 7) and the cross section S2 of the second portion 25 perpendicular to the rotation axis O1 (for example, the cross section shown in FIG. 8), and the magnitudes of these return amounts ⁇ 1 and ⁇ 2 can be compared.
- the return amounts ⁇ 1 and ⁇ 2 are not limited to specific values.
- the return amount ⁇ 1 can be set to 10° to 30°.
- the return amount ⁇ 2 can be set to 0° to 20°.
- the first portion 23 is located closer to the tip 3a than the second portion 25, but the first portion 23 may include the end of the first discharge groove 19 on the tip 3a side.
- the outer portion 29 of the first portion 23 tends to prevent the chips from accidentally flying out soon after they are generated by the first cutting edge 13a.
- the distance between the two intersections (the two edges of the opening in the cross section S described above) where the first discharge groove 19 and the outer peripheral surface of the body 3 intersect is defined as the opening width W1 of the first portion 23 (see FIG. 10).
- the distance between the two intersections where the first discharge groove 19 and the outer peripheral surface of the body 3 intersect is defined as the opening width W2 of the second portion 25 (see FIG. 11).
- the opening width W1 may be smaller than the opening width W2. If the opening width W1 in the first portion 23 is relatively small, the chips are less likely to accidentally fly out of the first portion 23. Also, if the opening width W2 in the second portion 25 is relatively large, the chips are more likely to be discharged to the outside on the side of the rear end 3b in the second portion 25.
- the outer portion 29 of the second portion 25 of the first discharge groove 19 may include a return portion 29a, which is the portion from the front end 27 to the return end 31, and an inclined surface portion 29b, which is the portion from the return end 31 to the heel side end 32.
- the return portion 29a may be a concave curved shape
- the inclined surface portion 29b may be a straight shape.
- the heel side end 32 may be located further forward in the rotational direction Y1 than the return end 31.
- the cutting portion 7 in the non-limiting example shown in Figure 1 has multiple (specifically, three) clearance surfaces 17, cutting edges 13, and discharge grooves 15.
- the cutting edge 13 located forward of the first cutting edge 13a in the rotational direction Y1 is the second cutting edge 13b
- the discharge groove 15 extending from this second cutting edge 13b toward the rear end 3b is the second discharge groove 33
- the area of the outer circumferential surface of the cutting portion 7 located between the first discharge groove 19 and the second discharge groove 33 is the first outer circumferential surface 35.
- the area of the first outer peripheral surface 35 located between the first portion 23 and the second discharge groove 33 is referred to as the first region 35a, and the area of the first outer peripheral surface 35 located between the second portion 25 and the second discharge groove 33 is referred to as the second region 35b.
- the first outer peripheral surface 35 has the first region 35a adjacent to the first portion 23 and the second region 35b adjacent to the second portion 25.
- the first region 35a may have a protrusion 37 that protrudes rearward in the rotational direction Y1.
- the first discharge groove 19 and the ridge of the first outer surface 35 may have a portion located on the side of the tip 3a that protrudes rearward in the rotational direction Y1.
- This protrusion 37 may form the outer portion 29 of the first portion 23 described above.
- the outer portion 29 is configured in this manner, for example, the area excluding the outer portion 29 in the first portion 23 and the area excluding the outer portion 29 in the second portion 25 can be easily configured similarly to each other. This makes it easier for chips to flow smoothly from the first portion 23 to the second portion 25.
- the length (of the curve) from the front end point to the rear end point (corresponding to the return end 31 or the heel end 32) of the first region 35a in the rotational direction Y1 is defined as W3 (see FIG. 10).
- the length (of the curve) from the front end point to the rear end point (corresponding to the heel end 32) of the second region 35b in the rotational direction Y1 is defined as W4 (see FIG. 11).
- the length W3 may be greater than the length W4.
- the length W3 of the first region 35a may be greater than the length W4 of the second region 35b by the amount of the protrusion 37 that protrudes rearward in the rotational direction Y1.
- the length L1 of the first portion 23 in the direction along the rotation axis O1 may be greater than the length L2 of the second portion 25 in the direction along the rotation axis O1, or may be less than the length L2 of the second portion 25, as in the non-limiting example shown in FIG. 4.
- the length L1 of the first portion 23 is less than the length L2 of the second portion 25, the degree of freedom in machining the drill 1 is increased.
- the flow of chips generated by the cutting edge 13 tends to become unstable immediately after the chips are generated by the cutting edge 13. Therefore, it is not necessary to set the length L1 of the first portion 23 excessively large.
- the outer portion 29 of the second portion 25 is smaller than that of the first portion 23, it is easier to ensure a larger space in the cross section S (S1, S2) perpendicular to the rotation axis O1 in the second portion 25 than in the first portion 23. Therefore, it is possible to reduce the risk of chip clogging while suppressing the inadvertent ejection of chips.
- a virtual circle of an arbitrary radius is assumed to be centered on the rotation axis O1.
- a partially open space formed by being partially surrounded by the first discharge groove 19, or by being partially surrounded by the first discharge groove 19 and the surface of the shaft portion of the insert 9, is referred to as a groove space.
- the groove width W is the groove width of the groove space at the depth position corresponding to the radius of the virtual circle.
- the groove space in a conventional drill may have a shape in which the groove width increases monotonically from the groove bottom (the part close to the rotation axis) to the edge of the opening (the part connected to the outer periphery) in a cross section perpendicular to the rotation axis.
- the first portion 23 in the cross section S1 of the first discharge groove 19 perpendicular to the rotation axis O1, the first portion 23 may have a narrowed portion 23a in which the groove width W decreases with increasing distance from the rotation axis O1.
- the first portion 23 may have a narrowed portion 23a in which the opening (the groove space) narrows with increasing distance from the rotation axis O1.
- the narrowed portion 23a may be located on the front side and the rear side in the rotational direction Y1 in the first portion 23.
- the narrowed portion 23a located on the front side in the rotational direction Y1 may be a part of the outer portion 29.
- the second portion 25 may not have such a narrowed portion 23a. That is, the groove width W of the second portion 25 may monotonically increase in the cross section S2 as it moves away from the rotation axis O1. In this case, good chip discharge performance is ensured in the second portion 25, so chip clogging is less likely to occur.
- the outer diameter of the cutting portion 7 is set to 6 mm to 42.5 mm.
- L is set to 1D to 12D.
- the material of the main body 3 may be, for example, cemented carbide or cermet.
- the composition of the cemented carbide may be, for example, WC-Co, WC-TiC-Co, or WC-TiC-TaC-Co.
- WC, TiC, and TaC may be hard particles
- Co may be a binder phase.
- the cermet may be a sintered composite material in which a ceramic component is combined with a metal.
- An example of a cermet is a titanium compound whose main component is titanium carbide (TiC) or titanium nitride (TiN). It goes without saying that the material of the main body 3 is not limited to the above composition.
- the surface of the body 3 may be coated with a coating using a chemical vapor deposition (CVD) method or a physical vapor deposition ( PVD ) method.
- the composition of the coating may include, for example, titanium carbide (TiC), titanium nitride (TiN), titanium carbonitride (TiCN), and alumina ( Al2O3 ).
- the material of the holder 11 may be, for example, aluminum, carbon steel, alloy steel, stainless steel, cast iron, and non-ferrous metals.
- the machined product 101 may be produced by cutting a workpiece 103.
- the manufacturing method of the machined product 101 may include the following steps (1) to (4).
- steps (1) and (2) may be performed, for example, by fixing the workpiece 103 on the table of a machine tool to which the drill 1 is attached, and bringing the drill 1 closer to the workpiece 103 while rotating. Note that in step (2), it is sufficient that the workpiece 103 and the drill 1 are relatively close to each other, and for example, the workpiece 103 may be brought closer to the drill 1.
- cutting may be performed so that at least a portion of the cutting portion 7 in the main body 3 is located inside the machining hole 105.
- the gripping portion 5 in the main body 3 may be set to be located outside the machining hole 105.
- a portion of the cutting portion 7 on the rear end 3b side may be set to be located outside the machining hole 105.
- the above-mentioned portion can function as a margin area for chip discharge, and excellent chip discharge properties can be achieved through this area.
- step (4) similarly to the above-mentioned step (2), the workpiece 103 and the drill 1 only need to be separated from each other; for example, the workpiece 103 may be separated from the drill 1.
- the process of contacting the cutting edge 13 of the drill 1 with different locations on the workpiece 103 while keeping the drill 1 rotating may be repeated.
- Examples of the material of the workpiece 103 include aluminum, carbon steel, alloy steel, stainless steel, cast iron, and non-ferrous metals.
- the drill in the first aspect of the present disclosure has a rod-shaped body that can rotate around a rotation axis and extends from a front end to a rear end along the rotation axis.
- the body has a first cutting edge located at the front end and a first discharge groove extending from the first cutting edge.
- the first discharge groove has a first portion located on the front end side and a second portion located on the rear end side of the first portion.
- an end of the first discharge groove located most forward in the rotation direction of the rotation axis is a front end
- a portion of the first discharge groove from the front end to an end on a heel side (an edge of a pair of edges located forward in the rotation direction) is an outer portion
- an end of the outer portion located most rearward in the rotation direction is a return end
- an angle formed by a virtual line connecting the rotation axis and the front end and a virtual line connecting the rotation axis and the return end is a return amount
- the return amount in the first portion is greater than the return amount in the second portion.
- the drill in aspect 2 of the present disclosure is based on aspect 1, and has the following elements: in a cross section of the first portion perpendicular to the rotation axis, the distance between two intersections where the first discharge groove and the outer peripheral surface of the main body intersect is the opening width of the first portion; in a cross section of the second portion perpendicular to the rotation axis, the distance between two intersections where the first discharge groove and the outer peripheral surface of the main body intersect is the opening width of the second portion, and the opening width of the first portion is smaller than the opening width of the second portion.
- the drill in aspect 3 of the present disclosure is based on aspect 1 or 2, and the main body further has a second cutting edge located forward of the first cutting edge in the direction of rotation, a second discharge groove extending from the second cutting edge, and an outer peripheral surface located between the first discharge groove and the second discharge groove, the outer peripheral surface having a first region adjacent to the first portion and a second region adjacent to the second portion, and the first region has a convex portion that protrudes toward the rear in the direction of rotation.
- the drill in aspect 4 of the present disclosure is based on aspect 3, and has an element in which the length from the front end point to the rear end point of the first region in the direction of rotation in a cross section of the first portion perpendicular to the rotation axis is greater than the length from the front end point to the rear end point of the second region in the direction of rotation in a cross section of the second portion perpendicular to the rotation axis.
- the drill in aspect 5 of the present disclosure is based on any one of aspects 1 to 4, and has an element in which the length of the first portion in the direction along the rotation axis is smaller than the length of the second portion in the direction along the rotation axis.
- the drill in aspect 6 of the present disclosure is based on any one of aspects 1 to 5, and has an element in which the first portion has a narrowed portion in a cross section of the first portion perpendicular to the rotation axis, in which the groove width decreases with increasing distance from the rotation axis.
- the drill in aspect 7 of the present disclosure is based on aspect 6, and the second portion has an element in which the groove width increases with increasing distance from the rotation axis.
- the drill in aspect 8 of the present disclosure is based on any one of aspects 1 to 7, and has the following element: the first portion includes an end portion of the first discharge groove on the side of the tip.
- the method for manufacturing a machined product in aspect 9 of the present disclosure includes the steps of rotating a drill in any one of aspects 1 to 8 around the rotation axis, contacting the rotating drill with a workpiece, and removing the drill from the workpiece.
Landscapes
- Drilling Tools (AREA)
Abstract
Provided is a drill of which chip-discharge performance is improved, while an influence on an inner peripheral surface of a processed hole is suppressed. The drill (1) has a main body (3) extending from a tip end (3a) toward a rear end (3b) along a rotation axis (O1). The main body has a first cutting blade (13) and a first discharge groove having a first portion and a second portion. In a cross section of the first discharge groove orthogonal to the rotation axis, assuming that an angle formed by a virtual straight line connecting the rotation axis and a front end part and a virtual straight line connecting the rotation axis and a return end part is set as a return amount, the return amount in the first portion is larger than the return amount in the second portion.
Description
本開示は、切削加工に用いられるドリルおよび切削加工物の製造方法に関する。
This disclosure relates to a drill used in cutting and a method for manufacturing a cut product.
従来、金属部材などの被削材の切削加工に用いられるドリルとして、特許文献1~3に記載のドリルが知られている。これらの特許文献に記載のドリルは、それぞれ切刃及び排出溝を有している。また、これらの特許文献に記載の排出溝は、切屑の排出性の向上を目的として、回転軸に沿った方向において径方向の幅を一定ではなく変化させている。
The drills described in Patent Documents 1 to 3 are known as drills used in cutting workpieces such as metal members. The drills described in these patent documents each have a cutting edge and a discharge groove. Furthermore, the discharge grooves described in these patent documents have a radial width that is not constant but changes in the direction along the rotation axis in order to improve chip discharge.
本開示における限定されない一例のドリルは、回転軸の周りで回転可能な棒形状であって、回転軸に沿って先端から後端に向かって延びた本体を有する。本体は、先端に位置する第1切刃と、第1切刃から延びた第1排出溝と、を有する。第1排出溝は、先端の側に位置する第1部位と、第1部位よりも後端の側に位置する第2部位と、を有する。ここで、回転軸に直交する第1排出溝の断面において、第1排出溝のうち回転軸の回転方向の最も前方に位置する端部を前方端部、第1排出溝のうち前方端部からヒール側の端部にかけての部位を外側部位、外側部位のうち回転方向の最も後方に位置する端部を返し端部、回転軸及び前方端部を結ぶ仮想直線と、回転軸及び返し端部を結ぶ仮想直線とがなす角度を返し量とする。このとき、第1部位における返し量が、第2部位における返し量よりも大きい。
A drill as a non-limiting example in the present disclosure has a rod shape that can rotate around a rotation axis and a body that extends from the tip to the rear end along the rotation axis. The body has a first cutting edge located at the tip and a first discharge groove extending from the first cutting edge. The first discharge groove has a first portion located on the tip side and a second portion located on the rear end side of the first portion. Here, in a cross section of the first discharge groove perpendicular to the rotation axis, the end of the first discharge groove located most forward in the rotation direction of the rotation axis is the front end, the portion of the first discharge groove from the front end to the end on the heel side is the outer portion, the end of the outer portion located most rearward in the rotation direction is the return end, and the angle formed by the imaginary line connecting the rotation axis and the front end and the imaginary line connecting the rotation axis and the return end is the return amount. In this case, the return amount at the first portion is greater than the return amount at the second portion.
以下、本開示の一例である実施形態のドリルについて、図面を用いて詳細に説明する。但し、以下で参照する各図は、説明の便宜上、実施形態の構成部材のうち、本発明を説明するために必要な主要部材のみを簡略化して示したものである。従って、本開示のドリルは、本明細書が参照する各図に示されていない任意の構成部材を備え得る。また、各図中の部材の寸法は、実際の構成部材の寸法および各部材の寸法比率等を忠実に表したものではない。
Below, a drill according to an embodiment of the present disclosure, which is an example, will be described in detail with reference to the drawings. However, for the sake of convenience, each of the drawings referred to below shows a simplified view of only the main components of the embodiment that are necessary to explain the present invention. Therefore, the drill of the present disclosure may include any component not shown in each of the drawings referred to in this specification. Furthermore, the dimensions of the components in each drawing do not faithfully represent the actual dimensions of the components or the dimensional ratios of each component.
従来、ドリルの先端で生じた切屑は排出溝を通って先端側から後端側へと送られ、排出溝における後端側の部位において外部に排出される。ここで、例えば、特許文献1~3に記載のドリルにおいては、切屑の排出性の単純な向上しか着目されていない。そのため、排出溝における後端側の部位に切屑が送られる前に、切屑が外部へと飛び出す恐れがある。これは加工孔の内周面を傷つける原因となり得る。
Conventionally, chips generated at the tip of the drill are sent from the tip to the rear end through the discharge groove, and are discharged to the outside at the rear end part of the discharge groove. Here, for example, in the drills described in Patent Documents 1 to 3, attention is only paid to simply improving the chip discharge performance. As a result, there is a risk that the chips will fly out to the outside before being sent to the rear end part of the discharge groove. This can cause damage to the inner surface of the drilled hole.
本開示の一態様は、加工孔の内周面への影響を抑えつつ切屑の排出性が向上したドリルを提供することを目的とする。
One aspect of the present disclosure aims to provide a drill that improves chip removal while minimizing the impact on the inner surface of the drilled hole.
<ドリルの概略構成>
図1~3を参照して、本実施形態におけるドリル1の概略構成について説明する。図1は、本開示の一実施形態におけるドリルを示す斜視図である。図2は、図1に示す領域IIの拡大図である。図3は、図2に示すインサートを先端側から見た正面図である。 <Outline of drill structure>
A schematic configuration of adrill 1 according to the present embodiment will be described with reference to Figures 1 to 3. Figure 1 is a perspective view showing a drill according to an embodiment of the present disclosure. Figure 2 is an enlarged view of region II shown in Figure 1. Figure 3 is a front view of the insert shown in Figure 2 as viewed from the tip side.
図1~3を参照して、本実施形態におけるドリル1の概略構成について説明する。図1は、本開示の一実施形態におけるドリルを示す斜視図である。図2は、図1に示す領域IIの拡大図である。図3は、図2に示すインサートを先端側から見た正面図である。 <Outline of drill structure>
A schematic configuration of a
本開示の一例に係るドリル1は、図1~3に示すように、回転軸O1の周りで回転可能な棒形状の本体3を有する。本体3は、回転軸O1に沿って先端3aから後端3bに向かって延びている。本実施形態における本体3は、工作機械の回転するスピンドル等で把持される、シャンク(shank)と呼ばれる把持部5と、この把持部5に対して先端3aの側に位置する、ボデー(body)と呼ばれる切削部7と、を備えている。
As shown in Figures 1 to 3, a drill 1 according to one example of the present disclosure has a rod-shaped body 3 that is rotatable around a rotation axis O1. The body 3 extends from the tip 3a to the rear end 3b along the rotation axis O1. In this embodiment, the body 3 has a gripping portion 5 called a shank that is gripped by a rotating spindle of a machine tool or the like, and a cutting portion 7 called a body that is located on the tip 3a side of the gripping portion 5.
把持部5は、工作機械におけるスピンドル等の形状に応じて設計される部位である。切削部7は、被削材と接触する部位であり、被削材の切削加工において主たる役割を有する部位である。なお、図1などに示す矢印Y1は、ドリル1(本体3)の回転方向Y1を示している。
The gripping portion 5 is a portion that is designed according to the shape of the spindle, etc., in the machine tool. The cutting portion 7 is a portion that comes into contact with the workpiece, and is a portion that plays a major role in cutting the workpiece. The arrow Y1 shown in Figure 1 indicates the rotation direction Y1 of the drill 1 (main body 3).
本実施形態におけるドリル1では、切削部7における先端3aの側の部位が後端3bの側の部位に対して着脱可能な構成となっている。この場合、本体3における先端3aの側の部位がインサート9と呼ばれ、本体3における後端3bの側の部位がホルダ11と呼ばれる。当然ながら、本開示の一例におけるドリル1としては、本体3が上記の構成ではなく一の部材からなる構成、すなわち一般的にソリッドドリルと呼ばれる構成であっても何ら問題ない。
In the drill 1 of this embodiment, the portion of the cutting portion 7 on the side of the tip 3a is detachable from the portion on the side of the rear end 3b. In this case, the portion of the body 3 on the side of the tip 3a is called the insert 9, and the portion of the body 3 on the side of the rear end 3b is called the holder 11. Naturally, for the drill 1 in one example of the present disclosure, there is no problem if the body 3 is not configured as described above but is configured from a single member, that is, has a configuration generally known as a solid drill.
以下では、インサート9がホルダ11に取り付けられた本体3を有するドリル1について詳細に説明する。なお、以降の説明において、本体3、切削部7及びインサート9は、矛盾しない範囲で置き換えてもよい。以下に説明するインサート9を有する本体3の構成(技術的思想)は、ソリッドドリルの構成を有する本体3(または切削部7)についても適用できる。図2などにおいて、ドリル1に本体3の参照符号を併記している。
The drill 1 having a body 3 with an insert 9 attached to a holder 11 will be described in detail below. In the following description, the body 3, cutting portion 7, and insert 9 may be interchanged as long as there is no contradiction. The configuration (technical concept) of the body 3 having the insert 9 described below can also be applied to a body 3 (or cutting portion 7) having the configuration of a solid drill. In Figure 2 and other figures, the reference symbol for the body 3 is shown alongside the drill 1.
本体3(切削部7又はインサート9)は、先端3aに位置する切刃13と、切刃13から延びた排出溝15と、を有する。また、本体3は、先端3aに位置する逃げ面17をさらに有する。切刃13は、逃げ面17における回転方向Y1の前方縁に位置する。言い換えれば、逃げ面17は、切刃13から回転方向Y1の後方(回転方向Y1の反対側)に向かって延びている。
The main body 3 (cutting portion 7 or insert 9) has a cutting edge 13 located at the tip 3a and a discharge groove 15 extending from the cutting edge 13. The main body 3 also has a clearance surface 17 located at the tip 3a. The cutting edge 13 is located at the front edge of the clearance surface 17 in the rotational direction Y1. In other words, the clearance surface 17 extends from the cutting edge 13 toward the rear in the rotational direction Y1 (the opposite side to the rotational direction Y1).
逃げ面17、切刃13及び排出溝15は、特定の数に限定されない。図2に示す限定されない一例におけるドリル1では、切削部7は、逃げ面17、切刃13及び排出溝15を3つずつ有しており、いわゆる三枚刃ドリルの構成である。本開示の一例におけるドリル1としては、切削部7が、逃げ面17、切刃13及び排出溝15を2つずつ有する、いわゆる二枚刃ドリルの構成であっても何ら問題ない。
The number of flanks 17, cutting edges 13, and discharge grooves 15 is not limited to a specific number. In the non-limiting example of drill 1 shown in FIG. 2, the cutting portion 7 has three flanks 17, three cutting edges 13, and three discharge grooves 15, which is a so-called triple-blade drill configuration. In the example of drill 1 disclosed herein, there is no problem if the cutting portion 7 has two flanks 17, two cutting edges 13, and two discharge grooves 15, which is a so-called double-blade drill configuration.
複数の逃げ面17、切刃13及び排出溝15は、それぞれ回転軸O1を中心とする回転対称の位置関係であってもよい。図3に示す限定されない一例のドリル1(インサート9)においては、3つの逃げ面17が、120°の回転対称となるように位置している。同様に、図3に示す限定されない一例において、3つの切刃13が120°の回転対称となるように位置し、3つの排出溝15が120°の回転対称となるように位置している。
The multiple clearance faces 17, cutting edges 13, and discharge grooves 15 may each be positioned in a rotationally symmetrical relationship about the rotation axis O1. In the non-limiting example of a drill 1 (insert 9) shown in FIG. 3, the three clearance faces 17 are positioned to have 120° rotational symmetry. Similarly, in the non-limiting example shown in FIG. 3, the three cutting edges 13 are positioned to have 120° rotational symmetry, and the three discharge grooves 15 are positioned to have 120° rotational symmetry.
なお、3つの逃げ面17が回転対称となる構成であることから、3つの逃げ面17の一つに着目し、その他の2つの逃げ面17についての詳細な説明は省略する。同様に、3つの切刃13及び3つの排出溝15がそれぞれ回転対称となる構成であることから3つの切刃13の一つ及び3つの排出溝15の一つに着目する。以下、着目する切刃13及び排出溝15を、第1切刃13a及び第1排出溝19とする。その他の2つの切刃13及び2つの排出溝15については、以下に説明する構成を有していても何ら問題ない。
Note that, because the three flanks 17 are configured with rotational symmetry, attention will be given to one of the three flanks 17, and a detailed description of the other two flanks 17 will be omitted. Similarly, because the three cutting edges 13 and the three discharge grooves 15 are each configured with rotational symmetry, attention will be given to one of the three cutting edges 13 and one of the three discharge grooves 15. Hereinafter, the cutting edge 13 and discharge groove 15 of interest will be referred to as the first cutting edge 13a and the first discharge groove 19. There is no problem with the other two cutting edges 13 and two discharge grooves 15 having the configuration described below.
第1切刃13aは、本体3における先端3aに位置しており、先端3aの側から本体3を見た場合、言い換えれば先端視した場合において、回転軸O1から外周に向かって延びている。
The first cutting edge 13a is located at the tip 3a of the main body 3, and when the main body 3 is viewed from the tip 3a side, in other words when viewed from the tip, it extends from the rotation axis O1 toward the outer periphery.
通常、切刃13は逃げ面17及びすくい面の交わりに位置する。しかしながら、複数の切刃13を有する場合においては、本体3の芯厚を確保する観点から回転軸O1の近くにすくい面を設けることが困難になることがある。そのため、回転軸O1の近くにおいては、複数の切刃13に対応する複数の逃げ面17の交わりによって切刃13が形成される。このような部位がチゼルエッジ21と呼ばれる。例えば、第1切刃13aのうち回転軸O1の近くに位置する部位がチゼルエッジ21である。
Normally, the cutting edge 13 is located at the intersection of the clearance 17 and the rake face. However, when there are multiple cutting edges 13, it may be difficult to provide a rake face near the rotation axis O1 in order to ensure the core thickness of the main body 3. Therefore, near the rotation axis O1, the cutting edge 13 is formed by the intersection of multiple clearance faces 17 corresponding to the multiple cutting edges 13. Such a portion is called the chisel edge 21. For example, the portion of the first cutting edge 13a that is located near the rotation axis O1 is the chisel edge 21.
<ドリルの詳細>
図1~3とともに、図4~11を参照して、本実施形態におけるドリル1について詳細に説明する。図4は、図2に示すドリルをIV方向から視た側面図である。図5は、図4に示す領域Vの拡大図である。図6は、図2に示すドリルをVI方向から視た側面図である。図7は、図6に示すドリルのVII-VII線断面の断面図である。図8は、図6に示すドリルのVIII-VIII線断面の断面図である。図9は、図6に示すドリルのIX-IX線断面の断面図である。図10は、図7と同じ断面図である。図11は、図8と同じ断面図である。 <Drill details>
Thedrill 1 in this embodiment will be described in detail with reference to Figures 1 to 3 as well as Figures 4 to 11. Figure 4 is a side view of the drill shown in Figure 2 as viewed from the IV direction. Figure 5 is an enlarged view of region V shown in Figure 4. Figure 6 is a side view of the drill shown in Figure 2 as viewed from the VI direction. Figure 7 is a cross-sectional view of the drill shown in Figure 6 taken along line VII-VII. Figure 8 is a cross-sectional view of the drill shown in Figure 6 taken along line VIII-VIII. Figure 9 is a cross-sectional view of the drill shown in Figure 6 taken along line IX-IX. Figure 10 is the same cross-sectional view as Figure 7. Figure 11 is the same cross-sectional view as Figure 8.
図1~3とともに、図4~11を参照して、本実施形態におけるドリル1について詳細に説明する。図4は、図2に示すドリルをIV方向から視た側面図である。図5は、図4に示す領域Vの拡大図である。図6は、図2に示すドリルをVI方向から視た側面図である。図7は、図6に示すドリルのVII-VII線断面の断面図である。図8は、図6に示すドリルのVIII-VIII線断面の断面図である。図9は、図6に示すドリルのIX-IX線断面の断面図である。図10は、図7と同じ断面図である。図11は、図8と同じ断面図である。 <Drill details>
The
図1~11に示すように、切削部7が有する第1排出溝19は、第1切刃13aから後端3bに向かって延びている。第1排出溝19は、第1切刃13aで生じた切屑を外部へ排出するために用いられる部位である。第1排出溝19は、本体3の後端3bにまで延びている必要はない。図1に示す一例のように、第1排出溝19が切削部7のみに形成され、把持部5に形成されていなくてもよい。第1排出溝19は、図1に示す限定されない一例のように、回転軸O1の周りで螺旋状に延びていてもよい。
As shown in Figures 1 to 11, the first discharge groove 19 of the cutting portion 7 extends from the first cutting edge 13a toward the rear end 3b. The first discharge groove 19 is a portion used to discharge chips generated by the first cutting edge 13a to the outside. The first discharge groove 19 does not need to extend to the rear end 3b of the main body 3. As shown in the example in Figure 1, the first discharge groove 19 may be formed only in the cutting portion 7 and not in the gripping portion 5. The first discharge groove 19 may extend in a spiral shape around the rotation axis O1, as shown in the non-limiting example in Figure 1.
図5に示す限定されない一例における第1排出溝19は、先端3aの側に位置する第1部位23と、第1部位23よりも後端3bの側に位置する第2部位25と、を有している。本実施形態におけるドリル1では、図5に示すように、第1部位23は、インサート9における第1切刃13aの外周側の部分に沿って位置するすくい面から後端3b側に延びる溝と、ホルダ11における先端3a側に位置する溝と、を含んでいてよい。
In a non-limiting example shown in FIG. 5, the first discharge groove 19 has a first portion 23 located on the tip 3a side, and a second portion 25 located on the rear end 3b side of the first portion 23. In the drill 1 of this embodiment, as shown in FIG. 5, the first portion 23 may include a groove extending from the rake face located along the outer peripheral portion of the first cutting edge 13a of the insert 9 toward the rear end 3b, and a groove located on the tip 3a side of the holder 11.
ここで、本実施形態のドリル1における回転軸O1に直交する断面S(例えば図7~図11に示す断面)において、第1排出溝19に関して、前方端部27、外側部位29、返し端部31及び返し量θを以下のように定義する。
Here, in a cross section S perpendicular to the rotation axis O1 of the drill 1 of this embodiment (for example, the cross sections shown in Figures 7 to 11), the front end 27, outer portion 29, return end 31, and return amount θ for the first discharge groove 19 are defined as follows:
前方端部27とは、上記の断面Sにおいて、第1排出溝19のうち回転軸O1の回転方向Y1の最も前方に位置する端部である。前方端部27は、各断面のそれぞれにおいて特定される。具体的には、各断面において、第1排出溝19の表面に対応する凹曲線に対して、回転軸O1に対応する中心点から接線を引いたときの接点を前方端部27とする。
The front end 27 is the end of the first discharge groove 19 located most forward in the rotation direction Y1 of the rotation axis O1 in the above cross section S. The front end 27 is specified for each cross section. Specifically, in each cross section, the front end 27 is the point of contact when a tangent is drawn from the center point corresponding to the rotation axis O1 to the concave curve corresponding to the surface of the first discharge groove 19.
外側部位29は、上記の断面Sにおいて、第1排出溝19のうち前方端部27からヒール側の端部32(図7、8参照)にかけての部位である。外側部位29は、少なくとも一部が、前方端部27から外周に向かうにしたがって回転方向Y1の後方に位置するように形成されており、いわゆる「返し(引っかかる部分)」の構成となっている。
The outer portion 29 is the portion of the first discharge groove 19 extending from the front end 27 to the heel end 32 (see Figures 7 and 8) in the above cross section S. At least a portion of the outer portion 29 is formed to be positioned rearward in the direction of rotation Y1 as it extends from the front end 27 toward the outer periphery, and is configured as what is known as a "turned portion (hooking portion)."
なお、上記した「ヒール側の端部32」とは、上記の断面Sにおいて、開口部を形成する第1排出溝19のうち回転方向Y1の前方に位置する端部を意味する。具体的には、上記の断面S(ドリル1における回転軸O1に直交する断面)において、第1排出溝19及び本体3の外周面が交わる部分が、第1排出溝19により形成される開口部の縁部(口縁部)である。
The "heel side end 32" mentioned above means the end of the first discharge groove 19 that forms the opening, located forward in the rotational direction Y1, in the above cross section S. Specifically, in the above cross section S (cross section perpendicular to the rotation axis O1 of the drill 1), the part where the first discharge groove 19 and the outer circumferential surface of the body 3 intersect is the edge (rim) of the opening formed by the first discharge groove 19.
第1排出溝19の開口部の縁部は、回転方向Y1の前方に位置するものと、回転方向Y1の後方に位置するものの2つ存在する。上記の断面Sにおける、開口部が有する2つの縁部のうち、回転方向Y1の前方に位置するものが「ヒール側の端部32」である。
The opening of the first discharge groove 19 has two edges, one located in front of the rotational direction Y1 and the other located in the rear of the rotational direction Y1. Of the two edges of the opening in the cross section S above, the one located in front of the rotational direction Y1 is the "heel side end 32."
また、返し端部31は、上記の断面Sにおいて、外側部位29のうち回転方向Y1の最も後方に位置する端部である。返し量θは、回転軸O1及び前方端部27を結ぶ仮想直線と、回転軸O1及び返し端部31を結ぶ仮想直線とがなす角度である。このとき、図7および図8に示すように、第1部位23における返し量θ1が、第2部位25における返し量θ2より大きくてもよい。
The return end 31 is the end of the outer portion 29 located furthest to the rear in the rotation direction Y1 in the cross section S. The return amount θ is the angle between an imaginary line connecting the rotation axis O1 and the front end 27 and an imaginary line connecting the rotation axis O1 and the return end 31. In this case, as shown in Figures 7 and 8, the return amount θ1 in the first portion 23 may be greater than the return amount θ2 in the second portion 25.
本実施形態におけるドリル1では、前方端部27、外側部位29、返し端部31は、それぞれホルダ11における一部として特定される。第1排出溝19が上記した外側部位29を有する場合には、切屑が外部へと飛び出そうとする際に、外側部位29が切屑の飛び出しに対する障壁となり得る。そのため、不用意な切屑の飛び出しが生じにくく、切屑による加工孔の内周面への影響を抑えることができる。
In the drill 1 of this embodiment, the front end 27, outer portion 29, and barb end 31 are each specified as part of the holder 11. When the first discharge groove 19 has the outer portion 29 described above, the outer portion 29 can act as a barrier to prevent chips from flying out when they attempt to fly out to the outside. This makes it difficult for chips to fly out inadvertently, and reduces the impact of chips on the inner surface of the machined hole.
特に、第1排出溝19における先端3aの側に位置する第1部位23には、切屑が第1切刃13aで生じて間もないタイミングで切屑が流れるため、この切屑の流れが不安定になりやすいところ、この第1部位23における返し量θ1が相対的に大きい。そのため、不用意な切屑の飛び出しを生じにくくすることができる。加えて、第1部位23において、切屑が外側部位29によってカールしやすい。そのため、切屑が纏まりやすく、切屑が第1排出溝19を通って先端3aの側から後端3bの側へと送られやすい。
In particular, in the first portion 23 located on the tip 3a side of the first discharge groove 19, the chips flow immediately after they are generated by the first cutting edge 13a, and so the flow of the chips is prone to become unstable, but the return amount θ1 in this first portion 23 is relatively large. This makes it possible to prevent the chips from accidentally flying out. In addition, in the first portion 23, the chips are prone to curl due to the outer portion 29. This makes it easy for the chips to gather together and be sent through the first discharge groove 19 from the tip 3a side to the rear end 3b side.
さらに、第2部位25における返し量θ2が相対的に小さいため、後端3bの側において切屑が外部に排出されやすい。このように第1部位23における返し量θ1が、第2部位25における返し量θ2より大きい場合には、加工孔の内周面への影響を抑えつつ切屑の排出性が向上する。
Furthermore, because the amount of return θ2 in the second portion 25 is relatively small, the chips are easily discharged to the outside on the rear end 3b side. In this way, when the amount of return θ1 in the first portion 23 is greater than the amount of return θ2 in the second portion 25, the chips are more easily discharged while minimizing the impact on the inner surface of the machined hole.
なお、第2部位25における返し量θ2が相対的に小さければよいため、第2部位25における返し量θ2が0、すなわち、第2部位25には外側部位29が形成されていなくてもよい。言い換えれば、第2部位25におけるヒール側の端部32が第2部位25における回転方向Y1の最も前方に位置してもよい。
Note that since it is sufficient that the amount of return θ2 in the second portion 25 is relatively small, the amount of return θ2 in the second portion 25 may be 0, i.e., the outer portion 29 may not be formed in the second portion 25. In other words, the heel side end 32 in the second portion 25 may be located at the frontmost position in the rotational direction Y1 in the second portion 25.
なお、第1排出溝19が第1部位23及び第2部位25を有することから、回転軸O1に直交する第1部位23の断面S1(例えば図7に示す断面)及び回転軸O1に直交する第2部位25の断面S2(例えば図8に示す断面)のそれぞれにおいて返し量θ(θ1、θ2)を測定し、これらの返し量θ1、θ2の大きさを比較すればよい。返し量θ1、θ2は、特定の値に限定されない。例えば、返し量θ1は10°~30°に設定できる。また、返し量θ2は0°~20°に設定できる。
In addition, since the first discharge groove 19 has the first portion 23 and the second portion 25, the return amount θ (θ1, θ2) can be measured in each of the cross section S1 of the first portion 23 perpendicular to the rotation axis O1 (for example, the cross section shown in FIG. 7) and the cross section S2 of the second portion 25 perpendicular to the rotation axis O1 (for example, the cross section shown in FIG. 8), and the magnitudes of these return amounts θ1 and θ2 can be compared. The return amounts θ1 and θ2 are not limited to specific values. For example, the return amount θ1 can be set to 10° to 30°. Also, the return amount θ2 can be set to 0° to 20°.
なお、第1部位23は第2部位25と比較して先端3aの側に位置しているが、このとき、第1部位23が第1排出溝19における先端3aの側の端部を含んでいてもよい。切屑が第1切刃13aで生じて間もないタイミングにおいて、切屑が不用意に飛び出すことが第1部位23における外側部位29によって抑制されやすい。
The first portion 23 is located closer to the tip 3a than the second portion 25, but the first portion 23 may include the end of the first discharge groove 19 on the tip 3a side. The outer portion 29 of the first portion 23 tends to prevent the chips from accidentally flying out soon after they are generated by the first cutting edge 13a.
本実施形態のドリル1における、回転軸O1に直交するとともに第1部位23を通る断面S1において、第1排出溝19及び本体3の外周面が交わる2つの交点(前述した断面Sにおける開口部が有する2つの縁部)の間の距離を、第1部位23の開口幅W1(図10参照)とする。また、本実施形態のドリル1における、回転軸O1に直交するとともに第2部位25を通る断面S2において、第1排出溝19及び本体3の外周面が交わる2つの交点の間の距離を、第2部位25の開口幅W2(図11参照)とする。
In the drill 1 of this embodiment, in a cross section S1 that is perpendicular to the rotation axis O1 and passes through the first portion 23, the distance between the two intersections (the two edges of the opening in the cross section S described above) where the first discharge groove 19 and the outer peripheral surface of the body 3 intersect is defined as the opening width W1 of the first portion 23 (see FIG. 10). In addition, in the drill 1 of this embodiment, in a cross section S2 that is perpendicular to the rotation axis O1 and passes through the second portion 25, the distance between the two intersections where the first discharge groove 19 and the outer peripheral surface of the body 3 intersect is defined as the opening width W2 of the second portion 25 (see FIG. 11).
本実施形態におけるドリル1は、上記開口幅W1が上記開口幅W2より小さくてもよい。第1部位23における上記開口幅W1が相対的に小さい場合には、第1部位23において不用意な切屑の飛び出しがさらに生じにくい。また、第2部位25における上記開口幅W2が相対的に大きい場合には、第2部位25において後端3bの側において切屑が外部にさらに排出されやすい。
In the drill 1 of this embodiment, the opening width W1 may be smaller than the opening width W2. If the opening width W1 in the first portion 23 is relatively small, the chips are less likely to accidentally fly out of the first portion 23. Also, if the opening width W2 in the second portion 25 is relatively large, the chips are more likely to be discharged to the outside on the side of the rear end 3b in the second portion 25.
本実施形態のドリル1は、図8に示すように、上記断面S2において、第1排出溝19の第2部位25における外側部位29が、前方端部27から返し端部31にかけての部位である返し部29aと、返し端部31からヒール側の端部32にかけての部位である傾斜面部29bとを含んでいてよい。上記断面S2において、返し部29aは凹曲線形状であってよく、傾斜面部29bは直線形状であってよい。傾斜面部29bでは、返し端部31よりもヒール側の端部32の方が回転方向Y1の前方に位置していてよい。
As shown in FIG. 8, in the cross section S2 of the drill 1 of this embodiment, the outer portion 29 of the second portion 25 of the first discharge groove 19 may include a return portion 29a, which is the portion from the front end 27 to the return end 31, and an inclined surface portion 29b, which is the portion from the return end 31 to the heel side end 32. In the cross section S2, the return portion 29a may be a concave curved shape, and the inclined surface portion 29b may be a straight shape. In the inclined surface portion 29b, the heel side end 32 may be located further forward in the rotational direction Y1 than the return end 31.
上記した通り、図1に示す限定されない一例における切削部7は、複数(具体的には3つ)の逃げ面17、切刃13及び排出溝15を有している。このとき、第1切刃13aに対して回転方向Y1の前方に位置する切刃13を第2切刃13b、この第2切刃13bから後端3bに向かって延びている排出溝15を第2排出溝33、切削部7における外周面のうち、第1排出溝19及び第2排出溝33との間に位置する領域を第1外周面35とする。
As described above, the cutting portion 7 in the non-limiting example shown in Figure 1 has multiple (specifically, three) clearance surfaces 17, cutting edges 13, and discharge grooves 15. In this case, the cutting edge 13 located forward of the first cutting edge 13a in the rotational direction Y1 is the second cutting edge 13b, the discharge groove 15 extending from this second cutting edge 13b toward the rear end 3b is the second discharge groove 33, and the area of the outer circumferential surface of the cutting portion 7 located between the first discharge groove 19 and the second discharge groove 33 is the first outer circumferential surface 35.
また、第1外周面35のうち、第1部位23及び第2排出溝33との間に位置する領域を第1領域35aとし、第1外周面35のうち、第2部位25及び第2排出溝33との間に位置する領域を第2領域35bとする。言い換えれば、第1外周面35は、第1部位23に隣接する第1領域35aと、第2部位25に隣接する第2領域35bと、を有する。
The area of the first outer peripheral surface 35 located between the first portion 23 and the second discharge groove 33 is referred to as the first region 35a, and the area of the first outer peripheral surface 35 located between the second portion 25 and the second discharge groove 33 is referred to as the second region 35b. In other words, the first outer peripheral surface 35 has the first region 35a adjacent to the first portion 23 and the second region 35b adjacent to the second portion 25.
このとき、第1領域35aは、回転方向Y1の後方に向かって突出する凸部37を有してもよい。言い換えれば、第1排出溝19と第1外周面35の稜線は、先端3aの側に位置して、回転方向Y1の後方に向かって突出した部位を有してもよい。この凸部37によって上記した第1部位23における外側部位29が構成されてもよい。
In this case, the first region 35a may have a protrusion 37 that protrudes rearward in the rotational direction Y1. In other words, the first discharge groove 19 and the ridge of the first outer surface 35 may have a portion located on the side of the tip 3a that protrudes rearward in the rotational direction Y1. This protrusion 37 may form the outer portion 29 of the first portion 23 described above.
このように外側部位29が構成されている場合には、例えば、第1部位23における外側部位29を除いた領域と第2部位25における外側部位29を除いた領域とを互いに同様の構成としやすい。そのため、第1部位23から第2部位25にかけての切屑の流れが円滑になりやすい。
When the outer portion 29 is configured in this manner, for example, the area excluding the outer portion 29 in the first portion 23 and the area excluding the outer portion 29 in the second portion 25 can be easily configured similarly to each other. This makes it easier for chips to flow smoothly from the first portion 23 to the second portion 25.
上記断面S1において、第1領域35aの回転方向Y1における前方側の端点から後方側の端点(返し端部31またはヒール側の端部32に対応)までの間の(曲線の)長さをW3(図10参照)とする。また、上記断面S2において、第2領域35bの回転方向Y1における前方側の端点から後方側の端点(ヒール側の端部32に対応)までの間の(曲線の)長さをW4(図11参照)とする。
In the cross section S1, the length (of the curve) from the front end point to the rear end point (corresponding to the return end 31 or the heel end 32) of the first region 35a in the rotational direction Y1 is defined as W3 (see FIG. 10). In addition, in the cross section S2, the length (of the curve) from the front end point to the rear end point (corresponding to the heel end 32) of the second region 35b in the rotational direction Y1 is defined as W4 (see FIG. 11).
本実施形態におけるドリル1は、上記長さW3が上記長さW4よりも大きくてもよい。具体的には、第1領域35aの上記長さW3が、回転方向Y1の後方に向かって突出する凸部37の分だけ第2領域35bの上記長さW4より大きくてもよい。
In the drill 1 of this embodiment, the length W3 may be greater than the length W4. Specifically, the length W3 of the first region 35a may be greater than the length W4 of the second region 35b by the amount of the protrusion 37 that protrudes rearward in the rotational direction Y1.
また、回転軸O1に沿った方向における第1部位23の長さL1は、回転軸O1に沿った方向における第2部位25の長さL2より大きくてもよく、また、図4に示す限定されない一例のように第2部位25の長さL2より小さくてもよい。第1部位23の長さL1が第2部位25の長さL2より小さい場合には、ドリル1加工の自由度が高められる。
Furthermore, the length L1 of the first portion 23 in the direction along the rotation axis O1 may be greater than the length L2 of the second portion 25 in the direction along the rotation axis O1, or may be less than the length L2 of the second portion 25, as in the non-limiting example shown in FIG. 4. When the length L1 of the first portion 23 is less than the length L2 of the second portion 25, the degree of freedom in machining the drill 1 is increased.
切刃13で生じた切屑の流れが不安定になりやすいのは、切屑が切刃13で生じて間もないタイミングである。そのため、第1部位23の長さL1を過度に大きく設定する必要はない。ここで、第2部位25の方が第1部位23よりも外側部位29が小さいため、第2部位25の方が第1部位23よりも相対的に回転軸O1に直交する断面S(S1、S2)におけるスペースが広く確保されやすい。そのため、不用意な切屑の飛び出しを抑制しつつ、切屑詰まりが生じるおそれを小さくできる。
The flow of chips generated by the cutting edge 13 tends to become unstable immediately after the chips are generated by the cutting edge 13. Therefore, it is not necessary to set the length L1 of the first portion 23 excessively large. Here, since the outer portion 29 of the second portion 25 is smaller than that of the first portion 23, it is easier to ensure a larger space in the cross section S (S1, S2) perpendicular to the rotation axis O1 in the second portion 25 than in the first portion 23. Therefore, it is possible to reduce the risk of chip clogging while suppressing the inadvertent ejection of chips.
ここで、ドリル1における回転軸O1に直交する断面Sにおいて、回転軸O1を中心とする、任意半径の仮想円を想定する。また、上記断面Sにおいて、第1排出溝19によって部分的に囲まれて形成される、または第1排出溝19およびインサート9の軸部の表面によって部分的に囲まれて形成される部分開放空間を溝空間と称する。
Here, in a cross section S perpendicular to the rotation axis O1 of the drill 1, a virtual circle of an arbitrary radius is assumed to be centered on the rotation axis O1. In addition, in the cross section S, a partially open space formed by being partially surrounded by the first discharge groove 19, or by being partially surrounded by the first discharge groove 19 and the surface of the shaft portion of the insert 9, is referred to as a groove space.
上記仮想円と第1排出溝19とが交わる2つの交点を特定できる場合、2つの交点の間の距離を溝幅Wと称する。溝幅Wは、上記仮想円の半径に対応する深さ位置における上記溝空間の溝幅である。
If it is possible to identify two intersections between the virtual circle and the first discharge groove 19, the distance between the two intersections is referred to as the groove width W. The groove width W is the groove width of the groove space at the depth position corresponding to the radius of the virtual circle.
一般に、従来のドリルにおける溝空間は、回転軸に直交する断面において、溝底(回転軸に近接する箇所)から開口部の縁部(外周面に連なる箇所)にかけて溝幅が単調に増加する形状を有することがある。
Generally, the groove space in a conventional drill may have a shape in which the groove width increases monotonically from the groove bottom (the part close to the rotation axis) to the edge of the opening (the part connected to the outer periphery) in a cross section perpendicular to the rotation axis.
これに対して、本開示の一例におけるドリル1では、回転軸O1に直交する第1排出溝19の断面S1において、第1部位23は、回転軸O1から離れるにしたがって上記溝幅Wが小さくなる狭窄部23aを有していてよい。換言すれば、第1部位23が、回転軸O1から離れるにしたがって開口部(上記溝空間)がすぼまる形状となる狭窄部23aを有してもよい。
In contrast, in the drill 1 according to an example of the present disclosure, in the cross section S1 of the first discharge groove 19 perpendicular to the rotation axis O1, the first portion 23 may have a narrowed portion 23a in which the groove width W decreases with increasing distance from the rotation axis O1. In other words, the first portion 23 may have a narrowed portion 23a in which the opening (the groove space) narrows with increasing distance from the rotation axis O1.
狭窄部23aは、第1部位23において、回転方向Y1における前方側及び後方側にそれぞれ位置していてよい。回転方向Y1における前方側に位置する狭窄部23aは、外側部位29における一部であってよい。第1部位23がこのような狭窄部23aを有する場合には、不用意な切屑の飛び出しをさらに抑制できる。
The narrowed portion 23a may be located on the front side and the rear side in the rotational direction Y1 in the first portion 23. The narrowed portion 23a located on the front side in the rotational direction Y1 may be a part of the outer portion 29. When the first portion 23 has such a narrowed portion 23a, it is possible to further suppress the inadvertent ejection of chips.
第1部位23が上記の狭窄部23aを有する一方で、第2部位25は上記のような狭窄部23aを有していなくてもよい。すなわち、第2部位25は、上記断面S2において、回転軸O1から離れるにしたがって上記溝幅Wが単調に大きくなっていてもよい。この場合には、第2部位25における切屑の良好な排出性が確保されるため、切屑詰まりが生じにくい。
While the first portion 23 has the narrowed portion 23a, the second portion 25 may not have such a narrowed portion 23a. That is, the groove width W of the second portion 25 may monotonically increase in the cross section S2 as it moves away from the rotation axis O1. In this case, good chip discharge performance is ensured in the second portion 25, so chip clogging is less likely to occur.
<構成例>
本実施形態の本体3は、例えば、切削部7の外径が6mm~42.5mmに設定される。また、本実施形態の本体3は、例えば、軸線の長さ(切削部7の長さ)をLとし、径(切削部7の外径)をDとするとき、L=1D~12Dに設定される。 <Configuration example>
In themain body 3 of this embodiment, for example, the outer diameter of the cutting portion 7 is set to 6 mm to 42.5 mm. In addition, in the main body 3 of this embodiment, for example, when the length of the axis (the length of the cutting portion 7) is L and the diameter (the outer diameter of the cutting portion 7) is D, L is set to 1D to 12D.
本実施形態の本体3は、例えば、切削部7の外径が6mm~42.5mmに設定される。また、本実施形態の本体3は、例えば、軸線の長さ(切削部7の長さ)をLとし、径(切削部7の外径)をDとするとき、L=1D~12Dに設定される。 <Configuration example>
In the
本体3(インサート9)の材質としては、例えば、超硬合金及びサーメットなどが挙げられ得る。超硬合金の組成としては、例えば、WC-Co、WC-TiC-Co及びWC-TiC-TaC-Coが挙げられ得る。ここで、WC、TiC及びTaCは硬質粒子であってもよく、また、Coは結合相であってもよい。
The material of the main body 3 (insert 9) may be, for example, cemented carbide or cermet. The composition of the cemented carbide may be, for example, WC-Co, WC-TiC-Co, or WC-TiC-TaC-Co. Here, WC, TiC, and TaC may be hard particles, and Co may be a binder phase.
サーメットは、セラミック成分に金属を複合させた焼結複合材料であってもよい。サーメットの一例として、炭化チタン(TiC)又は窒化チタン(TiN)を主成分としたチタン化合物が挙げられ得る。本体3の材質が上記の組成に限定されないことは言うまでもない。
The cermet may be a sintered composite material in which a ceramic component is combined with a metal. An example of a cermet is a titanium compound whose main component is titanium carbide (TiC) or titanium nitride (TiN). It goes without saying that the material of the main body 3 is not limited to the above composition.
本体3の表面は、化学蒸着(CVD)法又は物理蒸着(PVD)法を用いて被膜でコーティングされてもよい。被膜の組成としては、例えば、炭化チタン(TiC)、窒化チタン(TiN)、炭窒化チタン(TiCN)及びアルミナ(Al2O3)などが挙げられ得る。
The surface of the body 3 may be coated with a coating using a chemical vapor deposition (CVD) method or a physical vapor deposition ( PVD ) method. The composition of the coating may include, for example, titanium carbide (TiC), titanium nitride (TiN), titanium carbonitride (TiCN), and alumina ( Al2O3 ).
本体3が、インサート9及びホルダ11によって構成される場合において、ホルダ11の材質としては、例えば、アルミニウム、炭素鋼、合金鋼、ステンレス、鋳鉄及び非鉄金属などが挙げられ得る。
When the main body 3 is composed of the insert 9 and the holder 11, the material of the holder 11 may be, for example, aluminum, carbon steel, alloy steel, stainless steel, cast iron, and non-ferrous metals.
<切削加工物の製造方法>
次に、本開示の限定されない一面の切削加工物101の製造方法について図12~図14を用いて説明する。切削加工物101は、被削材103を切削加工することによって作製してもよい。切削加工物101の製造方法は、以下の(1)~(4)の工程を有してもよい。 <Method of manufacturing machined product>
Next, a non-limiting manufacturing method of the machinedproduct 101 of one side according to the present disclosure will be described with reference to Figures 12 to 14. The machined product 101 may be produced by cutting a workpiece 103. The manufacturing method of the machined product 101 may include the following steps (1) to (4).
次に、本開示の限定されない一面の切削加工物101の製造方法について図12~図14を用いて説明する。切削加工物101は、被削材103を切削加工することによって作製してもよい。切削加工物101の製造方法は、以下の(1)~(4)の工程を有してもよい。 <Method of manufacturing machined product>
Next, a non-limiting manufacturing method of the machined
(1)準備された被削材103に対して上方にドリル1を配置する工程(図12参照)。
(1) Step of placing the drill 1 above the prepared workpiece 103 (see Figure 12).
(2)回転軸O1を中心に矢印Y1の方向にドリル1を回転させ、被削材103に向かってY2方向にドリル1を近づける工程(図12参照)。
(2) A process of rotating the drill 1 in the direction of the arrow Y1 around the rotation axis O1 and moving the drill 1 toward the workpiece 103 in the direction Y2 (see Figure 12).
上記した(1)及び(2)の工程は、例えば、ドリル1が取り付けられた工作機械のテーブルの上に被削材103を固定し、ドリル1を回転させた状態で被削材103に近づけてもよい。なお、(2)の工程では、被削材103とドリル1とは相対的に近づけばよく、例えば、被削材103をドリル1に近づけてもよい。
The above steps (1) and (2) may be performed, for example, by fixing the workpiece 103 on the table of a machine tool to which the drill 1 is attached, and bringing the drill 1 closer to the workpiece 103 while rotating. Note that in step (2), it is sufficient that the workpiece 103 and the drill 1 are relatively close to each other, and for example, the workpiece 103 may be brought closer to the drill 1.
(3)ドリル1をさらに被削材103に近づけることによって、回転しているドリル1を、被削材103の表面の所望の位置に接触させて、被削材103に加工穴105を形成する工程(図13参照)。
(3) The process of bringing the rotating drill 1 closer to the workpiece 103, thereby contacting the desired position on the surface of the workpiece 103, and forming a machined hole 105 in the workpiece 103 (see Figure 13).
上記した(3)の工程では、本体3における切削部7の少なくとも一部が加工穴105の中に位置するように切削加工を行ってもよい。また、(3)の工程では、本体3における把持部5が、加工穴105の外側に位置するように設定してもよい。良好な仕上げ面を得る観点から、切削部7のうち後端3bの側の一部が加工穴105の外側に位置するように設定してもよい。上記の一部を切屑排出のためのマージン領域として機能させることが可能であり、当該領域を介して優れた切屑排出性を奏することが可能である。
In the above-mentioned step (3), cutting may be performed so that at least a portion of the cutting portion 7 in the main body 3 is located inside the machining hole 105. Also, in step (3), the gripping portion 5 in the main body 3 may be set to be located outside the machining hole 105. From the viewpoint of obtaining a good finished surface, a portion of the cutting portion 7 on the rear end 3b side may be set to be located outside the machining hole 105. The above-mentioned portion can function as a margin area for chip discharge, and excellent chip discharge properties can be achieved through this area.
(4)ドリル1を被削材103からY3方向に離す工程(図14参照)。
(4) Step of moving the drill 1 away from the workpiece 103 in the Y3 direction (see Figure 14).
上記した(4)の工程においても、上記の(2)の工程と同様に、被削材103とドリル1とは相対的に離せばよく、例えば、被削材103をドリル1から離してもよい。
In the above-mentioned step (4), similarly to the above-mentioned step (2), the workpiece 103 and the drill 1 only need to be separated from each other; for example, the workpiece 103 may be separated from the drill 1.
以上のような工程を経る場合には、精度が高い加工穴105を有する切削加工物101を得ることが可能となる。
By going through the above steps, it is possible to obtain a machined product 101 with a highly accurate machined hole 105.
なお、被削材103の切削加工を複数回行う場合であって、例えば、1つの被削材103に対して複数の加工穴105を形成する場合には、ドリル1を回転させた状態を保持しつつ、被削材103の異なる箇所にドリル1の切刃13を接触させる工程を繰り返してもよい。
When cutting the workpiece 103 multiple times, for example when forming multiple holes 105 in one workpiece 103, the process of contacting the cutting edge 13 of the drill 1 with different locations on the workpiece 103 while keeping the drill 1 rotating may be repeated.
被削材103の材質としては、例えば、アルミニウム、炭素鋼、合金鋼、ステンレス、鋳鉄及び非鉄金属などが挙げられ得る。
Examples of the material of the workpiece 103 include aluminum, carbon steel, alloy steel, stainless steel, cast iron, and non-ferrous metals.
<まとめ>
本開示の態様1におけるドリルは、回転軸の周りで回転可能な棒形状であって、前記回転軸に沿って先端から後端に向かって延びた本体を有する。前記本体は、前記先端に位置する第1切刃と、前記第1切刃から延びた第1排出溝と、を有する。前記第1排出溝は、前記先端の側に位置する第1部位と、前記第1部位よりも前記後端の側に位置する第2部位と、を有する。前記回転軸に直交する前記第1排出溝の断面において、前記第1排出溝のうち前記回転軸の回転方向の最も前方に位置する端部を前方端部、前記第1排出溝のうち前記前方端部からヒール側の端部(一対の縁部のうち回転方向前方に位置する縁部)にかけての部位を外側部位、前記外側部位のうち前記回転方向の最も後方に位置する端部を返し端部、前記回転軸及び前記前方端部を結ぶ仮想直線と、前記回転軸及び前記返し端部を結ぶ仮想直線とがなす角度を返し量としたとき、前記第1部位における前記返し量が、前記第2部位における前記返し量よりも大きい。 <Summary>
The drill in the first aspect of the present disclosure has a rod-shaped body that can rotate around a rotation axis and extends from a front end to a rear end along the rotation axis. The body has a first cutting edge located at the front end and a first discharge groove extending from the first cutting edge. The first discharge groove has a first portion located on the front end side and a second portion located on the rear end side of the first portion. In a cross section of the first discharge groove perpendicular to the rotation axis, an end of the first discharge groove located most forward in the rotation direction of the rotation axis is a front end, a portion of the first discharge groove from the front end to an end on a heel side (an edge of a pair of edges located forward in the rotation direction) is an outer portion, an end of the outer portion located most rearward in the rotation direction is a return end, and an angle formed by a virtual line connecting the rotation axis and the front end and a virtual line connecting the rotation axis and the return end is a return amount, the return amount in the first portion is greater than the return amount in the second portion.
本開示の態様1におけるドリルは、回転軸の周りで回転可能な棒形状であって、前記回転軸に沿って先端から後端に向かって延びた本体を有する。前記本体は、前記先端に位置する第1切刃と、前記第1切刃から延びた第1排出溝と、を有する。前記第1排出溝は、前記先端の側に位置する第1部位と、前記第1部位よりも前記後端の側に位置する第2部位と、を有する。前記回転軸に直交する前記第1排出溝の断面において、前記第1排出溝のうち前記回転軸の回転方向の最も前方に位置する端部を前方端部、前記第1排出溝のうち前記前方端部からヒール側の端部(一対の縁部のうち回転方向前方に位置する縁部)にかけての部位を外側部位、前記外側部位のうち前記回転方向の最も後方に位置する端部を返し端部、前記回転軸及び前記前方端部を結ぶ仮想直線と、前記回転軸及び前記返し端部を結ぶ仮想直線とがなす角度を返し量としたとき、前記第1部位における前記返し量が、前記第2部位における前記返し量よりも大きい。 <Summary>
The drill in the first aspect of the present disclosure has a rod-shaped body that can rotate around a rotation axis and extends from a front end to a rear end along the rotation axis. The body has a first cutting edge located at the front end and a first discharge groove extending from the first cutting edge. The first discharge groove has a first portion located on the front end side and a second portion located on the rear end side of the first portion. In a cross section of the first discharge groove perpendicular to the rotation axis, an end of the first discharge groove located most forward in the rotation direction of the rotation axis is a front end, a portion of the first discharge groove from the front end to an end on a heel side (an edge of a pair of edges located forward in the rotation direction) is an outer portion, an end of the outer portion located most rearward in the rotation direction is a return end, and an angle formed by a virtual line connecting the rotation axis and the front end and a virtual line connecting the rotation axis and the return end is a return amount, the return amount in the first portion is greater than the return amount in the second portion.
本開示の態様2におけるドリルは、前記態様1に基づいており、前記回転軸に直交する前記第1部位の断面において、前記第1排出溝及び前記本体の外周面が交わる2つの交点の間の距離を前記第1部位の開口幅とし、前記回転軸に直交する前記第2部位の断面において、前記第1排出溝及び前記本体の外周面が交わる2つの交点の間の距離を前記第2部位の開口幅として、前記第1部位の開口幅が前記第2部位の開口幅よりも小さい、という要素を有する。
The drill in aspect 2 of the present disclosure is based on aspect 1, and has the following elements: in a cross section of the first portion perpendicular to the rotation axis, the distance between two intersections where the first discharge groove and the outer peripheral surface of the main body intersect is the opening width of the first portion; in a cross section of the second portion perpendicular to the rotation axis, the distance between two intersections where the first discharge groove and the outer peripheral surface of the main body intersect is the opening width of the second portion, and the opening width of the first portion is smaller than the opening width of the second portion.
本開示の態様3におけるドリルは、前記態様1または2に基づいており、前記本体は、前記第1切刃に対して前記回転方向の前方に位置する第2切刃と、前記第2切刃から延びた第2排出溝と、前記第1排出溝及び前記第2排出溝との間に位置する外周面と、をさらに有し、前記外周面は、前記第1部位に隣接する第1領域と、前記第2部位に隣接する第2領域と、を有し、前記第1領域は、前記回転方向の後方に向かって突出する凸部を有する、という要素を有する。
The drill in aspect 3 of the present disclosure is based on aspect 1 or 2, and the main body further has a second cutting edge located forward of the first cutting edge in the direction of rotation, a second discharge groove extending from the second cutting edge, and an outer peripheral surface located between the first discharge groove and the second discharge groove, the outer peripheral surface having a first region adjacent to the first portion and a second region adjacent to the second portion, and the first region has a convex portion that protrudes toward the rear in the direction of rotation.
本開示の態様4におけるドリルは、前記態様3に基づいており、前記回転軸に直交する前記第1部位の断面における、前記第1領域の前記回転方向における前方側の端点から後方側の端点までの間の長さが、前記回転軸に直交する前記第2部位の断面における、前記第2領域の前記回転方向における前方側の端点から後方側の端点までの間の長さよりも大きい、という要素を有する。
The drill in aspect 4 of the present disclosure is based on aspect 3, and has an element in which the length from the front end point to the rear end point of the first region in the direction of rotation in a cross section of the first portion perpendicular to the rotation axis is greater than the length from the front end point to the rear end point of the second region in the direction of rotation in a cross section of the second portion perpendicular to the rotation axis.
本開示の態様5におけるドリルは、前記態様1から4の何れか一態様に基づいており、前記回転軸に沿った方向における前記第1部位の長さが、前記回転軸に沿った方向における前記第2部位の長さよりも小さい、という要素を有する。
The drill in aspect 5 of the present disclosure is based on any one of aspects 1 to 4, and has an element in which the length of the first portion in the direction along the rotation axis is smaller than the length of the second portion in the direction along the rotation axis.
本開示の態様6におけるドリルは、前記態様1から5の何れか一態様に基づいており、前記第1部位は、前記回転軸に直交する前記第1部位の断面において、前記回転軸から離れるにしたがって溝幅が小さくなる狭窄部を有する、という要素を有する。
The drill in aspect 6 of the present disclosure is based on any one of aspects 1 to 5, and has an element in which the first portion has a narrowed portion in a cross section of the first portion perpendicular to the rotation axis, in which the groove width decreases with increasing distance from the rotation axis.
本開示の態様7におけるドリルは、前記態様6に基づいており、前記第2部位は、前記回転軸から離れるにしたがって溝幅が大きくなる、という要素を有する。
The drill in aspect 7 of the present disclosure is based on aspect 6, and the second portion has an element in which the groove width increases with increasing distance from the rotation axis.
本開示の態様8におけるドリルは、前記態様1から7の何れか一態様に基づいており、前記第1部位は、前記第1排出溝における前記先端の側の端部を含む、という要素を有する。
The drill in aspect 8 of the present disclosure is based on any one of aspects 1 to 7, and has the following element: the first portion includes an end portion of the first discharge groove on the side of the tip.
本開示の態様9における切削加工物の製造方法は、前記態様1から8の何れか一態様のドリルを前記回転軸の周りに回転させる工程と、回転している前記ドリルを被削材に接触させる工程と、前記ドリルを前記被削材から離す工程と、を含む。
The method for manufacturing a machined product in aspect 9 of the present disclosure includes the steps of rotating a drill in any one of aspects 1 to 8 around the rotation axis, contacting the rotating drill with a workpiece, and removing the drill from the workpiece.
〔附記事項〕
以上、本開示に係る発明について、諸図面及び実施形態に基づいて説明してきた。しかし、本開示に係る発明は上述した各実施形態に限定されるものではない。すなわち、本開示に係る発明は本開示で示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本開示に係る発明の技術的範囲に含まれる。つまり、当業者であれば本開示に基づき種々の変形または修正を行うことが容易であることに注意されたい。また、これらの変形または修正は本開示の範囲に含まれることに留意されたい。 [Additional Notes]
The invention according to the present disclosure has been described above based on the drawings and embodiments. However, the invention according to the present disclosure is not limited to the above-mentioned embodiments. In other words, the invention according to the present disclosure can be modified in various ways within the scope of the present disclosure, and embodiments obtained by appropriately combining the technical means disclosed in different embodiments are also included in the technical scope of the invention according to the present disclosure. In other words, it should be noted that a person skilled in the art can easily make various modifications or corrections based on the present disclosure. It should also be noted that these modifications or corrections are included in the scope of the present disclosure.
以上、本開示に係る発明について、諸図面及び実施形態に基づいて説明してきた。しかし、本開示に係る発明は上述した各実施形態に限定されるものではない。すなわち、本開示に係る発明は本開示で示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本開示に係る発明の技術的範囲に含まれる。つまり、当業者であれば本開示に基づき種々の変形または修正を行うことが容易であることに注意されたい。また、これらの変形または修正は本開示の範囲に含まれることに留意されたい。 [Additional Notes]
The invention according to the present disclosure has been described above based on the drawings and embodiments. However, the invention according to the present disclosure is not limited to the above-mentioned embodiments. In other words, the invention according to the present disclosure can be modified in various ways within the scope of the present disclosure, and embodiments obtained by appropriately combining the technical means disclosed in different embodiments are also included in the technical scope of the invention according to the present disclosure. In other words, it should be noted that a person skilled in the art can easily make various modifications or corrections based on the present disclosure. It should also be noted that these modifications or corrections are included in the scope of the present disclosure.
1・・・ドリル
3・・・本体
3a・・先端
3b・・後端
5・・・把持部
7・・・切削部
9・・・インサート
11・・・ホルダ
13・・・切刃
13a・・第1切刃
13b・・第2切刃
15・・・排出溝
17・・・逃げ面
19・・・第1排出溝
21・・・チゼルエッジ
23・・・第1部位
23a・・部位
25・・・第2部位
27・・・前方端部
29・・・外側部位
31・・・返し端部
33・・・第2排出溝
35・・・第1外周面
35a・・第1領域
35b・・第2領域
37・・・凸部
101・・・切削加工物
103・・・被削材
105・・・加工穴
1...Drill 3... Main body 3a... Tip 3b... Rear end 5... Gripping part 7... Cutting part 9... Insert 11... Holder 13... Cutting blade 13a... First cutting edge 13b... Second cutting edge 15... Discharge groove 17... Flank surface 19... First discharge groove 21... Chisel edge 23... First part 23a... Part 25... - Second part 27... Front end 29... Outer part 31... Turned end 33... Second discharge groove 35... First outer circumferential surface 35a... First region 35b... No. 2 area 37... Convex portion 101... Cutting workpiece 103... Work material 105... Machining hole
3・・・本体
3a・・先端
3b・・後端
5・・・把持部
7・・・切削部
9・・・インサート
11・・・ホルダ
13・・・切刃
13a・・第1切刃
13b・・第2切刃
15・・・排出溝
17・・・逃げ面
19・・・第1排出溝
21・・・チゼルエッジ
23・・・第1部位
23a・・部位
25・・・第2部位
27・・・前方端部
29・・・外側部位
31・・・返し端部
33・・・第2排出溝
35・・・第1外周面
35a・・第1領域
35b・・第2領域
37・・・凸部
101・・・切削加工物
103・・・被削材
105・・・加工穴
1...
Claims (9)
- 回転軸の周りで回転可能な棒形状であって、前記回転軸に沿って先端から後端に向かって延びた本体を有し、
前記本体は、
前記先端に位置する第1切刃と、
前記第1切刃から延びた第1排出溝と、を有し、
前記第1排出溝は、
前記先端の側に位置する第1部位と、
前記第1部位よりも前記後端の側に位置する第2部位と、を有し、
前記回転軸に直交する前記第1排出溝の断面において、
前記第1排出溝のうち前記回転軸の回転方向の最も前方に位置する端部を前方端部、
前記第1排出溝のうち前記前方端部からヒール側の端部にかけての部位を外側部位、
前記外側部位のうち前記回転方向の最も後方に位置する端部を返し端部、
前記回転軸及び前記前方端部を結ぶ仮想直線と、前記回転軸及び前記返し端部を結ぶ仮想直線とがなす角度を返し量としたとき、
前記第1部位における前記返し量が、前記第2部位における前記返し量よりも大きいドリル。 The rod-shaped body is rotatable around a rotation axis and has a body extending from a front end to a rear end along the rotation axis.
The body includes:
A first cutting edge located at the tip;
a first discharge groove extending from the first cutting edge,
The first discharge groove is
A first portion located on the tip side;
a second portion located closer to the rear end than the first portion,
In a cross section of the first discharge groove perpendicular to the rotation axis,
a front end portion of the first discharge groove that is located most forward in the rotation direction of the rotary shaft;
a portion of the first discharge groove extending from the front end portion to the heel side end portion;
The end portion of the outer portion located furthest to the rear in the direction of rotation is a return end portion;
When the angle between the imaginary line connecting the rotation axis and the front end and the imaginary line connecting the rotation axis and the return end is defined as the return amount,
The drill has a larger return amount in the first portion than in the second portion. - 前記回転軸に直交する前記第1部位の断面において、前記第1排出溝及び前記本体の外周面が交わる2つの交点の間の距離を前記第1部位の開口幅とし、前記回転軸に直交する前記第2部位の断面において、前記第1排出溝及び前記本体の外周面が交わる2つの交点の間の距離を前記第2部位の開口幅として、前記第1部位の開口幅が前記第2部位の開口幅よりも小さい、請求項1に記載のドリル。 The drill according to claim 1, wherein the opening width of the first portion is the distance between two intersections where the first discharge groove and the outer peripheral surface of the body intersect in a cross section of the first portion perpendicular to the rotation axis, and the opening width of the second portion is the distance between two intersections where the first discharge groove and the outer peripheral surface of the body intersect in a cross section of the second portion perpendicular to the rotation axis, and the opening width of the first portion is smaller than the opening width of the second portion.
- 前記本体は、
前記第1切刃に対して前記回転方向の前方に位置する第2切刃と、
前記第2切刃から延びた第2排出溝と、
前記第1排出溝及び前記第2排出溝との間に位置する外周面と、をさらに有し、
前記外周面は、
前記第1部位に隣接する第1領域と、
前記第2部位に隣接する第2領域と、を有し、
前記第1領域は、前記回転方向の後方に向かって突出する凸部を有する、請求項1または2に記載のドリル。 The body includes:
A second cutting edge located forward of the first cutting edge in the rotation direction;
a second discharge groove extending from the second cutting edge;
an outer circumferential surface located between the first discharge groove and the second discharge groove;
The outer circumferential surface is
A first region adjacent to the first portion;
a second region adjacent to the second portion,
The drill according to claim 1 or 2, wherein the first region has a convex portion that protrudes rearward in the rotational direction. - 前記回転軸に直交する前記第1部位の断面における、前記第1領域の前記回転方向における前方側の端点から後方側の端点までの間の長さが、前記回転軸に直交する前記第2部位の断面における、前記第2領域の前記回転方向における前方側の端点から後方側の端点までの間の長さよりも大きい、請求項3に記載のドリル。 The drill according to claim 3, wherein the length from the front end point to the rear end point of the first region in the direction of rotation in a cross section of the first portion perpendicular to the rotation axis is greater than the length from the front end point to the rear end point of the second region in the direction of rotation in a cross section of the second portion perpendicular to the rotation axis.
- 前記回転軸に沿った方向における前記第1部位の長さが、前記回転軸に沿った方向における前記第2部位の長さよりも小さい、請求項1~4のいずれか1項に記載のドリル。 The drill according to any one of claims 1 to 4, wherein the length of the first portion in the direction along the rotation axis is smaller than the length of the second portion in the direction along the rotation axis.
- 前記第1部位は、前記回転軸に直交する前記第1部位の断面において、前記回転軸から離れるにしたがって溝幅が小さくなる狭窄部を有する、請求項1~5のいずれか1項に記載のドリル。 The drill according to any one of claims 1 to 5, wherein the first portion has a narrowed portion in which the groove width decreases with increasing distance from the rotation axis in a cross section of the first portion perpendicular to the rotation axis.
- 前記第2部位は、前記回転軸から離れるにしたがって溝幅が大きくなる、請求項6に記載のドリル。 The drill according to claim 6, wherein the second portion has a groove width that increases with increasing distance from the rotation axis.
- 前記第1部位は、前記第1排出溝における前記先端の側の端部を含む、請求項1~7のいずれか1項に記載のドリル。 The drill according to any one of claims 1 to 7, wherein the first portion includes an end portion of the first discharge groove on the side of the tip.
- 請求項1~8のいずれか1項に記載のドリルを前記回転軸の周りに回転させる工程と、
回転している前記ドリルを被削材に接触させる工程と、
前記ドリルを前記被削材から離す工程と、を備えた切削加工物の製造方法。 A step of rotating the drill according to any one of claims 1 to 8 around the rotation axis;
contacting the rotating drill with a workpiece;
and removing the drill from the workpiece.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2023-072546 | 2023-04-26 | ||
JP2023072546 | 2023-04-26 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024224769A1 true WO2024224769A1 (en) | 2024-10-31 |
Family
ID=93255988
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2024/005717 WO2024224769A1 (en) | 2023-04-26 | 2024-02-19 | Drill and manufacturing method of cutting workpiece |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2024224769A1 (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03142118A (en) * | 1989-10-27 | 1991-06-17 | Mitsubishi Materials Corp | Boring tool |
JPH09501109A (en) * | 1993-08-06 | 1997-02-04 | ケンナメタル ヘルテル アクチェンゲゼルシャフト ウェルクツォイゲ ウント ハルトシュトッフェ | Twist drill |
JP2004216468A (en) * | 2003-01-09 | 2004-08-05 | Toshiba Tungaloy Co Ltd | Twist drill |
-
2024
- 2024-02-19 WO PCT/JP2024/005717 patent/WO2024224769A1/en unknown
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03142118A (en) * | 1989-10-27 | 1991-06-17 | Mitsubishi Materials Corp | Boring tool |
JPH09501109A (en) * | 1993-08-06 | 1997-02-04 | ケンナメタル ヘルテル アクチェンゲゼルシャフト ウェルクツォイゲ ウント ハルトシュトッフェ | Twist drill |
JP2004216468A (en) * | 2003-01-09 | 2004-08-05 | Toshiba Tungaloy Co Ltd | Twist drill |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6892503B2 (en) | Rotating tool | |
JP7168673B2 (en) | Manufacturing method for cutting insert, rotating tool and cutting work | |
JP7142681B2 (en) | Manufacturing method for drills and cutting products | |
JP7103933B2 (en) | Manufacturing method for cutting inserts, rotary tools and machined products | |
JP6882517B2 (en) | Rotating tool | |
JPWO2018180775A1 (en) | Rotary tool | |
WO2021230176A1 (en) | Drill and method for manufacturing cut workpiece | |
JP7163166B2 (en) | Manufacturing method for rotary tool and cut product | |
JP6941047B2 (en) | Manufacturing method for rotary tools and cuttings | |
WO2024224769A1 (en) | Drill and manufacturing method of cutting workpiece | |
WO2018139584A1 (en) | Cutting insert, drill, and method for manufacturing cut product using same | |
JP7279163B2 (en) | Manufacturing method for rotary tool and cut product | |
WO2024224768A1 (en) | Drill and method for manufacturing cut article | |
WO2023162671A1 (en) | Drill and method for manufacturing cut workpiece | |
CN114144274B (en) | Drill and method for manufacturing cut product | |
WO2021153599A1 (en) | Rotating tool and method for manufacturing cut workpieces | |
JP7499342B2 (en) | Method for manufacturing cutting insert, rotary tool, and machined product | |
JP7391108B2 (en) | Method for manufacturing drills and cutting products | |
JP6875518B2 (en) | Manufacturing method for drills and machined products | |
JPWO2023162671A5 (en) | ||
JP2024021376A (en) | Method of manufacturing drill and cutting work item | |
JP2020069558A (en) | Rotary tool and manufacturing method for cutting work-piece | |
JP2021100772A (en) | Rotary tool and cut product manufacturing method |