WO2024215047A2 - Method and device for energy saving in wireless communication system - Google Patents

Method and device for energy saving in wireless communication system Download PDF

Info

Publication number
WO2024215047A2
WO2024215047A2 PCT/KR2024/004697 KR2024004697W WO2024215047A2 WO 2024215047 A2 WO2024215047 A2 WO 2024215047A2 KR 2024004697 W KR2024004697 W KR 2024004697W WO 2024215047 A2 WO2024215047 A2 WO 2024215047A2
Authority
WO
WIPO (PCT)
Prior art keywords
wus
cell
base station
terminal
information
Prior art date
Application number
PCT/KR2024/004697
Other languages
French (fr)
Korean (ko)
Inventor
이준영
김영범
박성진
이재원
Original Assignee
삼성전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성전자 주식회사 filed Critical 삼성전자 주식회사
Publication of WO2024215047A2 publication Critical patent/WO2024215047A2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0203Power saving arrangements in the radio access network or backbone network of wireless communication networks
    • H04W52/0206Power saving arrangements in the radio access network or backbone network of wireless communication networks in access points, e.g. base stations
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/08Access restriction or access information delivery, e.g. discovery data delivery
    • H04W48/14Access restriction or access information delivery, e.g. discovery data delivery using user query or user detection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present disclosure relates to a method and apparatus for energy saving in a wireless communication system.
  • 5G mobile communication technology defines a wide frequency band to enable fast transmission speeds and new services, and can be implemented not only in the sub-6GHz frequency band, such as 3.5 gigahertz (3.5GHz), but also in the ultra-high frequency band called millimeter wave (mmWave), such as 28GHz and 39GHz ('Above 6GHz').
  • mmWave millimeter wave
  • mmWave millimeter wave
  • 28GHz and 39GHz 'Above 6GHz'
  • 6G mobile communication technology which is called the system after 5G communication (Beyond 5G)
  • implementation in the terahertz band for example, the 3 terahertz (3THz) band at 95GHz
  • 3THz the 3 terahertz
  • the technologies included beamforming and massive MIMO to mitigate path loss of radio waves in ultra-high frequency bands and increase the transmission distance of radio waves, support for various numerologies (such as operation of multiple subcarrier intervals) and dynamic operation of slot formats for efficient use of ultra-high frequency resources, initial access technology to support multi-beam transmission and wideband, definition and operation of BWP (Bidth Part), new channel coding methods such as LDPC (Low Density Parity Check) codes for large-capacity data transmission and Polar Code for reliable transmission of control information, and L2 pre-processing (L2 Standardization has been made for network slicing, which provides dedicated networks specialized for specific services, and pre-processing.
  • LDPC Low Density Parity Check
  • V2X Vehicle-to-Everything
  • NR-U New Radio Unlicensed
  • UE Power Saving NR terminal low power consumption technology
  • NTN Non-Terrestrial Network
  • Standardization of wireless interface architecture/protocols for technologies such as the Industrial Internet of Things (IIoT) to support new services through linkage and convergence with other industries, Integrated Access and Backhaul (IAB) to provide nodes for expanding network service areas by integrating wireless backhaul links and access links, Mobility Enhancement including Conditional Handover and Dual Active Protocol Stack (DAPS) handover, and 2-step RACH for NR to simplify random access procedures is also in progress, and standardization of system architecture/services for 5G baseline architecture (e.g. Service based Architecture, Service based Interface) for grafting Network Functions Virtualization (NFV) and Software-Defined Networking (SDN) technologies, and Mobile Edge Computing (MEC) that provides services based on the location of the terminal is also in progress.
  • 5G baseline architecture e.g. Service based Architecture, Service based Interface
  • NFV Network Functions Virtualization
  • SDN Software-Defined Networking
  • MEC Mobile Edge Computing
  • Various embodiments of the present disclosure provide a new cell definition and a method for on-demand cell activation through a wake-up signal (WUS) transmitted by a terminal for reducing energy consumption of a base station in a wireless communication system.
  • WUS wake-up signal
  • a method for reducing energy consumption of a base station by a base station in a wireless communication system may include an operation in which the base station activates a cell for access or synchronization (e.g., an Access/Sync cell) and deactivates an on-demand cell for traffic (or packet) processing (e.g., a Data cell), and an operation in which the base station sets configuration information for a WUS, etc. to activate the on-demand cell through upper layer signaling and L1 signaling to terminals that have performed initial access (or, RACH procedure) through the Access/Sync cell, and a method in which the terminal activates the on-demand cell based on the configuration.
  • a cell for access or synchronization e.g., an Access/Sync cell
  • deactivates an on-demand cell for traffic (or packet) processing e.g., a Data cell
  • the base station sets configuration information for a WUS, etc. to activate the on-demand cell through upper layer signaling and L1 signaling to terminals that have performed initial access (or
  • a method for reducing energy consumption of a base station by a terminal in a wireless communication system may include an operation in which the terminal performs an initial access (or RACH procedure) to an Access/Sync cell, an operation in which the terminal receives configuration information of an on-demand cell for processing traffic (or packets) from the base station through upper layer signaling, and an operation in which a WUS for activating the on-demand cell is transmitted based on the received information.
  • a method performed by a terminal of a communication system comprises: a step of performing an initial connection procedure with a first base station corresponding to a first cell; a step of receiving wake up signal (WUS) configuration information from the first base station; a step of transmitting a WUS to a second base station corresponding to a second cell based on the WUS configuration information; and a step of monitoring a response signal (acknowledgement) corresponding to the WUS during a WUS response window, wherein the WUS configuration information includes at least one of carrier frequency information of the second cell, WUS transmission occasion information, WUS format information, and WUS response window configuration information.
  • WUS configuration information includes at least one of carrier frequency information of the second cell, WUS transmission occasion information, WUS format information, and WUS response window configuration information.
  • a method performed by a first base station corresponding to a first cell of a communication system comprising: a step of performing an initial connection procedure with a terminal; and a step of transmitting wake up signal (WUS) setting information to the terminal, wherein the first base station corresponding to the first cell is connected to a second base station corresponding to a second cell, and a WUS according to the WUS setting information is transmitted from the terminal to the second base station, and the WUS setting information includes at least one of carrier frequency information of the second cell, WUS transmission occasion information, WUS format information, and WUS response window setting information.
  • WUS wake up signal
  • the method comprises the steps of: receiving a wake up signal (WUS) from a terminal; transmitting an acknowledgement signal for the WUS to the terminal during a WUS response window; and performing an access procedure for the terminal and the second cell, wherein WUS related information is transmitted from the second base station to a first base station corresponding to the first cell, and the WUS related information includes at least one of carrier frequency information of the second cell, WUS transmission occasion information, WUS format information, and WUS response window setting information.
  • WUS wake up signal
  • a transceiver in a terminal of a communication system, a transceiver; and a control unit connected to the transceiver and including one or more processors, wherein the control unit is configured to: perform an initial access procedure with a first base station corresponding to a first cell, receive wake up signal (WUS) configuration information from the first base station, transmit a WUS to a second base station corresponding to a second cell based on the WUS configuration information, and monitor a response signal (acknowledgement) corresponding to the WUS during a WUS response window, wherein the WUS configuration information includes at least one of carrier frequency information of the second cell, WUS transmission occasion information, WUS format information, and WUS response window configuration information.
  • WUS configuration information includes at least one of carrier frequency information of the second cell, WUS transmission occasion information, WUS format information, and WUS response window configuration information.
  • a transceiver configured to perform an initial connection procedure with a terminal and transmit wake up signal (WUS) configuration information to the terminal, and the first base station corresponding to the first cell is connected to a second base station corresponding to a second cell, and a WUS according to the WUS configuration information is transmitted from the terminal to the second base station, and the WUS configuration information includes at least one of carrier frequency information, WUS transmission occasion information, WUS format information, and WUS response window configuration information of the second cell, and the first cell corresponds to a cell type for connection and synchronization, and the second cell corresponds to a cell type for data transmission and reception.
  • WUS wake up signal
  • a transceiver in a second base station corresponding to a second cell of a communication system, a transceiver; and a control unit connected to the transceiver and including one or more processors, wherein the control unit is configured to: receive a wake up signal (WUS) from a terminal, transmit an acknowledgement signal for the WUS to the terminal during a WUS acknowledgement window; and perform an access procedure for the terminal and the second cell, wherein WUS related information is transmitted from the second base station to a first base station corresponding to the first cell, and the WUS related information includes at least one of carrier frequency information, WUS transmission occasion information, WUS format information, and WUS acknowledgement window setting information of the second cell, and wherein the first cell corresponds to a cell type for access and synchronization, and the second cell corresponds to a cell type for data transmission and reception.
  • WUS wake up signal
  • the control unit is configured to: receive a wake up signal (WUS) from a terminal, transmit an acknowledgement signal for the WUS to the
  • the base station can reduce the overhead of always having to periodically activate cells for common channels and signal transmission, thereby managing and saving the energy of the base station more efficiently.
  • Figure 1 is a diagram illustrating the basic structure of the time-frequency domain, which is a wireless resource domain in a wireless communication system.
  • Figure 2 is a diagram illustrating a slot structure considered in a wireless communication system.
  • FIG. 3 is a diagram showing an example of a time domain mapping structure of a synchronization signal and a beam sweeping operation.
  • FIG. 4 is a diagram illustrating a synchronization signal block considered in a wireless communication system.
  • FIG. 5 is a diagram illustrating an example of various transmissions of a synchronization signal block in a frequency band below 6 GHz considered in a communication system to which the present disclosure is applied.
  • FIG. 6 is a diagram illustrating an example of transmission of a synchronization signal block in a frequency band of 6 GHz or higher considered in a wireless communication system to which the present disclosure is applied.
  • FIG. 7 is a diagram illustrating an example of transmission of a synchronization signal block according to a subcarrier interval within 5 ms in a wireless communication system to which the present disclosure is applied.
  • Figure 8 is a diagram illustrating an example of DMRS patterns (type 1 and type 2) used for communication between a base station and a terminal in a 5G system.
  • FIG. 9 is a diagram illustrating an example of channel estimation using DMRS received on one PUSCH in a time band of a 5G system to which the present disclosure is applied.
  • FIG. 10 is a diagram illustrating an example of a method for resetting SSB transmission through dynamic signaling according to an embodiment.
  • FIG. 11 is a diagram illustrating an example of a method for resetting BWP and BW through dynamic signaling according to an embodiment.
  • FIG. 12 is a diagram illustrating an example of a method for resetting DRX through dynamic signaling according to an embodiment.
  • FIG. 13 is a diagram illustrating an example of a DTx method for base station energy saving.
  • Figure 14 is a diagram for explaining an example of the operation of a base station according to gNB WUS.
  • FIG. 15 is a diagram illustrating an example of a spatial domain (SD) adaptation method of a base station for energy saving according to an embodiment.
  • SD spatial domain
  • FIG. 16 is a diagram illustrating an example of a concept of cells having different functions for energy saving according to an embodiment.
  • FIG. 17 is a diagram illustrating an example of an on-demand cell selection method for energy saving of a base station according to an embodiment.
  • FIG. 18a is a diagram illustrating an example of a procedure for on-demand cell selection for energy saving of a base station according to an embodiment of the present disclosure.
  • FIG. 18b is a diagram illustrating an example of a procedure for on-demand cell selection for energy saving of a base station according to an embodiment of the present disclosure.
  • FIG. 19a is a diagram illustrating an example of a WUS transmission method for activating data cells for energy saving of a base station according to an embodiment.
  • FIG. 19b is a diagram illustrating another example of a WUS transmission method for activating data cells for energy saving of a base station according to an embodiment.
  • FIG. 20 is a flowchart illustrating an example of an operation of a terminal that applies a cell selection method for energy saving of a base station in a 5G or 6G system to which the present disclosure is applied.
  • FIG. 21A is a flowchart illustrating an example of a base station operation serving a cell of cell type 1 applying a cell selection method for energy saving of a base station in a 5G or 6G system to which the present disclosure is applied.
  • FIG. 21b is a flowchart illustrating an example of a base station operation serving a cell of cell type 2 for energy saving of the base station in a 5G or 6G system to which the present disclosure is applied.
  • FIG. 22 is a block diagram of a terminal according to one embodiment of the present disclosure.
  • FIG. 23 is a block diagram of a base station according to one embodiment of the present disclosure.
  • A/B/C may be understood as at least one of A, B, and C.
  • the base station is an entity that performs resource allocation of a terminal, and may be at least one of a gNode B, an eNode B, a Node B, a BS (Base Station), a wireless access unit, a base station controller, or a node on a network.
  • the terminal may include a UE (user equipment), an MS (mobile station), a cellular phone, a smartphone, a computer, or a multimedia system capable of performing a communication function.
  • the downlink (DL) refers to a wireless transmission path of a signal that a base station transmits to a terminal
  • the uplink (UL) refers to a wireless transmission path of a signal that a terminal transmits to a base station.
  • an LTE or LTE-A system may be described as an example below, embodiments of the present disclosure may be applied to other communication systems having a similar technical background or channel type.
  • the 5th generation mobile communication technology (5G, new radio, NR) developed after LTE-A may be included here, and the 5G below may be a concept that includes existing LTE, LTE-A, and other similar services.
  • the present disclosure may be applied to other communication systems through some modifications without significantly departing from the scope of the present disclosure, as judged by a person having skilled technical knowledge.
  • each block of the processing flow diagrams and combinations of the flow diagrams can be performed by computer program instructions.
  • These computer program instructions can be loaded onto a processor of a general-purpose computer, a special-purpose computer, or other programmable data processing equipment, so that the instructions executed by the processor of the computer or other programmable data processing equipment create a means for performing the functions described in the flow diagram block(s).
  • These computer program instructions can also be stored in a computer-available or computer-readable memory that can be directed to a computer or other programmable data processing equipment to implement the function in a specific manner, so that the instructions stored in the computer-available or computer-readable memory can also produce a manufactured article including an instruction means for performing the functions described in the flow diagram block(s).
  • the computer program instructions may be installed on a computer or other programmable data processing apparatus, a series of operational steps may be performed on the computer or other programmable data processing apparatus to produce a computer-executable process, so that the instructions executing the computer or other programmable data processing apparatus may also provide steps for executing the functions described in the flowchart block(s).
  • each block may represent a module, segment, or portion of code that contains one or more executable instructions for performing a particular logical function(s). It should also be noted that in some alternative implementation examples, the functions mentioned in the blocks may occur out of order. For example, two blocks shown in succession may in fact be performed substantially concurrently, or the blocks may sometimes be performed in reverse order, depending on the functionality they perform.
  • the term ' ⁇ part' used in this disclosure means a software or hardware component such as a Field Programmable Gate Array (FPGA) or an Application Specific Integrated Circuit (ASIC), and the ' ⁇ part' performs certain roles.
  • the ' ⁇ part' is not limited to software or hardware.
  • the ' ⁇ part' may be configured to be on an addressable storage medium and may be configured to play one or more processors.
  • the ' ⁇ part' includes components such as software components, object-oriented software components, class components, and task components, processes, functions, properties, procedures, subroutines, segments of program code, drivers, firmware, microcode, circuitry, data, databases, data structures, tables, arrays, and variables.
  • components and ' ⁇ parts' may be combined into a smaller number of components and ' ⁇ parts' or further separated into additional components and ' ⁇ parts'.
  • the components and ' ⁇ parts' may be implemented to play one or more CPUs within the device or secure multimedia card.
  • the ' ⁇ part' may include one or more processors.
  • Wireless communication systems are evolving from providing voice-oriented services in the early days to broadband wireless communication systems that provide high-speed, high-quality packet data services, such as 3GPP's HSPA (high speed packet access), LTE (long term evolution or E-UTRA (evolved universal terrestrial radio access)), LTE-Advanced (LTE-A), LTE-Pro, 3GPP2's HRPD (high rate packet data), UMB (ultra mobile broadband), and IEEE's 802.17e communication standards.
  • 3GPP's HSPA high speed packet access
  • LTE long term evolution or E-UTRA (evolved universal terrestrial radio access)
  • LTE-A LTE-Advanced
  • LTE-Pro LTE-Pro
  • 3GPP2's HRPD high rate packet data
  • UMB ultra mobile broadband
  • IEEE's 802.17e communication standards such as 3GPP's HSPA (high speed packet access), LTE (long term evolution or E-UTRA (evolved universal terrestrial radio access)
  • LTE-A long term evolution
  • the downlink (DL) adopts the OFDM (orthogonal frequency division multiplexing) method
  • the uplink (UL) adopts the SC-FDMA (single carrier frequency division multiple access) method.
  • the uplink refers to a wireless link in which a terminal transmits data or a control signal to a base station
  • the downlink refers to a wireless link in which a base station transmits data or a control signal to a terminal (UE).
  • the aforementioned multiple access method typically allocates and operates time-frequency resources for transmitting data or control information to each user so that they do not overlap, that is, so that orthogonality is established, thereby distinguishing the data or control information of each user.
  • the 5G communication system which is a communication system after LTE, must support services that simultaneously satisfy various requirements so that it can freely reflect the diverse needs of users and service providers.
  • Services considered for the 5G communication system include enhanced mobile broadband (eMBB), massive machine type communication (mMTC), or ultra reliability low latency communication (URLLC).
  • eMBB enhanced mobile broadband
  • mMTC massive machine type communication
  • URLLC ultra reliability low latency communication
  • eMBB aims to provide a data transmission rate that is higher than that supported by existing LTE, LTE-A or LTE-Pro.
  • eMBB should be able to provide a peak data rate of 20 Gbps in the downlink and a peak data rate of 10 Gbps in the uplink from the perspective of a single base station.
  • the 5G communication system should provide an increased user perceived data rate while providing the peak data rate.
  • improvements in various transmission/reception technologies including further improved multi-input multi-output (MIMO) transmission technology, may be required.
  • MIMO multi-input multi-output
  • a 5G communication system can satisfy the data transmission rate required by the 5G communication system by using a wider frequency bandwidth than 20 MHz in a frequency band of 3 to 6 GHz or higher than 6 GHz.
  • mMTC is being considered to support application services such as the Internet of Things (IoT) in 5G communication systems.
  • IoT Internet of Things
  • mMTC requires support for mass terminal connection, improved terminal coverage, improved battery life, and reduced terminal cost in order to efficiently provide the Internet of Things. Since the Internet of Things provides communication functions by attaching various sensors and various devices, it must be able to support a large number of terminals (e.g., 1,000,000 terminals/ km2 ) in a cell.
  • terminals supporting mMTC are likely to be located in shadow areas that cells do not cover, such as basements of buildings, due to the nature of the service, and therefore require wider coverage than other services provided by 5G communication systems.
  • Terminals supporting mMTC must be composed of low-cost terminals, and since it is difficult to frequently replace the terminal batteries, they require very long battery life times, such as 10 to 16 years.
  • URLLC is a cellular-based wireless communication service used for a specific purpose (mission-critical). For example, services used for remote control of robots or machinery, industrial automation, unmanaged aerial vehicles, remote health care, or emergency alert can be considered. Therefore, the communication provided by URLLC must provide very low latency and very high reliability. For example, a service supporting URLLC must satisfy an air interface latency of less than 0.5 milliseconds, and at the same time, satisfy the requirement of a packet error rate of less than 10 -5 . Therefore, for a service supporting URLLC, the 5G system must provide a smaller transmit time interval (TTI) than other services, and at the same time, allocate wide resources in the frequency band to secure the reliability of the communication link.
  • TTI transmit time interval
  • the three services of the 5G communication system (hereinafter, interchangeable with the 5G system), namely, eMBB, URLLC, and mMTC, can be multiplexed and transmitted in one system.
  • Different transmission/reception techniques and transmission/reception parameters can be used between services to satisfy different requirements of each service.
  • FIG. 1 is a diagram illustrating the basic structure of a time-frequency domain, which is a wireless resource domain, in a wireless communication system to which the present disclosure is applied.
  • the horizontal axis represents the time domain
  • the vertical axis represents the frequency domain.
  • the basic unit of resources in the time and frequency domains is a resource element (RE, 101), which can be defined as one OFDM (orthogonal frequency division multiplexing) symbol (or DFT-s-OFDM (discrete Fourier transform spread OFDM) symbol) (102) in the time axis and one subcarrier (subcarrier, 103) in the frequency axis.
  • OFDM orthogonal frequency division multiplexing
  • DFT-s-OFDM discrete Fourier transform spread OFDM
  • 103 subcarrier
  • RB resource block
  • consecutive REs can form one resource block (RB, 104).
  • the number of symbols per subframe in the time domain is indicated.
  • a set of consecutive OFDM symbols can constitute one subframe (subframe, 110).
  • FIG. 2 is a diagram illustrating a slot structure considered in a wireless communication system to which the present disclosure is applied.
  • FIG. 2 illustrates an example of a slot structure including a frame (200), a subframe (201), and a slot (202 or 203).
  • One frame (200) can be defined as 10 ms.
  • One subframe (201) can be defined as 1 ms, and therefore one frame (200) can be composed of a total of 10 subframes (201).
  • One subframe (201) may be composed of one or more slots (202 or 203), and the number of slots (202 or 203) per one subframe (201) may vary depending on ⁇ (204 or 205), which is a setting value for the subcarrier space (SCS).
  • SCS subcarrier space
  • a synchronization signal block (SSB, which may be used interchangeably with an SS block or an SS/PBCH block) may be transmitted for initial connection of a terminal, and the synchronization signal block may include a primary synchronization signal (PSS), a secondary synchronization signal (SSS), and a physical broadcast channel (PBCH).
  • PSS primary synchronization signal
  • SSS secondary synchronization signal
  • PBCH physical broadcast channel
  • the terminal can first obtain downlink time and frequency domain synchronization from a synchronization signal through a cell search and obtain a cell ID.
  • the synchronization signal may include a PSS and an SSS.
  • the terminal can obtain transmission and reception related system information such as a system bandwidth or related control information and basic parameter values by receiving a PBCH transmitting a master information block (MIB) from a base station. Based on this information, the terminal can perform decoding on a physical downlink control channel (PDCCH) and a physical downlink shared channel (PDSCH) to obtain a system information block (SIB).
  • PDCH physical downlink control channel
  • PDSCH physical downlink shared channel
  • the terminal can exchange identification related information between the base station and the terminal through a random access stage and go through registration and authentication stages to initially access the network.
  • the terminal can obtain cell common transmission and reception related control information by receiving system information (or SIB) transmitted by the base station.
  • SIB system information
  • the above cell common transmission and reception related control information may include random access related control information, paging related control information, common control information for various physical channels, etc.
  • a synchronization signal is a signal that serves as a reference for cell search, and a subcarrier spacing can be applied to suit channel environments such as phase noise, etc., for each frequency band.
  • a subcarrier spacing can be applied differently depending on the service type in order to support various services as described above.
  • FIG. 3 is a diagram showing an example of a time domain mapping structure of a synchronization signal and a beam sweeping operation.
  • - PSS A signal that serves as a reference for DL time/frequency synchronization and provides some cell ID information.
  • - SSS It serves as a reference for DL time/frequency synchronization and provides some remaining information such as cell ID. Additionally, it can serve as a reference signal for demodulation of PBCH.
  • MIB which is essential system information required for transmission and reception of data channels and control channels of the terminal.
  • the essential system information may include information such as search space-related control information indicating radio resource mapping information of the control channel, scheduling control information for a separate data channel transmitting system information, and SFN (system frame number), which is a frame unit index that serves as a timing reference.
  • An SS/PBCH block consists of N OFDM symbols and is composed of a combination of PSS, SSS, PBCH, etc.
  • an SS/PBCH block is the minimum unit to which beam sweeping is applied.
  • N can be 4.
  • a base station can transmit up to L SS/PBCH blocks, and the L SS/PBCH blocks are mapped within a half frame (0.5 ms).
  • the L SS/PBCH blocks are periodically repeated in units of a predetermined period P. The period P can be notified to a terminal by a signaling from the base station. If there is no separate signaling for the period P, the terminal applies a pre-agreed default value.
  • FIG. 3 shows an example in which beam sweeping is applied to SS/PBCH block units over time.
  • terminal 1 (305) receives an SS/PBCH block using a beam radiated in the direction of #d0 (303) by beamforming applied to SS/PBCH block #0 at time t1 (301).
  • terminal 2 (306) receives an SS/PBCH block using a beam radiated in the direction of #d4 (304) by beamforming applied to SS/PBCH block #4 at time t2 (302).
  • the terminal can obtain an optimal synchronization signal through a beam radiated from the base station in the direction where the terminal is located.
  • terminal 1 (305) may have difficulty in obtaining time/frequency synchronization and essential system information from an SS/PBCH block through a beam radiated in the direction of #d4, which is far from the location of terminal 1.
  • the terminal may also receive the SS/PBCH block to determine whether the radio link quality of the current cell is maintained at a certain level or higher.
  • the terminal may receive the SS/PBCH block of the adjacent cell to determine the radio link quality of the adjacent cell and obtain time/frequency synchronization of the adjacent cell.
  • the synchronization signal is a signal that serves as a reference for cell search, and can be transmitted by applying a subcarrier interval suitable for the channel environment (e.g., phase noise) for each frequency band.
  • the 5G base station can transmit multiple synchronization signal blocks according to the number of analog beams to be operated. For example, PSS and SSS can be mapped and transmitted across 12 RBs, and PBCH can be mapped and transmitted across 24 RBs. The structure in which the synchronization signal and PBCH are transmitted in the 5G communication system is described below.
  • FIG. 4 is a diagram illustrating a synchronization signal block considered in a wireless communication system to which the present disclosure is applied.
  • a synchronization signal block may include a PSS (401), an SSS (403), and a PBCH (402).
  • the synchronization signal block (400) can be mapped to four OFDM symbols (404) in the time axis.
  • the PSS (401) and the SSS (403) can be transmitted in 12 RBs (405) in the frequency axis and in the first and third OFDM symbols in the time axis, respectively.
  • a total of 1008 different cell IDs can be defined.
  • the PSS (401) can have three different values
  • the SSS (403) can have 336 different values.
  • SSS(403) can have a value between 0 and 335.
  • PSS (401) can have a value between 0 and 2.
  • the terminal class Cell ID is a combination of The value can be estimated.
  • PBCH (402) can be transmitted in resources including 6 RBs (407, 408) on both sides, excluding 12 RBs (405) in the middle, while SSS (403) is transmitted in 24 RBs (406) in the frequency axis and in the 2nd to 4th OFDM symbols of an SS block in the time axis.
  • PBCH (402) can include a PBCH payload and a PBCH DMRS (demodulation reference signal), and various system information called MIB can be transmitted in the PBCH payload.
  • MIB can include information as shown in Table 2 below.
  • MIB SEQUENCE ⁇ systemFrameNumber BIT STRING (SIZE (6)); subCarrierSpacingCommon ENUMERATED ⁇ scs15or60, scs30or120 ⁇ , ssb-SubcarrierOffset INTEGER (0..15); dmrs-TypeA-Position ENUMERATED ⁇ pos2, pos3 ⁇ , pdcch-ConfigSIB1 PDCCH-ConfigSIB1, cellBarred ENUMERATED ⁇ barred, notBarred ⁇ , intraFreqReselection ENUMERATED ⁇ allowed, notAllowed ⁇ , spare BIT STRING (SIZE (1)) ⁇
  • the frequency domain offset of the synchronization signal block can be indicated through the 4-bit ssb-SubcarrierOffset in the MIB.
  • the index of the synchronization signal block including the PBCH can be indirectly obtained through decoding of the PBCH DMRS and PBCH.
  • 3 bits obtained through decoding of PBCH DMRS indicate a synchronization signal block index
  • a total of 6 bits, including 3 bits obtained through decoding of PBCH DMRS and 3 bits obtained through PBCH decoding included in the PBCH payload can indicate a synchronization signal block index including the PBCH.
  • the subcarrier spacing of the common downlink control channel can be indicated through 1 bit (subCarrierSpacingCommon) in the MIB, and time-frequency resource configuration information of CORESET (control resource set) and search space (SS) can be indicated through 8 bits (pdcch-ConfigSIB1).
  • - SFN 6 bits (systemFrameNumber) in the MIB can be used to indicate part of the SFN.
  • the 4 least significant bits (LSB) of the SFN are included in the PBCH payload, so that the terminal can obtain them indirectly through PBCH decoding.
  • the synchronization signal block index described above and 1 bit included in the PBCH payload are obtained through PBCH decoding, allowing the terminal to indirectly determine whether the synchronization signal block was transmitted in the first or second half frame of the radio frame.
  • the transmission bandwidths (12 RB (405)) of the PSS (401) and SSS (403) and the transmission bandwidth (24 RB (406)) of the PBCH (402) are different from each other, in the first OFDM symbol where the PSS (401) is transmitted within the transmission bandwidth of the PBCH (402), 6 RBs (407, 408) on both sides exist except for the 12 RBs in the middle where the PSS (401) is transmitted, and the above areas can be used to transmit other signals or can be empty.
  • Synchronization signal blocks can be transmitted using the same analog beam.
  • PSS (401), SSS (403), and PBCH (402) can all be transmitted using the same beam. Since analog beams have a characteristic that they cannot be applied differently in the frequency axis, the same analog beam can be applied to all frequency axis RBs within a specific OFDM symbol to which a specific analog beam is applied. For example, four OFDM symbols in which PSS (401), SSS (403), and PBCH (402) are transmitted can all be transmitted using the same analog beam.
  • FIG. 5 is a diagram illustrating an example of various transmissions of a synchronization signal block in a frequency band below 6 GHz considered in a communication system to which the present disclosure is applied.
  • a 15 kHz subcarrier spacing (SCS, 520) and a 30 kHz subcarrier spacing (530, 440) may be used for transmission of a synchronization signal block in a frequency band below 6 GHz.
  • the 15 kHz subcarrier spacing (520) there may be one transmission case (e.g., case #1 (501)) for a synchronization signal block
  • the 30 kHz subcarrier spacing (530, 540) there may be two transmission cases (e.g., case #2 (402) and case #3 (503)) for a synchronization signal block.
  • synchronization signal block #0 (507) and synchronization signal block #1 (508) are illustrated.
  • synchronization signal block #0 (507) can be mapped to 4 consecutive symbols from the 3rd OFDM symbol
  • synchronization signal block #1 (508) can be mapped to 4 consecutive symbols from the 9th OFDM symbol.
  • Different analog beams may be applied to the synchronization signal block #0 (507) and the synchronization signal block #1 (508).
  • the same beam may be applied to all 3rd to 6th OFDM symbols to which the synchronization signal block #0 (507) is mapped, and the same beam may be applied to all 9th to 12th OFDM symbols to which the synchronization signal block #1 (508) is mapped.
  • the analog beam may be freely determined at the discretion of the base station to determine which beam to use.
  • Synchronization signal block #0 (509) and synchronization signal block #1 (510) can be mapped from the 5th OFDM symbol and the 9th OFDM symbol of the first slot, respectively, and synchronization signal block #2 (511) and synchronization signal block #3 (512) can be mapped from the 3rd OFDM symbol and the 7th OFDM symbol of the second slot, respectively.
  • Different analog beams may be applied to the synchronization signal block #0 (509), synchronization signal block #1 (510), synchronization signal block #2 (511), and synchronization signal block #3 (512), respectively.
  • the same analog beam may be applied to the 5th to 8th OFDM symbols of the first slot in which synchronization signal block #0 (509) is transmitted, the 9th to 12th OFDM symbols of the first slot in which synchronization signal block #1 (510) is transmitted, the 3rd to 6th symbols of the second slot in which synchronization signal block #2 (511) is transmitted, and the 7th to 10th symbols of the second slot in which synchronization signal block #3 (512) is transmitted, respectively.
  • the analog beam may be freely determined at the discretion of the base station as to which beam to use.
  • synchronization signal block #0 513
  • synchronization signal block #1 514
  • synchronization signal block #2 515
  • synchronization signal block #3 516
  • Synchronization signal block #0 (513) and synchronization signal block #1 (514) can be mapped from the 3rd OFDM symbol and the 9th OFDM symbol of the first slot, respectively, and synchronization signal block #2 (515) and synchronization signal block #3 (516) can be mapped from the 3rd OFDM symbol and the 9th OFDM symbol of the second slot, respectively.
  • Different analog beams may be used for the above synchronization signal block #0 (513), synchronization signal block #1 (514), synchronization signal block #2 (515), and synchronization signal block #3 (516), respectively.
  • the same analog beam may be used in all four OFDM symbols in which each synchronization signal block is transmitted, and which beam to use in OFDM symbols to which the synchronization signal block is not mapped may be freely determined at the discretion of the base station.
  • FIG. 6 is a diagram illustrating an example of transmission of a synchronization signal block in a frequency band of 6 GHz or higher considered in a wireless communication system to which the present disclosure is applied.
  • a subcarrier spacing of 120 kHz (630) as in the example of Case #4 (610) and a subcarrier spacing of 240 kHz (640) as in the example of Case #5 (620) can be used for transmission of synchronization signal blocks.
  • synchronization signal block #0 (603), synchronization signal block #1 (604), synchronization signal block #2 (605), and synchronization signal block #3 (606) are illustrated as being transmitted within 0.25 ms (i.e., two slots).
  • Synchronization signal block #0 (603) and synchronization signal block #1 (604) can be mapped to four consecutive symbols from the 5th OFDM symbol of the first slot and to four consecutive symbols from the 9th OFDM symbol, respectively, and synchronization signal block #2 (605) and synchronization signal block #3 (606) can be mapped to four consecutive symbols from the 3rd OFDM symbol of the second slot and to four consecutive symbols from the 7th OFDM symbol, respectively.
  • different analog beams may be used for each of synchronization signal block #0 (603), synchronization signal block #1 (604), synchronization signal block #2 (605), and synchronization signal block #3 (606).
  • the same analog beam may be used in all four OFDM symbols in which each synchronization signal block is transmitted, and which beam to use in OFDM symbols to which the synchronization signal block is not mapped may be freely determined at the discretion of the base station.
  • synchronization signal block #0 (607), synchronization signal block #1 (608), synchronization signal block #2 (609), synchronization signal block #3 (610), synchronization signal block #4 (611), synchronization signal block #5 (612), synchronization signal block #6 (613), and synchronization signal block #7 (614) are illustrated as being transmitted within 0.25 ms (i.e. 4 slots).
  • Synchronization signal block #0 (607) and synchronization signal block #1 (608) can be mapped to 4 consecutive symbols from the 9th OFDM symbol of the first slot, and to 4 consecutive symbols from the 13th OFDM symbol, respectively, and synchronization signal block #2 (609) and synchronization signal block #3 (610) can be mapped to 4 consecutive symbols from the 3rd OFDM symbol of the second slot, and to 4 consecutive symbols from the 7th OFDM symbol, respectively, and synchronization signal block #4 (611), synchronization signal block #5 (612), and synchronization signal block #6 (613) can be mapped to 4 consecutive symbols from the 5th OFDM symbol of the third slot, and to 4 consecutive symbols from the 9th OFDM symbol, and to 4 consecutive symbols from the 13th OFDM symbol, respectively, and synchronization signal block #7 (614) can be mapped to 4 consecutive symbols from the 4th OFDM symbol of the It can be mapped to four consecutive symbols starting from the third OFDM symbol.
  • different analog beams may be used for synchronization signal block #0 (607), synchronization signal block #1 (608), synchronization signal block #2 (609), synchronization signal block #3 (610), synchronization signal block #4 (611), synchronization signal block #5 (612), synchronization signal block #6 (613), and synchronization signal block #7 (614), respectively.
  • the same analog beam may be used in all four OFDM symbols in which each synchronization signal block is transmitted, and in OFDM symbols to which the synchronization signal block is not mapped, which beam to be used may be freely determined at the discretion of the base station.
  • FIG. 7 is a diagram illustrating an example of transmission of a synchronization signal block according to a subcarrier interval within 5 ms in a wireless communication system to which the present disclosure is applied.
  • a synchronization signal block may be transmitted periodically in units of, for example, a time interval (710) of 5 ms (corresponding to 5 subframes or half frames).
  • up to 4 synchronization signal blocks can be transmitted within 5 ms (710) time.
  • up to 8 synchronization signal blocks can be transmitted.
  • up to 64 synchronization signal blocks can be transmitted.
  • subcarrier spacing of 15 kHz and 30 kHz can be used in the frequency below 6 GHz.
  • synchronization signal blocks can be mapped to the first and second slots in a frequency band of 3 GHz or less, so that up to 4 (721) can be transmitted, and in the frequency band exceeding 3 GHz and below 6 GHz, synchronization signal blocks can be mapped to the first, second, third, and fourth slots, so that up to 8 (722) can be transmitted.
  • synchronization signal blocks can be mapped starting from the first slot in a frequency band below 3 GHz, so that up to 4 (731, 741) can be transmitted, and in a frequency band exceeding 3 GHz and below 6 GHz, synchronization signal blocks can be mapped starting from the first and third slots, so that up to 8 (732, 742) can be transmitted.
  • Subcarrier spacing of 120 kHz and 240 kHz can be used in frequencies exceeding 6 GHz.
  • synchronization signal blocks can be mapped starting from the 1st, 3rd, 5th, 7th, 11th, 13th, 15th, 17th, 21st, 23rd, 25th, 27th, 31st, 33rd, 35th, and 37th slots in the frequency band exceeding 6 GHz, so that up to 64 (751) can be transmitted.
  • Fig. 7 in case #5 (620) of Fig.
  • synchronization signal blocks in a frequency band exceeding 6 GHz can be mapped starting from the 1st, 5th, 9th, 13th, 21st, 25th, 29th, and 33rd slots, so that up to 64 (761) can be transmitted.
  • the terminal can obtain SIB after performing decoding of PDCCH and PDSCH based on system information included in the received MIB.
  • SIB can include at least one of uplink cell bandwidth related information, random access parameters, paging parameters, or parameters related to uplink power control.
  • a terminal can form a wireless link with a network through a random access procedure based on synchronization with the network and system information acquired during a cell search process of a cell.
  • Random access can use a contention-based or non-contention-based (contention-free) method.
  • a contention-based random access method can be used, for example, for the purpose of moving from an RRC_IDLE (RRC idle) state to an RRC_CONNECTED (RRC connected) state.
  • Non-contention-based random access can be used to re-establish uplink synchronization when downlink data arrives, in the case of a handover, or in the case of position measurement.
  • Table 3 shows examples of conditions (events) that trigger a random access procedure in a 5G system.
  • the terminal receives MeasObjectNR of MeasObjectToAddModList as a setting for SSB-based intra/inter-frequency measurements and CSI-RS-based intra/inter-frequency measurements through upper layer signaling.
  • MeasObjectNR can be configured as shown in Table 4 below.
  • MeasObjectNR SEQUENCE ⁇ ssbFrequency ARFCN-ValueNR OPTIONAL, -- Cond SSBorAssociatedSSB ssbSubcarrierSpacing SubcarrierSpacing OPTIONAL, -- Cond SSBorAssociatedSSB smtc1 SSB-MTC OPTIONAL, -- Cond SSBorAssociatedSSB smtc2 SSB-MTC2 OPTIONAL, -- Cond IntraFreqConnected refFreqCSI-RS ARFCN-ValueNR OPTIONAL, -- Cond CSI-RS referenceSignalConfig ReferenceSignalConfig; absThreshSS-BlocksConsolidation ThresholdNR OPTIONAL, -- Need R absThreshCSI-RS-Consolidation ThresholdNR OPTIONAL, -- Need R nrofSS-BlocksToAverage INTEGER (2..maxNrofSS-BlocksToAverage) OPTIONAL,
  • FR frequency range 1 can only apply 15 kHz or 30 kHz, and FR2 can only apply 120 kHz or 240 kHz.
  • - smtc1 Indicates SMTC (SS/PBCH block measurement timing configuration), and can set the primary measurement timing configuration and the timing offset and duration for SSB.
  • SIB2 for intra-frequency, inter-frequency and inter-RAT (radio access technology) cell re-selection, or reconfigurationWithSync for NR PSCell (primary secondary cell) change and NR PCell (primary cell) change
  • SMTC can be configured to the UE through SCellConfig for NR SCell addition.
  • the terminal can set the first SMTC according to periodictiyAndOffset (providing periodicity and offset) through smtc1 set through upper layer signaling for SSB measurement.
  • the first subframe of each SMTC occasion can start in the subframe of SFN and SpCell satisfying the conditions of Table 5 below.
  • the terminal can set additional SMTC according to the set smtc2 periodicity and the offset and interval of smtc1 for the cells indicated by the pci-List value of smtc2 in the same MeasObjectNR.
  • the terminal can be set to smtc and measure SSB through smtc2-LP (with long periodicity) and smtc3list for IAB-MT (integrated access and backhaul - mobile termination) for the same frequency (e.g., frequency for intra-frequency cell reselection) or different frequencies (e.g., frequencies for inter-frequency cell reselection).
  • the terminal may not consider SSB transmitted in subframes other than SMTC occasions for SSB-based RRM measurement at the set ssbFrequency.
  • the base station can use various multi-TRP (transmit/receive point) operation schemes depending on the serving cell configuration and the PCI configuration. Among these, when two TRPs located at a physically separate distance have different PCIs, there may be two ways to operate the two TRPs.
  • Two TRPs with different PCIs can be operated with two serving cell configurations.
  • the base station can configure channels and signals transmitted from different TRPs into different serving cell configurations through [Operation Method 1]. That is, each TRP has an independent serving cell configuration, and the frequency band values FrequencyInfoDLs indicated by DownlinkConfigCommon in each serving cell configuration can indicate at least some overlapping bands. Since the above multiple TRPs operate based on multiple ServCellIndexes (e.g., ServCellIndex #1 and ServCellIndex #2), it is possible for each TRP to use a separate PCI. That is, the base station can allocate one PCI per ServCellIndex.
  • ServCellIndexes e.g., ServCellIndex #1 and ServCellIndex #2
  • the base station can appropriately select the value of ServCellIndex indicated by the cell parameter in QCL-Info to map the PCI suitable for each TRP and designate the SSB transmitted from either TRP 1 or TRP 2 as the source reference RS of the QCL configuration information.
  • this configuration applies one serving cell configuration that can be used for carrier aggregation (CA) of the terminal to multiple TRPs, there is a problem that it limits the degree of freedom of CA configuration or increases signaling burden.
  • CA carrier aggregation
  • Two TRPs with different PCIs can be operated with one serving cell configuration.
  • the base station can configure channels and signals transmitted from different TRPs through one serving cell configuration through [Operation Method 2]. Since the terminal operates based on one ServCellIndex (e.g., ServCellIndex #1), it is impossible for the terminal to recognize the PCI (e.g., PCI #2) allocated to the second TRP.
  • ServCellIndex #1 e.g., ServCellIndex #1
  • [Operation Method 2] can have more freedom in CA configuration than the above-described [Operation Method 1], but if multiple SSBs are transmitted from TRP 1 and TRP 2, the SSBs have different PCIs (e.g., PCI #1 and PCI #2), and the base station may not be able to map the PCI (e.g., PCI #2) of the second TRP through ServCellIndex indicated by the cell parameter in QCL-Info.
  • the base station can only designate the SSB transmitted from TRP 1 as the source reference RS of the QCL configuration information, and may not be able to designate the SSB transmitted from TRP 2.
  • [Operation Method 1] can perform multi-TRP operation for two TRPs with different PCIs through additional serving cell configuration without additional standard support, but [Operation Method 2] can operate based on the additional terminal capability report and base station configuration information below.
  • the terminal can report to the base station through the terminal capability that it can set additional PCIs other than the PCI of the serving cell through upper layer signaling from the base station.
  • the terminal capability may include two independent numbers, X1 and X2, or each X1 and X2 may be reported as an independent terminal capability.
  • - X1 represents the maximum number of additional PCIs that can be set for the terminal, and the PCI may be different from the PCI of the serving cell.
  • the time domain position and periodicity of the SSB corresponding to the additional PCI may be the same as those of the SSB of the serving cell.
  • - X2 means the maximum number of additional PCIs that can be set for the terminal, and the PCI at this time may be different from the PCI of the serving cell, and the time domain location and period of the SSB corresponding to the additional PCI at this time may mean different cases from the SSB corresponding to the PCI reported as X1.
  • the values reported as X1 and X2 through the terminal capability report can each have an integer value from 0 to 7.
  • the terminal may receive, from the base station, an upper layer signaling, SSB-MTCAdditionalPCI-r17, based on the terminal capability report described above, and the upper layer signaling may include at least a plurality of additional PCIs having different values from the serving cell, SSB transmit power corresponding to each additional PCI, and ssb-PositionInBurst corresponding to each additional PCI, and the maximum number of additional PCIs that can be set may be 7.
  • the terminal can assume that the SSB corresponding to the additional PCI of different values from the serving cell has the same center frequency, subcarrier spacing, and subframe number offset as the SSB of the serving cell.
  • the terminal can assume that the reference RS (e.g. SSB or CSI-RS) corresponding to the PCI of the serving cell is always connected to the activated TCI state, and in case of an additionally configured PCI having a different value from the serving cell, when there are one or more PCIs, it can assume that only one PCI among those PCIs is connected to the activated TCI state.
  • the reference RS e.g. SSB or CSI-RS
  • a terminal is configured with two different coresetPoolIndexes, and a reference RS corresponding to a serving cell PCI is connected to one or more activated TCI states, and a reference RS corresponding to an additionally configured PCI having a different value from that of the serving cell is connected to one or more activated TCI states, the terminal can expect that the activated TCI state(s) connected to the serving cell PCI will be connected to one of the two coresetPoolIndexes, and the activated TCI state(s) connected to the additionally configured PCI having a different value from that of the serving cell will be connected to the remaining one coresetPoolIndex.
  • the terminal capability report and the upper layer signaling of the base station for the above-described [Operation Method 2] can set an additional PCI with a different value from the PCI of the serving cell. If the above setting does not exist, the SSB corresponding to the additional PCI with a different value from the PCI of the serving cell that cannot be designated as the source reference RS can be used for the purpose of designating it as the source reference RS of the QCL configuration information.
  • the SSB that can be set for purposes such as RRM, mobility management, or handover
  • the configuration information for the SSB that can be set in the above-described upper layer signaling smtc1 and smtc2
  • it can be used to serve as a QCL source RS for supporting multiple TRP operations with different PCIs.
  • DMRS can be composed of multiple DMRS ports, and each port maintains orthogonality so as not to cause interference with each other by using CDM (code division multiplexing) or FDM (frequency division multiplexing).
  • CDM code division multiplexing
  • FDM frequency division multiplexing
  • the term for DMRS can be expressed by different terms depending on the user's intention and the purpose of using the reference signal.
  • the term DMRS is only provided as a specific example to easily explain the technical content of the present disclosure and to help the understanding of the present disclosure, and is not intended to limit the scope of the present disclosure. That is, it is obvious to a person having ordinary skill in the art to which the present disclosure belongs that the technical idea of the present disclosure can be implemented for any reference signal.
  • Fig. 8 is a diagram illustrating an example of DMRS patterns (type 1 and type 2) used for communication between a base station and a terminal in a 5G system. Two DMRS patterns can be supported in a 5G system, and two DMRS patterns are illustrated in Fig. 8.
  • reference numbers 801 and 802 correspond to DMRS type1, where reference number 801 represents a 1 symbol pattern and reference number 802 represents a 2 symbol pattern.
  • DMRS type1 (801, 802) is a DMRS pattern of a comb 2 structure and can be composed of two CDM groups, and different CDM groups can be FDMed.
  • the 1 symbol pattern (801) frequency-based CDM is applied to the same CDM group to distinguish two DMRS ports, and thus a total of four orthogonal DMRS ports can be set.
  • the 1 symbol pattern (801) can include a DMRS port ID mapped to each CDM group (the DMRS port ID for downlink can be represented by the illustrated number + 1000).
  • time/frequency-based CDM is applied to the same CDM group to distinguish four DMRS ports, and thus a total of eight orthogonal DMRS ports can be set.
  • the 2 symbol pattern (802) can include a DMRS port ID mapped to each CDM group (the DMRS port ID for downlink can be represented by the illustrated number + 1000).
  • DMRS type2 (803, 804) is a DMRS pattern in which FD-OCC (frequency domain orthogonal cover codes) are applied to frequency-adjacent subcarriers. It can be composed of three CDM groups, and different CDM groups can be FDMed.
  • 1 symbol pattern (803) frequency-based CDM is applied to the same CDM group, so that 2 DMRS ports can be distinguished, and thus a total of 6 orthogonal DMRS ports can be set.
  • 1 symbol pattern (803) can include DMRS port IDs mapped to each CDM group (DMRS port ID for downlink can be indicated by the illustrated number + 1000).
  • time/frequency-based CDM is applied to the same CDM group, so that 4 DMRS ports can be distinguished, and thus a total of 12 orthogonal DMRS ports can be set.
  • 2 symbol pattern (804) can include DMRS port IDs mapped to each CDM group (DMRS port ID for downlink can be indicated by the illustrated number + 1000).
  • DMRS patterns e.g., DMRS patterns (801, 802) or DMRS patterns (803, 804)
  • each DMRS pattern is a one symbol pattern (801 or 803) or two adjacent symbol patterns (802 or 804).
  • not only the DMRS port number is scheduled, but also the number of CDM groups scheduled together for PDSCH rate matching can be configured and signaled.
  • both of the above-described two DMRS patterns can be supported in DL and UL
  • DFT-S-OFDM discrete Fourier transform spread OFDM
  • Front-loaded DMRS refers to the first DMRS that is transmitted and received in the frontmost symbol in the time domain among DMRSs
  • additional DMRS refers to DMRS that is transmitted and received in the symbol later than the front-loaded DMRS in the time domain.
  • the number of additional DMRSs can be configured from a minimum of 0 to a maximum of 3.
  • the same pattern as the front-loaded DMRS may be assumed.
  • the additional DMRS when information about whether the DMRS pattern type described above is type 1 or type 2 for the front-loaded DMRS, information about whether the DMRS pattern is a 1-symbol pattern or an adjacent 2-symbol pattern, and information about the number of CDM groups used with the DMRS port are indicated, when an additional DMRS is additionally configured, it may be assumed that the additional DMRS has the same DMRS information as the front-loaded DMRS.
  • the downlink DMRS settings described above can be set via RRC signaling as shown in Table 6 below.
  • DMRS-DownlinkConfig SEQUENCE ⁇ dmrs-Type ENUMERATED ⁇ type2 ⁇ OPTIONAL, -- Need S dmrs-AdditionalPosition ENUMERATED ⁇ pos0, pos1, pos3 ⁇ OPTIONAL, -- Need S maxLength ENUMERATED ⁇ len2 ⁇ OPTIONAL, -- Need S scramblingID0 INTEGER (0..65535) OPTIONAL, -- Need S scramblingID1 INTEGER (0..65535) OPTIONAL, -- Need S phaseTrackingRS SetupRelease ⁇ PTRS-DownlinkConfig ⁇ OPTIONAL, -- Need M ... ⁇
  • dmrs-Type can set DMRS type
  • dmrs-AdditionalPosition can set additional DMRS OFDM symbols
  • maxLength can set 1 symbol DMRS pattern or 2 symbol DMRS pattern
  • scramblingID0 and scramblingID1 can set scrambling IDs
  • phaseTrackingRS can set PTRS (phase tracking reference signal).
  • the above-described uplink DMRS configuration can be set via RRC signaling as shown in Table 7 below.
  • DMRS-UplinkConfig :: SEQUENCE ⁇ dmrs-Type ENUMERATED ⁇ type2 ⁇ OPTIONAL, -- Need S dmrs-AdditionalPosition ENUMERATED ⁇ pos0, pos1, pos3 ⁇ OPTIONAL, -- Need R phaseTrackingRS SetupRelease ⁇ PTRS-UplinkConfig ⁇ OPTIONAL, -- Need M maxLength ENUMERATED ⁇ len2 ⁇ OPTIONAL, -- Need S transformPrecodingDisabled SEQUENCE ⁇ scramblingID0 INTEGER (0..65535) OPTIONAL, -- Need S scramblingID1 INTEGER (0..65535) OPTIONAL, -- Need S ...
  • OPTIONAL -- Need R transformPrecodingEnabled SEQUENCE ⁇ nPUSCH-Identity INTEGER (0..1007) OPTIONAL, -- Need S sequenceGroupHopping ENUMERATED ⁇ disabled ⁇ OPTIONAL, -- Need S sequenceHopping ENUMERATED ⁇ enabled ⁇ OPTIONAL, -- Need S ... ⁇ OPTIONAL, -- Need R ... ⁇
  • dmrs-Type can set DMRS type
  • dmrs-AdditionalPosition can set additional DMRS OFDM symbols
  • phaseTrackingRS can set PTRS
  • maxLength can set 1 symbol DMRS pattern or 2 symbol DMRS pattern
  • scramblingID0 and scramblingID1 can set scrambling ID0s
  • nPUSCH-Identity can set cell ID for DFT-s-OFDM
  • sequenceGroupHopping can disable sequence group hopping
  • sequenceHopping can enable sequence hopping.
  • FIG. 9 is a diagram illustrating an example of channel estimation using DMRS received on one PUSCH in a time band of a 5G system.
  • channel estimation when performing channel estimation for data decoding using DMRS, channel estimation can be performed within a PRG (precoding resource block group), which is a bundling unit, by using PRB bundling (physical resource blocks bundling) linked to a system band in a frequency band.
  • PRG precoding resource block group
  • PRB bundling physical resource blocks bundling
  • a base station can set a time domain resource allocation information table for a downlink data channel (PDSCH) and an uplink data channel (PUSCH) to a terminal through higher layer signaling (e.g., RRC signaling).
  • PDSCH downlink data channel
  • PUSCH uplink data channel
  • the time domain resource allocation information may include, for example, PDCCH-to-PDSCH slot timing (corresponding to a slot-unit time interval between a PDCCH being received and a slot-unit time interval between a PDSCH being scheduled by the received PDCCH being transmitted, denoted as K0) or PDCCH-to-PUSCH slot timing (corresponding to a slot-unit time interval between a PDCCH being received and a slot-unit time interval between a PUSCH being scheduled by the received PDCCH being transmitted, denoted as K2), information on a position and a length of a start symbol at which a PDSCH or a PUSCH is scheduled within a slot, and at least one of a PDSCH or a PUSCH mapping type.
  • time domain resource allocation information for PDSCH can be set to a terminal through RRC signaling as shown in Table 8 below.
  • k0 represents PDCCH-to-PDSCH timing (i.e., slot offset between DCI and the scheduled PDSCH) in slot units
  • mappingType represents a PDSCH mapping type
  • startSymbolAndLength represents a start symbol and length of a PDSCH
  • repetitionNumber may represent the number of PDSCH transmission occasions according to a slot-based repetition scheme.
  • time domain resource allocation information for PUSCH may be set to a terminal through RRC signaling as shown in Table 9 below.
  • k2 represents PDCCH-to-PUSCH timing (i.e., slot offset between DCI and the scheduled PUSCH) in slot units
  • mappingType represents a PUSCH mapping type
  • startSymbolAndLength or StartSymbol and length represent a start symbol and a length of a PUSCH
  • numberOfRepetitions may represent a number of repetitions applied to a PUSCH transmission.
  • the base station may indicate at least one of the entries of the table for the time domain resource allocation information to the UE via L1 signaling (e.g., downlink control information (DCI)) (e.g., by a 'time domain resource allocation' field in the DCI).
  • DCI downlink control information
  • the UE may acquire time domain resource allocation information for the PDSCH or PUSCH based on the DCI received from the base station.
  • FIG. 10 is a diagram illustrating an example of a method for resetting SSB transmission through dynamic signaling according to an embodiment.
  • the base station can reset SSB transmission configuration information by broadcasting bitmap '1010xxxx' (1004) through Group/Cell common DCI (Group/Cell common DCI, 1003) having nwes-RNTI (network energy saving-radio network temporary identifier, or, es-RNTI) to reduce the density of SSB transmission for energy saving.
  • Group/Cell common DCI Group/Cell common DCI, 1003
  • nwes-RNTI network energy saving-radio network temporary identifier, or, es-RNTI
  • transmission of SS block#1 (1005) and SSblock#3 (1006) can be canceled based on the bitmap (1004) set as the Group/Cell common DCI.
  • FIG. 10 provides a method (1001) for resetting SSB transmission through bitmap-based Group/Cell common DCI.
  • the base station can reset the ssb-periodicity set through upper layer signaling via group/cell common DCI.
  • timer information for indicating the application time of the group/cell common DCI
  • SSB can be transmitted through SSB transmission information reset to the group/cell common DCI during the set timer.
  • the base station can operate based on the SSB transmission information set by the existing upper layer signaling. This may correspond to an operation of changing the setting from the general mode to the energy saving mode via the timer, and may correspond to the resetting of the SSB configuration information due to this.
  • the base station can set the application time and period of the SSB configuration information reset through the group/cell common DCI to the terminal using offset and interval information.
  • the terminal may not monitor the SSB during the set interval from the moment of receiving the group/cell common DCI to the moment of applying the offset.
  • FIG. 11 is a diagram illustrating an example of a method for resetting BWP and BW through dynamic signaling according to an embodiment.
  • a terminal can operate with a BWP or BW activated through upper layer signaling and L1 signaling from a base station (1101). For example, a terminal can operate with a Full BW of 100MHz with a fixed power PSD B. At this time, the base station can adjust the BW and BWP to activate a narrower BW of 40MHz for the terminal with the same power PSD B for energy saving (1102). At this time, the BW or BWP adjustment operation for energy saving of the base station can be set to match the BWP and BW settings that are set UE-specifically through group common DCI and cell specific DCI (1103). For example, UE#0 and UE#1 can have different BWP configurations and locations.
  • the base station can set the BW and BWP of all terminals to be the same.
  • BWP or BW in the operation for energy saving can be set to one or more, and this can be used to set BWP for each terminal group.
  • DRX discontinuous reception
  • FIG. 12 is a diagram illustrating an example of a method for resetting DRX through dynamic signaling according to an embodiment.
  • the base station can set DRX for each terminal specifically through upper layer signaling.
  • each terminal can be set to different drx-LongCycle or drx-ShortCycle, drx-onDurationTimer, and drx-InactivityTimer.
  • the base station can set the DRX settings for each terminal specifically through L1 signaling in a UE group specific or cell specific manner for energy saving (1201). Through this, the base station can obtain the same effect of saving power for each terminal through DRX for energy saving.
  • FIG. 13 is a diagram illustrating an example of a DTx method for base station energy saving.
  • the base station can configure DTx for energy saving through higher layer signaling (e.g. new SIB or RRC signaling for DTx) and L1 signaling (DCI).
  • the base station can set dtx-onDurationTimer (1305) for transmitting a reference signal for measuring PDCCH for scheduling DL SCH for DTx operation, RRM measurement, beam management, and path loss, dtx-InactivityTimer (1306) for receiving PDSCH after receiving PDCCH for scheduling DL SCH, synchronization signal (SS, 1303) setting information for synchronization before dtx-onDurationTimer, dtx-offset (1304) for setting an offset between SS and dtx-onDurationTimer, and dtx-(Long)Cycle (1302) for DTx to operate periodically based on the setting information.
  • SS synchronization signal
  • SS synchronization signal
  • dtx-offset 1304
  • dtx-cycle can be set to multiple long cycles and short cycles.
  • the base station considers the state of turning off (or deactivating) the transmitter, and therefore may not transmit DL CCH, SCH, and DL RS. That is, the base station can transmit downlink (PDCCH, PDSCH, RS, etc.) only during SS, dtx-onDurationTimer, and dtx-InactivityTimer during the DTx operation.
  • the number of SS-gapbetweenBurst or SS bursts can be additionally set as additional information of the configured SS.
  • Figure 14 is a diagram for explaining an example of the operation of a base station according to gNB WUS.
  • the base station can keep the transmitter end in the off (or inactive) state during the inactive state (or sleep mode) of the base station for energy saving. Thereafter, the base station can receive a gNB WUS (1402) for activating the sleep mode of the base station from the terminal. Thereafter, when the base station receives the WUS (1402) from the terminal through the Rx terminal, the base station can change the Tx terminal to the on (or active) state (1403). Thereafter, the base station can perform downlink transmission to the terminal. At this time, the base station can perform synchronization after Tx on and perform control information and data transmission.
  • a gNB WUS 1402
  • the base station can change the Tx terminal to the on (or active) state (1403).
  • the base station can perform downlink transmission to the terminal. At this time, the base station can perform synchronization after Tx on and perform control information and data transmission.
  • various uplink signals for example, a physical random access channel (PRACH), a physical uplink control channel (PUCCH) including a scheduling request (SR), an acknowledgement (ACK), etc.
  • PRACH physical random access channel
  • PUCCH physical uplink control channel
  • SR scheduling request
  • ACK acknowledgement
  • the base station can save energy, and at the same time, the terminal can improve latency.
  • the base station can set a WUS occasion for receiving the gNB WUS and a synchronization reference signal (sync RS) for synchronization before the terminal transmits the gNB WUS.
  • SSB, TRS (tracking RS), Light SSB (PSS and SSS), continuous SSBs, or new RS (for example, continuous PSS and SSS) can be considered as the synchronization reference signal
  • PRACH, scheduling request on PUCCH, or sequence based signal can be considered as the WUS.
  • the synchronization reference signal (1504) for the terminal to activate the deactivation mode for energy saving of the base station and the WUS occasion for receiving the WUS can be repeatedly set as a WUS-RS period (1405).
  • one embodiment illustrates a 1-to-1 mapping of a synchronization reference signal and a WUS occasion, but is not limited thereto, and may be N-to-1 mapping, 1-to-N mapping, or N-to-M mapping.
  • FIG. 15 is a diagram illustrating an example of a spatial domain (SD) adaptation method of a base station for energy saving according to an embodiment.
  • SD spatial domain
  • the base station can adjust the transmit antenna port per RU (remote unit) for energy saving. Since the PA of the base station accounts for most of the energy consumption of the base station, the base station can turn off the transmit antenna to save energy (1501). At this time, the base station can adjust the number of activated transmit antennas for each terminal group or terminal by referring to the RSRP (reference signal received power), CQI (channel quality indicator), and RSRQ (reference signal received quality) of the terminal to determine whether the transmit antenna can be turned off and transmit a signal. At this time, the base station can set beam information and reference signal information (CSI resource or CSI report setting) according to the on/off of the antenna to the terminal through upper layer signaling (RRC signaling) or DCI.
  • RRC signaling upper layer signaling
  • the terminal can set different antenna information for each BWP and reset the antenna information according to the BWP change.
  • the base station can receive CSI feedback from the terminal to determine whether SD adaptation is possible and determine SD adaptation based on the CSI feedback. At this time, the base station can receive multiple CSI feedbacks based on antenna structure hypotheses of multiple antenna patterns for SD adaptation from the terminal.
  • the base station can apply two types of SD adaptation for energy saving (1502).
  • Type 1 SD adaptation (1503) is that the base station changes the number of antenna ports while maintaining the number of physical antenna elements per antenna port (i.e., logical port).
  • RF characteristics (e.g., transmit power, beam) per port of the base station can be the same.
  • the terminal can perform measurement by combining CSI-RSs of the same port during CSI measurement (e.g., L1-RSRP, L3-RSRP, etc.).
  • each port of CSI-RS #0 and CSI-RS #1 can include the same number of physical antenna elements.
  • Type 2 SD adaptation (1504), is that the base station has the same number of antenna ports (i.e., logical ports) and turns on/off physical antenna elements per port. In this case, RF characteristics per port will be different, and the terminal should perform measurements by distinguishing between cases where Type 2 SD adaptation is applied and cases where it is not applied for the CSI-RS of the same port during CSI measurement. For example, in CSI-RS #0 and CSI-RS #1, the number of ports is maintained, but the number of physical antenna elements corresponding to each port is changed.
  • the base station can save energy through the two representative types of SD adaptation methods mentioned above.
  • the energy consumption of the base station can be reduced.
  • the above methods can be set simultaneously through one or more combinations.
  • Various embodiments of the present disclosure provide a new cell definition and on-demand cell activation method through WUS transmitted by a terminal for reducing energy consumption of a base station in a wireless communication system.
  • Various embodiments of the present disclosure define a carrier selection method of WUS for activating an on-demand cell and a WUS occasion (WO) for WUS transmission and reception.
  • WO WUS occasion
  • retransmission and repetition operations of WUS are provided. Through this, a base station can save energy by keeping more parts of a non-on-demand cell in an inactive state for a long time.
  • upper layer signaling may be signaling corresponding to at least one or a combination of one or more of the following signaling.
  • L1 signaling may be signaling corresponding to at least one or a combination of one or more of the following physical layer channels or signaling methods.
  • Non-scheduled DCI e.g. DCI not intended for scheduling downlink or uplink data
  • determining the priority between A and B can be referred to in various ways, such as selecting a higher priority according to a predetermined priority rule and performing an action corresponding to it, or omitting or dropping an action for a lower priority.
  • slot used in the present disclosure below is a general term that may refer to a specific time unit corresponding to a transmit time interval (TTI), and specifically may mean a slot used in a 5G NR system, or a slot or subframe used in a 4G LTE system.
  • TTI transmit time interval
  • port in the present disclosure below may be used interchangeably with an antenna port.
  • the present disclosure below describes the examples through a number of embodiments, but these are not independent, and one or more embodiments may be applied simultaneously or in combination.
  • FIG. 16 is a diagram illustrating an example of a concept of cells having different functions for energy saving according to an embodiment.
  • a base station can define cell#0 (1600) and cell#1-X (e.g., cell#1-1 (1610), cell#1-2 (1620)) having different functions.
  • Cell type 1 e.g., cell#0 (1600), Access/sync cell
  • the base station can periodically transmit SSB and new synchronization signal for terminals in idle/inactive RRC state through cell#0, and also paging and system information can be transmitted through cell#0.
  • the above paging and system information may include at least one of configuration information for cell #1-x capable of processing packets, such as carrier frequency of cell #1-x, physical cell ID, and WUS configuration information.
  • the WUS configuration information may include at least one of information for WUS and information for WUS occasion.
  • Cell type 2 (e.g., cell #1-x (1610, 1620, 1630), Data cell) can process packets of terminals and base stations. More specifically, the base station can process packets of terminals in connected RRC state through cell #1-X. Therefore, a cell of cell type 2 can be selectively activated only when there is a packet according to traffic on-demand. If the base station initially activates cell #1-X for packet processing, cell #1-X transmits SS (synchronization signal, for example, SSB, CSI-RS, TRS, or a new SS) to synchronize the terminal and cell #0, and a terminal that has performed initial access to cell #0 or is synchronized to cell #0 can receive SS of cell #1-x and perform handover to cell #1-x. At this time, cell1-X to be activated on-demand can be determined by the base station serving cell#0, the base station serving cell#1-X, or the terminal attached to cell#0.
  • SS synchronization signal
  • a single base station may support only cell type 1, only cell type 2, or both cell type 1 and cell type 2. Additionally, one or more cells of cell type 2 may be connected to one or more cells of cell type 1. Additionally, coordination may be performed between cells of cell type 1 to activate cells of cell type 2.
  • a cell selection method for a terminal to process packets appropriately according to traffic in a cell deployment situation having cells performing different functions is provided. More specifically, the present disclosure provides a cell selection method and a signaling method by a base station or a terminal.
  • the base station can maximize the energy saving effect and guarantee service performance by activating an appropriate data cell for a terminal.
  • FIG. 17 is a diagram illustrating an example of an on-demand cell selection method for energy saving of a base station according to an embodiment.
  • cell type 2 capable of packet transmission may be set to process traffic within the coverage of cell type 1 (e.g., Access/Sync cell) that performs mobility and initial connection functions.
  • cell type 1 e.g., Access/Sync cell
  • an appropriate Data cell for processing traffic may be selected using one of the following methods or a combination thereof.
  • the base station can select an appropriate data cell for each terminal based on geometry information of the terminal (e.g., location information, sector information, and beam-based direction information, etc.) (1700). For example, when the terminal (1730) is initially connected to Access/Sync cell#0 (1710), the terminal can handover or connect from the Access/Sync cell#0 to one of data cells#1 to#3 (1720, 1722, 1724) in the Access/Sync cell#0 for packet processing.
  • the base station can select an appropriate data cell for the terminal as an access cell, and the base station can activate the selected data cell.
  • the base station can select data cell#1 (1720) by using beam information (beam direction information) for synchronization used/reported by the terminal in the Access/Sync cell.
  • beam information beam direction information
  • On-demand cell selection based on an Access/Sync cell base station can be performed through the above method 1.
  • the terminal (1780) can activate a data cell for transmitting and receiving packets via UL WUS for traffic processing (1750).
  • a terminal connected to Access/Sync cell#0 (1760) can activate surrounding data cells (1770, 1772, 1774) for traffic processing.
  • the terminal can transmit a WUS for activating the data cell.
  • the WUS can be a sequence-based signal or a conventional PUCCH, PRACH or similar signal, and the base station of the data cell can have a WUS receiver (WUS receiver, WUR) for receiving a separate WUS.
  • the terminal can repeatedly transmit or retransmit the WUS, and the terminal can determine the transmission power and carrier frequency of the WUS based on the information set via the Access/Sync cell and transmit the WUS.
  • the data cell-related information set by the terminal via the Access/Sync cell can include at least one of the following information, for example.
  • Periodicity of WUS occasion 20 ms or 40 ms like as RACH occasion periodicity
  • the base station serving the data cell (Data cell#1(1770), Data cell#3(1774)) that received the WUS from the terminal is activated and can transmit SS to the terminal and perform data transmission and reception for the subsequent packet.
  • the terminal after receiving the WUS, it is also possible to determine whether the data cell or access cell is activated based on measurement information such as RSRP for the WUS, or after all data cells that received the WUS are activated, the terminal can receive SS from one or more activated data cells and select an appropriate data cell for data transmission and reception.
  • a base station serving an inactive cell can save energy by selecting an appropriate data cell for the terminal, and the terminal can receive service through the selected data cell.
  • An embodiment of the present disclosure provides a signaling procedure for data cell selection based on the WUS.
  • FIG. 18a is a diagram illustrating an example of a procedure for on-demand cell selection for energy saving of a base station according to an embodiment of the present disclosure.
  • a terminal (1802) can perform data cell selection through WUS transmission (1800).
  • a sync/access cell (1804) can always be activated (1820, Tx/Rx on, which can mean power on of transmission RF and reception RF devices including a modem), and data cells cell2-A (1806), cell2-B (1808), and cell2-C (1810) have RFs for transmission and reception powered off, but WUR can always be on (1822).
  • power off can be understood as deep/ultra deep sleep.
  • the deep/ultra deep sleep means that most of the components of the base station are powered off, and for example, a modem, backhaul, memory, cooler, etc. can all be turned off.
  • the sync/access cell and the data cell can exchange information for network energy saving (1826).
  • Information for network energy saving that is transmitted and received between the sync/access cell and the data cell may include at least one of the following information: a network energy saving scheme applied to each cell, information about a WUS that can be supported by each cell, and at least one of the information included in the data cell-related information described above.
  • the terminal can perform a RACH procedure for initial access to the Access/Sync cell (1830).
  • the terminal can receive configuration information of a data cell associated with the corresponding cell from the Access/Sync cell (1832).
  • the configuration information of the data cell can refer to the data cell related information described above.
  • the terminal can transmit a WUS to one or more data cells (1834).
  • base stations that have received the WUS transmitted from the terminal can be activated (Tx/Rx On) and transmit a reference signal for synchronization (or access) to the terminal (1836).
  • the terminal can measure the reference signal, select a data cell based on the measurement result (1838), and perform a handover (or access) to the data cell (1840).
  • FIG. 18b is a diagram illustrating an example of a procedure for on-demand cell selection for energy saving of a base station according to an embodiment of the present disclosure.
  • the base station of the access cell may perform data cell selection (1850) based on the WUS transmitted by the terminal (1852).
  • the sync/access cell (1854) may always be activated (Tx/Rx on, 1870), and the data cells cell2-A (1856), cell2-B (1858), and cell2-C (1860) may have RF for transmission and reception powered off, but WUR may always be on (1872).
  • the sync/access cell and the data cell may exchange information for network energy saving with each other (1876).
  • the information for the network energy saving may refer to the above-described content.
  • the terminal may receive SS and select a cell to access (1878), and then perform a RACH procedure for initial access to the Access/Sync cell (1880).
  • the terminal may receive configuration information of a data cell associated with the corresponding cell from the Access/Sync cell (1882).
  • the configuration information of the data cell may refer to the data cell-related information described above.
  • the terminal may transmit a WUS to one or more data cells (1884).
  • the base stations serving the data cell that received the WUS transmitted from the terminal can report the measurement results of measuring the WUS, such as information including RSRP and RSRQ, to the Access/Sync cell (1886).
  • whether to report to the Access/Sync cell based on the WUS measurement can be determined by the data cell based on the WUS measurement results.
  • the Sync/Access cell can determine one data cell based on the received WUS measurement report (1888) and activate the data cell (1890).
  • the activated (Tx/Rx On) data cell can transmit a reference signal for synchronization (or connection) to the terminal (1892).
  • the terminal can receive the reference signal from the data cell and handover (or connection) to the data cell (1894). Alternatively, if the reception status of the reference signal from the data cell is not good, the terminal can transmit WUS again.
  • the terminal or base station can select an appropriate data cell based on the WUS of the terminal. Through this, a specific optimal data cell is selected for each terminal, thereby enabling cell selection that considers the channel between the data cell and the terminal. Through this, the base station can obtain an energy saving effect from the inactive data cell, and the terminal can obtain a service with good performance.
  • the base station can maximize the energy saving effect and guarantee service performance by activating an appropriate data cell for a terminal.
  • FIG. 19a and FIG. 19b are diagrams illustrating an example of a WUS transmission method for activating data cells for energy saving of a base station according to an embodiment.
  • the terminal can determine a carrier (or/and a frequency domain resource allocated to the carrier) and a WUS occasion (or a time domain resource allocated for WUS transmission) to transmit the WUS based on the WUS configuration information for data cell activation set from the Access/Sync cell.
  • the WUS can be repeatedly transmitted or retransmitted on different carriers or occasions.
  • the following describes a cell activation operation based on retransmission of WUS and a cell activation operation based on repeated transmission of WUS.
  • FIG. 19a is a diagram illustrating an example of a WUS transmission method for activating data cells for energy saving of a base station according to an embodiment.
  • the terminal (1908) may receive WUS configuration information related to a data cell associated with the corresponding cell from the Access/Sync cell (1902) after the RACH procedure (1910) in order to initially access the Access/Sync cell (1912).
  • the WUS configuration information (WUS Config) for the corresponding data cell may include candidate carrier information of the corresponding data cell and information on WUS occasion and WUS format for each carrier.
  • the terminal may be configured with a WUS response window for monitoring feedback on the WUS after WUS transmission.
  • the WUS response window configuration information may be included in the WUS configuration information or the value of the WUS response window may be determined based on UE capability.
  • the WUS configuration information may include at least one of the following information.
  • Periodicity of WUS occasion 20 ms or 40 ms like as RACH occasion periodicity
  • the terminal can perform the first WUS transmission at WUS occasion #2 (1914) through cell#2 of 28GHz based on the configuration information. If the terminal does not receive any feedback (e.g., Ack) during the WUS response window #0 (1916) corresponding to Cell#2 after the first WUS transmission, the terminal can perform WUS retransmission at WUS occasion #1 (1918) through Cell#1 (3.5GHz).
  • Ack any feedback
  • the terminal can handover (or connect) to Cell#1.
  • the terminal can receive the priority for WUS transmission/retransmission of the candidate carriers from the Access/Sync cell.
  • the above priority information may be included in the above WUS configuration information or may be predetermined. Thereafter, the terminal may perform a WUS retransmission operation based on the above priority.
  • FIG. 19b is a diagram illustrating another example of a WUS transmission method for activating data cells for energy saving of a base station according to an embodiment.
  • the terminal (1958) may receive WUS configuration information related to a data cell associated with the Access/Sync cell (1952) from the Access/Sync cell after the RACH procedure (1960) in order to initially access the Access/Sync cell.
  • the WUS configuration information (WUS Config) for the data cell may include candidate carrier information of the data cell and information on WUS occasion and WUS format for each carrier.
  • the terminal may be configured with a WUS response window for monitoring feedback on the WUS after WUS transmission.
  • the WUS response window may be included in the WUS configuration information or the value of the WUS response window may be determined based on the terminal capability.
  • For the WUS configuration information reference may be made to the above-described content.
  • the terminal when the terminal is set to ⁇ Cell#2 (28GHz) (1956), Cell#1 (3.5GHz) ⁇ as the candidate carrier of the data cell from the base station and 2 is set as the norepetition (number of repetitions) of WUS, the terminal can perform the initial WUS transmission at WUS occasion #1 (1864) through cell#1 (1954) of 3.5GHz based on the above-mentioned setting information, and thereafter repeatedly transmit the WUS at WUS occasion #2 (1966) through cell#2 (1956) of 28GHz.
  • the terminal can monitor the feedback during the corresponding WUS response window #0 (1968) from the time of transmitting the WUS in Cell#1, and can continuously monitor the feedback for the WUS response window #1 (1970) after transmitting the WUS in Cell#2.
  • the terminal receives an Ack feedback (1972) including the Cell#2 index in WUS response window#1, the terminal can handover (or connect) to Cell#2.
  • the order of carriers for WUS repeat transmission (or the priority of carrier/data cell) can be set from the Access/Sync cell (in this case, the priority information can be included in the WUS configuration information) or can be sorted from a low carrier frequency or a high carrier frequency according to traffic.
  • the gap between WUS repetitions can be set from the base station to the terminal or determined by the terminal capability considering the carrier switching time.
  • the terminal can determine the carrier of the data cell and activate the data cell through the WUS.
  • the WUS occasions can overlap by carrier, and the carrier frequency of the WUS response window is the carrier frequency of the Access/Sync cell, the carrier frequency of the corresponding data cell, or the carrier frequency for a specific WUS, and the terminal can receive and monitor the feedback of the WUS through the carrier frequency.
  • the third embodiment of the present disclosure provides a cell selection procedure for energy saving of a base station in a 5G or 6G system. More specifically, an example of a procedure of a terminal and a base station for cell selection and WUS transmission for energy saving of a base station in a 5G or 6G system is described.
  • FIG. 20 is a flowchart illustrating an example of an operation of a terminal that applies a cell selection method for energy saving of a base station in a 5G or 6G system to which the present disclosure is applied.
  • the terminal can perform initial access and synchronization based on cell type 1 (e.g., Cell#0 or Access/Sync cell) (2001). Thereafter, the terminal can receive configuration information for a cell of cell type 2 (e.g., Cell#1-X or Data cell) through upper layer signaling and L1 signaling from cell type 1 (2002). At this time, the configuration information can include configuration information of WUS.
  • the configuration information for the data cell and the WUS configuration information can refer to the contents described above.
  • the terminal can check a WUS occasion and a carrier for WUS transmission based on the configuration information (2003). The terminal can transmit WUS through the selected carrier and monitor WUS feedback during a WUS response window (2004).
  • the terminal determines whether WUS feedback (Ack) has been received, and if the terminal receives feedback of WUS during the WUS response window, the terminal can access the corresponding data cell (2005). If the terminal does not receive the WUS feedback or receives a Nack (negative acknowledgements), the terminal can retransmit or/and repeat the WUS and monitor the WUS feedback again (2006).
  • WUS feedback Ack
  • Nack negative acknowledgements
  • FIG. 21A is a flowchart illustrating an example of a base station operation serving a cell of cell type 1 applying a cell selection method for energy saving of a base station in a 5G or 6G system to which the present disclosure is applied.
  • a base station may transmit a periodic reference signal to a terminal for initial access & synchronization and mobility support (2101).
  • the periodic reference signal may be, for example, at least one of SSB, PSS, SSS or newly defined SS.
  • paging and system information may also be transmitted periodically from the base station.
  • the base station may transmit configuration information for a cell of cell type 2 to the terminal (2102).
  • the configuration information may include WUS configuration information.
  • the configuration information for the data cell and the WUS configuration information may refer to the contents described above.
  • the base station may receive a WUS measurement report including a result of measuring a WUS transmitted by the terminal from a cell of Cell type 2 (or a base station serving the cell) and perform data cell selection (2103). If the cell selection operation of the base station is not performed, step 2103 may be omitted.
  • FIG. 21b is a flowchart illustrating an example of a base station operation serving a cell of cell type 2 for energy saving of the base station in a 5G or 6G system to which the present disclosure is applied.
  • the base station can monitor WUS at a WUS occasion through WUR based on WUS configuration information set through Access/Sync cell or WUS-related information determined in advance (2104).
  • the WUS configuration information can refer to the content described above.
  • the Tx and Rx RF of the base station can be powered off, but the WUR can be powered on.
  • the base station can measure the WUS and determine whether to activate the cell to determine whether to activate the main radio, and/or report the WUS measurement to the Access/Sync cell (2105).
  • the base station can compare the WUS measurement result, for example, RSRP and RSRQ, with a threshold value that is determined in advance or set by the base station serving the cell type 1 cell (2106), and if the WUS measurement result is greater than (or greater than or equal to) the threshold value, the base station can transmit an Ack to the terminal (2107). Afterwards, the cell type 2 base station can be activated after the Ack transmission and the terminal can be attached to the cell of the cell type 2 (2107).
  • the WUS measurement result for example, RSRP and RSRQ
  • FIG. 22 is a block diagram of a terminal according to one embodiment of the present disclosure.
  • the terminal (2200) may include a transceiver (2201), a control unit (e.g., a processor) (2202), and a storage unit (e.g., a memory) (2203).
  • the transceiver (2201), the control unit (2202), and the storage unit (2203) of the terminal (2200) may operate according to at least one of the methods corresponding to the above-described embodiments or a combination thereof.
  • the components of the terminal (2200) are not limited to the illustrated example. According to other embodiments, the terminal (2200) may include more or fewer components than the components described above.
  • the transceiver (2201), the control unit (2202), and the storage unit (2203) may be implemented in the form of a single chip.
  • the transceiver (2201) may be configured with a transmitter and a receiver according to one embodiment.
  • the transceiver (2201) may transmit and receive signals with a base station.
  • the signals may include control information and data.
  • the transceiver (2201) may be configured to include an RF transmitter that up-converts and amplifies the frequency of a transmitted signal, and an RF receiver that low-noise amplifies and frequency-down-converts a received signal.
  • the transceiver (2201) may receive a signal through a wireless channel and output the same to the control unit (2202), and transmit a signal output from the control unit (2202) through the wireless channel.
  • the control unit (2202) may control a series of procedures that the terminal (2200) may operate according to the embodiments of the present disclosure described above.
  • the control unit (2202) may perform or control an operation of the terminal to perform at least one or a combination of the methods according to the embodiments of the present disclosure.
  • the control unit (2202) may include at least one processor.
  • the control unit (2202) may include a communication processor (CP) that performs control for communication and an application processor (AP) that controls an upper layer (e.g., an application).
  • CP communication processor
  • AP application processor
  • the storage unit (2203) can store control information (e.g., information related to channel estimation using DMRSs transmitted on a PUSCH included in a signal acquired from the terminal (2200)) or data, and can have an area for storing data required for controlling the control unit (2202) and data generated during control by the control unit (2202).
  • control information e.g., information related to channel estimation using DMRSs transmitted on a PUSCH included in a signal acquired from the terminal (2200)
  • data can have an area for storing data required for controlling the control unit (2202) and data generated during control by the control unit (2202).
  • Figure 23 is a block diagram of a base station according to one embodiment.
  • the base station (2300) may include a transceiver (2301), a control unit (e.g., a processor) (2302), and a storage unit (e.g., a memory) (2303).
  • the transceiver (2301), the control unit (2302), and the storage unit (2303) of the base station (2300) may operate according to at least one or a combination of the methods corresponding to the above-described embodiments.
  • the components of the base station (2300) are not limited to the illustrated example. According to other embodiments, the base station (2300) may include more or fewer components than the above-described components.
  • the transceiver (2301), the control unit (2302), and the storage unit (2303) may be implemented in the form of a single chip.
  • the transceiver (2301) may be configured with a transmitter and a receiver according to one embodiment.
  • the transceiver (2301) may transmit and receive signals with a terminal.
  • the signal may include control information and data.
  • the transceiver (2301) may be configured to include an RF transmitter that up-converts and amplifies a frequency of a transmitted signal, and an RF receiver that low-noise amplifies a received signal and down-converts the frequency.
  • the transceiver (2301) may receive a signal through a wireless channel and output the same to the control unit (2302), and transmit a signal output from the control unit (2302) through the wireless channel.
  • the control unit (2302) may control a series of procedures so that the base station (2300) may operate according to the embodiments of the present disclosure described above.
  • the control unit (2302) may perform or control the operation of the base station to perform at least one or a combination of the methods according to the embodiments of the present disclosure.
  • the control unit (2302) may include at least one processor.
  • the control unit (2302) may include a communication processor (CP) that performs control for communication and an application processor (AP) that controls an upper layer (e.g., an application).
  • CP communication processor
  • AP application processor
  • the storage unit (2303) can store control information (e.g., information related to channel estimation generated using DMRSs transmitted on a PUSCH determined by the base station (2300), data, control information received from a terminal, or data, and can have an area for storing data required for controlling the control unit (2302) and data generated during control by the control unit (2302).
  • control information e.g., information related to channel estimation generated using DMRSs transmitted on a PUSCH determined by the base station (2300), data, control information received from a terminal, or data, and can have an area for storing data required for controlling the control unit (2302) and data generated during control by the control unit (2302).

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computer Security & Cryptography (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

The present disclosure relates to a 5G or 6G communication system for supporting higher data transmission rates. The present disclosure provides a method and device for saving energy of a base station.

Description

무선 통신 시스템의 에너지 세이빙을 위한 방법 및 장치 Method and device for energy saving in wireless communication system
본 개시는 무선 통신 시스템의 에너지 세이빙을 위한 방법 및 장치에 관한 것이다.The present disclosure relates to a method and apparatus for energy saving in a wireless communication system.
5G 이동통신 기술은 빠른 전송 속도와 새로운 서비스가 가능하도록 넓은 주파수 대역을 정의하고 있으며, 3.5 기가헤르츠(3.5GHz) 등 6GHz 이하 주파수('Sub 6GHz') 대역은 물론 28GHz와 39GHz 등 밀리미터파(㎜Wave)로 불리는 초고주파 대역('Above 6GHz')에서도 구현이 가능하다. 또한, 5G 통신 이후(Beyond 5G)의 시스템이라 불리어지는 6G 이동통신 기술의 경우, 5G 이동통신 기술 대비 50배 빨라진 전송 속도와 10분의 1로 줄어든 초저(Ultra Low) 지연시간을 달성하기 위해 테라헤르츠(Terahertz) 대역(예를 들어, 95GHz에서 3 테라헤르츠(3THz) 대역과 같은)에서의 구현이 고려되고 있다.5G mobile communication technology defines a wide frequency band to enable fast transmission speeds and new services, and can be implemented not only in the sub-6GHz frequency band, such as 3.5 gigahertz (3.5GHz), but also in the ultra-high frequency band called millimeter wave (㎜Wave), such as 28GHz and 39GHz ('Above 6GHz'). In addition, for 6G mobile communication technology, which is called the system after 5G communication (Beyond 5G), implementation in the terahertz band (for example, the 3 terahertz (3THz) band at 95GHz) is being considered to achieve a transmission speed that is 50 times faster than 5G mobile communication technology and an ultra-low delay time that is reduced by one-tenth.
5G 이동통신 기술의 초기에는, 초광대역 서비스(enhanced Mobile BroadBand, eMBB), 고신뢰/초저지연 통신(Ultra-Reliable Low-Latency Communications, URLLC), 대규모 기계식 통신 (massive Machine-Type Communications, mMTC)에 대한 서비스 지원과 성능 요구사항 만족을 목표로, 초고주파 대역에서의 전파의 경로손실 완화 및 전파의 전달 거리를 증가시키기 위한 빔포밍(Beamforming) 및 거대 배열 다중 입출력(Massive MIMO), 초고주파수 자원의 효율적 활용을 위한 다양한 뉴머롤로지 지원(복수 개의 서브캐리어 간격 운용 등)와 슬롯 포맷에 대한 동적 운영, 다중 빔 전송 및 광대역을 지원하기 위한 초기 접속 기술, BWP(Band-Width Part)의 정의 및 운영, 대용량 데이터 전송을 위한 LDPC(Low Density Parity Check) 부호와 제어 정보의 신뢰성 높은 전송을 위한 폴라 코드(Polar Code)와 같은 새로운 채널 코딩 방법, L2 선-처리(L2 pre-processing), 특정 서비스에 특화된 전용 네트워크를 제공하는 네트워크 슬라이싱(Network Slicing) 등에 대한 표준화가 진행되었다.In the early stages of 5G mobile communication technology, the goal was to support services and satisfy performance requirements for enhanced Mobile Broadband (eMBB), Ultra-Reliable Low-Latency Communications (URLLC), and massive Machine-Type Communications (mMTC). The technologies included beamforming and massive MIMO to mitigate path loss of radio waves in ultra-high frequency bands and increase the transmission distance of radio waves, support for various numerologies (such as operation of multiple subcarrier intervals) and dynamic operation of slot formats for efficient use of ultra-high frequency resources, initial access technology to support multi-beam transmission and wideband, definition and operation of BWP (Bidth Part), new channel coding methods such as LDPC (Low Density Parity Check) codes for large-capacity data transmission and Polar Code for reliable transmission of control information, and L2 pre-processing (L2 Standardization has been made for network slicing, which provides dedicated networks specialized for specific services, and pre-processing.
현재, 5G 이동통신 기술이 지원하고자 했던 서비스들을 고려하여 초기의 5G 이동통신 기술 개선(improvement) 및 성능 향상(enhancement)을 위한 논의가 진행 중에 있으며, 차량이 전송하는 자신의 위치 및 상태 정보에 기반하여 자율주행 차량의 주행 판단을 돕고 사용자의 편의를 증대하기 위한 V2X(Vehicle-to-Everything), 비면허 대역에서 각종 규제 상 요구사항들에 부합하는 시스템 동작을 목적으로 하는 NR-U(New Radio Unlicensed), NR 단말 저전력 소모 기술(UE Power Saving), 지상 망과의 통신이 불가능한 지역에서 커버리지 확보를 위한 단말-위성 직접 통신인 비 지상 네트워크(Non-Terrestrial Network, NTN), 위치 측위(Positioning) 등의 기술에 대한 물리계층 표준화가 진행 중이다. Currently, discussions are underway on improving and enhancing the initial 5G mobile communication technology in consideration of the services that the 5G mobile communication technology was intended to support, and physical layer standardization is in progress for technologies such as V2X (Vehicle-to-Everything) to help autonomous vehicles make driving decisions and increase user convenience based on their own location and status information transmitted by vehicles, NR-U (New Radio Unlicensed) for the purpose of system operation that complies with various regulatory requirements in unlicensed bands, NR terminal low power consumption technology (UE Power Saving), Non-Terrestrial Network (NTN), which is direct terminal-satellite communication to secure coverage in areas where communication with terrestrial networks is impossible, and Positioning.
뿐만 아니라, 타 산업과의 연계 및 융합을 통한 새로운 서비스 지원을 위한 지능형 공장 (Industrial Internet of Things, IIoT), 무선 백홀 링크와 액세스 링크를 통합 지원하여 네트워크 서비스 지역 확장을 위한 노드를 제공하는 IAB(Integrated Access and Backhaul), 조건부 핸드오버(Conditional Handover) 및 DAPS(Dual Active Protocol Stack) 핸드오버를 포함하는 이동성 향상 기술(Mobility Enhancement), 랜덤액세스 절차를 간소화하는 2 단계 랜덤액세스(2-step RACH for NR) 등의 기술에 대한 무선 인터페이스 아키텍쳐/프로토콜 분야의 표준화 역시 진행 중에 있으며, 네트워크 기능 가상화(Network Functions Virtualization, NFV) 및 소프트웨어 정의 네트워킹(Software-Defined Networking, SDN) 기술의 접목을 위한 5G 베이스라인 아키텍쳐(예를 들어, Service based Architecture, Service based Interface), 단말의 위치에 기반하여 서비스를 제공받는 모바일 엣지 컴퓨팅(Mobile Edge Computing, MEC) 등에 대한 시스템 아키텍쳐/서비스 분야의 표준화도 진행 중이다.In addition, standardization of wireless interface architecture/protocols for technologies such as the Industrial Internet of Things (IIoT) to support new services through linkage and convergence with other industries, Integrated Access and Backhaul (IAB) to provide nodes for expanding network service areas by integrating wireless backhaul links and access links, Mobility Enhancement including Conditional Handover and Dual Active Protocol Stack (DAPS) handover, and 2-step RACH for NR to simplify random access procedures is also in progress, and standardization of system architecture/services for 5G baseline architecture (e.g. Service based Architecture, Service based Interface) for grafting Network Functions Virtualization (NFV) and Software-Defined Networking (SDN) technologies, and Mobile Edge Computing (MEC) that provides services based on the location of the terminal is also in progress.
이와 같은 5G 이동통신 시스템이 상용화되면, 폭발적인 증가 추세에 있는 커넥티드 기기들이 통신 네트워크에 연결될 것이며, 이에 따라 5G 이동통신 시스템의 기능 및 성능 강화와 커넥티드 기기들의 통합 운용이 필요할 것으로 예상된다. 이를 위해, 증강현실(Augmented Reality, AR), 가상현실(Virtual Reality, VR), 혼합 현실(Mixed Reality, MR) 등을 효율적으로 지원하기 위한 확장 현실(eXtended Reality, XR), 인공지능(Artificial Intelligence, AI) 및 머신러닝(Machine Learning, ML)을 활용한 5G 성능 개선 및 복잡도 감소, AI 서비스 지원, 메타버스 서비스 지원, 드론 통신 등에 대한 새로운 연구가 진행될 예정이다.When such 5G mobile communication systems are commercialized, an explosive increase in connected devices will be connected to the communication network, which will require enhanced functions and performance of 5G mobile communication systems and integrated operation of connected devices. To this end, new research will be conducted on improving 5G performance and reducing complexity, AI service support, metaverse service support, drone communications, etc. using extended reality (XR), artificial intelligence (AI), and machine learning (ML) to efficiently support augmented reality (AR), virtual reality (VR), and mixed reality (MR).
또한, 이러한 5G 이동통신 시스템의 발전은 6G 이동통신 기술의 테라헤르츠 대역에서의 커버리지 보장을 위한 신규 파형(Waveform), 전차원 다중입출력(Full Dimensional MIMO, FD-MIMO), 어레이 안테나(Array Antenna), 대규모 안테나(Large Scale Antenna)와 같은 다중 안테나 전송 기술, 테라헤르츠 대역 신호의 커버리지를 개선하기 위해 메타물질(Metamaterial) 기반 렌즈 및 안테나, OAM(Orbital Angular Momentum)을 이용한 고차원 공간 다중화 기술, RIS(Reconfigurable Intelligent Surface) 기술 뿐만 아니라, 6G 이동통신 기술의 주파수 효율 향상 및 시스템 네트워크 개선을 위한 전이중화(Full Duplex) 기술, 위성(Satellite), AI(Artificial Intelligence)를 설계 단계에서부터 활용하고 종단간(End-to-End) AI 지원 기능을 내재화하여 시스템 최적화를 실현하는 AI 기반 통신 기술, 단말 연산 능력의 한계를 넘어서는 복잡도의 서비스를 초고성능 통신과 컴퓨팅 자원을 활용하여 실현하는 차세대 분산 컴퓨팅 기술 등의 개발에 기반이 될 수 있을 것이다.In addition, the development of these 5G mobile communication systems will require new waveforms to ensure coverage in the terahertz band of 6G mobile communication technology, multi-antenna transmission technologies such as Full Dimensional MIMO (FD-MIMO), Array Antenna, and Large Scale Antenna, metamaterial-based lenses and antennas to improve the coverage of terahertz band signals, high-dimensional spatial multiplexing technology using Orbital Angular Momentum (OAM), and Reconfigurable Intelligent Surface (RIS) technology, as well as full duplex technology to improve the frequency efficiency and system network of 6G mobile communication technology, satellite, and AI (Artificial Intelligence) from the design stage and AI-based communication technology that implements end-to-end AI support functions to realize system optimization, and ultra-high-performance communication and computing resources to provide services with a level of complexity that goes beyond the limits of terminal computing capabilities. It could serve as a basis for the development of next-generation distributed computing technologies that utilize this.
최근 환경을 고려한 5G/6G 통신 시스템의 발전에 따라, 기지국의 에너지 소모를 줄이기 위한 방법의 필요성이 대두되고 있다.With the recent development of 5G/6G communication systems that take the environment into consideration, the need for methods to reduce energy consumption of base stations is emerging.
본 개시의 다양한 실시예들은 무선 통신 시스템에서 기지국의 에너지 소모를 감소시키기 위한 새로운 셀의 정의 및 단말이 전송하는 WUS (wake-up signal)를 통한 온-디맨드(on-demand) 셀 활성화 (cell activation) 방법을 제공한다.Various embodiments of the present disclosure provide a new cell definition and a method for on-demand cell activation through a wake-up signal (WUS) transmitted by a terminal for reducing energy consumption of a base station in a wireless communication system.
본 개시에서 이루고자 하는 기술적 과제들은 이상에서 언급한 기술적 과제들로 제한되지 않으며, 언급하지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 개시에 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.The technical problems to be achieved in the present disclosure are not limited to the technical problems mentioned above, and other technical problems not mentioned will be clearly understood by a person having ordinary skill in the technical field belonging to the present disclosure from the description below.
다양한 실시예들에서 무선 통신 시스템에서 기지국에 의해 기지국의 에너지 소모를 감소시키기 위한 방법은, 기지국은 접속(access) 또는 동기화(synchronization)를 위한 셀 (예를 들어, Access/Sync cell)을 활성화시키고 트래픽 (또는 패킷) 처리를 위한 온-디맨드 셀 (예를 들어, Data cell)을 비활성화 시키는 동작과, 기지국은 Access/Sync cell을 통해서 초기 접속 (또는, RACH 절차)를 수행한 단말들에게 상위 계층 시그널링 및 L1 시그널링을 통해서 온-디맨드 셀을 활성화시키기 위한 WUS 등에 대한 설정 정보를 설정하는 동작과, 단말로부터 상기 설정을 기반으로 온-디맨드 셀을 활성화하는 방법을 포함할 수 있다.In various embodiments, a method for reducing energy consumption of a base station by a base station in a wireless communication system may include an operation in which the base station activates a cell for access or synchronization (e.g., an Access/Sync cell) and deactivates an on-demand cell for traffic (or packet) processing (e.g., a Data cell), and an operation in which the base station sets configuration information for a WUS, etc. to activate the on-demand cell through upper layer signaling and L1 signaling to terminals that have performed initial access (or, RACH procedure) through the Access/Sync cell, and a method in which the terminal activates the on-demand cell based on the configuration.
다양한 실시예들에서 무선 통신 시스템에서 단말에 의해 기지국의 에너지 소모를 감소시키기 위한 방법은, 단말이 Access/Sync cell에 초기 접속(또는 RACH 절차)를 수행하는 동작과, 이후 기지국으로부터 상위 계층 시그널링을 통해서 트래픽 (또는 패킷)을 처리하기 위한 온-디맨드 셀의 설정 정보를 수신하는 동작과, 상기 수신한 정보를 기반으로 온-디맨드 셀을 활성화시키기 위한 WUS를 전송하는 동작을 포함할 수 있다.In various embodiments, a method for reducing energy consumption of a base station by a terminal in a wireless communication system may include an operation in which the terminal performs an initial access (or RACH procedure) to an Access/Sync cell, an operation in which the terminal receives configuration information of an on-demand cell for processing traffic (or packets) from the base station through upper layer signaling, and an operation in which a WUS for activating the on-demand cell is transmitted based on the received information.
또한, 통신 시스템의 단말이 수행하는 방법에 있어서, 제1 셀에 해당하는 제1 기지국과 초기 접속 절차를 수행하는 단계; 상기 제1 기지국으로부터 웨이크업 신호(wake up signal, WUS) 설정 정보를 수신하는 단계; 상기 WUS 설정 정보를 기반으로 제2 셀에 해당하는 제2 기지국으로 WUS를 전송하는 단계; 및 상기 WUS에 대응하는 응답 신호(acknowledgement) 를 WUS 응답 윈도우 동안 모니터링하는 단계를 포함하고, 상기 WUS 설정 정보는 상기 제2 셀의 캐리어 주파수 정보, WUS 전송 시점 (occasion) 정보, WUS 포맷 정보 및 WUS 응답 윈도우 설정 정보 중 적어도 하나를 포함하는 것을 특징으로 한다. In addition, a method performed by a terminal of a communication system comprises: a step of performing an initial connection procedure with a first base station corresponding to a first cell; a step of receiving wake up signal (WUS) configuration information from the first base station; a step of transmitting a WUS to a second base station corresponding to a second cell based on the WUS configuration information; and a step of monitoring a response signal (acknowledgement) corresponding to the WUS during a WUS response window, wherein the WUS configuration information includes at least one of carrier frequency information of the second cell, WUS transmission occasion information, WUS format information, and WUS response window configuration information.
또한, 통신 시스템의 제1 셀에 해당하는 제1 기지국이 수행하는 방법에 있어서, 단말과 초기 접속 절차를 수행하는 단계; 및 상기 단말로 웨이크업 신호(wake up signal, WUS) 설정 정보를 전송하는 단계를 포함하고, 상기 제1 셀에 해당하는 상기 제1 기지국은 제2 셀에 해당하는 제2 기지국과 연결되고, 상기 WUS 설정 정보에 따른 WUS는 상기 단말로부터 상기 제2 기지국으로 전송되고, 상기 WUS 설정 정보는 상기 제2 셀의 캐리어 주파수 정보, WUS 전송 시점 (occasion) 정보, WUS 포맷 정보 및 WUS 응답 윈도우 설정 정보 중 적어도 하나를 포함하는 것을 특징으로 한다. In addition, a method performed by a first base station corresponding to a first cell of a communication system, comprising: a step of performing an initial connection procedure with a terminal; and a step of transmitting wake up signal (WUS) setting information to the terminal, wherein the first base station corresponding to the first cell is connected to a second base station corresponding to a second cell, and a WUS according to the WUS setting information is transmitted from the terminal to the second base station, and the WUS setting information includes at least one of carrier frequency information of the second cell, WUS transmission occasion information, WUS format information, and WUS response window setting information.
또한, 통신 시스템의 제2 셀에 해당하는 제2 기지국이 수행하는 방법에 있어서, 단말로부터 웨이크업 신호(wake up signal, WUS) 를 수신하는 단계; 상기 단말로 상기 WUS에 대한 응답 신호(acknowledgement) 를 WUS 응답 윈도우 동안 전송하는 단계; 및 상기 단말과 상기 단말의 상기 제2 셀에 대한 접속 절차를 수행하는 단계를 포함하며, WUS 관련 정보가 상기 제2 기지국으로부터 제1 셀에 해당하는 제1 기지국으로 전송되고, 상기 WUS 관련 정보는 상기 제2 셀의 캐리어 주파수 정보, WUS 전송 시점 (occasion) 정보, WUS 포맷 정보 및 WUS 응답 윈도우 설정 정보 중 적어도 하나를 포함하는 것을 특징으로 한다. Also, in a method performed by a second base station corresponding to a second cell of a communication system, the method comprises the steps of: receiving a wake up signal (WUS) from a terminal; transmitting an acknowledgement signal for the WUS to the terminal during a WUS response window; and performing an access procedure for the terminal and the second cell, wherein WUS related information is transmitted from the second base station to a first base station corresponding to the first cell, and the WUS related information includes at least one of carrier frequency information of the second cell, WUS transmission occasion information, WUS format information, and WUS response window setting information.
또한, 통신 시스템의 단말에 있어서, 송수신부; 및 상기 송수신부와 연결되고 하나 이상의 프로세서를 포함하는 제어부로, 상기 제어부는: 제1 셀에 해당하는 제1 기지국과 초기 접속 절차를 수행하고, 상기 제1 기지국으로부터 웨이크업 신호(wake up signal, WUS) 설정 정보를 수신하고, 상기 WUS 설정 정보를 기반으로 제2 셀에 해당하는 제2 기지국으로 WUS를 전송하고, 및 상기 WUS에 대응하는 응답 신호(acknowledgement) 를 WUS 응답 윈도우 동안 모니터링하도록 설정되고, 상기 WUS 설정 정보는 상기 제2 셀의 캐리어 주파수 정보, WUS 전송 시점 (occasion) 정보, WUS 포맷 정보 및 WUS 응답 윈도우 설정 정보 중 적어도 하나를 포함하는 것을 특징으로 한다. In addition, in a terminal of a communication system, a transceiver; and a control unit connected to the transceiver and including one or more processors, wherein the control unit is configured to: perform an initial access procedure with a first base station corresponding to a first cell, receive wake up signal (WUS) configuration information from the first base station, transmit a WUS to a second base station corresponding to a second cell based on the WUS configuration information, and monitor a response signal (acknowledgement) corresponding to the WUS during a WUS response window, wherein the WUS configuration information includes at least one of carrier frequency information of the second cell, WUS transmission occasion information, WUS format information, and WUS response window configuration information.
또한, 통신 시스템의 제1 셀에 해당하는 제1 기지국에 있어서, 송수신부; 및 상기 송수신부와 연결되고 하나 이상의 프로세서를 포함하는 제어부로, 상기 제어부는: 단말과 초기 접속 절차를 수행하고, 상기 단말로 웨이크업 신호(wake up signal, WUS) 설정 정보를 전송하도록 설정되고, 상기 제1 셀에 해당하는 상기 제1 기지국은 제2 셀에 해당하는 제2 기지국과 연결되고, 상기 WUS 설정 정보에 따른 WUS는 상기 단말로부터 상기 제2 기지국으로 전송되고, 상기 WUS 설정 정보는 상기 제2 셀의 캐리어 주파수 정보, WUS 전송 시점 (occasion) 정보, WUS 포맷 정보 및 WUS 응답 윈도우 설정 정보 중 적어도 하나를 포함하고, 상기 제1 셀은 접속 및 동기화를 위한 셀 타입에 해당하고, 상기 제2 셀은 데이터 송수신을 위한 셀 타입에 해당하는 것을 특징으로 한다. In addition, in a first base station corresponding to a first cell of a communication system, a transceiver; and a control unit connected to the transceiver and including one or more processors, wherein the control unit is configured to perform an initial connection procedure with a terminal and transmit wake up signal (WUS) configuration information to the terminal, and the first base station corresponding to the first cell is connected to a second base station corresponding to a second cell, and a WUS according to the WUS configuration information is transmitted from the terminal to the second base station, and the WUS configuration information includes at least one of carrier frequency information, WUS transmission occasion information, WUS format information, and WUS response window configuration information of the second cell, and the first cell corresponds to a cell type for connection and synchronization, and the second cell corresponds to a cell type for data transmission and reception.
또한, 통신 시스템의 제2 셀에 해당하는 제2 기지국에 있어서, 송수신부; 및 상기 송수신부와 연결되고 하나 이상의 프로세서를 포함하는 제어부로, 상기 제어부는: 단말로부터 웨이크업 신호(wake up signal, WUS) 를 수신하고, 상기 단말로 상기 WUS에 대한 응답 신호(acknowledgement) 를 WUS 응답 윈도우 동안 전송하고; 및 상기 단말과 상기 단말의 상기 제2 셀에 대한 접속 절차를 수행하도록 설정되고, WUS 관련 정보가 상기 제2 기지국으로부터 제1 셀에 해당하는 제1 기지국으로 전송되고, 상기 WUS 관련 정보는 상기 제2 셀의 캐리어 주파수 정보, WUS 전송 시점 (occasion) 정보, WUS 포맷 정보 및 WUS 응답 윈도우 설정 정보 중 적어도 하나를 포함하고, 상기 제1 셀은 접속 및 동기화를 위한 셀 타입에 해당하고, 상기 제2 셀은 데이터 송수신을 위한 셀 타입에 해당하는 것을 특징으로 한다. In addition, in a second base station corresponding to a second cell of a communication system, a transceiver; and a control unit connected to the transceiver and including one or more processors, wherein the control unit is configured to: receive a wake up signal (WUS) from a terminal, transmit an acknowledgement signal for the WUS to the terminal during a WUS acknowledgement window; and perform an access procedure for the terminal and the second cell, wherein WUS related information is transmitted from the second base station to a first base station corresponding to the first cell, and the WUS related information includes at least one of carrier frequency information, WUS transmission occasion information, WUS format information, and WUS acknowledgement window setting information of the second cell, and wherein the first cell corresponds to a cell type for access and synchronization, and the second cell corresponds to a cell type for data transmission and reception.
본 개시의 실시예들을 통해서, 5G 시스템에서 이동 통신 시스템에서 기지국의 에너지 세이빙을 위한 서로 다른 기능을 갖는 셀의 정의와 온-디맨드 셀을 활성화시키기 위한 WUS 설정 방법 및 WUS 캐리어 선택 방법을 제공함으로써, 기지국은 항상 주기적으로 공통 채널 및 신호 전송을 위해 셀을 활성화해야 하는 오버헤드를 줄여 보다 효율적으로 기지국의 에너지를 관리하고 절감할 수 있다.Through the embodiments of the present disclosure, by providing a definition of cells having different functions for energy saving of a base station in a mobile communication system in a 5G system, a WUS setting method for activating an on-demand cell, and a WUS carrier selection method, the base station can reduce the overhead of always having to periodically activate cells for common channels and signal transmission, thereby managing and saving the energy of the base station more efficiently.
본 개시에서 얻을 수 있는 효과는 이상에서 언급한 효과들로 제한되지 않으며, 언급하지 않은 또 다른 효과들은 아래의 기재로부터 본 개시가 속하는 기술 분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.The effects obtainable from the present disclosure are not limited to the effects mentioned above, and other effects not mentioned will be clearly understood by a person skilled in the art to which the present disclosure belongs from the description below.
도 1은 무선 통신 시스템에서 무선 자원 영역인 시간-주파수 영역의 기본 구조를 도시한 도면이다. Figure 1 is a diagram illustrating the basic structure of the time-frequency domain, which is a wireless resource domain in a wireless communication system.
도 2는 무선 통신 시스템에서 고려되는 슬롯 구조를 도시한 도면이다.Figure 2 is a diagram illustrating a slot structure considered in a wireless communication system.
도 3은 동기 신호의 시간 영역 매핑 구조 및 빔 스위핑 동작의 일례를 나타내는 도면이다.FIG. 3 is a diagram showing an example of a time domain mapping structure of a synchronization signal and a beam sweeping operation.
도 4는 무선 통신 시스템에서 고려되는 동기화 신호 블록을 도시한 도면이다. FIG. 4 is a diagram illustrating a synchronization signal block considered in a wireless communication system.
도 5는 본 개시가 적용되는 통신 시스템에서 고려되는 6GHz 미만 주파수 대역에서 동기화 신호 블록의 다양한 전송의 일례를 도시한 도면이다.FIG. 5 is a diagram illustrating an example of various transmissions of a synchronization signal block in a frequency band below 6 GHz considered in a communication system to which the present disclosure is applied.
도 6는 본 개시가 적용되는 무선 통신 시스템에서 고려되는 6GHz 이상 주파수 대역에서 동기화 신호 블록의 전송의 일례를 도시한 도면이다.FIG. 6 is a diagram illustrating an example of transmission of a synchronization signal block in a frequency band of 6 GHz or higher considered in a wireless communication system to which the present disclosure is applied.
도 7은 본 개시가 적용되는 무선 통신 시스템에서 5ms 시간 내 부반송파 간격에 따른 동기화 신호 블록의 전송의 일례를 도시한 도면이다. FIG. 7 is a diagram illustrating an example of transmission of a synchronization signal block according to a subcarrier interval within 5 ms in a wireless communication system to which the present disclosure is applied.
도 8은 5G 시스템에서 기지국과 단말 간 통신에 사용되는 DMRS 패턴 (type1과 type2)의 일례를 도시한 도면이다. Figure 8 is a diagram illustrating an example of DMRS patterns (type 1 and type 2) used for communication between a base station and a terminal in a 5G system.
도 9는 본 개시가 적용되는 5G 시스템의 시간 대역에서 하나의 PUSCH에서 수신한 DMRS를 이용한 채널 추정의 일례를 도시한 도면이다.FIG. 9 is a diagram illustrating an example of channel estimation using DMRS received on one PUSCH in a time band of a 5G system to which the present disclosure is applied.
도 10은 실시예에 따라 동적 시그널링을 통한 SSB 전송을 재설정하는 방법의 일례를 도시한 도면이다.FIG. 10 is a diagram illustrating an example of a method for resetting SSB transmission through dynamic signaling according to an embodiment.
도 11은 실시예에 따라 동적 시그널링을 통한 BWP 및 BW를 재설정하는 방법의 일례를 도시한 도면이다.FIG. 11 is a diagram illustrating an example of a method for resetting BWP and BW through dynamic signaling according to an embodiment.
도 12는 실시예에 따라 동적 시그널링을 통한 DRX를 재설정하는 방법의 일례를 도시한 도면이다.FIG. 12 is a diagram illustrating an example of a method for resetting DRX through dynamic signaling according to an embodiment.
도 13는 기지국 에너지 세이빙을 위한 DTx 방법의 일례를 도시한 도면이다.FIG. 13 is a diagram illustrating an example of a DTx method for base station energy saving.
도 14는 gNB WUS에 따른 기지국의 동작의 일례를 설명하기 위한 도면이다.Figure 14 is a diagram for explaining an example of the operation of a base station according to gNB WUS.
도 15는 실시예에 따라 에너지 절감을 위한 기지국의 공간 도메인(spatial domain, SD) 적응 방법의 일례를 도시한 도면이다.FIG. 15 is a diagram illustrating an example of a spatial domain (SD) adaptation method of a base station for energy saving according to an embodiment.
도 16는 실시예에 따라 에너지 절감을 위한 서로 다른 기능을 갖는 셀의 컨셉의 일례를 도시한 도면이다.FIG. 16 is a diagram illustrating an example of a concept of cells having different functions for energy saving according to an embodiment.
도 17은 실시예에 따라 기지국의 에너지 세이빙을 위한 온-디맨드 셀 선택 방법의 일례를 도시한 도면이다.FIG. 17 is a diagram illustrating an example of an on-demand cell selection method for energy saving of a base station according to an embodiment.
도 18a는 본 개시의 실시예에 따라 기지국의 에너지 세이빙을 위한 온-디맨드 셀 선택을 위한 절차의 일례를 도시한 도면이다.FIG. 18a is a diagram illustrating an example of a procedure for on-demand cell selection for energy saving of a base station according to an embodiment of the present disclosure.
도 18b는 본 개시의 실시예에 따라 기지국의 에너지 세이빙을 위한 온-디맨드 셀 선택을 위한 절차의 일례를 도시한 도면이다.ㄴFIG. 18b is a diagram illustrating an example of a procedure for on-demand cell selection for energy saving of a base station according to an embodiment of the present disclosure.
도 19a는 실시예에 따라 기지국의 에너지 세이빙을 위한 data cell 활성화를 위한 WUS 전송 방법의 일례를 도시한 도면이다.FIG. 19a is a diagram illustrating an example of a WUS transmission method for activating data cells for energy saving of a base station according to an embodiment.
도 19b는 실시예에 따라 기지국의 에너지 세이빙을 위한 data cell 활성화를 위한 WUS 전송 방법의 또다른 일례를 도시한 도면이다.FIG. 19b is a diagram illustrating another example of a WUS transmission method for activating data cells for energy saving of a base station according to an embodiment.
도 20은 본 개시가 적용되는 5G 또는 6G 시스템에서 기지국의 에너지 세이빙을 위한 셀 선택 방법을 적용하는 단말의 동작의 일례를 도시하는 순서도이다.FIG. 20 is a flowchart illustrating an example of an operation of a terminal that applies a cell selection method for energy saving of a base station in a 5G or 6G system to which the present disclosure is applied.
도 21a는 본 개시가 적용되는 5G 또는 6G 시스템에서 기지국의 에너지 세이빙을 위한 셀 선택 방법을 적용하는 셀 type 1의 셀을 서빙하는 기지국 동작의 일례를 도시한 순서도이다.FIG. 21A is a flowchart illustrating an example of a base station operation serving a cell of cell type 1 applying a cell selection method for energy saving of a base station in a 5G or 6G system to which the present disclosure is applied.
도 21b는 본 개시가 적용되는 5G 또는 6G 시스템에서 기지국의 에너지 세이빙을 위한 셀 type 2의 셀을 서빙하는 기지국 동작의 일례를 도시한 순서도이다.FIG. 21b is a flowchart illustrating an example of a base station operation serving a cell of cell type 2 for energy saving of the base station in a 5G or 6G system to which the present disclosure is applied.
도 22는 본 개시의 일 실시예에 따른 단말의 블록도이다. FIG. 22 is a block diagram of a terminal according to one embodiment of the present disclosure.
도 23은 본 개시의 일 실시예에 따른 기지국의 블록도이다.FIG. 23 is a block diagram of a base station according to one embodiment of the present disclosure.
이하, 본 개시의 실시예를 첨부된 도면을 참조하여 상세하게 설명한다. 하기에서 본 개시의 실시예를 설명함에 있어서 본 개시에 속하는 기술 분야에 익히 알려져 있고 본 개시와 직접적으로 관련이 없는 기술 내용에 대해서는 설명을 생략한다. 이는 불필요한 설명을 생략함으로써 본 개시의 요지를 흐리지 않고 더욱 명확히 전달하기 위함이다.Hereinafter, embodiments of the present disclosure will be described in detail with reference to the attached drawings. In describing embodiments of the present disclosure below, descriptions of technical contents that are well known in the technical field pertaining to the present disclosure and are not directly related to the present disclosure will be omitted. This is to convey the gist of the present disclosure more clearly without obscuring it by omitting unnecessary explanations.
마찬가지 이유로 첨부된 도면에 있어서 일부 구성요소는 과장되거나 생략되거나 개략적으로 도시되었다. 또한, 각 구성요소의 크기는 실제 크기를 전적으로 반영하는 것이 아니다. 각 도면에서 동일한 또는 대응하는 구성 요소에는 동일한 참조 번호를 부여하였다.For the same reason, some components in the attached drawings are exaggerated, omitted, or schematically illustrated. In addition, the size of each component does not entirely reflect the actual size. The same or corresponding components in each drawing are given the same reference numbers.
본 개시의 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술되어 있는 실시예들을 참조하면 명확해질 것이다. 그러나 본 개시는 이하에서 설명되는 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있으며, 단지 본 실시예들은 본 개시가 완전하도록 하고, 본 개시가 속하는 기술분야에서 통상의 지식을 가진 자에게 기술적 사상의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 개시는 청구항의 범주에 의해 정의될 뿐이다. 명세서 전체에 걸쳐 동일 참조 부호는 동일 구성 요소를 지칭한다. 또한, 본 개시를 설명함에 있어서 관련된 기능 또는 구성에 대한 구체적인 설명이 본 개시의 요지를 불필요하게 흐릴 수 있다고 판단된 경우 그 상세한 설명은 생략한다. 그리고 후술되는 용어들은 본 개시에서의 기능을 고려하여 정의된 용어들로서 이는 사용자, 운용자의 의도 또는 관례 등에 따라 달라질 수 있다. 그러므로 그 정의는 본 명세서 전반에 걸친 내용을 토대로 내려져야 할 것이다. The advantages and features of the present disclosure, and the methods for achieving them, will become clear with reference to the embodiments described in detail below together with the accompanying drawings. However, the present disclosure is not limited to the embodiments described below, but may be implemented in various different forms, and these embodiments are provided only to make the present disclosure complete and to fully inform those skilled in the art to which the present disclosure belongs of the scope of the technical idea, and the present disclosure is defined only by the scope of the claims. Like reference numerals refer to like elements throughout the specification. In addition, when describing the present disclosure, if it is determined that a specific description of a related function or configuration may unnecessarily obscure the gist of the present disclosure, the detailed description thereof will be omitted. In addition, the terms described below are terms defined in consideration of the functions in the present disclosure, and may vary depending on the intention or custom of the user or operator. Therefore, the definitions should be made based on the contents throughout the specification.
이하 본 개시에서 A/B/C는 A, B, C 중 적어도 하나로 이해될 수 있다. In the present disclosure below, A/B/C may be understood as at least one of A, B, and C.
이하, 기지국은 단말의 자원할당을 수행하는 주체로서, gNode B, eNode B, Node B, BS (Base Station), 무선 접속 유닛, 기지국 제어기, 또는 네트워크 상의 노드 중 적어도 하나일 수 있다. 단말은 UE (user equipment), MS (mobile station), 셀룰러폰, 스마트폰, 컴퓨터, 또는 통신기능을 수행할 수 있는 멀티미디어시스템을 포함할 수 있다. 본 개시에서 하향링크(downlink; DL)는 기지국이 단말에게 전송하는 신호의 무선 전송경로이고, 상향링크는(uplink; UL)는 단말이 기국에게 전송하는 신호의 무선 전송경로를 의미한다. 또한, 이하에서 LTE 또는 LTE-A 시스템을 일례로서 설명할 수도 있지만, 유사한 기술적 배경 또는 채널형태를 갖는 여타의 통신시스템에도 본 개시의 실시예가 적용될 수 있다. 예를 들어 LTE-A 이후에 개발되는 5세대 이동통신 기술(5G, new radio, NR)이 이에 포함될 수 있으며, 이하의 5G는 기존의 LTE, LTE-A 및 유사한 다른 서비스를 포함하는 개념일 수도 있다. 또한, 본 개시는 숙련된 기술적 지식을 가진 자의 판단으로써 본 개시의 범위를 크게 벗어나지 아니하는 범위에서 일부 변형을 통해 다른 통신시스템에도 적용될 수 있다.Hereinafter, the base station is an entity that performs resource allocation of a terminal, and may be at least one of a gNode B, an eNode B, a Node B, a BS (Base Station), a wireless access unit, a base station controller, or a node on a network. The terminal may include a UE (user equipment), an MS (mobile station), a cellular phone, a smartphone, a computer, or a multimedia system capable of performing a communication function. In the present disclosure, the downlink (DL) refers to a wireless transmission path of a signal that a base station transmits to a terminal, and the uplink (UL) refers to a wireless transmission path of a signal that a terminal transmits to a base station. In addition, although an LTE or LTE-A system may be described as an example below, embodiments of the present disclosure may be applied to other communication systems having a similar technical background or channel type. For example, the 5th generation mobile communication technology (5G, new radio, NR) developed after LTE-A may be included here, and the 5G below may be a concept that includes existing LTE, LTE-A, and other similar services. In addition, the present disclosure may be applied to other communication systems through some modifications without significantly departing from the scope of the present disclosure, as judged by a person having skilled technical knowledge.
이 때, 처리 흐름도 도면들의 각 블록과 흐름도 도면들의 조합들은 컴퓨터 프로그램 인스트럭션들에 의해 수행될 수 있음을 이해할 수 있을 것이다. 이들 컴퓨터 프로그램 인스트럭션들은 범용 컴퓨터, 특수용 컴퓨터 또는 기타 프로그램 가능한 데이터 프로세싱 장비의 프로세서에 탑재될 수 있으므로, 컴퓨터 또는 기타 프로그램 가능한 데이터 프로세싱 장비의 프로세서를 통해 수행되는 그 인스트럭션들이 흐름도 블록(들)에서 설명된 기능들을 수행하는 수단을 생성하게 된다. 이들 컴퓨터 프로그램 인스트럭션들은 특정 방식으로 기능을 구현하기 위해 컴퓨터 또는 기타 프로그램 가능한 데이터 프로세싱 장비를 지향할 수 있는 컴퓨터 이용 가능 또는 컴퓨터 판독 가능 메모리에 저장되는 것도 가능하므로, 그 컴퓨터 이용가능 또는 컴퓨터 판독 가능 메모리에 저장된 인스트럭션들은 흐름도 블록(들)에서 설명된 기능을 수행하는 인스트럭션 수단을 내포하는 제조 품목을 생산하는 것도 가능하다. 컴퓨터 프로그램 인스트럭션들은 컴퓨터 또는 기타 프로그램 가능한 데이터 프로세싱 장비 상에 탑재되는 것도 가능하므로, 컴퓨터 또는 기타 프로그램 가능한 데이터 프로세싱 장비 상에서 일련의 동작 단계들이 수행되어 컴퓨터로 실행되는 프로세스를 생성해서 컴퓨터 또는 기타 프로그램 가능한 데이터 프로세싱 장비를 수행하는 인스트럭션들은 흐름도 블록(들)에서 설명된 기능들을 실행하기 위한 단계들을 제공하는 것도 가능하다.At this time, it will be understood that each block of the processing flow diagrams and combinations of the flow diagrams can be performed by computer program instructions. These computer program instructions can be loaded onto a processor of a general-purpose computer, a special-purpose computer, or other programmable data processing equipment, so that the instructions executed by the processor of the computer or other programmable data processing equipment create a means for performing the functions described in the flow diagram block(s). These computer program instructions can also be stored in a computer-available or computer-readable memory that can be directed to a computer or other programmable data processing equipment to implement the function in a specific manner, so that the instructions stored in the computer-available or computer-readable memory can also produce a manufactured article including an instruction means for performing the functions described in the flow diagram block(s). Since the computer program instructions may be installed on a computer or other programmable data processing apparatus, a series of operational steps may be performed on the computer or other programmable data processing apparatus to produce a computer-executable process, so that the instructions executing the computer or other programmable data processing apparatus may also provide steps for executing the functions described in the flowchart block(s).
또한, 각 블록은 특정된 논리적 기능(들)을 실행하기 위한 하나 이상의 실행 가능한 인스트럭션들을 포함하는 모듈, 세그먼트 또는 코드의 일부를 나타낼 수 있다. 또, 몇 가지 대체 실행 예들에서는 블록들에서 언급된 기능들이 순서를 벗어나서 발생하는 것도 가능함을 주목해야 한다. 예를 들면, 잇달아 도시되어 있는 두 개의 블록들은 사실 실질적으로 동시에 수행되는 것도 가능하고 또는 그 블록들이 때때로 해당하는 기능에 따라 역순으로 수행되는 것도 가능하다.Additionally, each block may represent a module, segment, or portion of code that contains one or more executable instructions for performing a particular logical function(s). It should also be noted that in some alternative implementation examples, the functions mentioned in the blocks may occur out of order. For example, two blocks shown in succession may in fact be performed substantially concurrently, or the blocks may sometimes be performed in reverse order, depending on the functionality they perform.
본 개시에서 사용되는 '~부'라는 용어는 소프트웨어 또는 FPGA(Field Programmable Gate Array) 또는 ASIC(Application Specific Integrated Circuit)과 같은 하드웨어 구성요소를 의미하며, '~부'는 어떤 역할들을 수행한다. 그렇지만 '~부'는 소프트웨어 또는 하드웨어에 한정되는 의미는 아니다. '~부'는 어드레싱할 수 있는 저장 매체에 있도록 구성될 수도 있고 하나 또는 그 이상의 프로세서들을 재생시키도록 구성될 수도 있다. 따라서, 일례로서 '~부'는 소프트웨어 구성요소들, 객체지향 소프트웨어 구성요소들, 클래스 구성요소들 및 태스크 구성요소들과 같은 구성요소들과, 프로세스들, 함수들, 속성들, 프로시저들, 서브루틴들, 프로그램 코드의 세그먼트들, 드라이버들, 펌웨어, 마이크로코드, 회로, 데이터, 데이터베이스, 데이터 구조들, 테이블들, 어레이들, 및 변수들을 포함한다. 구성요소들과 '~부'들 안에서 제공되는 기능은 더 작은 수의 구성요소들 및 '~부'들로 결합되거나 추가적인 구성요소들과 '~부'들로 더 분리될 수 있다. 뿐만 아니라, 구성요소들 및 '~부'들은 디바이스 또는 보안 멀티미디어카드 내의 하나 또는 그 이상의 CPU들을 재생시키도록 구현될 수도 있다. 또한 실시예에서 '~부'는 하나 이상의 프로세서를 포함할 수 있다.The term '~ part' used in this disclosure means a software or hardware component such as a Field Programmable Gate Array (FPGA) or an Application Specific Integrated Circuit (ASIC), and the '~ part' performs certain roles. However, the '~ part' is not limited to software or hardware. The '~ part' may be configured to be on an addressable storage medium and may be configured to play one or more processors. Thus, as an example, the '~ part' includes components such as software components, object-oriented software components, class components, and task components, processes, functions, properties, procedures, subroutines, segments of program code, drivers, firmware, microcode, circuitry, data, databases, data structures, tables, arrays, and variables. The functionality provided within the components and '~ parts' may be combined into a smaller number of components and '~ parts' or further separated into additional components and '~ parts'. In addition, the components and '~parts' may be implemented to play one or more CPUs within the device or secure multimedia card. Also, in an embodiment, the '~part' may include one or more processors.
이하 본 개시의 실시예를 첨부한 도면과 함께 상세히 설명한다. 이하 본 개시의 실시예에서 제안하는 방법 및 장치는 랜던 접속 절차를 수행할 때 상향링크 커버리지 향상을 위한 일례로서 본 개시의 실시예를 설명하지만, 각 실시예에 국한되어 적용되지 않고, 개시에서 제안하는 하나 이상의 실시예 전체 또는 일부 실시예들의 조합을 이용하여 다른 채널에 해당하는 주파수 자원 설정 방법에 활용하는 것도 가능할 것이다. 따라서, 본 개시의 실시예는 숙련된 기술적 지식을 가진자의 판단으로써 본 개시의 범위를 크게 벗어나지 아니하는 범위에서 일부 변형을 통해 적용될 수 있다.Hereinafter, embodiments of the present disclosure will be described in detail with reference to the accompanying drawings. The method and device proposed in the embodiments of the present disclosure will be described as an example for improving uplink coverage when performing a random access procedure, but the embodiments of the present disclosure are not limited to each embodiment, and it may be possible to utilize a combination of all or part of the embodiments proposed in the disclosure for a method of setting frequency resources corresponding to other channels. Accordingly, the embodiments of the present disclosure may be applied through some modifications within a range that does not significantly deviate from the scope of the present disclosure at the discretion of a person having skilled technical knowledge.
또한, 본 개시를 설명함에 있어서 관련된 기능 또는 구성에 대한 구체적인 설명이 본 개시의 요지를 불필요하게 흐릴 수 있다고 판단된 경우 그 상세한 설명은 생략한다. 그리고 후술되는 용어들은 본 개시에서의 기능을 고려하여 정의된 용어들로서 이는 사용자, 운용자의 의도 또는 관례 등에 따라 달라질 수 있다. 그러므로 그 정의는 본 명세서 전반에 걸친 내용을 토대로 내려져야 할 것이다. In addition, when describing the present disclosure, if it is judged that a specific description of a related function or configuration may unnecessarily obscure the gist of the present disclosure, the detailed description will be omitted. In addition, the terms described below are terms defined in consideration of the functions in the present disclosure, and these may vary depending on the intention or custom of the user or operator. Therefore, the definitions should be made based on the contents throughout this specification.
무선 통신 시스템은 초기의 음성 위주의 서비스를 제공하던 것에서 벗어나 예를 들어, 3GPP의 HSPA(high speed packet access), LTE(long term evolution 또는 E-UTRA (evolved universal terrestrial radio access)), LTE-Advanced (LTE-A), LTE-Pro, 3GPP2의 HRPD(high rate packet data), UMB(ultra mobile broadband), 및 IEEE의 802.17e의 통신 표준과 같이 고속, 고품질의 패킷 데이터 서비스를 제공하는 광대역 무선 통신 시스템으로 발전하고 있다. Wireless communication systems are evolving from providing voice-oriented services in the early days to broadband wireless communication systems that provide high-speed, high-quality packet data services, such as 3GPP's HSPA (high speed packet access), LTE (long term evolution or E-UTRA (evolved universal terrestrial radio access)), LTE-Advanced (LTE-A), LTE-Pro, 3GPP2's HRPD (high rate packet data), UMB (ultra mobile broadband), and IEEE's 802.17e communication standards.
광대역 무선 통신 시스템의 대표적인 예인 LTE 시스템에서는 하향링크(downlink, DL)에서는 OFDM(orthogonal frequency division multiplexing) 방식을 채용하고 있고, 상향링크(uplink, UL)에서는 SC-FDMA(single carrier frequency division multiple access) 방식을 채용하고 있다. 상향링크는 단말이 기지국으로 데이터 또는 제어 신호를 전송하는 무선 링크를 의미하고, 하향링크는 기지국이 단말(UE)로 데이터 또는 제어 신호를 전송하는 무선 링크를 의미한다. 또한 전술한 다중 접속 방식은, 통상 각 사용자 별로 데이터 또는 제어 정보를 실어 보낼 시간-주파수 자원이 서로 겹치지 않도록, 즉 직교성 (orthogonality)이 성립하도록, 할당 및 운용함으로써 각 사용자의 데이터 또는 제어 정보가 구분되도록 한다.In the LTE system, which is a representative example of a broadband wireless communication system, the downlink (DL) adopts the OFDM (orthogonal frequency division multiplexing) method, and the uplink (UL) adopts the SC-FDMA (single carrier frequency division multiple access) method. The uplink refers to a wireless link in which a terminal transmits data or a control signal to a base station, and the downlink refers to a wireless link in which a base station transmits data or a control signal to a terminal (UE). In addition, the aforementioned multiple access method typically allocates and operates time-frequency resources for transmitting data or control information to each user so that they do not overlap, that is, so that orthogonality is established, thereby distinguishing the data or control information of each user.
LTE 이후의 통신 시스템인 5G 통신 시스템은 사용자 및 서비스 제공자의 다양한 요구 사항을 자유롭게 반영할 수 있도록 다양한 요구사항을 동시에 만족하는 서비스를 지원하여야 한다. 5G 통신 시스템을 위해 고려되는 서비스로는 향상된 모바일 광대역 통신(enhanced mobile broadband, eMBB), 대규모 기계형 통신(massive machine type communication, mMTC), 또는 초신뢰 저지연 통신(ultra reliability low latency communication, URLLC)이 있다. The 5G communication system, which is a communication system after LTE, must support services that simultaneously satisfy various requirements so that it can freely reflect the diverse needs of users and service providers. Services considered for the 5G communication system include enhanced mobile broadband (eMBB), massive machine type communication (mMTC), or ultra reliability low latency communication (URLLC).
eMBB는 기존의 LTE, LTE-A 또는 LTE-Pro가 지원하는 데이터 전송 속도보다 더욱 향상된 데이터 전송 속도를 제공하는 것을 목표로 한다. 예를 들어, 5G 통신 시스템에서 eMBB는 하나의 기지국 관점에서 하향링크에서는 20Gbps의 최대 전송 속도(peak data rate), 상향링크에서는 10Gbps의 최대 전송 속도를 제공할 수 있어야 한다. 또한 5G 통신 시스템은 최대 전송 속도를 제공하는 동시에, 증가된 단말의 실제 체감 전송 속도(user perceived data rate)를 제공해야 한다. 이와 같은 요구 사항을 만족시키기 위해, 더욱 향상된 다중 안테나(multi input multi output, MIMO) 전송 기술을 포함하여 다양한 송수신 기술의 향상이 요구될 수 있다. 또한 LTE 시스템에서는 2GHz 대역에서 최대 20MHz 전송대역폭을 사용하여 신호가 전송되는 반면에 5G 통신 시스템은 3 내지 6GHz 또는 6GHz 이상의 주파수 대역에서 20MHz 보다 넓은 주파수 대역폭을 사용함으로써 5G 통신시스템에서 요구하는 데이터 전송 속도를 만족시킬 수 있다. eMBB aims to provide a data transmission rate that is higher than that supported by existing LTE, LTE-A or LTE-Pro. For example, in a 5G communication system, eMBB should be able to provide a peak data rate of 20 Gbps in the downlink and a peak data rate of 10 Gbps in the uplink from the perspective of a single base station. In addition, the 5G communication system should provide an increased user perceived data rate while providing the peak data rate. To satisfy such requirements, improvements in various transmission/reception technologies, including further improved multi-input multi-output (MIMO) transmission technology, may be required. In addition, while an LTE system transmits a signal using a maximum transmission bandwidth of 20 MHz in the 2 GHz band, a 5G communication system can satisfy the data transmission rate required by the 5G communication system by using a wider frequency bandwidth than 20 MHz in a frequency band of 3 to 6 GHz or higher than 6 GHz.
동시에, 5G 통신 시스템에서 사물 인터넷(internet of thing, IoT)과 같은 응용 서비스를 지원하기 위해 mMTC가 고려되고 있다. mMTC는 효율적으로 사물 인터넷을 제공하기 위해 셀 내에서 대규모 단말의 접속 지원, 단말의 커버리지 향상, 향상된 배터리 시간, 및 단말의 비용 감소를 필요로 한다. 사물 인터넷은 여러 가지 센서 및 다양한 기기에 부착되어 통신 기능을 제공하므로 셀 내에서 많은 수의 단말(예를 들어, 1,000,000 단말/km2)을 지원할 수 있어야 한다. 또한 mMTC를 지원하는 단말은 서비스의 특성상 건물의 지하와 같이 셀이 커버하지 못하는 음영 지역에 위치할 가능성이 높으므로 5G 통신 시스템에서 제공하는 다른 서비스 대비 더욱 넓은 커버리지를 요구한다. mMTC를 지원하는 단말은 저가의 단말로 구성되어야 하며, 단말의 배터리를 자주 교환하기 힘들기 때문에 10 내지 16년과 같이 매우 긴 배터리 생명시간(battery life time)를 필요로 한다. At the same time, mMTC is being considered to support application services such as the Internet of Things (IoT) in 5G communication systems. mMTC requires support for mass terminal connection, improved terminal coverage, improved battery life, and reduced terminal cost in order to efficiently provide the Internet of Things. Since the Internet of Things provides communication functions by attaching various sensors and various devices, it must be able to support a large number of terminals (e.g., 1,000,000 terminals/ km2 ) in a cell. In addition, terminals supporting mMTC are likely to be located in shadow areas that cells do not cover, such as basements of buildings, due to the nature of the service, and therefore require wider coverage than other services provided by 5G communication systems. Terminals supporting mMTC must be composed of low-cost terminals, and since it is difficult to frequently replace the terminal batteries, they require very long battery life times, such as 10 to 16 years.
마지막으로, URLLC의 경우, 특정한 목적(mission-critical)으로 사용되는 셀룰러 기반 무선 통신 서비스이다. 예를 들어, 로봇(robot) 또는 기계 장치(machinery)에 대한 원격 제어(remote control), 산업 자동화(industrial automation), 무인 비행장치(unmaned aerial vehicle), 원격 건강 제어(remote health care), 또는 비상 상황 알림(emergency alert)에 사용되는 서비스를 고려할 수 있다. 따라서 URLLC가 제공하는 통신은 매우 낮은 저지연 및 매우 높은 신뢰도를 제공해야 한다. 예를 들어, URLLC을 지원하는 서비스는 0.5 밀리초보다 작은 무선 접속 지연시간(air interface latency)을 만족해야 하며, 동시에 10-5 이하의 패킷 오류율(packet error rate)의 요구사항을 만족해야 한다. 따라서, URLLC을 지원하는 서비스를 위해 5G 시스템은 다른 서비스보다 작은 전송 시간 구간(transmit time interval, TTI)을 제공해야 하며, 동시에 통신 링크의 신뢰성을 확보하기 위해 주파수 대역에서 넓은 자원을 할당해야 한다.Finally, URLLC is a cellular-based wireless communication service used for a specific purpose (mission-critical). For example, services used for remote control of robots or machinery, industrial automation, unmanaged aerial vehicles, remote health care, or emergency alert can be considered. Therefore, the communication provided by URLLC must provide very low latency and very high reliability. For example, a service supporting URLLC must satisfy an air interface latency of less than 0.5 milliseconds, and at the same time, satisfy the requirement of a packet error rate of less than 10 -5 . Therefore, for a service supporting URLLC, the 5G system must provide a smaller transmit time interval (TTI) than other services, and at the same time, allocate wide resources in the frequency band to secure the reliability of the communication link.
5G 통신 시스템(이하 5G 시스템과 혼용 가능하다)의 세가지 서비스들, 즉 eMBB, URLLC, mMTC는 하나의 시스템에서 다중화되어 전송될 수 있다. 각각의 서비스들이 갖는 상이한 요구사항을 만족시키기 위해 서비스간에 서로 다른 송수신 기법 및 송수신 파라미터가 사용될 수 있다.The three services of the 5G communication system (hereinafter, interchangeable with the 5G system), namely, eMBB, URLLC, and mMTC, can be multiplexed and transmitted in one system. Different transmission/reception techniques and transmission/reception parameters can be used between services to satisfy different requirements of each service.
이하 5G 시스템의 프레임 구조에 대해 도면을 참조하여 보다 구체적으로 설명한다. 이하 본 개시가 적용되는 무선 통신 시스템은 설명의 편의 상 5G 시스템의 구성을 예로 들어 설명될 것이나, 본 개시가 적용 가능한, 5G 이상의 시스템 또는 다른 통신 시스템에서도 동일 또는 유사한 방식으로 본 개시의 실시예들은 적용될 수 있다.Hereinafter, the frame structure of the 5G system will be described in more detail with reference to the drawings. The wireless communication system to which the present disclosure is applied will be described below using the configuration of a 5G system as an example for convenience of explanation, but embodiments of the present disclosure may be applied in the same or similar manner to systems higher than 5G or other communication systems to which the present disclosure is applicable.
도 1은 본 개시가 적용되는 무선 통신 시스템에서 무선 자원 영역인 시간-주파수 영역의 기본 구조를 도시한 도면이다. FIG. 1 is a diagram illustrating the basic structure of a time-frequency domain, which is a wireless resource domain, in a wireless communication system to which the present disclosure is applied.
도 1에서, 가로 축은 시간 영역을 나타내고, 세로 축은 주파수 영역을 나타낸다. 시간 및 주파수 영역에서 자원의 기본 단위는 자원 요소(resource element, RE, 101)로서 시간 축으로 1개의 OFDM(orthogonal frequency division multiplexing) 심볼(또는 DFT-s-OFDM(discrete Fourier transform spread OFDM) 심볼)(102) 및 주파수 축으로 1개의 부반송파(subcarrier, 103)로 정의될 수 있다. 주파수 영역에서 자원 블록(RB) 당 부반송파의 수를 나타내는
Figure PCTKR2024004697-appb-img-000001
(일례로 12) 개의 연속된 RE들은 하나의 자원 블록(resource block, RB, 104)을 구성할 수 있다. 또한, 시간 영역에서 서브프레임 당 심볼 수를 나타내는
Figure PCTKR2024004697-appb-img-000002
개의 연속된 OFDM 심볼들은 하나의 서브프레임(subframe, 110)을 구성할 수 있다.
In Fig. 1, the horizontal axis represents the time domain, and the vertical axis represents the frequency domain. The basic unit of resources in the time and frequency domains is a resource element (RE, 101), which can be defined as one OFDM (orthogonal frequency division multiplexing) symbol (or DFT-s-OFDM (discrete Fourier transform spread OFDM) symbol) (102) in the time axis and one subcarrier (subcarrier, 103) in the frequency axis. Indicates the number of subcarriers per resource block (RB) in the frequency domain.
Figure PCTKR2024004697-appb-img-000001
(For example, 12) consecutive REs can form one resource block (RB, 104). In addition, the number of symbols per subframe in the time domain is indicated.
Figure PCTKR2024004697-appb-img-000002
A set of consecutive OFDM symbols can constitute one subframe (subframe, 110).
도 2는 본 개시가 적용되는 무선 통신 시스템에서 고려되는 슬롯 구조를 도시한 도면이다.FIG. 2 is a diagram illustrating a slot structure considered in a wireless communication system to which the present disclosure is applied.
도 2에는 프레임(frame) (200), 서브프레임(201), 및 슬롯(slot) (202 또는 203)을 포함하는 슬롯 구조의 일례가 도시되어 있다. 1개의 프레임(200)은 10ms로 정의될 수 있다. 1개의 서브프레임(201)은 1ms로 정의될 수 있으며, 따라서 1개의 프레임(200)은 총 10개의 서브프레임(201)으로 구성될 수 있다. 1개의 슬롯(202, 203)은 14개의 OFDM 심볼들로 정의될 수 있다(즉, 1개의 슬롯 당 심볼 수
Figure PCTKR2024004697-appb-img-000003
)=14). 1개의 서브프레임(201)은 하나 또는 다수개의 슬롯(202 또는 203)으로 구성될 수 있으며, 1개의 서브프레임(201)당 슬롯(202 또는 203)의 개수는 부반송파 간격(subcarrier space, SCS)에 대한 설정 값인 μ (204 또는 205)에 따라 다를 수 있다.
FIG. 2 illustrates an example of a slot structure including a frame (200), a subframe (201), and a slot (202 or 203). One frame (200) can be defined as 10 ms. One subframe (201) can be defined as 1 ms, and therefore one frame (200) can be composed of a total of 10 subframes (201). One slot (202, 203) can be defined as 14 OFDM symbols (i.e., the number of symbols per slot
Figure PCTKR2024004697-appb-img-000003
)=14). One subframe (201) may be composed of one or more slots (202 or 203), and the number of slots (202 or 203) per one subframe (201) may vary depending on μ (204 or 205), which is a setting value for the subcarrier space (SCS).
부반송파 간격 설정 값으로 μ=0 (204)인 경우와 μ=1(205)인 경우의 슬롯 구조가 도시되어 있다. μ=0 (204)일 경우, 1개의 서브프레임(201)은 1개의 슬롯(202)으로 구성될 수 있고, μ=1 (205)일 경우, 1개의 서브프레임(201)은 2개의 슬롯들(예를 들어 슬롯(203)을 포함)으로 구성될 수 있다. 즉 부반송파 간격에 대한 설정 값 μ에 따라 1개의 서브프레임 당 슬롯 수(
Figure PCTKR2024004697-appb-img-000004
)가 달라질 수 있고, 이에 따라 1개의 프레임 당 슬롯 수(
Figure PCTKR2024004697-appb-img-000005
)가 달라질 수 있다. 예를 들어 각 부반송파 간격 설정 μ에 따른
Figure PCTKR2024004697-appb-img-000006
Figure PCTKR2024004697-appb-img-000007
는 하기의 표 1로 정의될 수 있다.
The slot structure is illustrated for the cases where μ=0 (204) and μ=1 (205) as the subcarrier spacing setting value. When μ=0 (204), one subframe (201) can be composed of one slot (202), and when μ=1 (205), one subframe (201) can be composed of two slots (including slot (203) for example). That is, depending on the setting value μ for the subcarrier spacing, the number of slots per subframe (
Figure PCTKR2024004697-appb-img-000004
) may vary, and accordingly the number of slots per frame (
Figure PCTKR2024004697-appb-img-000005
) may vary. For example, depending on the subcarrier spacing setting μ
Figure PCTKR2024004697-appb-img-000006
and
Figure PCTKR2024004697-appb-img-000007
can be defined as Table 1 below.
μμ
Figure PCTKR2024004697-appb-img-000008
Figure PCTKR2024004697-appb-img-000008
Figure PCTKR2024004697-appb-img-000009
Figure PCTKR2024004697-appb-img-000009
Figure PCTKR2024004697-appb-img-000010
Figure PCTKR2024004697-appb-img-000010
00 1414 1010 11
11 1414 2020 22
22 1414 4040 44
33 1414 8080 88
44 1414 160160 1616
55 1414 320320 3232
5G 시스템에서는 단말의 초기 접속을 위해 동기화 신호 블록(synchronization signal block, SSB(SS 블록(SS block) 또는 SS/PBCH 블록(SS/PBCH block)과 혼용될 수 있다)을 전송할 수 있고, 동기화 신호 블록은 PSS(primary synchronization signal), SSS(secondary synchronization signal), PBCH(physical broadcast channel)를 포함할 수 있다. In a 5G system, a synchronization signal block (SSB, which may be used interchangeably with an SS block or an SS/PBCH block) may be transmitted for initial connection of a terminal, and the synchronization signal block may include a primary synchronization signal (PSS), a secondary synchronization signal (SSS), and a physical broadcast channel (PBCH).
단말이 시스템에 접속하는 초기 접속(initial access) 단계에서, 단말은 먼저 셀 탐색(cell search)을 통해 동기화 신호(synchronization signal)로부터 하향링크 시간 및 주파수 영역 동기를 획득하고 셀 ID (cell ID)를 획득할 수 있다. 상기 동기화 신호에는 PSS 및 SSS가 포함될 수 있다. 그리고 단말은 기지국으로부터 마스터 정보 블록(master information block, MIB)을 전송하는 PBCH를 수신하여 시스템 대역폭 또는 관련 제어 정보와 같은 송수신 관련 시스템 정보 및 기본적인 파라미터 값을 획득할 수 있다. 이 정보를 바탕으로 단말은 PDCCH(physical downlink control channel) 및 PDSCH(physical downlink shared channel)에 대한 디코딩을 수행하여 시스템 정보 블록(system information block, SIB)을 획득할 수 있다. 이후 단말은 랜덤 액세스(random access) 단계를 통해 기지국과 단말의 식별 관련 정보를 교환하고 등록 및 인증의 단계들을 거쳐 네트워크에 초기 접속할 수 있다. 추가적으로 단말은 기지국이 전송하는 시스템 정보 (또는 SIB) 를 수신하여 셀 공통의 송수신 관련 제어 정보를 획득할 수 있다. 상기 셀 공통의 송수신 관련 제어 정보는 랜덤 억세스 관련 제어 정보, 페이징 관련 제어 정보, 각종 물리 채널에 대한 공통 제어 정보 등을 포함할 수 있다.In the initial access stage where a terminal accesses a system, the terminal can first obtain downlink time and frequency domain synchronization from a synchronization signal through a cell search and obtain a cell ID. The synchronization signal may include a PSS and an SSS. In addition, the terminal can obtain transmission and reception related system information such as a system bandwidth or related control information and basic parameter values by receiving a PBCH transmitting a master information block (MIB) from a base station. Based on this information, the terminal can perform decoding on a physical downlink control channel (PDCCH) and a physical downlink shared channel (PDSCH) to obtain a system information block (SIB). Thereafter, the terminal can exchange identification related information between the base station and the terminal through a random access stage and go through registration and authentication stages to initially access the network. In addition, the terminal can obtain cell common transmission and reception related control information by receiving system information (or SIB) transmitted by the base station. The above cell common transmission and reception related control information may include random access related control information, paging related control information, common control information for various physical channels, etc.
동기 신호 (synchronization signal)는 셀 탐색의 기준이 되는 신호로서, 주파수 밴드 별로, phase noise 등과 같은 채널 환경에 적합하도록 서브캐리어 간격이 적용될 수 있다. 데이터 채널 또는 제어 채널의 경우, 상술된 바와 같이 다양한 서비스를 지원하기 위해서, 서비스 타입에 따라 서브캐리어 간격이 다르게 적용될 수 있다.A synchronization signal is a signal that serves as a reference for cell search, and a subcarrier spacing can be applied to suit channel environments such as phase noise, etc., for each frequency band. In the case of a data channel or a control channel, a subcarrier spacing can be applied differently depending on the service type in order to support various services as described above.
도 3은 동기 신호의 시간 영역 매핑 구조 및 빔 스위핑 동작의 일례를 나타내는 도면이다.FIG. 3 is a diagram showing an example of a time domain mapping structure of a synchronization signal and a beam sweeping operation.
설명을 위해 다음의 구성요소들이 정의될 수 있다For the purpose of explanation, the following components can be defined:
- PSS: DL 시간/주파수 동기의 기준이 되는 신호로 셀 ID 일부 정보를 제공한다.- PSS: A signal that serves as a reference for DL time/frequency synchronization and provides some cell ID information.
- SSS: DL 시간/주파수 동기의 기준이 되고 셀 ID 나머지 일부 정보를 제공한다. 추가적으로 PBCH 의 복조를 위한 기준 신호 (reference signal) 역할을 할 수 있다.- SSS: It serves as a reference for DL time/frequency synchronization and provides some remaining information such as cell ID. Additionally, it can serve as a reference signal for demodulation of PBCH.
- PBCH: 단말의 데이터 채널 및 제어 채널 송수신에 필요한 필수 시스템 정보인 MIB 를 제공한다. 상기 필수 시스템 정보는 제어 채널의 무선 자원 매핑 정보를 나타내는 탐색공간 (search space) 관련 제어 정보, 시스템 정보를 전송하는 별도의 데이터 채널에 대한 스케줄링 제어 정보, 타이밍 기준이 되는 프레임 단위 인덱스인 SFN (system frame number) 등의 정보 등을 포함할 수 있다.- PBCH: Provides MIB, which is essential system information required for transmission and reception of data channels and control channels of the terminal. The essential system information may include information such as search space-related control information indicating radio resource mapping information of the control channel, scheduling control information for a separate data channel transmitting system information, and SFN (system frame number), which is a frame unit index that serves as a timing reference.
- SS/PBCH 블록: SS/PBCH 블록은 N 개의 OFDM 심볼로 구성되며 PSS, SSS, PBCH 등의 조합으로 이뤄진다. 빔스위핑 기술이 적용되는 시스템의 경우, SS/PBCH 블록은 빔 스위핑이 적용되는 최소 단위이다. 5G 시스템에서 N = 4 일 수 있다. 기지국은 최대 L 개의 SS/PBCH 블록을 전송할 수 있고, 상기 L 개의 SS/PBCH 블록은 하프 프레임 (0.5ms) 내에 매핑된다. 그리고 상기 L 개의 SS/PBCH 블록은 소정의 주기 P 단위로 주기적으로 반복된다. 상기 주기 P 는 기지국이 시그널링을 통해 단말에게 알려줄 수 있다. 만약 상기 주기 P에 대한 별도 시그널링이 없을 경우, 단말은 미리 약속된 디폴트 값을 적용한다. - SS/PBCH block: An SS/PBCH block consists of N OFDM symbols and is composed of a combination of PSS, SSS, PBCH, etc. In a system to which beam sweeping technology is applied, an SS/PBCH block is the minimum unit to which beam sweeping is applied. In a 5G system, N can be 4. A base station can transmit up to L SS/PBCH blocks, and the L SS/PBCH blocks are mapped within a half frame (0.5 ms). In addition, the L SS/PBCH blocks are periodically repeated in units of a predetermined period P. The period P can be notified to a terminal by a signaling from the base station. If there is no separate signaling for the period P, the terminal applies a pre-agreed default value.
도 3을 참조하면, 도 3은 시간의 흐름에 따라 SS/PBCH 블록 단위로 빔 스위핑이 적용되는 일례를 나타낸다. 도 3의 예에서, 단말1 (305)의 경우 t1 시점(301)에 SS/PBCH 블록#0 에 적용된 빔포밍 의해 #d0 (303) 방향으로 방사된 빔을 이용해 SS/PBCH 블록을 수신한다. 그리고 단말2 (306)는 t2 시점(302)에 SS/PBCH 블록#4 에 적용된 빔포밍에 의해 #d4 (304) 방향으로 방사된 빔을 이용해 SS/PBCH 블록을 수신한다. 단말은 기지국으로부터 단말이 위치한 방향으로 방사되는 빔을 통해 최적의 동기신호를 획득할 수 있다. 예컨데, 단말1 (305)은 단말1의 위치와 동떨어진 #d4 방향으로 방사되는 빔을 통한 SS/PBCH 블록으로부터는 시간/주파수 동기화 및 필수 시스템 정보를 획득하는 것이 어려울 수 있다.Referring to FIG. 3, FIG. 3 shows an example in which beam sweeping is applied to SS/PBCH block units over time. In the example of FIG. 3, terminal 1 (305) receives an SS/PBCH block using a beam radiated in the direction of #d0 (303) by beamforming applied to SS/PBCH block #0 at time t1 (301). Then, terminal 2 (306) receives an SS/PBCH block using a beam radiated in the direction of #d4 (304) by beamforming applied to SS/PBCH block #4 at time t2 (302). The terminal can obtain an optimal synchronization signal through a beam radiated from the base station in the direction where the terminal is located. For example, terminal 1 (305) may have difficulty in obtaining time/frequency synchronization and essential system information from an SS/PBCH block through a beam radiated in the direction of #d4, which is far from the location of terminal 1.
상기 초기 접속 절차 이외에도, 단말은 현재 셀의 라디오 링크 품질 (radio link quality)이 일정 수준 이상 유지되는지 판단하기 위해서도 SS/PBCH 블록을 수신할 수 있다. 또한 단말이 현재 셀에서 인접 셀로 접속을 이동하는 핸드오버(handover) 절차에서 단말은 인접 셀의 라디오 링크 품질을 판단하고 인접 셀의 시간/주파수 동기를 획득하기 위해 인접 셀의 SS/PBCH 블록을 수신할 수 있다.In addition to the above initial connection procedure, the terminal may also receive the SS/PBCH block to determine whether the radio link quality of the current cell is maintained at a certain level or higher. In addition, in a handover procedure in which the terminal moves connection from the current cell to an adjacent cell, the terminal may receive the SS/PBCH block of the adjacent cell to determine the radio link quality of the adjacent cell and obtain time/frequency synchronization of the adjacent cell.
이하에서는 5G 시스템의 셀 초기 접속 동작 절차에 대해 도면을 참조하여 보다 구체적으로 설명하도록 한다.Below, the cell initial access operation procedure of the 5G system will be described in more detail with reference to the drawings.
동기화 신호는 셀 탐색의 기준이 되는 신호로서, 주파수 대역 별로 채널 환경(예를 들어 위상 잡음(phase noise))에 적합한 부반송파 간격이 적용되어 전송될 수 있다. 5G 기지국은 운용하고자 하는 아날로그 빔의 개수에 따라서 동기화 신호 블록을 다수개 전송할 수 있다. 예를 들어 PSS와 SSS는 12 RB에 걸쳐서 매핑되어 전송되고 PBCH는 24 RB에 걸쳐서 매핑되어 전송될 수 있다. 하기에서 5G 통신 시스템에서 동기화 신호 및 PBCH가 전송되는 구조에 대해 설명한다.The synchronization signal is a signal that serves as a reference for cell search, and can be transmitted by applying a subcarrier interval suitable for the channel environment (e.g., phase noise) for each frequency band. The 5G base station can transmit multiple synchronization signal blocks according to the number of analog beams to be operated. For example, PSS and SSS can be mapped and transmitted across 12 RBs, and PBCH can be mapped and transmitted across 24 RBs. The structure in which the synchronization signal and PBCH are transmitted in the 5G communication system is described below.
도 4는 본 개시가 적용되는 무선 통신 시스템에서 고려되는 동기화 신호 블록을 도시한 도면이다. FIG. 4 is a diagram illustrating a synchronization signal block considered in a wireless communication system to which the present disclosure is applied.
도 4에 따르면, 동기화 신호 블록(SS block, 400)은 PSS(401), SSS(403), 및 PBCH (402)를 포함할 수 있다. According to FIG. 4, a synchronization signal block (SS block, 400) may include a PSS (401), an SSS (403), and a PBCH (402).
동기화 신호 블록(400)은 시간 축에서 4개의 OFDM 심볼(404)에 매핑될 수 있다. PSS(401)와 SSS(403)는 주파수 축으로 12 RB(405), 시간 축으로 각 첫 번째, 세 번째 OFDM 심볼에서 전송될 수 있다. 5G 시스템에서는 예를 들어 총 1008개의 서로 다른 셀 ID가 정의될 수 있다. 셀의 물리계층 ID(physical cell ID)(PCI)에 따라 PSS(401)는 3개의 서로 다른 값을 가질 수 있고, SSS(403)는 336개의 서로 다른 값을 가질 수 있다. 단말은 PSS(401)와 SSS(403)에 대한 검출을 통해 그 조합으로 (336×3=)1008개의 셀 ID 중 한 가지를 획득할 수 있다. 이를 하기 <수학식 1>로 표현할 수 있다.The synchronization signal block (400) can be mapped to four OFDM symbols (404) in the time axis. The PSS (401) and the SSS (403) can be transmitted in 12 RBs (405) in the frequency axis and in the first and third OFDM symbols in the time axis, respectively. In a 5G system, for example, a total of 1008 different cell IDs can be defined. According to the physical cell ID (PCI) of the cell, the PSS (401) can have three different values, and the SSS (403) can have 336 different values. The terminal can obtain one of (336×3=)1008 cell IDs by detecting the PSS (401) and the SSS (403) through their combination. This can be expressed by the following <Mathematical Formula 1>.
[수학식 1][Mathematical Formula 1]
Figure PCTKR2024004697-appb-img-000011
Figure PCTKR2024004697-appb-img-000011
여기서
Figure PCTKR2024004697-appb-img-000012
는 SSS(403)로부터 추정될 수 있고 0에서 335 사이의 값을 가질 수 있다.
Figure PCTKR2024004697-appb-img-000013
는 PSS(401)로부터 추정될 수 있고, 0에서 2 사이의 값을 가질 수 있다. 단말은
Figure PCTKR2024004697-appb-img-000014
Figure PCTKR2024004697-appb-img-000015
의 조합으로 셀 ID인
Figure PCTKR2024004697-appb-img-000016
값을 추정할 수 있다.
Here
Figure PCTKR2024004697-appb-img-000012
can be estimated from SSS(403) and can have a value between 0 and 335.
Figure PCTKR2024004697-appb-img-000013
can be estimated from PSS (401) and can have a value between 0 and 2. The terminal
Figure PCTKR2024004697-appb-img-000014
class
Figure PCTKR2024004697-appb-img-000015
Cell ID is a combination of
Figure PCTKR2024004697-appb-img-000016
The value can be estimated.
PBCH(402)는 주파수 축으로 24 RB(406) 및 시간 축으로 SS 블록의 2번째 내지 4번째 OFDM 심볼에서 SSS(403)가 전송되는 가운데, 가운데 12 RB들(405)을 제외한 양 쪽 6 RB들(407, 408)를 포함한 자원에서 전송될 수 있다. PBCH(402)는 PBCH 페이로드(PBCH payload) 및 PBCH DMRS(demodulation reference signal)를 포함할 수 있으며, PBCH 페이로드에서는 MIB로 불리는 다양한 시스템 정보들이 전송될 수 있다. 예를 들어 MIB는 하기의 표 2와 같은 정보를 포함할 수 있다.PBCH (402) can be transmitted in resources including 6 RBs (407, 408) on both sides, excluding 12 RBs (405) in the middle, while SSS (403) is transmitted in 24 RBs (406) in the frequency axis and in the 2nd to 4th OFDM symbols of an SS block in the time axis. PBCH (402) can include a PBCH payload and a PBCH DMRS (demodulation reference signal), and various system information called MIB can be transmitted in the PBCH payload. For example, MIB can include information as shown in Table 2 below.
MIB ::= SEQUENCE {
systemFrameNumber BIT STRING (SIZE (6)),
subCarrierSpacingCommon ENUMERATED {scs15or60, scs30or120},
ssb-SubcarrierOffset INTEGER (0..15),
dmrs-TypeA-Position ENUMERATED {pos2, pos3},
pdcch-ConfigSIB1 PDCCH-ConfigSIB1,
cellBarred ENUMERATED {barred, notBarred},
intraFreqReselection ENUMERATED {allowed, notAllowed},
spare BIT STRING (SIZE (1))
}
MIB ::= SEQUENCE {
systemFrameNumber BIT STRING (SIZE (6));
subCarrierSpacingCommon ENUMERATED {scs15or60, scs30or120},
ssb-SubcarrierOffset INTEGER (0..15);
dmrs-TypeA-Position ENUMERATED {pos2, pos3},
pdcch-ConfigSIB1 PDCCH-ConfigSIB1,
cellBarred ENUMERATED {barred, notBarred},
intraFreqReselection ENUMERATED {allowed, notAllowed},
spare BIT STRING (SIZE (1))
}
- 동기화 신호 블록 정보: MIB내 4비트의 ssb-SubcarrierOffset을 통해 동기화 신호 블록의 주파수 영역의 오프셋이 지시될 수 있다. 상기 PBCH가 포함된 동기화 신호 블록의 인덱스는 PBCH DMRS와 PBCH의 디코딩을 통해 간접적으로 획득할 수 있다. 일 실시예에서 6GHz 미만 주파수 대역에서는 PBCH DMRS의 디코딩을 통해 획득된 3비트가 동기화 신호 블록 인덱스를 지시하며, 6GHz 이상 주파수 대역에서는 PBCH DMRS의 디코딩을 통해 획득된 3비트와 PBCH 페이로드에 포함되어 PBCH 디코딩에서 획득되는 3비트를 포함한, 총 6비트가 PBCH가 포함된 동기화 신호 블록 인덱스를 지시할 수 있다.- PDCCH 설정 정보: MIB내의 1비트(subCarrierSpacingCommon)를 통해 공통 하향링크 제어 채널의 부반송파 간격이 지시될 수 있으며, 8비트(pdcch-ConfigSIB1)를 통해 CORESET(control resource set) 및 탐색공간(search space, SS)의 시간-주파수 자원 구성 정보가 지시될 수 있다.- Synchronization signal block information: The frequency domain offset of the synchronization signal block can be indicated through the 4-bit ssb-SubcarrierOffset in the MIB. The index of the synchronization signal block including the PBCH can be indirectly obtained through decoding of the PBCH DMRS and PBCH. In one embodiment, in a frequency band below 6 GHz, 3 bits obtained through decoding of PBCH DMRS indicate a synchronization signal block index, and in a frequency band above 6 GHz, a total of 6 bits, including 3 bits obtained through decoding of PBCH DMRS and 3 bits obtained through PBCH decoding included in the PBCH payload, can indicate a synchronization signal block index including the PBCH. - PDCCH configuration information: The subcarrier spacing of the common downlink control channel can be indicated through 1 bit (subCarrierSpacingCommon) in the MIB, and time-frequency resource configuration information of CORESET (control resource set) and search space (SS) can be indicated through 8 bits (pdcch-ConfigSIB1).
- SFN: MIB 내에서 6비트(systemFrameNumber)가 SFN의 일부를 가리키는데 사용될 수 있다. SFN의 LSB(least significant bit) 4비트는 PBCH 페이로드에 포함되어 단말은 PBCH 디코딩을 통해 간접적으로 획득할 수 있다.- SFN: 6 bits (systemFrameNumber) in the MIB can be used to indicate part of the SFN. The 4 least significant bits (LSB) of the SFN are included in the PBCH payload, so that the terminal can obtain them indirectly through PBCH decoding.
- 무선 프레임(radio frame) 내의 타이밍(timing) 정보: 상기 설명한 동기화 신호 블록 인덱스와 PBCH 페이로드에 포함되어 PBCH 디코딩을 통해 획득되는 1비트로 단말은 동기화 신호 블록이 라디오 프레임의 첫 번째 또는 두 번째 하프 프레임(half frame)에서 전송되었는지 간접적으로 확인할 수 있다. - Timing information within a radio frame: The synchronization signal block index described above and 1 bit included in the PBCH payload are obtained through PBCH decoding, allowing the terminal to indirectly determine whether the synchronization signal block was transmitted in the first or second half frame of the radio frame.
PSS(401)와 SSS(403)의 전송 대역폭(12RB(405))과 PBCH(402)의 전송 대역폭(24RB(406))이 서로 다르므로, PBCH(402) 전송 대역폭 내에서 PSS(401)가 전송되는 첫 번째 OFDM 심볼에서는 PSS(401)가 전송되는 가운데 12 RB를 제외한 양 쪽 6 RB(407, 408)가 존재하며, 상기 영역은 다른 신호를 전송하는데 사용되거나 또는 비어있을 수 있다. Since the transmission bandwidths (12 RB (405)) of the PSS (401) and SSS (403) and the transmission bandwidth (24 RB (406)) of the PBCH (402) are different from each other, in the first OFDM symbol where the PSS (401) is transmitted within the transmission bandwidth of the PBCH (402), 6 RBs (407, 408) on both sides exist except for the 12 RBs in the middle where the PSS (401) is transmitted, and the above areas can be used to transmit other signals or can be empty.
동기화 신호 블록들은 동일한 아날로그 빔(analog beam)을 이용해 전송될 수 있다. 예를 들어 PSS(401), SSS(403), 및 PBCH(402)는 모두 동일한 빔으로 전송될 수 있다. 아날로그 빔은 주파수 축으로는 다르게 적용될 수 없는 특성이 있으므로, 특정 아날로그 빔이 적용된 특정 OFDM 심볼 내의 모든 주파수 축 RB에서는 동일한 아날로그 빔이 적용될 수 있다 예를 들어, PSS(401), SSS(403), 및 PBCH(402)가 전송되는 4개의 OFDM 심볼들은 모두 동일한 아날로그 빔으로 전송될 수 있다.Synchronization signal blocks can be transmitted using the same analog beam. For example, PSS (401), SSS (403), and PBCH (402) can all be transmitted using the same beam. Since analog beams have a characteristic that they cannot be applied differently in the frequency axis, the same analog beam can be applied to all frequency axis RBs within a specific OFDM symbol to which a specific analog beam is applied. For example, four OFDM symbols in which PSS (401), SSS (403), and PBCH (402) are transmitted can all be transmitted using the same analog beam.
도 5는 본 개시가 적용되는 통신 시스템에서 고려되는 6GHz 미만 주파수 대역에서 동기화 신호 블록의 다양한 전송의 일례를 도시한 도면이다.FIG. 5 is a diagram illustrating an example of various transmissions of a synchronization signal block in a frequency band below 6 GHz considered in a communication system to which the present disclosure is applied.
도 5를 참조하면, 5G 통신 시스템에서 6GHz 이하 주파수 대역에서는 동기화 신호 블록 전송에 15kHz의 부반송파 간격(subcarrier spacing, SCS, 520)과 30kHz의 부반송파 간격(530, 440)이 사용될 수 있다. 15kHz 부반송파 간격(520)에서는 동기화 신호 블록에 대한 하나의 전송 케이스(예를 들어 케이스#1(501))이 존재하고, 30kHz 부반송파 간격(530, 540)에서는 동기 신호 블록에 대한 두 개의 전송 케이스(예를 들어 케이스#2(402)과 케이스#3(503))이 존재할 수 있다. Referring to FIG. 5, in a 5G communication system, a 15 kHz subcarrier spacing (SCS, 520) and a 30 kHz subcarrier spacing (530, 440) may be used for transmission of a synchronization signal block in a frequency band below 6 GHz. In the 15 kHz subcarrier spacing (520), there may be one transmission case (e.g., case #1 (501)) for a synchronization signal block, and in the 30 kHz subcarrier spacing (530, 540), there may be two transmission cases (e.g., case #2 (402) and case #3 (503)) for a synchronization signal block.
도 5에서 부반송파 간격 15kHz(520)에서의 케이스#1(501)에서 동기화 신호 블록은 1ms(504) 시간 내(또는 1 슬롯이 14 OFDM 심볼로 구성되어 있을 경우, 1 슬롯 길이에 해당)에서 최대 두 개가 전송될 수 있다. 도 4의 일례에서는 동기화 신호 블록#0(507)과 동기화 신호 블록#1(508)이 도시되어 있다. 예를 들어 동기화 신호 블록#0(507)은 3번째 OFDM 심볼부터 연속된 4개의 심볼들에 매핑될 수 있고, 동기화 신호 블록#1(508)은 9번째 OFDM 심볼부터 연속된 4개의 심볼들에 매핑될 수 있다. In case #1 (501) at the subcarrier spacing of 15 kHz (520) in FIG. 5, a maximum of two synchronization signal blocks can be transmitted within 1 ms (504) (or, when 1 slot consists of 14 OFDM symbols, corresponding to 1 slot length). In the example of FIG. 4, synchronization signal block #0 (507) and synchronization signal block #1 (508) are illustrated. For example, synchronization signal block #0 (507) can be mapped to 4 consecutive symbols from the 3rd OFDM symbol, and synchronization signal block #1 (508) can be mapped to 4 consecutive symbols from the 9th OFDM symbol.
상기 동기화 신호 블록#0(507)과 동기화 신호 블록#1(508)에 대해 서로 다른 아날로그 빔이 적용될 수 있다. 그리고 동기화 신호 블록#0(507)이 매핑된 3 내지 6번째 OFDM 심볼에는 모두 동일한 빔이 적용될 수 있고, 동기화 신호 블록#1(508)이 매핑된 9 내지 12번째 OFDM 심볼에는 모두 동일한 빔이 적용될 수 있다. 동기화 신호 블록이 매핑되지 않는 7, 8, 13, 14번째 OFDM 심볼에서는 어떤 빔이 사용될지 기지국의 판단 하에 자유롭게 아날로그 빔이 결정될 수 있다.Different analog beams may be applied to the synchronization signal block #0 (507) and the synchronization signal block #1 (508). In addition, the same beam may be applied to all 3rd to 6th OFDM symbols to which the synchronization signal block #0 (507) is mapped, and the same beam may be applied to all 9th to 12th OFDM symbols to which the synchronization signal block #1 (508) is mapped. In the 7th, 8th, 13th, and 14th OFDM symbols to which the synchronization signal block is not mapped, the analog beam may be freely determined at the discretion of the base station to determine which beam to use.
도 5에서 부반송파 간격 30kHz(530)에서의 케이스#2(502)에서 동기화 신호 블록은 0.5ms(505) 시간 내(또는 1 슬롯이 14 OFDM 심볼로 구성되어 있을 경우, 1 슬롯 길이에 해당)에서 최대 두 개가 전송될 수 있고, 이에 따라 1ms(또는 1 슬롯이 14 OFDM 심볼로 구성되어 있을 경우, 2 슬롯 길이에 해당) 시간 내에서 최대 4 개의 동기화 신호 블록이 전송될 수 있다. 도 4의 일례에서는 동기화 신호 블록#0(509), 동기화 신호 블록#1(510), 동기화 신호 블록#2(511), 및 동기화 신호 블록#3(512)이 1ms(즉, 두 슬롯) 시간 내에서 전송되는 경우가 도시되어 있다. 동기화 신호 블록#0(509)과 동기화 신호 블록#1(510)은 각각 첫 번째 슬롯의 5번째 OFDM 심볼, 9번째 OFDM 심볼부터 매핑될 수 있고, 동기화 신호 블록#2(511)과 동기화 신호 블록#3(512)은 각각 두 번째 슬롯의 3번째 OFDM 심볼, 7번째 OFDM 심볼부터 매핑될 수 있다. In case #2 (502) at the subcarrier spacing of 30 kHz (530) in FIG. 5, a maximum of two synchronization signal blocks can be transmitted within 0.5 ms (505) (or 1 slot length when 1 slot consists of 14 OFDM symbols), and accordingly, a maximum of four synchronization signal blocks can be transmitted within 1 ms (or 2 slot lengths when 1 slot consists of 14 OFDM symbols). In the example of FIG. 4, a case is illustrated where synchronization signal block #0 (509), synchronization signal block #1 (510), synchronization signal block #2 (511), and synchronization signal block #3 (512) are transmitted within 1 ms (i.e., two slots) of time. Synchronization signal block #0 (509) and synchronization signal block #1 (510) can be mapped from the 5th OFDM symbol and the 9th OFDM symbol of the first slot, respectively, and synchronization signal block #2 (511) and synchronization signal block #3 (512) can be mapped from the 3rd OFDM symbol and the 7th OFDM symbol of the second slot, respectively.
상기 동기화 신호 블록#0(509), 동기화 신호 블록#1(510), 동기화 신호 블록#2(511), 동기화 신호 블록#3(512)에는 각각 서로 다른 아날로그 빔이 적용될 수 있다. 그리고 동기화 신호 블록#0(509)이 전송되는 첫 번째 슬롯의 5 내지 8번째 OFDM 심볼, 동기화 신호 블록#1(510)이 전송되는 첫 번째 슬롯의 9 내지 12번째 OFDM 심볼, 동기화 신호 블록#2(511)가 전송되는 두 번째 슬롯의 3 내지 6번째 심볼, 동기화 신호 블록#3(512)이 전송되는 두 번째 슬롯의 7 내지 10번째 심볼들에는 각각 모두 동일한 아날로그 빔이 적용될 수 있다. 동기화 신호 블록이 매핑되지 않는 OFDM 심볼들에서는 어떤 빔이 사용될지 기지국의 판단 하에 자유롭게 아날로그 빔이 결정될 수 있다.Different analog beams may be applied to the synchronization signal block #0 (509), synchronization signal block #1 (510), synchronization signal block #2 (511), and synchronization signal block #3 (512), respectively. In addition, the same analog beam may be applied to the 5th to 8th OFDM symbols of the first slot in which synchronization signal block #0 (509) is transmitted, the 9th to 12th OFDM symbols of the first slot in which synchronization signal block #1 (510) is transmitted, the 3rd to 6th symbols of the second slot in which synchronization signal block #2 (511) is transmitted, and the 7th to 10th symbols of the second slot in which synchronization signal block #3 (512) is transmitted, respectively. In OFDM symbols to which synchronization signal blocks are not mapped, the analog beam may be freely determined at the discretion of the base station as to which beam to use.
도 5에서 부반송파 간격 30kHz(540)에서의 케이스#3(503)에서 동기화 신호 블록은 0.5ms(506) 시간 내(또는 1 슬롯이 14 OFDM 심볼로 구성되어 있을 경우, 1 슬롯 길이에 해당)에서 최대 두 개가 전송될 수 있고, 이에 따라 1ms(또는 1 슬롯이 14 OFDM 심볼로 구성되어 있을 경우, 2 슬롯 길이에 해당) 시간 내에서 최대 4 개의 동기화 신호 블록이 전송될 수 있다. 도 4의 일례에서는 동기화 신호 블록#0(513), 동기화 신호 블록#1(514), 동기화 신호 블록#2(515), 및 동기화 신호 블록#3(516)이 1ms(즉, 두 슬롯) 시간 내에서 전송되는 것이 도시되어 있다. 동기화 신호 블록#0(513)과 동기화 신호 블록#1(514)은 각각 첫 번째 슬롯의 3번째 OFDM 심볼, 9번째 OFDM 심볼부터 매핑될 수 있고 동기화 신호 블록#2(515)와 동기화 신호 블록#3(516)은 각각 두 번째 슬롯의 3번째 OFDM 심볼, 9번째 OFDM 심볼부터 매핑될 수 있다. In case #3 (503) at the subcarrier spacing of 30 kHz (540) in FIG. 5, a maximum of two synchronization signal blocks can be transmitted within 0.5 ms (506) (or 1 slot length when 1 slot consists of 14 OFDM symbols), and accordingly, a maximum of four synchronization signal blocks can be transmitted within 1 ms (or 2 slot lengths when 1 slot consists of 14 OFDM symbols). In the example of FIG. 4, it is illustrated that synchronization signal block #0 (513), synchronization signal block #1 (514), synchronization signal block #2 (515), and synchronization signal block #3 (516) are transmitted within 1 ms (i.e., two slots) of time. Synchronization signal block #0 (513) and synchronization signal block #1 (514) can be mapped from the 3rd OFDM symbol and the 9th OFDM symbol of the first slot, respectively, and synchronization signal block #2 (515) and synchronization signal block #3 (516) can be mapped from the 3rd OFDM symbol and the 9th OFDM symbol of the second slot, respectively.
상기 동기화 신호 블록#0(513), 동기화 신호 블록#1(514), 동기화 신호 블록#2(515), 동기화 신호 블록#3(516)에는 각각 서로 다른 아날로그 빔이 사용될 수 있다. 상기 일례들에서 설명한 바와 같이 각 동기화 신호 블록이 전송되는 4개의 OFDM 심볼들에서는 모두 동일한 아날로그 빔이 사용될 수 있고, 동기화 신호 블록이 매핑되지 않는 OFDM 심볼들에서는 어떤 빔이 사용될지 기지국의 판단 하에 자유롭게 결정될 수 있다.Different analog beams may be used for the above synchronization signal block #0 (513), synchronization signal block #1 (514), synchronization signal block #2 (515), and synchronization signal block #3 (516), respectively. As described in the above examples, the same analog beam may be used in all four OFDM symbols in which each synchronization signal block is transmitted, and which beam to use in OFDM symbols to which the synchronization signal block is not mapped may be freely determined at the discretion of the base station.
도 6는 본 개시가 적용되는 무선 통신 시스템에서 고려되는 6GHz 이상 주파수 대역에서 동기화 신호 블록의 전송의 일례를 도시한 도면이다.FIG. 6 is a diagram illustrating an example of transmission of a synchronization signal block in a frequency band of 6 GHz or higher considered in a wireless communication system to which the present disclosure is applied.
5G 통신 시스템에서 6GHz 이상 주파수 대역에서는 동기화 신호 블록 전송에 케이스#4(610)의 예와 같이 120kHz(630)의 부반송파 간격과 케이스#5(620)의 예와 같이 240kHz(640)의 부반송파 간격이 사용될 수 있다.In a 5G communication system, in a frequency band of 6 GHz or higher, a subcarrier spacing of 120 kHz (630) as in the example of Case #4 (610) and a subcarrier spacing of 240 kHz (640) as in the example of Case #5 (620) can be used for transmission of synchronization signal blocks.
부반송파 간격 120kHz(630)의 케이스#4(610)에서 동기화 신호 블록은 0.25ms(601) 시간 내(또는 1 슬롯이 14 OFDM 심볼로 구성되어 있을 경우, 2 슬롯 길이에 해당)에서 최대 4 개가 전송될 수 있다. 도 6의 일례에서는 동기화 신호 블록#0(603), 동기화 신호 블록#1(604), 동기화 신호 블록#2(605), 동기화 신호 블록#3(606)이 0.25ms(즉, 두 슬롯)에서 전송되는 경우가 도시되어 있다. 동기화 신호 블록#0(603)과 동기화 신호 블록#1(604)은 각각 첫 번째 슬롯의 5번째 OFDM 심볼부터 연속된 4개의 심볼들에 매핑될 수 있고, 9번째 OFDM 심볼부터 연속된 4개의 심볼들에 매핑될 수 있고, 동기화 신호 블록#2(605)와 동기화 신호 블록#3(606)은 각각 두 번째 슬롯의 3번째 OFDM 심볼부터 연속된 4개의 심볼들에 매핑될 수 있고, 7번째 OFDM 심볼부터 연속된 4개의 심볼들에 매핑될 수 있다. In case #4 (610) with subcarrier spacing of 120 kHz (630), up to four synchronization signal blocks can be transmitted within 0.25 ms (601) time (or 2 slot lengths when 1 slot consists of 14 OFDM symbols). In the example of Fig. 6, synchronization signal block #0 (603), synchronization signal block #1 (604), synchronization signal block #2 (605), and synchronization signal block #3 (606) are illustrated as being transmitted within 0.25 ms (i.e., two slots). Synchronization signal block #0 (603) and synchronization signal block #1 (604) can be mapped to four consecutive symbols from the 5th OFDM symbol of the first slot and to four consecutive symbols from the 9th OFDM symbol, respectively, and synchronization signal block #2 (605) and synchronization signal block #3 (606) can be mapped to four consecutive symbols from the 3rd OFDM symbol of the second slot and to four consecutive symbols from the 7th OFDM symbol, respectively.
상기한 실시예에서 설명한 바와 같이 동기화 신호 블록#0(603), 동기화 신호 블록#1(604), 동기화 신호 블록#2(605), 동기화 신호 블록#3(606)에는 각각 서로 다른 아날로그 빔이 사용될 수 있다. 그리고 각 동기화 신호 블록이 전송되는 4개의 OFDM 심볼들에서는 모두 동일한 아날로그 빔이 사용될 수 있고, 동기화 신호 블록이 매핑되지 않는 OFDM 심볼들에서는 어떤 빔이 사용될지 기지국의 판단 하에 자유롭게 결정될 수 있다.As described in the above embodiment, different analog beams may be used for each of synchronization signal block #0 (603), synchronization signal block #1 (604), synchronization signal block #2 (605), and synchronization signal block #3 (606). In addition, the same analog beam may be used in all four OFDM symbols in which each synchronization signal block is transmitted, and which beam to use in OFDM symbols to which the synchronization signal block is not mapped may be freely determined at the discretion of the base station.
부반송파 간격 240kHz(640)에서의 케이스#5(620)에서 동기화 신호 블록은 0.25ms(602) 시간 내(또는 1 슬롯이 14 OFDM 심볼로 구성되어 있을 경우, 4 슬롯 길이에 해당)에서 최대 8 개가 전송될 수 있다. 도 6의 일례에서 동기화 신호 블록#0(607), 동기화 신호 블록#1(608), 동기화 신호 블록#2(609), 동기화 신호 블록#3(610), 동기화 신호 블록#4(611), 동기화 신호 블록#5(612), 동기화 신호 블록#6(613), 동기화 신호 블록#7(614)가 0.25ms(즉 4 슬롯)에서 전송되는 경우가 도시되어 있다. In case #5 (620) at subcarrier spacing of 240 kHz (640), up to 8 synchronization signal blocks can be transmitted within 0.25 ms (602) time (or 4 slot length when 1 slot consists of 14 OFDM symbols). In the example of Fig. 6, synchronization signal block #0 (607), synchronization signal block #1 (608), synchronization signal block #2 (609), synchronization signal block #3 (610), synchronization signal block #4 (611), synchronization signal block #5 (612), synchronization signal block #6 (613), and synchronization signal block #7 (614) are illustrated as being transmitted within 0.25 ms (i.e. 4 slots).
동기화 신호 블록#0(607)과 동기화 신호 블록#1(608)은 각각 첫 번째 슬롯의 9번째 OFDM 심볼부터 연속된 4개의 심볼들에 매핑될 수 있고, 13번째 OFDM 심볼부터 연속된 4개의 심볼들에 매핑될 수 있고, 동기화 신호 블록#2(609)와 동기화 신호 블록#3(610)은 각각 두 번째 슬롯의 3번째 OFDM 심볼부터 연속된 4개의 심볼들에 매핑될 수 있고, 7번째 OFDM 심볼부터 연속된 4개의 심볼들에 매핑될 수 있고, 동기화 신호 블록#4(611), 동기화 신호 블록#5(612), 동기화 신호 블록#6(613)은 각각 세 번째 슬롯의 5번째 OFDM 심볼부터 연속된 4개의 심볼들에 매핑될 수 있고, 9번째 OFDM 심볼부터 연속된 4개의 심볼들에 매핑될 수 있고, 13번째 OFDM 심볼부터 연속된 4개의 심볼들에 매핑될 수 있고, 동기화 신호 블록#7(614)는 4 번째 슬롯의 3번째 OFDM 심볼부터 연속된 4개의 심볼들에 매핑될 수 있다. Synchronization signal block #0 (607) and synchronization signal block #1 (608) can be mapped to 4 consecutive symbols from the 9th OFDM symbol of the first slot, and to 4 consecutive symbols from the 13th OFDM symbol, respectively, and synchronization signal block #2 (609) and synchronization signal block #3 (610) can be mapped to 4 consecutive symbols from the 3rd OFDM symbol of the second slot, and to 4 consecutive symbols from the 7th OFDM symbol, respectively, and synchronization signal block #4 (611), synchronization signal block #5 (612), and synchronization signal block #6 (613) can be mapped to 4 consecutive symbols from the 5th OFDM symbol of the third slot, and to 4 consecutive symbols from the 9th OFDM symbol, and to 4 consecutive symbols from the 13th OFDM symbol, respectively, and synchronization signal block #7 (614) can be mapped to 4 consecutive symbols from the 4th OFDM symbol of the It can be mapped to four consecutive symbols starting from the third OFDM symbol.
상기한 실시예에서 설명한 바와 같이 동기화 신호 블록#0(607), 동기화 신호 블록#1(608), 동기화 신호 블록#2(609), 동기화 신호 블록#3(610), 동기화 신호 블록#4(611), 동기화 신호 블록#5(612), 동기화 신호 블록#6(613), 동기화 신호 블록#7(614)에는 각각 서로 다른 아날로그 빔이 사용될 수 있다. 그리고 각 동기화 신호 블록이 전송되는 4개의 OFDM 심볼들에서는 모두 동일한 아날로그 빔이 사용될 수 있고, 동기화 신호 블록이 매핑되지 않는 OFDM 심볼들에서는 어떤 빔이 사용될 기지국의 판단 하에 자유롭게 결정될 수 있다.As described in the above embodiment, different analog beams may be used for synchronization signal block #0 (607), synchronization signal block #1 (608), synchronization signal block #2 (609), synchronization signal block #3 (610), synchronization signal block #4 (611), synchronization signal block #5 (612), synchronization signal block #6 (613), and synchronization signal block #7 (614), respectively. In addition, the same analog beam may be used in all four OFDM symbols in which each synchronization signal block is transmitted, and in OFDM symbols to which the synchronization signal block is not mapped, which beam to be used may be freely determined at the discretion of the base station.
도 7은 본 개시가 적용되는 무선 통신 시스템에서 5ms 시간 내 부반송파 간격에 따른 동기화 신호 블록의 전송의 일례를 도시한 도면이다. FIG. 7 is a diagram illustrating an example of transmission of a synchronization signal block according to a subcarrier interval within 5 ms in a wireless communication system to which the present disclosure is applied.
도 7을 참조하면, 5G 통신 시스템에서 동기화 신호 블록은 예를 들어 5ms의 시간 간격(710)(5개 서브프레임 또는 하프 프레임에 해당)의 단위로 주기적으로 전송될 수 있다. Referring to FIG. 7, in a 5G communication system, a synchronization signal block may be transmitted periodically in units of, for example, a time interval (710) of 5 ms (corresponding to 5 subframes or half frames).
3GHz 이하 주파수 대역에서는 동기화 신호 블록이 5ms(710) 시간 내 최대 4개가 전송될 수 있다. 3GHz 초과 6GHz 이하 주파수 대역에서는 동기화 신호 블록이 최대 8개가 전송될 수 있다. 6GHz 초과 주파수 대역에서는 동기화 신호 블록이 최대 64개가 전송될 수 있다. 상기에서 설명한 바와 같이 부반송파 간격 15kHz, 30kHz는 6GHz이하 주파수에서 사용될 수 있다. In the frequency band below 3 GHz, up to 4 synchronization signal blocks can be transmitted within 5 ms (710) time. In the frequency band above 3 GHz and below 6 GHz, up to 8 synchronization signal blocks can be transmitted. In the frequency band above 6 GHz, up to 64 synchronization signal blocks can be transmitted. As described above, subcarrier spacing of 15 kHz and 30 kHz can be used in the frequency below 6 GHz.
도 7의 일례에서는 도 5의 한 개의 슬롯으로 구성된 부반송파 간격 15kHz에서의 케이스#1(501)에서는 3GHz이하 주파수 대역에서 동기화 신호 블록이 첫 번째 슬롯과 두 번째 슬롯에 매핑될 수 있어 최대 4개(721)가 전송될 수 있고, 3GHz 초과 6GHz 이하 주파수 대역에서는 동기화 신호 블록이 첫 번째, 두 번째, 세 번째, 네 번째 슬롯에 매핑될 수 있어 최대 8개(722)가 전송될 수 있다. 도 5의 두 개의 슬롯으로 구성된 부반송파 간격 30kHz에서의 케이스#2(502) 또는 케이스#3(503)에서는 3GHz 이하 주파수 대역에서 동기화 신호 블록이 첫 번째 슬롯을 시작으로 매핑될 수 있어 최대 4개(731, 741)가 전송될 수 있고 3GHz 초과 6GHz 이하 주파수 대역에서는 동기화 신호 블록이 첫 번째, 세 번째 슬롯을 시작으로 매핑될 수 있어 최대 8개(732, 742)가 전송될 수 있다. In the case #1 (501) of FIG. 7, in the case of FIG. 5, which consists of one slot and has a subcarrier spacing of 15 kHz, synchronization signal blocks can be mapped to the first and second slots in a frequency band of 3 GHz or less, so that up to 4 (721) can be transmitted, and in the frequency band exceeding 3 GHz and below 6 GHz, synchronization signal blocks can be mapped to the first, second, third, and fourth slots, so that up to 8 (722) can be transmitted. In case #2 (502) or case #3 (503) with a subcarrier spacing of 30 kHz consisting of two slots of FIG. 5, synchronization signal blocks can be mapped starting from the first slot in a frequency band below 3 GHz, so that up to 4 (731, 741) can be transmitted, and in a frequency band exceeding 3 GHz and below 6 GHz, synchronization signal blocks can be mapped starting from the first and third slots, so that up to 8 (732, 742) can be transmitted.
부반송파 간격 120kHz, 240kHz는 6GHz 초과 주파수에서 사용될 수 있다. 도 6의 일례에서는 도 6의 두 개의 슬롯으로 구성된 부반송파 간격 120kHz에서의 케이스#4(610)에서는 6GHz 초과 주파수 대역에서 동기화 신호 블록이 1, 3, 5, 7, 11, 13, 15, 17, 21, 23, 25, 27, 31, 33, 35, 37 번째 슬롯을 시작으로 매핑될 수 있어 최대 64개(751)가 전송될 수 있다. 도 7의 일례에서는 도 6의 4개의 슬롯으로 구성된 부반송파 간격 240kHz에서의 케이스#5(620)에서는 6GHz 초과 주파수 대역에서 동기화 신호 블록이 1, 5, 9, 13, 21, 25, 29, 33 번째 슬롯을 시작으로 매핑될 수 있어 최대 64개(761)가 전송될 수 있다.Subcarrier spacing of 120 kHz and 240 kHz can be used in frequencies exceeding 6 GHz. In the case #4 (610) of FIG. 6, which consists of two slots and has a subcarrier spacing of 120 kHz, synchronization signal blocks can be mapped starting from the 1st, 3rd, 5th, 7th, 11th, 13th, 15th, 17th, 21st, 23rd, 25th, 27th, 31st, 33rd, 35th, and 37th slots in the frequency band exceeding 6 GHz, so that up to 64 (751) can be transmitted. In the example of Fig. 7, in case #5 (620) of Fig. 6, which consists of four slots and a subcarrier spacing of 240 kHz, synchronization signal blocks in a frequency band exceeding 6 GHz can be mapped starting from the 1st, 5th, 9th, 13th, 21st, 25th, 29th, and 33rd slots, so that up to 64 (761) can be transmitted.
단말은 수신한 MIB에 포함되어 있는 시스템 정보를 기반으로 PDCCH 및 PDSCH의 디코딩을 수행한 뒤, SIB를 획득할 수 있다. SIB는 상향링크 셀 대역폭 관련 정보, 랜덤 액세스 파라미터, 페이징 파라미터, 또는 상향링크 전력 제어와 관련된 파라미터 중 적어도 하나를 포함할 수 있다.The terminal can obtain SIB after performing decoding of PDCCH and PDSCH based on system information included in the received MIB. SIB can include at least one of uplink cell bandwidth related information, random access parameters, paging parameters, or parameters related to uplink power control.
일반적으로 단말은 셀의 셀 탐색 과정에서 획득한 네트워크와의 동기 및 시스템 정보를 기반으로 랜덤 액세스(random access) 절차를 통하여 네트워크와의 무선 링크를 형성할 수 있다. 랜덤 액세스는 경쟁-기반(contention-based) 또는 비경쟁-기반(contention-free)의 방식이 사용될 수 있다. 셀의 초기 접속 단계에서 단말이 셀 선택 및 재선택을 수행할 경우, 예를 들어 RRC_IDLE(RRC 유휴) 상태에서 RRC_CONNECTED(RRC 연결) 상태로 이동하기 위한 목적으로 경쟁-기반 랜덤 액세스 방식이 사용될 수 있다. 비경쟁-기반 랜덤 액세스는 하향링크 데이터가 도달한 경우, 핸드 오버의 경우, 또는 위치 측정의 경우에 상향링크 동기를 재설정하기 위해 사용될 수 있다. 아래 표 3은 5G 시스템에서 랜덤 액세스 절차가 트리거 되는 조건들(이벤트들)을 예시한 것이다. In general, a terminal can form a wireless link with a network through a random access procedure based on synchronization with the network and system information acquired during a cell search process of a cell. Random access can use a contention-based or non-contention-based (contention-free) method. When a terminal performs cell selection and reselection during the initial access phase of a cell, a contention-based random access method can be used, for example, for the purpose of moving from an RRC_IDLE (RRC idle) state to an RRC_CONNECTED (RRC connected) state. Non-contention-based random access can be used to re-establish uplink synchronization when downlink data arrives, in the case of a handover, or in the case of position measurement. Table 3 below shows examples of conditions (events) that trigger a random access procedure in a 5G system.
- Initial access from RRC_IDLE;
- RRC Connection Re-establishment procedure;
- DL or UL data arrival during RRC_CONNECTED when UL synchronisation status is "non-synchronised";
- UL data arrival during RRC_CONNECTED when there are no PUCCH resources for SR available;
- SR failure;
- Request by RRC upon synchronous reconfiguration (e.g. handover);
- RRC Connection Resume procedure from RRC_INACTIVE;
- To establish time alignment for a secondary TAG;
- Request for Other SI;
- Beam failure recovery;
- Consistent UL LBT failure on SpCell.
- Initial access from RRC_IDLE;
- RRC Connection Re-establishment procedure;
- DL or UL data arrival during RRC_CONNECTED when UL synchronization status is "non-synchronised";
- UL data arrival during RRC_CONNECTED when there are no PUCCH resources for SR available;
- SR failure;
- Request by RRC upon synchronous reconfiguration (eg handover);
- RRC Connection Resume procedure from RRC_INACTIVE;
- To establish time alignment for a secondary TAG;
- Request for Other SI;
- Beam failure recovery;
- Consistent UL LBT failure on SpCell.
이하에서는 5G 무선 통신 시스템의 동기화 신호 블록 기반의 RRM (radio resource management)를 위한 측정 시간 설정 방법을 설명한다.Below, a method for setting a measurement time for RRM (radio resource management) based on a synchronization signal block of a 5G wireless communication system is described.
단말은 상위 계층 시그널링을 통해서 SSB 기반의 인트라/인터 주파수 측정(intra/inter-frequency measurements) 및 CSI-RS 기반의 인트라/인터 주파수 측정를 위한 설정으로 MeasObjectToAddModListMeasObjectNR을 설정 받는다. 예를 들어 MeasObjectNR은 아래 표 4와 같이 구성될 수 있다.The terminal receives MeasObjectNR of MeasObjectToAddModList as a setting for SSB-based intra/inter-frequency measurements and CSI-RS-based intra/inter-frequency measurements through upper layer signaling. For example, MeasObjectNR can be configured as shown in Table 4 below.
MeasObjectNR ::= SEQUENCE {
ssbFrequency ARFCN-ValueNR OPTIONAL, -- Cond SSBorAssociatedSSB
ssbSubcarrierSpacing SubcarrierSpacing OPTIONAL, -- Cond SSBorAssociatedSSB
smtc1 SSB-MTC OPTIONAL, -- Cond SSBorAssociatedSSB
smtc2 SSB-MTC2 OPTIONAL, -- Cond IntraFreqConnected
refFreqCSI-RS ARFCN-ValueNR OPTIONAL, -- Cond CSI-RS
referenceSignalConfig ReferenceSignalConfig,
absThreshSS-BlocksConsolidation ThresholdNR OPTIONAL, -- Need R
absThreshCSI-RS-Consolidation ThresholdNR OPTIONAL, -- Need R
nrofSS-BlocksToAverage INTEGER (2..maxNrofSS-BlocksToAverage) OPTIONAL, -- Need R
nrofCSI-RS-ResourcesToAverage INTEGER (2..maxNrofCSI-RS-ResourcesToAverage) OPTIONAL, -- Need R
quantityConfigIndex INTEGER (1..maxNrofQuantityConfig),
offsetMO Q-OffsetRangeList,
cellsToRemoveList PCI-List OPTIONAL, -- Need N
cellsToAddModList CellsToAddModList OPTIONAL, -- Need N
blackCellsToRemoveList PCI-RangeIndexList OPTIONAL, -- Need N
blackCellsToAddModList SEQUENCE (SIZE (1..maxNrofPCI-Ranges)) OF PCI-RangeElement OPTIONAL, -- Need N
whiteCellsToRemoveList PCI-RangeIndexList OPTIONAL, -- Need N
whiteCellsToAddModList SEQUENCE (SIZE (1..maxNrofPCI-Ranges)) OF PCI-RangeElement OPTIONAL, -- Need N
...,
[[
freqBandIndicatorNR FreqBandIndicatorNR OPTIONAL, -- Need R
measCycleSCell ENUMERATED {sf160, sf256, sf320, sf512, sf640, sf1024, sf1280} OPTIONAL -- Need R
]],
[[
smtc3list-r16 SSB-MTC3List-r16 OPTIONAL, -- Need R
rmtc-Config-r16 SetupRelease {RMTC-Config-r16} OPTIONAL, -- Need M
t312-r16 SetupRelease { T312-r16 } OPTIONAL -- Need M
]]
}
MeasObjectNR ::= SEQUENCE {
ssbFrequency ARFCN-ValueNR OPTIONAL, -- Cond SSBorAssociatedSSB
ssbSubcarrierSpacing SubcarrierSpacing OPTIONAL, -- Cond SSBorAssociatedSSB
smtc1 SSB-MTC OPTIONAL, -- Cond SSBorAssociatedSSB
smtc2 SSB-MTC2 OPTIONAL, -- Cond IntraFreqConnected
refFreqCSI-RS ARFCN-ValueNR OPTIONAL, -- Cond CSI-RS
referenceSignalConfig ReferenceSignalConfig;
absThreshSS-BlocksConsolidation ThresholdNR OPTIONAL, -- Need R
absThreshCSI-RS-Consolidation ThresholdNR OPTIONAL, -- Need R
nrofSS-BlocksToAverage INTEGER (2..maxNrofSS-BlocksToAverage) OPTIONAL, -- Need R
nrofCSI-RS-ResourcesToAverage INTEGER (2..maxNrofCSI-RS-ResourcesToAverage) OPTIONAL, -- Need R
quantityConfigIndex INTEGER (1..maxNrofQuantityConfig);
offsetMO Q-OffsetRangeList,
cellsToRemoveList PCI-List OPTIONAL, -- Need N
cellsToAddModList CellsToAddModList OPTIONAL, -- Need N
blackCellsToRemoveList PCI-RangeIndexList OPTIONAL, -- Need N
blackCellsToAddModList SEQUENCE (SIZE (1..maxNrofPCI-Ranges)) OF PCI-RangeElement OPTIONAL, -- Need N
whiteCellsToRemoveList PCI-RangeIndexList OPTIONAL, -- Need N
whiteCellsToAddModList SEQUENCE (SIZE (1..maxNrofPCI-Ranges)) OF PCI-RangeElement OPTIONAL, -- Need N
...,
[[
freqBandIndicatorNR FreqBandIndicatorNR OPTIONAL, -- Need R
measCycleSCell ENUMERATED {sf160, sf256, sf320, sf512, sf640, sf1024, sf1280} OPTIONAL -- Need R
]],
[[
smtc3list-r16 SSB-MTC3List-r16 OPTIONAL, -- Need R
rmtc-Config-r16 SetupRelease {RMTC-Config-r16} OPTIONAL, -- Need M
t312-r16 SetupRelease { T312-r16 } OPTIONAL -- Need M
]]
}
- ssbFrequency: MeasObjectNR과 관련된 동기 시그널의 주파수를 설정할 수 있다.- ssbSubcarrierSpacing: SSB의 부반송파 간격을 설정한다. FR(frequency range) 1은 15 kHz 또는 30 kHz, FR2는 120 kHz 또는 240 kHz 만을 적용할 수 있다.- ssbFrequency : You can set the frequency of the synchronization signal related to MeasObjectNR . - ssbSubcarrierSpacing : Set the subcarrier spacing of SSB. FR (frequency range) 1 can only apply 15 kHz or 30 kHz, and FR2 can only apply 120 kHz or 240 kHz.
- smtc1: SMTC (SS/PBCH block measurement timing configuration)을 나타내며, 주 측정 타이밍 설정(primary measurement timing configuration)을 설정하고 SSB를 위한 타이밍 오프셋(timing offset)과 구간(duration)을 설정할 수 있다.- smtc1 : Indicates SMTC (SS/PBCH block measurement timing configuration), and can set the primary measurement timing configuration and the timing offset and duration for SSB.
- smtc2: pci-List에 리스트된 PCI를 갖는 MeasObjectNR과 관련된 SSB를 위한 부 측정 타이밍 설정(secondary measurement timing configuration)을 설정할 수 있다.- smtc2 : pci- You can set the secondary measurement timing configuration for SSB associated with MeasObjectNR having PCI listed in List.
이 외에도 다른 상위 계층 시그널링을 통해서 설정될 수 있다, 예를 들어 인트라-주파수, 인터-주파수 그리고 인터-RAT (radio access technology) cell 재 선택을 위한 SIB2, 또는 NR PSCell (primary secondary cell) 변경 및 NR PCell (primary cell) 변경을 위하여 reconfigurationWithSync를 통해서 SMTC가 단말에게 설정될 수 있으며, 또한 NR SCell 추가를 위하여 SCellConfig를 통해서 SMTC가 단말에게 설정될 수 있다.In addition to this, it can be configured through other higher layer signaling, for example, SIB2 for intra-frequency, inter-frequency and inter-RAT (radio access technology) cell re-selection, or reconfigurationWithSync for NR PSCell (primary secondary cell) change and NR PCell (primary cell) change, and also SMTC can be configured to the UE through SCellConfig for NR SCell addition.
단말은 SSB 측정을 위하여 상위 계층 시그널링을 통해서 설정된 smtc1을 통해서 periodictiyAndOffset (periodicity 와 offset을 제공함)를 따라 첫 번째 SMTC를 설정할 수 있다. 일 실시예에서 하기 표 5의 조건을 만족하는 SFN과 SpCell의 서브 프레임에서 각각의 SMTC occasion의 첫 번째 서브 프레임이 시작될 수 있다.The terminal can set the first SMTC according to periodictiyAndOffset (providing periodicity and offset) through smtc1 set through upper layer signaling for SSB measurement. In one embodiment, the first subframe of each SMTC occasion can start in the subframe of SFN and SpCell satisfying the conditions of Table 5 below.
SFN mod T = (FLOOR (Offset/10));
if the Periodicity is larger than sf5:
subframe = Offset mod 10;
else:
subframe = Offset or (Offset +5);
with T = CEIL(Periodicity/10).
SFN mod T = (FLOOR ( Offset /10));
if the Periodicity is larger than sf5 :
subframe = Offset mod 10;
else:
subframe = Offset or ( Offset +5);
with T = CEIL( Periodicity /10).
만약 smtc2가 설정되면, 같은 MeasObjectNR내의 smtc2의 pci-List 값이 지시하는 셀들을 위하여, 단말은 설정된 smtc2의 주기과 smtc1의 오프셋 및 구간을 따라 추가적인 SMTC를 설정할 수 있다. 이 외에도, 같은 주파수(예를 들어 인트라 주파수 셀 재선택을 위한 주파수) 또는 다른 주파수(예를 들어 인터 주파수 셀 재선택을 위한 주파수들)를 위한, smtc2-LP (with long periodicity) 및 IAB-MT(integrated access and backhaul - mobile termination)를 위한 smtc3list를 통해서 단말은 smtc를 설정 받고 SSB를 측정할 수 있다. 일 실시예에서 단말은 설정된 ssbFrequency에서 SSB 기반의 RRM 측정을 위한 SMTC occasion외의 서브프레임에서 전송되는 SSB를 고려하지 않을 수 있다.기지국은 서빙 셀(serving cell) 설정 및 PCI 설정에 따라 다양한 다중 TRP(transmit/receive point) 운용 방식을 사용할 수 있다. 그 중, 물리적으로 떨어진 거리에 위치한 두 개의 TRP들이 서로 다른 PCI들을 가지는 경우, 상기 두 개의 TRP들을 운용하는 방법은 두 가지 방법이 있을 수 있다.If smtc2 is set, the terminal can set additional SMTC according to the set smtc2 periodicity and the offset and interval of smtc1 for the cells indicated by the pci-List value of smtc2 in the same MeasObjectNR. In addition, the terminal can be set to smtc and measure SSB through smtc2-LP (with long periodicity) and smtc3list for IAB-MT (integrated access and backhaul - mobile termination) for the same frequency (e.g., frequency for intra-frequency cell reselection) or different frequencies (e.g., frequencies for inter-frequency cell reselection). In one embodiment, the terminal may not consider SSB transmitted in subframes other than SMTC occasions for SSB-based RRM measurement at the set ssbFrequency. The base station can use various multi-TRP (transmit/receive point) operation schemes depending on the serving cell configuration and the PCI configuration. Among these, when two TRPs located at a physically separate distance have different PCIs, there may be two ways to operate the two TRPs.
[운용 방법 1] [Operation Method 1]
서로 다른 PCI를 가지는 두 개의 TRP는 2개의 서빙 셀 설정으로 운용될 수 있다.Two TRPs with different PCIs can be operated with two serving cell configurations.
기지국은 [운용 방법 1]을 통해 서로 다른 TRP들에서 전송되는 채널 및 신호들을 서로 다른 서빙 셀 설정 내에 포함시켜 설정할 수 있다. 즉 각 TRP는 독립적인 서빙 셀 설정을 가지며, 각 서빙 셀 설정 내 DownlinkConfigCommon이 지시하는 주파수 대역 값 FrequencyInfoDL들은 적어도 일부의 겹치는 대역을 지시할 수 있다. 상기 여러 TRP들은 다수의 ServCellIndex들 (예를 들어 ServCellIndex #1 및 ServCellIndex #2)에 기반하여 동작하게 되기 때문에 각 TRP는 별도의 PCI를 사용하는 것이 가능하다. 즉 기지국은 ServCellIndex당 하나의 PCI를 할당할 수 있다. The base station can configure channels and signals transmitted from different TRPs into different serving cell configurations through [Operation Method 1]. That is, each TRP has an independent serving cell configuration, and the frequency band values FrequencyInfoDLs indicated by DownlinkConfigCommon in each serving cell configuration can indicate at least some overlapping bands. Since the above multiple TRPs operate based on multiple ServCellIndexes (e.g., ServCellIndex #1 and ServCellIndex #2), it is possible for each TRP to use a separate PCI. That is, the base station can allocate one PCI per ServCellIndex.
이 경우 만약 여러 개의 SSB가 TRP 1과 TRP 2에서 전송될 때 상기 SSB 들은 서로 다른 PCI들(예를 들어 PCI #1 및 PCI #2)을 가지게 되고, 기지국은 QCL-Info 내 cell 파라미터로 지시되는 ServCellIndex의 값을 적절히 선택하여 각 TRP에 맞는 PCI를 매핑하고 TRP 1 또는 TRP 2 중 하나에서 전송되는 SSB를 QCL 설정 정보의 소스 레퍼런스 RS(source reference RS)로 지정할 수 있다. 그러나 이러한 설정은 단말의 캐리어 집성(carrier aggregation, CA)를 위해 사용될 수 있는 1개의 서빙 셀 설정을 다중 TRP에 적용하는 것이므로, CA 설정의 자유도를 제한시키거나 시그널링 부담을 증가시키는 문제가 있다.In this case, if multiple SSBs are transmitted from TRP 1 and TRP 2, and the SSBs have different PCIs (e.g., PCI #1 and PCI #2), the base station can appropriately select the value of ServCellIndex indicated by the cell parameter in QCL-Info to map the PCI suitable for each TRP and designate the SSB transmitted from either TRP 1 or TRP 2 as the source reference RS of the QCL configuration information. However, since this configuration applies one serving cell configuration that can be used for carrier aggregation (CA) of the terminal to multiple TRPs, there is a problem that it limits the degree of freedom of CA configuration or increases signaling burden.
[운용 방법 2] [Operation Method 2]
서로 다른 PCI들을 가지는 두 개의 TRP들은 1개의 서빙 셀 설정으로 운용될 수 있다.Two TRPs with different PCIs can be operated with one serving cell configuration.
기지국은 [운용 방법 2]를 통해 서로 다른 TRP들에서 전송되는 채널 및 신호들을 하나의 서빙 셀 설정을 통해 설정할 수 있다. 단말은 하나의 ServCellIndex (예를 들어 ServCellIndex #1)에 기반하여 동작하기 때문에 두 번째 TRP에 할당된 PCI(예를 들어 PCI #2)를 인지하는 것이 불가능하다. [운용 방법 2]는 상술한 [운용 방법 1]에 비해 CA 설정의 자유도를 가질 수 있지만, 만약 여러 개의 SSB들이 TRP 1과 TRP 2에서 전송될 때 상기 SSB 들은 서로 다른 PCI들(예를 들어 PCI #1 및 PCI #2)을 가지게 되고, 기지국은 QCL-Info 내 셀 파라미터로 지시되는 ServCellIndex를 통하여 두 번째 TRP의 PCI(예를 들어 PCI #2)를 매핑하는 것이 불가능할 수 있다. 기지국은 TRP 1에서 전송되는 SSB를 QCL 설정 정보의 소스 레퍼런스 RS 로 지정하는 것만 가능하며 TRP 2에서 전송되는 SSB를 지정하는 것이 불가능할 수 있다.The base station can configure channels and signals transmitted from different TRPs through one serving cell configuration through [Operation Method 2]. Since the terminal operates based on one ServCellIndex (e.g., ServCellIndex #1), it is impossible for the terminal to recognize the PCI (e.g., PCI #2) allocated to the second TRP. [Operation Method 2] can have more freedom in CA configuration than the above-described [Operation Method 1], but if multiple SSBs are transmitted from TRP 1 and TRP 2, the SSBs have different PCIs (e.g., PCI #1 and PCI #2), and the base station may not be able to map the PCI (e.g., PCI #2) of the second TRP through ServCellIndex indicated by the cell parameter in QCL-Info. The base station can only designate the SSB transmitted from TRP 1 as the source reference RS of the QCL configuration information, and may not be able to designate the SSB transmitted from TRP 2.
상술한 것처럼 [운용 방법 1]은 추가적인 규격 지원 없이 추가적인 서빙 셀 설정을 통해 서로 다른 PCI를 가지는 두 TRP에 대한 다중 TRP 운용을 수행할 수 있지만, [운용 방법 2]는 하기의 추가적인 단말의 역량 보고와 기지국의 설정 정보를 기반으로 동작할 수 있다.As described above, [Operation Method 1] can perform multi-TRP operation for two TRPs with different PCIs through additional serving cell configuration without additional standard support, but [Operation Method 2] can operate based on the additional terminal capability report and base station configuration information below.
[운용 방법 2]를 위한 단말 역량 보고 관련Terminal capability reporting for [Operation Method 2]
- 단말은 기지국으로부터 상위 레이어 시그널링을 통해 서빙 셀의 PCI와 다른 추가적인 PCI에 대한 설정이 가능함을 단말 역량을 통해 기지국으로 보고할 수 있다. 해당 단말 역량에는 서로 독립적인 두 숫자인 X1과 X2가 포함되거나, 각 X1과 X2는 독립적인 단말 역량으로 보고될 수 있다.- The terminal can report to the base station through the terminal capability that it can set additional PCIs other than the PCI of the serving cell through upper layer signaling from the base station. The terminal capability may include two independent numbers, X1 and X2, or each X1 and X2 may be reported as an independent terminal capability.
- X1은 단말에게 설정될 수 있는 추가적인 PCI의 최대 개수를 의미하며, PCI는 서빙 셀의 PCI와 다를 수 있으며, 이 때 추가적인 PCI에 대응되는 SSB의 시간 도메인 위치(time domain position)과 주기(periodicity)는 서빙 셀의 SSB와 동일한 경우를 의미할 수 있다.- X1 represents the maximum number of additional PCIs that can be set for the terminal, and the PCI may be different from the PCI of the serving cell. In this case, the time domain position and periodicity of the SSB corresponding to the additional PCI may be the same as those of the SSB of the serving cell.
- X2는 단말에게 설정될 수 있는 추가적인 PCI의 최대 개수를 의미하며, 이 때의 PCI는 서빙 셀의 PCI와 다를 수 있으며, 이 때 추가적인 PCI에 대응되는 SSB의 시간 도메인 위치와 주기는 X1으로 보고된 PCI에 대응되는 SSB와 다른 경우를 의미할 수 있다.- X2 means the maximum number of additional PCIs that can be set for the terminal, and the PCI at this time may be different from the PCI of the serving cell, and the time domain location and period of the SSB corresponding to the additional PCI at this time may mean different cases from the SSB corresponding to the PCI reported as X1.
- 정의에 의해, X1과 X2로 보고된 값에 대응되는 PCI는 서로 동시에 설정될 수 없다.- By definition, PCIs corresponding to values reported as X1 and X2 cannot be set simultaneously.
- 단말 역량 보고를 통해 보고되는 X1과 X2로 보고되는 값은 0부터 7 중 1가지 정수의 값을 각각 가질 수 있다.- The values reported as X1 and X2 through the terminal capability report can each have an integer value from 0 to 7.
- X1과 X2로 보고되는 값은 FR1과 FR2에서 서로 다른 값이 보고될 수 있다.- The values reported as X1 and X2 may have different values reported in FR1 and FR2.
[운용 방법 2]를 위한 상위 레이어 시그널링 설정 관련Regarding upper layer signaling settings for [Operation Method 2]
- 단말은 상술한 단말 역량 보고에 기반하여 상위 레이어 시그널링인 SSB-MTCAdditionalPCI-r17를 기지국으로부터 설정 받을 수 있고, 해당 상위 레이어 시그널링 내에는 적어도 서빙 셀과 다른 값을 가지는 복수 개의 추가적인 PCI, 각 추가적인 PCI에 대응되는 SSB 전송 전력 및 각 추가적인 PCI에 대응되는 ssb-PositionInBurst가 포함될 수 있으며, 최대 설정 가능한 추가적인 PCI의 개수는 7개일 수 있다.- The terminal may receive, from the base station, an upper layer signaling, SSB-MTCAdditionalPCI-r17, based on the terminal capability report described above, and the upper layer signaling may include at least a plurality of additional PCIs having different values from the serving cell, SSB transmit power corresponding to each additional PCI, and ssb-PositionInBurst corresponding to each additional PCI, and the maximum number of additional PCIs that can be set may be 7.
- 단말은 서빙 셀과 다른 값의 추가적인 PCI에 대응되는 SSB에 대한 가정으로서, 서빙 셀의 SSB와 같은 중심 주파수, 부반송파 간격, 서브프레임 번호 오프셋을 가지는 것을 가정할 수 있다.- The terminal can assume that the SSB corresponding to the additional PCI of different values from the serving cell has the same center frequency, subcarrier spacing, and subframe number offset as the SSB of the serving cell.
- 단말은 서빙 셀의 PCI에 대응되는 레퍼런스 RS (예를 들어 SSB 또는 CSI-RS)는 항상 활성화된 TCI state에 연결되어 있는 것을 가정할 수 있으며, 서빙 셀과 다른 값을 가지는 추가적으로 설정된 PCI의 경우, 그 PCI가 1개 또는 복수 개일 때, 해당 PCI들 중 오직 1개의 PCI만이 활성화된 TCI state에 연결되어 있는 것을 가정할 수 있다.- The terminal can assume that the reference RS (e.g. SSB or CSI-RS) corresponding to the PCI of the serving cell is always connected to the activated TCI state, and in case of an additionally configured PCI having a different value from the serving cell, when there are one or more PCIs, it can assume that only one PCI among those PCIs is connected to the activated TCI state.
- 만약 단말이 서로 다른 2개의 coresetPoolIndex를 설정 받았고, 서빙 셀 PCI에 대응되는 reference RS가 1개 또는 복수 개의 활성화된 TCI state에 연결되어 있으며, 서빙 셀과 다른 값을 가지는 추가적으로 설정된 PCI에 대응되는 레퍼런스 RS가 1개 또는 복수 개의 활성화된 TCI state에 연결되어 있는 경우, 단말은 서빙 셀 PCI와 연결된 활성화된 TCI state(들)이 2개 중 1개의 coresetPoolIndex에 연결되며, 서빙 셀과 다른 값을 가지는 추가적으로 설정된 PCI와 연결된 활성화된 TCI state(들)이 나머지 1개의 coresetPoolIndex에 연결되는 것을 기대할 수 있다.- If a terminal is configured with two different coresetPoolIndexes, and a reference RS corresponding to a serving cell PCI is connected to one or more activated TCI states, and a reference RS corresponding to an additionally configured PCI having a different value from that of the serving cell is connected to one or more activated TCI states, the terminal can expect that the activated TCI state(s) connected to the serving cell PCI will be connected to one of the two coresetPoolIndexes, and the activated TCI state(s) connected to the additionally configured PCI having a different value from that of the serving cell will be connected to the remaining one coresetPoolIndex.
상술한 [운용 방법 2]를 위한 단말 역량 보고 및 기지국의 상위 레이어 시그널링은 서빙 셀의 PCI와 다른 값의 추가적인 PCI를 설정할 수 있다. 상기 설정이 존재하지 않는 경우 소스 레퍼런스 RS로 지정할 수 없는 서빙 셀의 PCI와 다른 값의 추가적인 PCI에 대응되는 SSB는 QCL 설정 정보의 소스 레퍼런스 RS로 지정하기 위한 용도로 사용될 수 있다. 또한, 상기 상위 레이어 시그널링인 smtc1 및 smtc2 내에 설정될 수 있는 SSB에 대한 설정 정보처럼 RRM, 모빌리티(mobility) 관리, 또는 핸드오버와 같은 용도로 사용되기 위해 설정될 수 있는 SSB와는 다르게, 서로 다른 PCI를 가지는 다중 TRP 동작을 지원하기 위한 QCL 소스 RS로서의 역할을 위해 사용될 수 있다.The terminal capability report and the upper layer signaling of the base station for the above-described [Operation Method 2] can set an additional PCI with a different value from the PCI of the serving cell. If the above setting does not exist, the SSB corresponding to the additional PCI with a different value from the PCI of the serving cell that cannot be designated as the source reference RS can be used for the purpose of designating it as the source reference RS of the QCL configuration information. In addition, unlike the SSB that can be set for purposes such as RRM, mobility management, or handover, like the configuration information for the SSB that can be set in the above-described upper layer signaling smtc1 and smtc2, it can be used to serve as a QCL source RS for supporting multiple TRP operations with different PCIs.
다음으로 5G 시스템에서의 기준 신호 중 하나인 DMRS에 대해 구체적으로 설명한다. Next, we will specifically explain DMRS, one of the reference signals in the 5G system.
DMRS는 여러 개의 DMRS 포트(port)들로 이루어질 수 있으며 각각의 포트들은 CDM(code division multiplexing) 또는 FDM(frequency division multiplexing)을 이용하여 서로 간섭을 발생시키지 않도록 orthogonality를 유지한다. 하지만 DMRS에 대한 용어는 사용자의 의도 및 기준신호의 사용 목적의 의해서 다른 용어로 표현될 수 있다. DMRS라는 용어는 본 개시의 기술 내용을 쉽게 설명하고 본 개시의 이해를 돕기 위해 특정 예를 제시한 것일 뿐이며, 본 개시의 범위를 한정하고자 하는 것은 아니다. 즉 본 개시의 기술적 사상을 바탕으로 임의의 기준신호에도 실시 가능하다는 것은 본 개시가 속하는 기술 분야에서 통상의 지식을 가진 자에게 자명한 것이다.DMRS can be composed of multiple DMRS ports, and each port maintains orthogonality so as not to cause interference with each other by using CDM (code division multiplexing) or FDM (frequency division multiplexing). However, the term for DMRS can be expressed by different terms depending on the user's intention and the purpose of using the reference signal. The term DMRS is only provided as a specific example to easily explain the technical content of the present disclosure and to help the understanding of the present disclosure, and is not intended to limit the scope of the present disclosure. That is, it is obvious to a person having ordinary skill in the art to which the present disclosure belongs that the technical idea of the present disclosure can be implemented for any reference signal.
도 8은 5G 시스템에서 기지국과 단말 간 통신에 사용되는 DMRS 패턴 (type1과 type2)의 일례를 도시한 도면이다. 5G 시스템에서는 두 개의 DMRS 패턴이 지원될 수 있으며 도 8에 두 개의 DMRS 패턴이 도시되었다. Fig. 8 is a diagram illustrating an example of DMRS patterns (type 1 and type 2) used for communication between a base station and a terminal in a 5G system. Two DMRS patterns can be supported in a 5G system, and two DMRS patterns are illustrated in Fig. 8.
도 8을 참조하면, 참조번호 801과 802는 DMRS type1에 대응하며, 여기서 참조번호 801은 1 심볼 패턴을 나타내며 참조번호 802는 2 심볼 패턴을 나타낸다. DMRS type1(801, 802)은 comb 2 구조의 DMRS 패턴으로서 두 개의 CDM 그룹으로 구성될 수 있으며, 서로 다른 CDM 그룹은 FDM될 수 있다.Referring to FIG. 8, reference numbers 801 and 802 correspond to DMRS type1, where reference number 801 represents a 1 symbol pattern and reference number 802 represents a 2 symbol pattern. DMRS type1 (801, 802) is a DMRS pattern of a comb 2 structure and can be composed of two CDM groups, and different CDM groups can be FDMed.
1 심볼 패턴(801)에서는 동일한 CDM 그룹에 주파수상 CDM이 적용되어 2개의 DMRS 포트를 구분 지을 수 있으며, 따라서 총 4개의 직교(orthogonal) DMRS 포트가 설정될 수 있다. 1 심볼 패턴(801)은 각각의 CDM 그룹에 매핑되는 DMRS 포트 ID를 포함할 수 있다(하향링크에 대한 DMRS 포트 ID는 도시된 번호+1000로 표시될 수 있다). 2 심볼 패턴(802)에서는 동일한 CDM 그룹에 시간/주파수상 CDM이 적용되어 4개의 DMRS 포트가 구분될 수 있으며, 따라서 총 8개의 직교 DMRS 포트가 설정될 수 있다. 2 심볼 패턴(802)은 각각의 CDM 그룹에 매핑되는 DMRS 포트 ID를 포함할 수 있다(하향링크에 대한 DMRS 포트 ID는 도시된 번호+1000로 표시될 수 있다). In the 1 symbol pattern (801), frequency-based CDM is applied to the same CDM group to distinguish two DMRS ports, and thus a total of four orthogonal DMRS ports can be set. The 1 symbol pattern (801) can include a DMRS port ID mapped to each CDM group (the DMRS port ID for downlink can be represented by the illustrated number + 1000). In the 2 symbol pattern (802), time/frequency-based CDM is applied to the same CDM group to distinguish four DMRS ports, and thus a total of eight orthogonal DMRS ports can be set. The 2 symbol pattern (802) can include a DMRS port ID mapped to each CDM group (the DMRS port ID for downlink can be represented by the illustrated number + 1000).
DMRS type2(803, 804)는 주파수상 인접한 부반송파에 FD-OCC(frequency domain orthogonal cover codes)가 적용되는 구조의 DMRS 패턴으로서, 세 개의 CDM 그룹으로 구성될 수 있으며 서로 다른 CDM 그룹은 FDM될 수 있다. DMRS type2 (803, 804) is a DMRS pattern in which FD-OCC (frequency domain orthogonal cover codes) are applied to frequency-adjacent subcarriers. It can be composed of three CDM groups, and different CDM groups can be FDMed.
1 심볼 패턴(803)에서는 동일한 CDM 그룹에 주파수상 CDM이 적용되어 2개의 DMRS 포트가 구분될 수 있으며, 따라서 총 6개의 직교 DMRS 포트가 설정될 수 있다. 1 심볼 패턴(803)은 각각의 CDM 그룹에 매핑되는 DMRS 포트 ID를 포함할 수 있다(하향링크에 대한 DMRS 포트 ID는 도시된 번호+1000로 표시될 수 있다). 2 심볼 패턴(704)에서는 동일한 CDM 그룹에 시간/주파수상 CDM이 적용되어 4개의 DMRS 포트를 구분 지을 수 있으며, 따라서 총 12개의 직교 DMRS 포트가 설정될 수 있다. 2 심볼 패턴(804)은 각각의 CDM 그룹에 매핑되는 DMRS 포트 ID를 포함할 수 있다(하향링크에 대한 DMRS 포트 ID는 도시된 번호+1000로 표시될 수 있다).In 1 symbol pattern (803), frequency-based CDM is applied to the same CDM group, so that 2 DMRS ports can be distinguished, and thus a total of 6 orthogonal DMRS ports can be set. 1 symbol pattern (803) can include DMRS port IDs mapped to each CDM group (DMRS port ID for downlink can be indicated by the illustrated number + 1000). In 2 symbol pattern (704), time/frequency-based CDM is applied to the same CDM group, so that 4 DMRS ports can be distinguished, and thus a total of 12 orthogonal DMRS ports can be set. 2 symbol pattern (804) can include DMRS port IDs mapped to each CDM group (DMRS port ID for downlink can be indicated by the illustrated number + 1000).
상기에서 설명한 바와 같이, NR 시스템에서는 서로 다른 두 개의 DMRS 패턴 (예를 들어 DMRS 패턴들(801, 802) 또는 DMRS 패턴들(803, 804))이 설정될 수 있으며, 각 DMRS 패턴이 one 심볼 패턴(801 또는 803)인지 인접한 2 심볼 패턴(802 또는 804)인지도 설정될 수 있다. 또한, NR 시스템에서는 DMRS 포트 번호가 스케줄링될 뿐만 아니라, PDSCH 레이트 매칭(rate matching)을 위해서 함께 스케줄링 된 CDM 그룹의 수가 설정되어 시그널링 될 수 있다. 또한, CP-OFDM(cyclic prefix based orthogonal frequency division multiplex)의 경우 DL과 UL에서 상기 설명한 두 개의 DMRS 패턴이 모두 지원될 수 있으며, DFT-S-OFDM(discrete Fourier transform spread OFDM)의 경우 UL에서 상기 설명한 DMRS 패턴 중 DMRS type1만 지원될 수 있다. As described above, in the NR system, two different DMRS patterns (e.g., DMRS patterns (801, 802) or DMRS patterns (803, 804)) can be configured, and it can also be configured whether each DMRS pattern is a one symbol pattern (801 or 803) or two adjacent symbol patterns (802 or 804). In addition, in the NR system, not only the DMRS port number is scheduled, but also the number of CDM groups scheduled together for PDSCH rate matching can be configured and signaled. In addition, in case of CP-OFDM (cyclic prefix based orthogonal frequency division multiplex), both of the above-described two DMRS patterns can be supported in DL and UL, and in case of DFT-S-OFDM (discrete Fourier transform spread OFDM), only DMRS type 1 among the above-described DMRS patterns can be supported in UL.
또한 추가적인(additional) DMRS가 설정 가능하도록 지원될 수 있다. 프론트-로디드(Front-loaded) DMRS는 DMRS 중 시간 도메인에서 가장 앞쪽 심볼에서 송수신되는 첫 번째(first) DMRS를 지칭하며, 추가적인 DMRS는 시간 도메인에서 프론트-로디드 DMRS 보다 뒤쪽의 심볼에서 송수신되는 DMRS를 지칭한다. NR 시스템에서 추가적인 DMRS의 수는 최소 0에서부터 최대 3까지 설정될 수 있다. 또한 추가적인 DMRS가 설정될 경우에 프론트-로디드 DMRS와 동일한 패턴이 가정될 수 있다. 일 실시예에서 프론트-로디드 DMRS에 대해서 상기 설명한 DMRS 패턴 type이 type1인지 type2인지에 대한 정보, DMRS 패턴이 1 심볼 패턴인지 인접한 2 심볼 패턴인지에 대한 정보, 및 DMRS 포트와 사용되는 CDM 그룹의 수 정보가 지시되면, 추가적인 DMRS가 추가적으로 설정될 경우 추가적인 DMRS는 프론트-로디드 DMRS와 동일한 DMRS 정보가 설정된 것으로 가정될 수 있다.In addition, additional DMRS may be supported to be configured. Front-loaded DMRS refers to the first DMRS that is transmitted and received in the frontmost symbol in the time domain among DMRSs, and additional DMRS refers to DMRS that is transmitted and received in the symbol later than the front-loaded DMRS in the time domain. In the NR system, the number of additional DMRSs can be configured from a minimum of 0 to a maximum of 3. In addition, when an additional DMRS is configured, the same pattern as the front-loaded DMRS may be assumed. In one embodiment, when information about whether the DMRS pattern type described above is type 1 or type 2 for the front-loaded DMRS, information about whether the DMRS pattern is a 1-symbol pattern or an adjacent 2-symbol pattern, and information about the number of CDM groups used with the DMRS port are indicated, when an additional DMRS is additionally configured, it may be assumed that the additional DMRS has the same DMRS information as the front-loaded DMRS.
일 실시예에서 상기 설명된 하향링크 DMRS 설정은 하기의 표 6과 같이 RRC 시그널링을 통해 설정될 수 있다.In one embodiment, the downlink DMRS settings described above can be set via RRC signaling as shown in Table 6 below.
DMRS-DownlinkConfig ::= SEQUENCE {
dmrs-Type ENUMERATED {type2} OPTIONAL, -- Need S
dmrs-AdditionalPosition ENUMERATED {pos0, pos1, pos3} OPTIONAL, -- Need S
maxLength ENUMERATED {len2} OPTIONAL, -- Need S
scramblingID0 INTEGER (0..65535) OPTIONAL, -- Need S
scramblingID1 INTEGER (0..65535) OPTIONAL, -- Need S
phaseTrackingRS SetupRelease {PTRS-DownlinkConfig} OPTIONAL, -- Need M
...
}
DMRS-DownlinkConfig ::= SEQUENCE {
dmrs-Type ENUMERATED {type2} OPTIONAL, -- Need S
dmrs-AdditionalPosition ENUMERATED {pos0, pos1, pos3} OPTIONAL, -- Need S
maxLength ENUMERATED {len2} OPTIONAL, -- Need S
scramblingID0 INTEGER (0..65535) OPTIONAL, -- Need S
scramblingID1 INTEGER (0..65535) OPTIONAL, -- Need S
phaseTrackingRS SetupRelease {PTRS-DownlinkConfig} OPTIONAL, -- Need M
...
}
여기서 dmrs-Type는 DMRS type을 설정할 수 있고, dmrs-AdditionalPosition은 추가적인 DMRS OFDM 심볼들을 설정할 수 있고, maxLength은 1 심볼 DMRS 패턴 또는 2 심볼 DMRS 패턴을 설정할 수 있고, scramblingID0 및 scramblingID1는 스크램블링 ID들을 설정할 수 있고, phaseTrackingRS는 PTRS (phase tracking reference signal)를 설정할 수 있다.또한 상기 설명된 상향링크 DMRS 설정은 하기의 표 7과 같이 RRC 시그널링을 통해 설정될 수 있다.Here, dmrs-Type can set DMRS type, dmrs-AdditionalPosition can set additional DMRS OFDM symbols, maxLength can set 1 symbol DMRS pattern or 2 symbol DMRS pattern, scramblingID0 and scramblingID1 can set scrambling IDs, and phaseTrackingRS can set PTRS (phase tracking reference signal). In addition, the above-described uplink DMRS configuration can be set via RRC signaling as shown in Table 7 below.
DMRS-UplinkConfig ::= SEQUENCE {
dmrs-Type ENUMERATED {type2} OPTIONAL, -- Need S
dmrs-AdditionalPosition ENUMERATED {pos0, pos1, pos3} OPTIONAL, -- Need R
phaseTrackingRS SetupRelease { PTRS-UplinkConfig } OPTIONAL, -- Need M
maxLength ENUMERATED {len2} OPTIONAL, -- Need S
transformPrecodingDisabled SEQUENCE {
scramblingID0 INTEGER (0..65535) OPTIONAL, -- Need S
scramblingID1 INTEGER (0..65535) OPTIONAL, -- Need S
...
} OPTIONAL, -- Need R
transformPrecodingEnabled SEQUENCE {
nPUSCH-Identity INTEGER (0..1007) OPTIONAL, -- Need S
sequenceGroupHopping ENUMERATED {disabled} OPTIONAL, -- Need S
sequenceHopping ENUMERATED {enabled} OPTIONAL, -- Need S
...
} OPTIONAL, -- Need R
...
}
DMRS-UplinkConfig ::= SEQUENCE {
dmrs-Type ENUMERATED {type2} OPTIONAL, -- Need S
dmrs-AdditionalPosition ENUMERATED {pos0, pos1, pos3} OPTIONAL, -- Need R
phaseTrackingRS SetupRelease { PTRS-UplinkConfig } OPTIONAL, -- Need M
maxLength ENUMERATED {len2} OPTIONAL, -- Need S
transformPrecodingDisabled SEQUENCE {
scramblingID0 INTEGER (0..65535) OPTIONAL, -- Need S
scramblingID1 INTEGER (0..65535) OPTIONAL, -- Need S
...
} OPTIONAL, -- Need R
transformPrecodingEnabled SEQUENCE {
nPUSCH-Identity INTEGER (0..1007) OPTIONAL, -- Need S
sequenceGroupHopping ENUMERATED {disabled} OPTIONAL, -- Need S
sequenceHopping ENUMERATED {enabled} OPTIONAL, -- Need S
...
} OPTIONAL, -- Need R
...
}
여기서 dmrs-Type은 DMRS type을 설정할 수 있고, dmrs-AdditionalPosition (추가적인 DMRS OFDM 심볼들을 설정할 수 있고, phaseTrackingRS는 PTRS를 설정할 수 있고, maxLength은 1 심볼 DMRS 패턴 또는 2 심볼 DMRS 패턴을 설정할 수 있다. scramblingID0 및 scramblingID1는 스크램블링 ID0들을 설정할 수 있고, nPUSCH-Identity는 DFT-s-OFDM을 위한 셀 ID를 설정할 수 있고, sequenceGroupHopping을 시퀀스 그룹 호핑을 불가능하게(disable)할 수 있고, sequenceHopping은 시퀀스 호핑을 가능하게(enable)할 수 있다.Here, dmrs-Type can set DMRS type, dmrs-AdditionalPosition (can set additional DMRS OFDM symbols), phaseTrackingRS can set PTRS, maxLength can set 1 symbol DMRS pattern or 2 symbol DMRS pattern, scramblingID0 and scramblingID1 can set scrambling ID0s, nPUSCH-Identity can set cell ID for DFT-s-OFDM, sequenceGroupHopping can disable sequence group hopping, and sequenceHopping can enable sequence hopping.
도 9는 5G 시스템의 시간 대역에서 하나의 PUSCH에서 수신한 DMRS를 이용한 채널 추정의 일례를 도시한 도면이다.FIG. 9 is a diagram illustrating an example of channel estimation using DMRS received on one PUSCH in a time band of a 5G system.
도 9을 참조하면, DMRS를 이용하여 데이터 복호를 위한 채널 추정을 수행함에 있어, 주파수 대역에서는 시스템 대역에 연동된 PRB 번들링(physical resource blocks bundling)을 이용하여 해당 번들링 단위인 PRG (precoding resource block group) 내에서 채널 추정이 수행될 수 있다. 또한, 시간 단위에서는 오직 하나의 PUSCH에서 수신한 DMRS 만을 프리코딩이 같다고 가정하여 채널을 추정하게 된다.Referring to Fig. 9, when performing channel estimation for data decoding using DMRS, channel estimation can be performed within a PRG (precoding resource block group), which is a bundling unit, by using PRB bundling (physical resource blocks bundling) linked to a system band in a frequency band. In addition, in a time unit, the channel is estimated by assuming that only DMRS received in one PUSCH has the same precoding.
하기에서는 5G 통신 시스템에서 데이터 채널에 대한 시간 도메인 자원할당(time domain resource allocation, TDRA) 방법에 대해 설명하도록 한다. 기지국은 단말에게 하향링크 데이터 채널(PDSCH) 및 상향링크 데이터 채널(PUSCH)에 대한 시간 도메인 자원할당 정보 테이블(table)을, 상위 계층 시그널링 (예를 들어 RRC 시그널링)으로 설정할 수 있다. Below, we will describe a time domain resource allocation (TDRA) method for data channels in a 5G communication system. A base station can set a time domain resource allocation information table for a downlink data channel (PDSCH) and an uplink data channel (PUSCH) to a terminal through higher layer signaling (e.g., RRC signaling).
기지국은 PDSCH에 대해서는 최대 maxNrofDL-Allocations=17 개의 엔트리(entry)로 구성된 테이블을 설정할 수 있고, PUSCH에 대해서는 최대 maxNrofUL-Allocations=17 개의 엔트리로 구성된 테이블을 설정할 수 있다. 시간 도메인 자원 할당 정보에는, 예를 들어 PDCCH-to-PDSCH 슬롯 타이밍 (PDCCH를 수신한 시점과 수신한 PDCCH가 스케줄링하는 PDSCH가 전송되는 시점 사이의 슬롯 단위의 시간 간격에 해당함, K0로 표기함) 또는 PDCCH-to-PUSCH 슬롯 타이밍 (PDCCH를 수신한 시점과 수신한 PDCCH가 스케줄링하는 PUSCH가 전송되는 시점 사이의 슬롯 단위의 시간 간격에 해당함, K2로 표기함), 슬롯 내에서 PDSCH 또는 PUSCH가 스케줄링된 시작 심볼의 위치 및 길이에 대한 정보, PDSCH 또는 PUSCH의 매핑 타입 중 적어도 하나가 포함될 수 있다. The base station can set a table consisting of at most maxNrofDL-Allocations=17 entries for PDSCH, and can set a table consisting of at most maxNrofUL-Allocations=17 entries for PUSCH. The time domain resource allocation information may include, for example, PDCCH-to-PDSCH slot timing (corresponding to a slot-unit time interval between a PDCCH being received and a slot-unit time interval between a PDSCH being scheduled by the received PDCCH being transmitted, denoted as K0) or PDCCH-to-PUSCH slot timing (corresponding to a slot-unit time interval between a PDCCH being received and a slot-unit time interval between a PUSCH being scheduled by the received PDCCH being transmitted, denoted as K2), information on a position and a length of a start symbol at which a PDSCH or a PUSCH is scheduled within a slot, and at least one of a PDSCH or a PUSCH mapping type.
일 실시예에서 PDSCH에 대한 시간 도메인 자원할당 정보가 하기의 표 8과 같이 RRC 시그널링을 통해 단말에게 설정될 수 있다.In one embodiment, time domain resource allocation information for PDSCH can be set to a terminal through RRC signaling as shown in Table 8 below.
PDSCH-TimeDomainResourceAllocationList information element

PDSCH-TimeDomainResourceAllocationList ::= SEQUENCE (SIZE(1..maxNrofDL-Allocations)) OF PDSCH-TimeDomainResourceAllocation

PDSCH-TimeDomainResourceAllocation ::= SEQUENCE {
k0 INTEGER(0..32) OPTIONAL, -- Need S
mappingType ENUMERATED {typeA, typeB},
startSymbolAndLength INTEGER (0..127)
repetitionNumber ENUMERATED {n2, n3, n4, n5, n6, n7, n8, n16} OPTIONAL, -- Cond Formats1-0and1-1
}
PDSCH-TimeDomainResourceAllocationList information element

PDSCH-TimeDomainResourceAllocationList ::= SEQUENCE (SIZE(1..maxNrofDL-Allocations)) OF PDSCH-TimeDomainResourceAllocation

PDSCH-TimeDomainResourceAllocation ::= SEQUENCE {
k0 INTEGER(0..32) OPTIONAL, -- Need S
mappingType ENUMERATED {typeA, typeB},
startSymbolAndLength INTEGER (0..127)
repetitionNumber ENUMERATED {n2, n3, n4, n5, n6, n7, n8, n16} OPTIONAL, -- Cond Formats1-0and1-1
}
여기서 k0는 PDCCH-to-PDSCH 타이밍(즉 DCI와 그 스케줄링된 PDSCH 간의 슬롯 오프셋)을 슬롯 단위로 나타낸 것이고, mappingType은 PDSCH 매핑 타입을 나타내고, startSymbolAndLength은 PDSCH의 시작 심볼 및 길이를 나타내고, repetitionNumber는 슬롯 기반 반복 방식에 따른 PDSCH 전송 기회(transmission occasions)의 개수를 나타낼 수 있다.일 실시예에서 PUSCH에 대한 시간 도메인 자원할당 정보가 하기의 표 9와 같이 RRC 시그널링을 통해 단말에게 설정될 수 있다.Here, k0 represents PDCCH-to-PDSCH timing (i.e., slot offset between DCI and the scheduled PDSCH) in slot units, mappingType represents a PDSCH mapping type, startSymbolAndLength represents a start symbol and length of a PDSCH, and repetitionNumber may represent the number of PDSCH transmission occasions according to a slot-based repetition scheme. In one embodiment, time domain resource allocation information for PUSCH may be set to a terminal through RRC signaling as shown in Table 9 below.
PUSCH-TimeDomainResourceAllocation information element

PUSCH-TimeDomainResourceAllocationList ::= SEQUENCE (SIZE(1..maxNrofUL-Allocations)) OF PUSCH-TimeDomainResourceAllocation

PUSCH-TimeDomainResourceAllocation ::= SEQUENCE {
k2 INTEGER(0..32) OPTIONAL, -- Need S
mappingType ENUMERATED {typeA, typeB},
startSymbolAndLength INTEGER (0..127)
}
PUSCH-Allocation-r16 ::= SEQUENCE {
mappingType-r16 ENUMERATED {typeA, typeB} OPTIONAL, -- Cond NotFormat01-02-Or-TypeA
startSymbolAndLength-r16 INTEGER (0..127) OPTIONAL, -- Cond NotFormat01-02-Or-TypeA
startSymbol-r16 INTEGER (0..13) OPTIONAL, -- Cond RepTypeB
length-r16 INTEGER (1..14) OPTIONAL, -- Cond RepTypeB
numberOfRepetitions-r16 ENUMERATED {n1, n2, n3, n4, n7, n8, n12, n16} OPTIONAL, -- Cond Format01-02
...
}
PUSCH-TimeDomainResourceAllocation information element

PUSCH-TimeDomainResourceAllocationList ::= SEQUENCE (SIZE(1..maxNrofUL-Allocations)) OF PUSCH-TimeDomainResourceAllocation

PUSCH-TimeDomainResourceAllocation ::= SEQUENCE {
k2 INTEGER(0..32) OPTIONAL, -- Need S
mappingType ENUMERATED {typeA, typeB},
startSymbolAndLength INTEGER (0..127)
}
PUSCH-Allocation-r16 ::= SEQUENCE {
mappingType-r16 ENUMERATED {typeA, typeB} OPTIONAL, -- Cond NotFormat01-02-Or-TypeA
startSymbolAndLength-r16 INTEGER (0..127) OPTIONAL, -- Cond NotFormat01-02-Or-TypeA
startSymbol-r16 INTEGER (0..13) OPTIONAL, -- Cond RepTypeB
length-r16 INTEGER (1..14) OPTIONAL, -- Cond RepTypeB
numberOfRepetitions-r16 ENUMERATED {n1, n2, n3, n4, n7, n8, n12, n16} OPTIONAL, -- Cond Format01-02
...
}
여기서 k2는 PDCCH-to-PUSCH 타이밍(즉 DCI와 그 스케줄링된 PUSCH 간의 슬롯 오프셋)을 슬롯 단위로 나타낸 것이고, mappingType은 PUSCH 매핑 타입을 나타내고, startSymbolAndLength 또는 StartSymbol과 length는 PUSCH의 시작 심볼 및 길이를 나타내고, numberOfRepetitions는 PUSCH 전송에 적용되는 반복 횟수를 나타낼 수 있다.기지국은 상기 시간 도메인 자원할당 정보에 대한 테이블의 엔트리 중 적어도 하나를 L1 시그널링(예를 들어 하향링크 제어 정보 (downlink control information, DCI))를 통해 단말에게 지시할 수 있다 (예를 들어 DCI 내의 '시간 도메인 자원할당' 필드로 지시할 수 있음). 단말은 기지국으로부터 수신한 DCI에 기반하여 PDSCH 또는 PUSCH에 대한 시간 도메인 자원할당 정보를 획득할 수 있다.Here, k2 represents PDCCH-to-PUSCH timing (i.e., slot offset between DCI and the scheduled PUSCH) in slot units, mappingType represents a PUSCH mapping type, startSymbolAndLength or StartSymbol and length represent a start symbol and a length of a PUSCH, and numberOfRepetitions may represent a number of repetitions applied to a PUSCH transmission. The base station may indicate at least one of the entries of the table for the time domain resource allocation information to the UE via L1 signaling (e.g., downlink control information (DCI)) (e.g., by a 'time domain resource allocation' field in the DCI). The UE may acquire time domain resource allocation information for the PDSCH or PUSCH based on the DCI received from the base station.
하기에서는 5G 시스템에서 기지국 에너지 절감을 위한 동적 시그널링을 통한 SSB 밀도(density)를 줄이는 방법을 설명한다.Below, we describe a method to reduce SSB density through dynamic signaling for base station energy conservation in 5G systems.
도 10은 실시예에 따라 동적 시그널링을 통한 SSB 전송을 재설정하는 방법의 일례를 도시한 도면이다.FIG. 10 is a diagram illustrating an example of a method for resetting SSB transmission through dynamic signaling according to an embodiment.
도 10을 참고하면, 단말은 기지국으로부터 상위 계층 시그널링(SIB1 또는 ServingCellConfigCommon)을 통해서 ssb-PositionsInBurst = '11110000'(1002)을 설정받고 부반송파 간격 30kHz에서의 동기화 신호 블록은 0.5ms 시간 내(또는 1 슬롯이 14 OFDM 심볼로 구성되어 있을 경우, 1 슬롯 길이에 해당)에서 최대 두 개가 전송될 수 있고, 이에 따라 1ms(또는 1 슬롯이 14 OFDM 심볼로 구성되어 있을 경우, 2 슬롯 길이에 해당) 시간 내에서 단말은 4 개의 동기화 신호 블록을 수신될 수 있다. 이 때, 기지국이 에너지 절감을 위하여 SSB 전송의 밀도를 줄이기 위해, nwes-RNTI (network energy saving-radio network temporary identifier, 또는, es-RNTI)를 갖는 그룹/셀 공통 DCI(Group/Cell common DCI, 1003)를 통해 비트맵 '1010xxxx'(1004)를 broadcast하여 SSB 전송 설정 정보를 재설정 할 수 있다. 이 때, 그룹/셀 공통 DCI로 설정 받은 비트맵(1004)를 기반으로 SS block#1(1005), SSblock#3(1006)의 전송을 취소할 수 있다. 상기 도 10은 비트맵 기반의 그룹/셀 공통 DCI를 통한 SSB 전송을 재설정 하는 방법(1001)을 제공한다. Referring to FIG. 10, the terminal receives ssb-PositionsInBurst = '11110000' (1002) from the base station through upper layer signaling (SIB1 or ServingCellConfigCommon ), and synchronization signal blocks at a subcarrier spacing of 30 kHz can be transmitted at most two within 0.5 ms (or 1 slot length when 1 slot consists of 14 OFDM symbols), and accordingly, the terminal can receive 4 synchronization signal blocks within 1 ms (or 2 slot lengths when 1 slot consists of 14 OFDM symbols). At this time, the base station can reset SSB transmission configuration information by broadcasting bitmap '1010xxxx' (1004) through Group/Cell common DCI (Group/Cell common DCI, 1003) having nwes-RNTI (network energy saving-radio network temporary identifier, or, es-RNTI) to reduce the density of SSB transmission for energy saving. At this time, transmission of SS block#1 (1005) and SSblock#3 (1006) can be canceled based on the bitmap (1004) set as the Group/Cell common DCI. FIG. 10 provides a method (1001) for resetting SSB transmission through bitmap-based Group/Cell common DCI.
또한, 기지국은 그룹/셀 공통 DCI를 통해서 상위 계층 시그널링을 통해서 설정된 ssb-periodicity를 재설정해 줄 수 있다. 또한, 그룹/셀 공통 DCI의 적용 시점을 지시하기 위한 타이머 정보를 추가적으로 설정하여, 설정된 타이머 동안 그룹/셀 공통 DCI로 재 설정된 SSB 전송 정보를 통해서 SSB를 전송할 수 있다. 이후, 타이머가 끝나면, 기지국은 기존의 상위 계층 시그널링으로 설정된 SSB 전송 정보를 기반으로 동작할 수 있다. 이는 타이머를 통해서 일반 모드에서 에너지 세이빙 모드로 설정을 바꿔주는 동작에 해당할 수 있으며, 그로 인한 SSB 설정 정보의 재설정에 해당할 수 있다. 또 다른 방법으로, 기지국은 그룹/셀 공통 DCI를 통해 재설정된 SSB 설정 정보의 적용 시점과 기간을 오프셋과 구간 정보로 단말에 설정할 수 있다. 이 때, 단말은 그룹/셀 공통 DCI를 수신한 순간부터 오프셋을 적용한 시점부터 설정된 구간 동안 SSB를 모니터링하지 않을 수 있다.In addition, the base station can reset the ssb-periodicity set through upper layer signaling via group/cell common DCI. In addition, by additionally setting timer information for indicating the application time of the group/cell common DCI, SSB can be transmitted through SSB transmission information reset to the group/cell common DCI during the set timer. Afterwards, when the timer expires, the base station can operate based on the SSB transmission information set by the existing upper layer signaling. This may correspond to an operation of changing the setting from the general mode to the energy saving mode via the timer, and may correspond to the resetting of the SSB configuration information due to this. Alternatively, the base station can set the application time and period of the SSB configuration information reset through the group/cell common DCI to the terminal using offset and interval information. In this case, the terminal may not monitor the SSB during the set interval from the moment of receiving the group/cell common DCI to the moment of applying the offset.
하기에서는 5G 시스템에서 기지국 에너지 절감을 위한 동적 시그널링을 통한 BWP 또는 BW 적응(adaptation) 방법을 설명한다.Below, we describe a BWP or BW adaptation method through dynamic signaling for base station energy saving in 5G systems.
도 11은 실시예에 따라 동적 시그널링을 통한 BWP 및 BW를 재설정하는 방법의 일례를 도시한 도면이다.FIG. 11 is a diagram illustrating an example of a method for resetting BWP and BW through dynamic signaling according to an embodiment.
도 11을 참고하면, 단말은 기지국으로부터 상위 계층 시그널링 및 L1 시그널링을 통해서 활성화된 BWP 또는 BW으로 동작할 수 있다(1101). 예를 들어, 단말은 고정된 전력 PSDB로 100MHz의 Full BW를 통해서 동작할 수 있다. 이 때, 기지국은 에너지 세이빙을 위하여 동일한 전력 PSDB를 갖고 단말에게 40MHz의 더 좁은 BW를 활성화하도록 BW 및 BWP를 조정할 수 있다(1102). 이 때, 상기 기지국의 에너지 세이빙을 위한 BW 또는 BWP의 조정 동작은 그룹 공통 DCI 및 셀 특정(cell specific) DCI를 통해서 단말 특정(UE specific)하게 설정된 BWP 및 BW 설정을 동일하게 맞춰주기 위하여 설정될 수 있다(1103). 예를 들어, UE#0과 UE#1이 서로 다른 BWP의 구성 및 위치를 가질 수 있다. 이 때, 기지국이 사용하는 BW를 줄여서 에너지를 세이빙하기 위하여 기지국은 모든 단말의 BW 및 BWP를 동일하게 하나로 설정할 수 있다. 이 때, 에너지 세이빙을 위한 동작에서의 BWP 또는 BW는 하나 또는 그 이상으로 설정될 수 있으며, 이는 단말 그룹별 BWP를 설정하기 위해서 사용될 수 있다.Referring to FIG. 11, a terminal can operate with a BWP or BW activated through upper layer signaling and L1 signaling from a base station (1101). For example, a terminal can operate with a Full BW of 100MHz with a fixed power PSD B. At this time, the base station can adjust the BW and BWP to activate a narrower BW of 40MHz for the terminal with the same power PSD B for energy saving (1102). At this time, the BW or BWP adjustment operation for energy saving of the base station can be set to match the BWP and BW settings that are set UE-specifically through group common DCI and cell specific DCI (1103). For example, UE#0 and UE#1 can have different BWP configurations and locations. At this time, in order to save energy by reducing the BW used by the base station, the base station can set the BW and BWP of all terminals to be the same. At this time, BWP or BW in the operation for energy saving can be set to one or more, and this can be used to set BWP for each terminal group.
하기에서는 5G 시스템에서 기지국 에너지 절감을 위한 동적 시그널링을 통한 DRX(discontinuous reception) 정렬(alignment) 방법을 설명한다.Below, we describe a discontinuous reception (DRX) alignment method through dynamic signaling for base station energy saving in 5G systems.
도 12는 실시예에 따라 동적 시그널링을 통한 DRX를 재설정하는 방법의 일례를 도시한 도면이다.FIG. 12 is a diagram illustrating an example of a method for resetting DRX through dynamic signaling according to an embodiment.
도 12를 참고하면, 기지국은 상위 계층 시그널링을 통해서 단말 특정하게 DRX를 설정할 수 있다. 예를 들어, 단말마다 서로 다른 drx-LongCycle 또는 drx-ShortCycle, drx-onDurationTimer 그리고 drx-InactivityTimer를 설정 받을 수 있다. 이 후, 기지국은 에너지 세이빙을 위하여 단말 특정한 DRX 설정을 단말 그룹 특정(UE group specific) 또는 셀 특정하게 L1 시그널링을 통해서 설정할 수 있다(1201). 이를 통해서, 단말이 DRX를 통하여 전력을 세이빙하는 효과와 동일한 효과를 기지국에서 에너지 세이빙을 위하여 얻을 수 있다.Referring to Fig. 12, the base station can set DRX for each terminal specifically through upper layer signaling. For example, each terminal can be set to different drx-LongCycle or drx-ShortCycle, drx-onDurationTimer, and drx-InactivityTimer. After that, the base station can set the DRX settings for each terminal specifically through L1 signaling in a UE group specific or cell specific manner for energy saving (1201). Through this, the base station can obtain the same effect of saving power for each terminal through DRX for energy saving.
하기에서는 5G 시스템에서 기지국의 에너지 소모를 절감하기 위한 DTx (discontinuous transmission) 동작을 설명한다.Below, we describe the DTx (discontinuous transmission) operation to reduce energy consumption of base stations in 5G systems.
도 13는 기지국 에너지 세이빙을 위한 DTx 방법의 일례를 도시한 도면이다.FIG. 13 is a diagram illustrating an example of a DTx method for base station energy saving.
도 13를 참고하면, 기지국은 상위 계층 시그널링 (일례로 DTx를 위한 새로운 SIB 또는 RRC 시그널링) 및 L1 시그널링(DCI)을 통해서 에너지 세이빙을 위하여 DTx를 설정할 수 있다. 이 때, 기지국은 DTx 동작을 위하여 DL SCH를 스케줄링하는 PDCCH 또는 RRM 측정, 빔 관리(beam management) 및 경로 손실(pathloss) 등을 위한 측정하기 위한 기준 신호를 전송하는 dtx-onDurationTimer(1305)과 DL SCH를 스케줄링하는 PDCCH를 수신 후 PDSCH를 수신하기 위한 dtx-InactivityTimer(1306)과 dtx-onDurationTimer 이전에 동기화를 위한 동기 신호(SS, 1303) 설정 정보, SS 이후 dtx-onDurationTimer 사이의 오프셋을 설정하는 dtx-offset(1304) 및 상기 설정 정보를 기반으로 DTx가 주기적으로 동작하기 위한 dtx-(Long)Cycle (1302)를 설정할 수 있다. 이때, dtx-cycle은 long cycle 및 short cycle로 복수 설정될 수 있다. 상기 DTx의 동작 동안 기지국은 송신단을 off (또는 비활성화) 하는 상태를 고려하며, 따라서 DL CCH, SCH 및 DL RS를 전송하지 않을 수 있다. 즉, 기지국은 DTx 동작 동안 오직 SS, dtx-onDurationTimer 그리고 dtx-InactivityTimer 동안만 하향링크 (PDCCH, PDSCH, RS 등)을 전송할 수 있다. 이 때 상기 설정된 SS의 추가적인 정보로 SS-gapbetweenBurst 또는 SS 버스트(SS burst)의 수가 추가적으로 설정될 수 있다.Referring to Figure 13, the base station can configure DTx for energy saving through higher layer signaling (e.g. new SIB or RRC signaling for DTx) and L1 signaling (DCI). At this time, the base station can set dtx-onDurationTimer (1305) for transmitting a reference signal for measuring PDCCH for scheduling DL SCH for DTx operation, RRM measurement, beam management, and path loss, dtx-InactivityTimer (1306) for receiving PDSCH after receiving PDCCH for scheduling DL SCH, synchronization signal (SS, 1303) setting information for synchronization before dtx-onDurationTimer, dtx-offset (1304) for setting an offset between SS and dtx-onDurationTimer, and dtx-(Long)Cycle (1302) for DTx to operate periodically based on the setting information. At this time, dtx-cycle can be set to multiple long cycles and short cycles. During the operation of the above DTx, the base station considers the state of turning off (or deactivating) the transmitter, and therefore may not transmit DL CCH, SCH, and DL RS. That is, the base station can transmit downlink (PDCCH, PDSCH, RS, etc.) only during SS, dtx-onDurationTimer, and dtx-InactivityTimer during the DTx operation. At this time, the number of SS-gapbetweenBurst or SS bursts can be additionally set as additional information of the configured SS.
하기에서는 5G 시스템에서 기지국의 에너지 소모를 절감하기 위한 기지국의 비활성화 모드 동안 gNB WUS (wake-up signal)를 통한 기지국 활성화 방법을 설명한다.Below, a method for activating a base station through a gNB WUS (wake-up signal) during the base station's inactive mode to reduce energy consumption of the base station in a 5G system is described.
도 14는 gNB WUS에 따른 기지국의 동작의 일례를 설명하기 위한 도면이다.Figure 14 is a diagram for explaining an example of the operation of a base station according to gNB WUS.
도 14를 참고하면, 기지국은 에너지 세이빙을 위하여 기지국의 비활성화 상태(또는 슬립 모드(sleep mode))동안 송신기단을 off (또는 비활성화) 상태로 유지할 수 있다. 이후, 기지국은 단말로부터 기지국의 슬립 모드를 활성화시키기 위한 gNB WUS (1402)을 수신 할 수 있다. 이후, 기지국은 단말로부터 Rx 단을 통해서 WUS(1402)를 수신할 경우 Tx 단을 on (또는 활성화) 상태로 변경할 수 있다(1403). 이후, 기지국은 단말에게 하향링크 전송을 수행할 수 있다. 이때, 기지국은 Tx on 이후 동기화를 진행하고 제어 정보 및 데이터 전송을 수행할 수 있다. 또한, 이 때 다양한 상향링크 신호, 예를 들어 PRACH (physical random access channel), PUCCH (physical uplink control channel) 상의 스케줄링 요청(scheduling request, SR), 수신 확인(acknowledgement, ACK) 을 포함하는 PUCCH 등이 gNB WUS로 고려될 수 있다. 상기 방법을 통해서, 기지국은 에너지 세이빙을 할 수 있으며, 동시에 단말은 지연(latency)을 개선할 수 있다.Referring to FIG. 14, the base station can keep the transmitter end in the off (or inactive) state during the inactive state (or sleep mode) of the base station for energy saving. Thereafter, the base station can receive a gNB WUS (1402) for activating the sleep mode of the base station from the terminal. Thereafter, when the base station receives the WUS (1402) from the terminal through the Rx terminal, the base station can change the Tx terminal to the on (or active) state (1403). Thereafter, the base station can perform downlink transmission to the terminal. At this time, the base station can perform synchronization after Tx on and perform control information and data transmission. In addition, at this time, various uplink signals, for example, a physical random access channel (PRACH), a physical uplink control channel (PUCCH) including a scheduling request (SR), an acknowledgement (ACK), etc., can be considered as the gNB WUS. Through the above method, the base station can save energy, and at the same time, the terminal can improve latency.
이때, 기지국은 gNB WUS를 수신하기 위한 WUS occasion과 단말이 gNB WUS를 전송하기 전 동기화(synchronization)를 위한 동기화 기준 신호(sync RS)를 설정할 수 있다. 이 때, 동기화 기준 신호로 SSB, TRS (tracking RS), Light SSB (PSS 및 SSS), 연속적(consecutive) SSBs 또는 새로운 RS (일례로 연속적인(continuous) PSS 및 SSS) 등이 고려될 수 있으며, WUS로 PRACH, PUCCH 상의 스케줄링 요청, 또는 시퀀스 기반 신호(sequence based signal) 등이 고려될 수 있다. 기지국의 에너지 세이빙을 위한 비활성화 모드를 단말이 활성화시키기 위한 동기화 기준 신호(1504)와 WUS를 수신하기 위한 WUS occasion은 WUS-RS 주기(1405)를 주기로 반복적으로 설정될 수 있다. 도 15에서의 예시의 경우, 한 가지 실시예로 동기화 기준 신호와 WUS occasion의 1-to-1 매핑을 설명하지만, 이에 제한되지 않으며, N-to-1 매핑, 1-to-N 매핑, 또는 N-to-M 매핑될 수 있다.At this time, the base station can set a WUS occasion for receiving the gNB WUS and a synchronization reference signal (sync RS) for synchronization before the terminal transmits the gNB WUS. At this time, SSB, TRS (tracking RS), Light SSB (PSS and SSS), continuous SSBs, or new RS (for example, continuous PSS and SSS) can be considered as the synchronization reference signal, and PRACH, scheduling request on PUCCH, or sequence based signal can be considered as the WUS. The synchronization reference signal (1504) for the terminal to activate the deactivation mode for energy saving of the base station and the WUS occasion for receiving the WUS can be repeatedly set as a WUS-RS period (1405). For the example in FIG. 15, one embodiment illustrates a 1-to-1 mapping of a synchronization reference signal and a WUS occasion, but is not limited thereto, and may be N-to-1 mapping, 1-to-N mapping, or N-to-M mapping.
하기에서는 5G 시스템에서 기지국 에너지 절감을 위한 기지국의 공간 도메인 요소(spatial domain element, 즉, Antenna, PA or TxRUs)를 동적으로 On/Off하는 방법을 설명한다.Below, we describe a method to dynamically turn on/off spatial domain elements (i.e., antennas, PAs or TxRUs) of a base station to save base station energy in a 5G system.
도 15는 실시예에 따라 에너지 절감을 위한 기지국의 공간 도메인(spatial domain, SD) 적응 방법의 일례를 도시한 도면이다.FIG. 15 is a diagram illustrating an example of a spatial domain (SD) adaptation method of a base station for energy saving according to an embodiment.
도 15를 참고하면, 기지국은 에너지 세이빙을 위하여 RU(remote unit) 별 송신 안테나 포트(Tx antenna port per RU)를 조정할 수 있다. 기지국의 PA는 기지국의 에너지 소모의 대부분을 차지함으로 기지국은 에너지를 세이빙하기 위하여 전송 안테나를 Off 할 수 있다(1501). 이때, 기지국은 전송 안테나를 Off 가능 여부를 결정하기 위하여, 단말의 RSRP(reference signal received power), CQI(channel quality indicator) 그리고 RSRQ(reference signal received quality) 등을 참고하여 단말 그룹 또는 단말 별로 활성화된 전송 안테나의 수를 조정하여 신호를 전송할 수 있다. 이 때, 기지국은 단말에게 상기 안테나의 on/off에 따른 빔 정보 및 기준 신호 정보 (CSI 자원 또는 CSI 보고 설정) 등을 상위 계층 시그널링 (RRC 시그널링) 또는 DCI를 통해서 설정할 수 있다. 또한, 단말은 BWP 별로 서로 다른 안테나 정보를 설정하여 BWP 변경에 따른 안테나 정보를 재설정 할 수 있다. 또한, 기지국은 SD 적응의 가능 여부를 결정하기 위하여 단말로부터의 CSI 피드백을 수신하고 상기 CSI 피드백을 기반으로 SD 적응을 결정할 수 있다. 이 때 기지국은 단말로부터 SD 적응을 위한 여러 안테나 패턴의 안테나 구조 가설(antenna structure hypotheses)을 기반으로 하는 다중 CSI 피드백을 수신할 수 있다.Referring to FIG. 15, the base station can adjust the transmit antenna port per RU (remote unit) for energy saving. Since the PA of the base station accounts for most of the energy consumption of the base station, the base station can turn off the transmit antenna to save energy (1501). At this time, the base station can adjust the number of activated transmit antennas for each terminal group or terminal by referring to the RSRP (reference signal received power), CQI (channel quality indicator), and RSRQ (reference signal received quality) of the terminal to determine whether the transmit antenna can be turned off and transmit a signal. At this time, the base station can set beam information and reference signal information (CSI resource or CSI report setting) according to the on/off of the antenna to the terminal through upper layer signaling (RRC signaling) or DCI. In addition, the terminal can set different antenna information for each BWP and reset the antenna information according to the BWP change. In addition, the base station can receive CSI feedback from the terminal to determine whether SD adaptation is possible and determine SD adaptation based on the CSI feedback. At this time, the base station can receive multiple CSI feedbacks based on antenna structure hypotheses of multiple antenna patterns for SD adaptation from the terminal.
보다 구체적으로, 기지국은 에너지 세이빙을 위한 두 가지 타입의 SD 적응을 적용할 수 있다 (1502). Type 1 SD 적응(1503)은, 기지국이 안테나 포트 (즉, 논리적 포트(logical port)) 당 물리 안테나 요소의 수를 유지하면서, 안테나 포트의 수를 변경하는 것이다. 이때, 기지국의 포트 당 RF 특성(RF characteristics, 일례로 전송 전력(tx power), 빔(beam))은 동일할 수 있다. 따라서, 단말은 CSI 측정 (일례로 L1-RSRP, L3-RSRP 등) 동안 해당 동일한 포트의 CSI-RS을 합쳐서 측정 을 수행할 수 있다. 일례로 CSI-RS #0과 CSI-RS #1의 각 포트는 같은 개수의 물리 안테나 요소를 포함할 수 있다. More specifically, the base station can apply two types of SD adaptation for energy saving (1502). Type 1 SD adaptation (1503) is that the base station changes the number of antenna ports while maintaining the number of physical antenna elements per antenna port (i.e., logical port). At this time, RF characteristics (e.g., transmit power, beam) per port of the base station can be the same. Accordingly, the terminal can perform measurement by combining CSI-RSs of the same port during CSI measurement (e.g., L1-RSRP, L3-RSRP, etc.). For example, each port of CSI-RS #0 and CSI-RS #1 can include the same number of physical antenna elements.
또 다른 방법인 Type 2 SD 적응(1504)는 기지국이 동일한 안테나 포트 (즉, 논리적 포트)의 수를 갖고 포트 당 물리 안테나 요소를 turn on/off하는 것이다. 이때, 포트 당 RF 특성은 달라지게 되며, 단말은 CSI 측정 동안 동일한 포트의 CSI-RS를 Type 2 SD 적응이 적용된 경우와 그렇지 않은 경우로 구분하여 각각 측정을 수행해야 한다. 일례로 CSI-RS #0과 CSI-RS #1에서 포트의 수는 유지되나, 각 포트에 해당하는 물리 안테나 요소의 수는 변경되었다.Another method, Type 2 SD adaptation (1504), is that the base station has the same number of antenna ports (i.e., logical ports) and turns on/off physical antenna elements per port. In this case, RF characteristics per port will be different, and the terminal should perform measurements by distinguishing between cases where Type 2 SD adaptation is applied and cases where it is not applied for the CSI-RS of the same port during CSI measurement. For example, in CSI-RS #0 and CSI-RS #1, the number of ports is maintained, but the number of physical antenna elements corresponding to each port is changed.
기지국은 상기 대표적인 두 가지 type의 SD 적응 방법을 통하여 에너지를 세이빙할 수 있다.The base station can save energy through the two representative types of SD adaptation methods mentioned above.
상기 방법들을 통해서, 기지국의 에너지 소모를 절감할 수 있다. 또한, 상기 방법들은 하나 또는 그 이상의 조합을 통해서 동시 설정될 수 있다.Through the above methods, the energy consumption of the base station can be reduced. In addition, the above methods can be set simultaneously through one or more combinations.
본 개시의 다양한 실시예들은 무선 통신 시스템에서 기지국의 에너지 소모를 감소시키기 위한 새로운 셀의 정의 및 단말이 전송하는 WUS를 통한 온-디맨드(on-demand) 셀 활성화 (cell activation) 방법을 제공한다.Various embodiments of the present disclosure provide a new cell definition and on-demand cell activation method through WUS transmitted by a terminal for reducing energy consumption of a base station in a wireless communication system.
본 개시의 다양한 실시예들은 온-디맨드 셀을 활성화하기 위한 WUS의 캐리어 선택(carrier selection) 방법 및 WUS 송수신을 위한 WUS occasion (WO)를 정의한다. 또한, WUS의 재전송(retransmission) 및 반복(repetition) 동작을 제공한다. 이를 통하여, 기지국은 온-디맨드가 아닌 셀의 더 많은 부품의 비활성화 상태를 오랫동안 유지함으로서 에너지를 세이빙할 수 있다.Various embodiments of the present disclosure define a carrier selection method of WUS for activating an on-demand cell and a WUS occasion (WO) for WUS transmission and reception. In addition, retransmission and repetition operations of WUS are provided. Through this, a base station can save energy by keeping more parts of a non-on-demand cell in an inactive state for a long time.
또한, 본 개시를 설명함에 있어서 관련된 기능 또는 구성에 대한 구체적인 설명이 본 개시의 요지를 불필요하게 흐릴 수 있다고 판단된 경우 그 상세한 설명은 생략한다. 그리고 후술되는 용어들은 본 개시에서의 기능을 고려하여 정의된 용어들로서 이는 사용자, 운용자의 의도 또는 관례 등에 따라 달라질 수 있다. 그러므로 그 정의는 본 명세서 전반에 걸친 내용을 토대로 내려져야 할 것이다.In addition, when describing the present disclosure, if it is judged that a specific description of a related function or configuration may unnecessarily obscure the gist of the present disclosure, the detailed description will be omitted. In addition, the terms described below are terms defined in consideration of the functions in the present disclosure, and these may vary depending on the intention or custom of the user or operator. Therefore, the definitions should be made based on the contents throughout this specification.
이하 본 개시를 설명함에 있어서, 상위 계층 시그널링이라 함은 하기의 시그널링 중에서 적어도 하나 또는 하나 이상의 조합에 해당하는 시그널링 일 수 있다.In describing the present disclosure below, upper layer signaling may be signaling corresponding to at least one or a combination of one or more of the following signaling.
- MIB - MIB
- SIB 또는 SIB X (X=1, 2, ...)- SIB or SIB
- RRC - RRC
- MAC (medium access control) CE (control element)- MAC (medium access control) CE (control element)
또한, L1 시그널링이라 함은 하기의 물리 계층 채널 또는 시그널링을 이용한 시그널링 방법 중에서 적어도 하나 또는 하나 이상의 조합에 해당하는 시그널링 일 수 있다.In addition, L1 signaling may be signaling corresponding to at least one or a combination of one or more of the following physical layer channels or signaling methods.
- PDCCH - PDCCH
- DCI - DCI
- 단말-특정 DCI- Terminal-specific DCI
- 그룹 공통 DCI- Group common DCI
- 공통 (common) DCI- Common DCI
- 스케줄링 DCI (예를 들어 하향링크 또는 상향링크 데이터를 스케줄링하는 목적으로 사용되는 DCI)- Scheduling DCI (DCI used for scheduling downlink or uplink data, for example)
- 비스케줄링 DCI (예를 들어 하향링크 또는 상향링크 데이터를 스케줄링하는 목적이 아닌 DCI)- Non-scheduled DCI (e.g. DCI not intended for scheduling downlink or uplink data)
- PUCCH - PUCCH
- UCI (uplink control information)- UCI (uplink control information)
이하 본 개시에서 A 와 B 간 우선순위를 결정한다 함은 미리 정해진 우선순위 규칙(priority rule)에 따라 더 높은 우선순위를 가지는 것을 선택하여 그에 해당하는 동작을 수행하거나 또는 더 낮은 우선순위를 가지는 것에 대한 동작을 생략(omit or drop)하는 등 다양하게 언급될 수 있다.In the present disclosure below, determining the priority between A and B can be referred to in various ways, such as selecting a higher priority according to a predetermined priority rule and performing an action corresponding to it, or omitting or dropping an action for a lower priority.
이하 본 개시에서 사용되는 슬롯이라는 용어는 TTI (transmit time interval)에 대응되는 특정 시간 단위를 지칭할 수 있는 일반적인 용어로서, 구체적으로는 5G NR 시스템에서 사용되는 슬롯을 의미할 수도 있고, 4G LTE 시스템에서 사용되는 슬롯 또는 서브프레임을 의미할 수도 있다. 이하 본 개시에서 포트는 안테나 포트와 혼용될 수 있다. 이하 본 개시에서는 다수의 실시예를 통하여 상기 예제들을 설명하나 이는 독립적인 것들이 아니며 하나 이상의 실시예가 동시에 또는 복합적으로 적용되는 것이 가능하다.The term slot used in the present disclosure below is a general term that may refer to a specific time unit corresponding to a transmit time interval (TTI), and specifically may mean a slot used in a 5G NR system, or a slot or subframe used in a 4G LTE system. The term port in the present disclosure below may be used interchangeably with an antenna port. The present disclosure below describes the examples through a number of embodiments, but these are not independent, and one or more embodiments may be applied simultaneously or in combination.
하기에서는, 5G 또는 6G 시스템에서 기지국은 에너지 소모를 줄이기 위해 새로운 서로 다른 기능을 갖는 셀의 컨셉을 설명한다.Below, we describe the concept of cells with new different functions for base stations in 5G or 6G systems to reduce energy consumption.
도 16는 실시예에 따라 에너지 절감을 위한 서로 다른 기능을 갖는 셀의 컨셉의 일례를 도시한 도면이다.FIG. 16 is a diagram illustrating an example of a concept of cells having different functions for energy saving according to an embodiment.
도 16를 참고하면, 서로 다른 기능을 가지는 셀의 컨셉(1601)이 도시되었다. 기지국은 서로 다른 기능을 하는 셀#0(1600)과 셀#1-X(일례로 셀 #1-1(1610), 셀#1-2(1620))를 정의할 수 있다. 셀 type 1(예를 들어, 셀#0(1600), Access/sync cell)은 단말의 모빌리티와 동기화 및 초기 접속 동작만을 관리하고, 셀 type 1의 셀에서는 트래픽(traffic)을 처리하기 위한 패킷 (packet) 전송은 이뤄지지 않거나 제한된 패킷만이 전송될 수 있다. 보다 구체적으로, 기지국은 셀#0을 통해서 아이들/비활성화(Idle/Inactive) RRC 상태의 단말을 위한 SSB 및 새로운 동기화 신호를 주기적으로 전송할 수 있으며, 또한 페이징 및 시스템 정보가 셀#0을 통해 전송될 수 있다. 상기 페이징 및 시스템 정보에는 패킷을 처리할 수 있는 셀#1-x에 대한 설정 정보, 예를 들어 셀#1-x의 carrier frequency, physical cell ID, WUS 설정 정보 중 적어도 하나가 포함될 수 있다. 상기 WUS 설정 정보는 WUS에 대한 정보, WUS occasion에 대한 정보 중 적어도 하나가 포함될 수 있다. Referring to FIG. 16, a concept (1601) of cells having different functions is illustrated. A base station can define cell#0 (1600) and cell#1-X (e.g., cell#1-1 (1610), cell#1-2 (1620)) having different functions. Cell type 1 (e.g., cell#0 (1600), Access/sync cell) only manages the mobility and synchronization of terminals and initial access operations, and in a cell of cell type 1, packet transmission for processing traffic is not performed or only limited packets can be transmitted. More specifically, the base station can periodically transmit SSB and new synchronization signal for terminals in idle/inactive RRC state through cell#0, and also paging and system information can be transmitted through cell#0. The above paging and system information may include at least one of configuration information for cell #1-x capable of processing packets, such as carrier frequency of cell #1-x, physical cell ID, and WUS configuration information. The WUS configuration information may include at least one of information for WUS and information for WUS occasion.
셀 type 2(예를 들어, 셀#1-x(1610, 1620, 1630), Data cell)은 단말 및 기지국의 패킷을 처리할 수 있다. 보다 구체적으로, 기지국은 셀1-X를 통해서 연결 RRC 상태의 단말의 패킷을 처리할 수 있다. 따라서, 셀 type 2의 셀은 온-디맨드로 트래픽에 따른 패킷이 있는 경우에만 선택적으로 활성화될 수 있다. 만약, 기지국이 셀1-X를 패킷 처리를 위해서 최초 활성화시킬 경우, 단말과 셀1-X의 동기화를 위하여 셀1-X는 SS(동기화 신호, 예를 들어, SSB, CSI-RS, TRS, 또는 새로운 SS가 될 수 있다)를 전송하고 셀#0로 초기 접속을 수행하였거나 또는 셀#0에 동기화된 단말은 셀1-x의 SS를 수신하여 셀1-x로 핸드오버 할 수 있다. 이 때, 온-디맨드로 활성화되어야 하는 셀1-X는 셀#0을 서빙하는 기지국, 셀#1-X을 서빙하는 기지국 또는 셀#0에 어태치(attached)된 단말에 의해서 결정될 수 있다.Cell type 2 (e.g., cell #1-x (1610, 1620, 1630), Data cell) can process packets of terminals and base stations. More specifically, the base station can process packets of terminals in connected RRC state through cell #1-X. Therefore, a cell of cell type 2 can be selectively activated only when there is a packet according to traffic on-demand. If the base station initially activates cell #1-X for packet processing, cell #1-X transmits SS (synchronization signal, for example, SSB, CSI-RS, TRS, or a new SS) to synchronize the terminal and cell #0, and a terminal that has performed initial access to cell #0 or is synchronized to cell #0 can receive SS of cell #1-x and perform handover to cell #1-x. At this time, cell1-X to be activated on-demand can be determined by the base station serving cell#0, the base station serving cell#1-X, or the terminal attached to cell#0.
하나의 기지국이 각각의 셀 type 1, 셀 type 2만을 지원할 수도 있고, 셀 type 1과 셀 type 2를 모두 지원할 수 있다. 또한, 하나 또는 그 이상의 셀 type 2의 셀들이 하나 또는 그 이상의 셀 type 1의 셀에 연결될 수 있다. 또한, 셀 type 2의 셀을 활성화하기 위하여 셀 type 1들 사이의 협력(coordination)이 이뤄질 수 있다.A single base station may support only cell type 1, only cell type 2, or both cell type 1 and cell type 2. Additionally, one or more cells of cell type 2 may be connected to one or more cells of cell type 1. Additionally, coordination may be performed between cells of cell type 1 to activate cells of cell type 2.
상기 방법들과 새로운 셀의 컨셉을 통해서 네트워크 시스템의 에너지 소모가 최소화될 수 있다. Through the above methods and the new cell concept, the energy consumption of the network system can be minimized.
본 개시의 실시예들을 통해서, 상기 서로 다른 기능을 하는 셀을 갖는 셀 배치(cell deployment) 상황에서 트래픽에 따른 단말에게 적절한 패킷 처리를 위한 셀 선택(cell selection) 방법을 제공한다. 보다 구체적으로, 본 개시는 기지국 또는 단말에 의한 셀 선택 방법과 시그널링 방법을 제공한다. Through the embodiments of the present disclosure, a cell selection method for a terminal to process packets appropriately according to traffic in a cell deployment situation having cells performing different functions is provided. More specifically, the present disclosure provides a cell selection method and a signaling method by a base station or a terminal.
<제1 실시예><Example 1>
본 개시의 제1 실시예로, 5G 또는 6G 시스템에서 기지국의 에너지 세이빙을 위한 셀 선택 방법 및 시그널링 절차를 설명한다. 상기 실시예를 통해서, 기지국은 단말에게 적절한 data cell을 활성화하여 에너지 세이빙 효과를 극대화하고, 서비스 성능을 보장할 수 있다.As a first embodiment of the present disclosure, a cell selection method and signaling procedure for energy saving of a base station in a 5G or 6G system are described. Through the above embodiment, the base station can maximize the energy saving effect and guarantee service performance by activating an appropriate data cell for a terminal.
도 17은 실시예에 따라 기지국의 에너지 세이빙을 위한 온-디맨드 셀 선택 방법의 일례를 도시한 도면이다.FIG. 17 is a diagram illustrating an example of an on-demand cell selection method for energy saving of a base station according to an embodiment.
도 17를 참고하면, 에너지 세이빙을 위하여, 모빌리티와 초기 접속의 기능을 수행하는 셀 type 1 (예를 들어, Access/Sync cell) 커버리지 안에 있는 트래픽을 처리하기 위하여 패킷 전송 이 가능한 셀 type 2 (예를 들어, Data cell)들이 설정될 수 있다. 이때, 단말이 Access/Sync cell에 접속이후 트래픽을 처리하기 위한 적절한 Data cell이 하기의 방법들 중 하나 또는 그 결합을 이용해 선택될 수 있다.Referring to FIG. 17, for energy saving, cell type 2 (e.g., Data cell) capable of packet transmission may be set to process traffic within the coverage of cell type 1 (e.g., Access/Sync cell) that performs mobility and initial connection functions. At this time, after a terminal connects to an Access/Sync cell, an appropriate Data cell for processing traffic may be selected using one of the following methods or a combination thereof.
[방법 1][Method 1]
기지국은 단말의 지오메트리(geometry) 정보(예를 들어, 위치 정보, 섹터 정보 및 빔을 이용한 방향 정보 등)를 기반으로 단말 별 적절한 data cell을 선택할 수 있다(1700). 예를 들어, 단말(1730)이 Access/Sync cell#0 (1710)에 초기 접속되었을 때, 단말은 Access/Sync cell#0 내부의 data cell#1 내지 3(1720, 1722, 1724) 중 적절한 data cell로부터 패킷 처리를 위하여 Access/Sync cell#0 에서 data cell#1 내지 3 중 하나로 핸드오버 또는 접속할 수 있다. 기지국이 단말의 적절한 data cell을 접속 셀로 선택하고 기지국은 선택된 data cell을 활성화할 수 있다. 이 때, 기지국이 일례로 data cell#1이 UE에게 적절한 cell임을 결정하기 위하여, 단말이 Access/Sync cell에서 사용한/보고한 동기화를 위한 빔 정보(빔의 방향 정보)를 이용하여 기지국은 data cell#1(1720)을 선택할 수 있다.The base station can select an appropriate data cell for each terminal based on geometry information of the terminal (e.g., location information, sector information, and beam-based direction information, etc.) (1700). For example, when the terminal (1730) is initially connected to Access/Sync cell#0 (1710), the terminal can handover or connect from the Access/Sync cell#0 to one of data cells#1 to#3 (1720, 1722, 1724) in the Access/Sync cell#0 for packet processing. The base station can select an appropriate data cell for the terminal as an access cell, and the base station can activate the selected data cell. At this time, in order for the base station to determine that, for example, data cell#1 is an appropriate cell for the UE, the base station can select data cell#1 (1720) by using beam information (beam direction information) for synchronization used/reported by the terminal in the Access/Sync cell.
상기 방법 1을 통해서 Access/Sync cell 기지국 기반의 온-디맨드 셀 선택이 수행될 수 있다.On-demand cell selection based on an Access/Sync cell base station can be performed through the above method 1.
[방법 2][Method 2]
단말(1780)은 트래픽 처리를 위하여 UL WUS를 통해서 패킷을 송수신하기 위한 data cell을 활성화시킬 수 있다(1750). 예를 들어, Access/Sync cell#0 (1760)에 접속된 단말은 트래픽을 처리하기 위하여, 주위의 data cell(1770, 1772, 1774)을 활성화시킬 수 있다. 이를 위해 단말은 data cell의 활성화를 위하여 WUS를 전송할 수 있다. 보다 구체적으로, WUS는 시퀀스 기반의 신호 또는 기존의 PUCCH, PRACH 또는 그와 유사한 신호가 될 수 있으며, data cell의 기지국은 별도의 WUS를 수신하기 위한 WUS 수신기 (WUS receiver, WUR)를 가질 수 있다. 또한, 단말은 WUS를 반복 전송 또는 재전송할 수 있으며, 단말은 Access/Sync cell을 통해서 설정 받은 정보를 기반으로 WUS의 전송 전력과 carrier frequency 등을 결정하여 WUS를 전송할 수 있다. 상기 단말이 Access/Sync cell을 통해서 설정받는 data cell 관련 정보는 일례로 아래와 같은 정보 중 적어도 하나를 포함할 수 있다. The terminal (1780) can activate a data cell for transmitting and receiving packets via UL WUS for traffic processing (1750). For example, a terminal connected to Access/Sync cell#0 (1760) can activate surrounding data cells (1770, 1772, 1774) for traffic processing. To this end, the terminal can transmit a WUS for activating the data cell. More specifically, the WUS can be a sequence-based signal or a conventional PUCCH, PRACH or similar signal, and the base station of the data cell can have a WUS receiver (WUS receiver, WUR) for receiving a separate WUS. In addition, the terminal can repeatedly transmit or retransmit the WUS, and the terminal can determine the transmission power and carrier frequency of the WUS based on the information set via the Access/Sync cell and transmit the WUS. The data cell-related information set by the terminal via the Access/Sync cell can include at least one of the following information, for example.
- WUS occasion duration per carrier: WUS monitoring duration corresponding to carrier- WUS occasion duration per carrier: WUS monitoring duration corresponding to carrier
- Periodicity of WUS occasion: 20 ms or 40 ms like as RACH occasion periodicity- Periodicity of WUS occasion: 20 ms or 40 ms like as RACH occasion periodicity
- Start of WUS occasion per WUS design: system frame number (SFN)- Start of WUS occasion per WUS design: system frame number (SFN)
- WUS response window: symbol level, slot level or time level value- WUS response window: symbol level, slot level or time level value
- Carrier frequency and Carrier frequency list (for WUS)- Carrier frequency and Carrier frequency list (for WUS)
- Carrier frequency and Carrier frequency list (for WUS response)- Carrier frequency and Carrier frequency list (for WUS response)
- Data cell ID 또는 physical cell ID (PCI) of data cell- Data cell ID or physical cell ID (PCI) of data cell
- Time adjustment group between Access/sync cell and Data cell- Time adjustment group between Access/sync cell and Data cell
- Data cell position information-Data cell position information
- Number of WUS repetition- Number of WUS repetition
- Number of WUS retransmission- Number of WUS retransmission
- Additional WUS occasion duration for WUS repetition- Additional WUS occasion duration for WUS repetition
- WUS response transmission power-WUS response transmission power
이 때, 단말로부터 WUS를 수신한 data cell (Data cell#1(1770), Data cell#3(1774))을 서빙하는 기지국은 활성화되어 단말에게 SS를 전송하고 이후 패킷을 위한 데이터 송수신을 수행할 수 있다. 상기 방법에서 WUS를 수신한 이후 WUS에 대한 RSRP 등의 측정 정보를 기반으로 data cell 또는 접속 셀이 활성화 여부를 결정할 수도 있고, WUS를 수신한 모든 data cell이 활성화된 이후 단말이 활성화된 하나 이상의 data cell로부터 SS를 수신하여 데이터 송수신을 위한 적절한 data cell을 선택할 수 있다.At this time, the base station serving the data cell (Data cell#1(1770), Data cell#3(1774)) that received the WUS from the terminal is activated and can transmit SS to the terminal and perform data transmission and reception for the subsequent packet. In the above method, after receiving the WUS, it is also possible to determine whether the data cell or access cell is activated based on measurement information such as RSRP for the WUS, or after all data cells that received the WUS are activated, the terminal can receive SS from one or more activated data cells and select an appropriate data cell for data transmission and reception.
상기 방법들을 이용하여, 단말에게 적절한 data cell이 선택됨으로써 활성화되지 않은 셀을 서빙하는 기지국이 에너지를 세이빙할 수 있으며, 단말은 선택된 data cell을 통해서 서비스를 제공받을 수 있다.By using the above methods, a base station serving an inactive cell can save energy by selecting an appropriate data cell for the terminal, and the terminal can receive service through the selected data cell.
본 개시의 실시예에서는 상기 WUS 기반의 data cell 선택에 대한 시그널링 절차를 제공한다.An embodiment of the present disclosure provides a signaling procedure for data cell selection based on the WUS.
도 18a는 본 개시의 실시예에 따라 기지국의 에너지 세이빙을 위한 온-디맨드 셀 선택을 위한 절차의 일례를 도시한 도면이다.FIG. 18a is a diagram illustrating an example of a procedure for on-demand cell selection for energy saving of a base station according to an embodiment of the present disclosure.
도 18a를 참고하면, 단말(1802)은 WUS 전송을 통한 data 셀 선택을 수행할 수 있다(1800). Sync/access cell (1804)은 항상 활성화되어 있을 수 있으며(1820, Tx/Rx on, 이는 모뎀을 포함한 전송 RF, 수신 RF 장치의 power on을 의미할 수 있다), 데이터 셀인 cell2-A(1806), cell2-B(1808), 및 cell2-C(1810)는 송수신을 위한 RF가 power off되어 있으나 WUR는 항상 on일 수 있다(1822). 여기서 power off는 deep/ultra deep sleep으로 이해될 수 있다. 상기 deep/ultra deep sleep은 기지국의 대부분의 구성 장치를 power off한 것으로, 일례로 모뎀, 백홀(backhaul), 메모리, 쿨러 등이 모두 off된 상태일 수 있다. 또한 Sync/access cell 과 data cell은 네트워크 에너지 세이빙을 위한 정보를 서로 교환할 수 있다(1826). Sync/access cell 과 data cell 이 서로 송수신하는 네트워크 에너지 세이빙을 위한 정보는 일례로 각 셀에 적용되어 있는 네트워크 에너지 세이빙 스킴, 각 셀이 지원 가능한 WUS에 대한 정보, 상기 기술된 data cell 관련 정보에 포함된 정보 중 적어도 하나의 정보 등의 정보 중 적어도 하나를 포함할 수 있다. Referring to FIG. 18A, a terminal (1802) can perform data cell selection through WUS transmission (1800). A sync/access cell (1804) can always be activated (1820, Tx/Rx on, which can mean power on of transmission RF and reception RF devices including a modem), and data cells cell2-A (1806), cell2-B (1808), and cell2-C (1810) have RFs for transmission and reception powered off, but WUR can always be on (1822). Here, power off can be understood as deep/ultra deep sleep. The deep/ultra deep sleep means that most of the components of the base station are powered off, and for example, a modem, backhaul, memory, cooler, etc. can all be turned off. In addition, the sync/access cell and the data cell can exchange information for network energy saving (1826). Information for network energy saving that is transmitted and received between the sync/access cell and the data cell may include at least one of the following information: a network energy saving scheme applied to each cell, information about a WUS that can be supported by each cell, and at least one of the information included in the data cell-related information described above.
단말은 power on (1824) 후 또는 아이들 RRC 상태 모드에서 SS를 수신하고 접속할 셀을 선택한 후(1828), Access/Sync cell에 초기 접속을 위한 RACH 절차를 수행할 수 있다(1830). 또한, 단말은 Access/Sync cell로부터 해당 셀에 연관된 data cell의 설정 정보를 수신 받을 수 있다(1832). 상기 data cell의 설정 정보는 상기 기술된 data cell 관련 정보를 참고할 수 있다. 이후, 상기 설정 받은 data cell 설정 정보를 기반으로 단말은 WUS를 하나 또는 그 이상의 data cell에 전송할 수 있다(1834). 이때, 단말로부터 전송된 WUS를 수신한 기지국들은 활성화되어 (Tx/Rx On) 단말에게 동기화(또는 접속)를 위한 기준 신호를 전송할 수 있다(1836). 단말은 상기 기준 신호를 측정하고, 측정 결과를 기반으로 data cell을 선택하여 (1838) data cell로 핸드오버(또는 접속) 할 수 있다(1840). After the terminal is powered on (1824) or receives SS in idle RRC state mode and selects a cell to access (1828), the terminal can perform a RACH procedure for initial access to the Access/Sync cell (1830). In addition, the terminal can receive configuration information of a data cell associated with the corresponding cell from the Access/Sync cell (1832). The configuration information of the data cell can refer to the data cell related information described above. Thereafter, based on the received data cell configuration information, the terminal can transmit a WUS to one or more data cells (1834). At this time, base stations that have received the WUS transmitted from the terminal can be activated (Tx/Rx On) and transmit a reference signal for synchronization (or access) to the terminal (1836). The terminal can measure the reference signal, select a data cell based on the measurement result (1838), and perform a handover (or access) to the data cell (1840).
상술한 흐름도는 본 개시의 원리에 따라 구현될 수 있는 예시적인 방법을 도시하며, 본 명세서에서의 흐름도에 도시된 방법에 대해 다양한 변경이 이루어질 수 있다. 예를 들어, 일련의 단계로서 도시되었지만, 각각의 도면의 다양한 단계는 중첩하거나, 병렬로 발생하거나, 상이한 순서로 발생하거나, 여러 번 발생할 수 있다. 다른 예에서, 단계는 생략되거나 다른 단계로 대체될 수 있다.The flowcharts described above illustrate exemplary methods that may be implemented in accordance with the principles of the present disclosure, and various modifications may be made to the methods illustrated in the flowcharts herein. For example, although illustrated as a series of steps, the various steps in each drawing may overlap, occur in parallel, occur in different orders, or occur multiple times. In other instances, steps may be omitted or replaced with other steps.
도 18b는 본 개시의 실시예에 따라 기지국의 에너지 세이빙을 위한 온-디맨드 셀 선택을 위한 절차의 일례를 도시한 도면이다.FIG. 18b is a diagram illustrating an example of a procedure for on-demand cell selection for energy saving of a base station according to an embodiment of the present disclosure.
또 다른 방법으로, 단말(1852)이 전송한 WUS를 기반으로 접속 셀의 기지국이 data 셀 선택을 수행할 수 있다(1850). Sync/access cell(1854)은 항상 활성화되어 있을 수 있으며(Tx/Rx on, 1870), 데이터 셀인 cell2-A(1856), cell2-B(1858), 및 cell2-C(1860)는 송수신을 위한 RF가 power off되어 있으나 WUR는 항상 on일 수 있다(1872). 또한 Sync/access cell 과 data cell은 네트워크 에너지 세이빙을 위한 정보를 서로 교환할 수 있다(1876). 상기 네트워크 에너지 세이빙을 위한 정보는 상기 기술된 내용을 참고할 수 있다.Alternatively, the base station of the access cell may perform data cell selection (1850) based on the WUS transmitted by the terminal (1852). The sync/access cell (1854) may always be activated (Tx/Rx on, 1870), and the data cells cell2-A (1856), cell2-B (1858), and cell2-C (1860) may have RF for transmission and reception powered off, but WUR may always be on (1872). In addition, the sync/access cell and the data cell may exchange information for network energy saving with each other (1876). The information for the network energy saving may refer to the above-described content.
단말은 power on (1874) 후 또는 아이들 RRC 상태에서 SS를 수신하고 접속할 셀을 선택한 후(1878), Access/Sync cell에 초기 접속을 위한 RACH 절차를 수행할 수 있다(1880). 또한, 단말은 Access/Sync cell로부터 해당 셀에 연관된 data cell의 설정 정보를 수신 받을 수 있다(1882). 상기 data cell의 설정 정보는 상기 기술된 data cell 관련 정보를 참고할 수 있다. 이후, 상기 설정 받은 data cell 설정 정보를 기반으로 단말은 WUS를 하나 또는 그 이상의 data cell에 전송할 수 있다(1884). After the terminal is powered on (1874) or in the idle RRC state, the terminal may receive SS and select a cell to access (1878), and then perform a RACH procedure for initial access to the Access/Sync cell (1880). In addition, the terminal may receive configuration information of a data cell associated with the corresponding cell from the Access/Sync cell (1882). The configuration information of the data cell may refer to the data cell-related information described above. Thereafter, based on the received data cell configuration information, the terminal may transmit a WUS to one or more data cells (1884).
이때, 단말로부터 전송된 WUS를 수신한 data cell을 서빙하는 기지국들은 WUS을 측정한 측정 결과, 예를 들어, RSRP 및 RSRQ 등을 포함하는 정보를 Access/Sync cell에 보고할 수 있다(1886). 이 때, WUS 측정 기반 Access/Sync cell에 대한 보고의 여부는 data cell이 WUS 측정 결과를 기반으로 결정할 수 있다. 이후 Sync/Access cell은 수신한 WUS 측정 보고를 기반으로 하나의 data cell를 결정하여 (1888) data cell을 활성화해줄 수 있다(1890). 활성화된(Tx/Rx On) data cell은 단말에게 동기화(또는 접속)를 위한 기준 신호를 전송할 수 있다(1892). 단말은 data cell로부터 기준 신호를 수신하고 data cell에 handover(또는 접속)할 수 있다(1894). 또는, data cell로부터의 기준 신호의 수신 상태가 좋지 않을 경우 단말은 다시 WUS를 전송할 수 있다. At this time, the base stations serving the data cell that received the WUS transmitted from the terminal can report the measurement results of measuring the WUS, such as information including RSRP and RSRQ, to the Access/Sync cell (1886). At this time, whether to report to the Access/Sync cell based on the WUS measurement can be determined by the data cell based on the WUS measurement results. Thereafter, the Sync/Access cell can determine one data cell based on the received WUS measurement report (1888) and activate the data cell (1890). The activated (Tx/Rx On) data cell can transmit a reference signal for synchronization (or connection) to the terminal (1892). The terminal can receive the reference signal from the data cell and handover (or connection) to the data cell (1894). Alternatively, if the reception status of the reference signal from the data cell is not good, the terminal can transmit WUS again.
상술한 흐름도는 본 개시의 원리에 따라 구현될 수 있는 예시적인 방법을 도시하며, 본 명세서에서의 흐름도에 도시된 방법에 대해 다양한 변경이 이루어질 수 있다. 예를 들어, 일련의 단계로서 도시되었지만, 각각의 도면의 다양한 단계는 중첩하거나, 병렬로 발생하거나, 상이한 순서로 발생하거나, 여러 번 발생할 수 있다. 다른 예에서, 단계는 생략되거나 다른 단계로 대체될 수 있다.The flowcharts described above illustrate exemplary methods that may be implemented in accordance with the principles of the present disclosure, and various modifications may be made to the methods illustrated in the flowcharts herein. For example, although illustrated as a series of steps, the various steps in each drawing may overlap, occur in parallel, occur in different orders, or occur multiple times. In other instances, steps may be omitted or replaced with other steps.
상기 방법들을 통해서, 단말의 WUS를 기반으로 단말 또는 기지국이 적절한 data cell을 선택할 수 있다. 이를 통해서, 단말마다 특정한 최적의 data cell이 선택됨으로써, data cell과 단말 사이의 채널을 고려한 셀 선택이 가능하다. 이를 통해서, 기지국은 비활성화 상태의 data cell로부터 에너지 세이빙 효과를 얻고 단말은 좋은 성능의 서비스를 얻을 수 있다.Through the above methods, the terminal or base station can select an appropriate data cell based on the WUS of the terminal. Through this, a specific optimal data cell is selected for each terminal, thereby enabling cell selection that considers the channel between the data cell and the terminal. Through this, the base station can obtain an energy saving effect from the inactive data cell, and the terminal can obtain a service with good performance.
<제2 실시예><Example 2>
본 개시의 제2 실시예로, 5G 또는 6G 시스템에서 기지국의 에너지 세이빙을 위한 셀 선택을 위한 캐리어 선택 방법 및 WUS 설정 방법을 설명한다. 상기 실시예를 통해서, 기지국은 단말에게 적절한 data cell을 활성화하여 에너지 세이빙 효과를 극대화하고, 서비스 성능을 보장할 수 있다.As a second embodiment of the present disclosure, a carrier selection method and a WUS setting method for cell selection for energy saving of a base station in a 5G or 6G system are described. Through the above embodiment, the base station can maximize the energy saving effect and guarantee service performance by activating an appropriate data cell for a terminal.
도 19a 및 도 19b는 실시예에 따라 기지국의 에너지 세이빙을 위한 data cell 활성화를 위한 WUS 전송 방법의 일례를 도시한 도면이다.FIG. 19a and FIG. 19b are diagrams illustrating an example of a WUS transmission method for activating data cells for energy saving of a base station according to an embodiment.
도 19a 및 도 19b를 참고하면, 단말은 Access/Sync cell로부터 설정 받은 data cell 활성화를 위한 WUS 설정 정보를 기반으로 WUS을 전송할 carrier(또는/및 상기 carrier에서 할당된 주파수 도메인 자원)와 WUS occasion(또는 WUS 전송을 위해 할당된 시간 도메인 자원)을 결정하여 WUS를 전송할 수 있다. 이때, WUS는 서로 다른 캐리어 또는 occasion에서 반복 전송 또는 재전송될 수 있다. 하기에서는 WUS의 재전송 기반의 cell 활성화 동작과 WUS의 반복 전송 기반의 cell 활성화 동작을 설명한다.Referring to FIGS. 19a and 19b, the terminal can determine a carrier (or/and a frequency domain resource allocated to the carrier) and a WUS occasion (or a time domain resource allocated for WUS transmission) to transmit the WUS based on the WUS configuration information for data cell activation set from the Access/Sync cell. At this time, the WUS can be repeatedly transmitted or retransmitted on different carriers or occasions. The following describes a cell activation operation based on retransmission of WUS and a cell activation operation based on repeated transmission of WUS.
도 19a는 실시예에 따라 기지국의 에너지 세이빙을 위한 data cell 활성화를 위한 WUS 전송 방법의 일례를 도시한 도면이다.FIG. 19a is a diagram illustrating an example of a WUS transmission method for activating data cells for energy saving of a base station according to an embodiment.
[WUS 재전송 기반 data cell 활성화 (1900)][WUS retransmission-based data cell activation (1900)]
단말(1908)은 Access/Sync cell에 초기 접속하기 위하여 RACH 절차(1910) 이후, Access/Sync cell(1902)로부터 해당 cell에 연관된 data cell에 관련된 WUS 설정 정보를 수신할 수 있다(1912). 이 때, 해당 data cell에 대한 WUS 설정 정보(WUS Config)는 해당 data cell의 후보 캐리어(candidate carrier) 정보와 각 캐리어 별 WUS occasion 및 WUS format의 정보들을 포함할 수 있다. 또한, 단말은 WUS 전송 이후 WUS에 대한 피드백을 모니터링 해야 하는 WUS 응답 윈도우(WUS response window)를 설정 받을 수 있다. 상기 WUS 응답 윈도우 설정 정보는 상기 WUS 설정 정보에 포함되거나 또는 단말 능력(UE capability)를 기반으로 WUS 응답 윈도우의 값이 결정될 수 있다. 일례로 상기 WUS 설정 정보는 아래와 같은 정보 중 적어도 하나가 포함될 수 있다.The terminal (1908) may receive WUS configuration information related to a data cell associated with the corresponding cell from the Access/Sync cell (1902) after the RACH procedure (1910) in order to initially access the Access/Sync cell (1912). At this time, the WUS configuration information (WUS Config) for the corresponding data cell may include candidate carrier information of the corresponding data cell and information on WUS occasion and WUS format for each carrier. In addition, the terminal may be configured with a WUS response window for monitoring feedback on the WUS after WUS transmission. The WUS response window configuration information may be included in the WUS configuration information or the value of the WUS response window may be determined based on UE capability. For example, the WUS configuration information may include at least one of the following information.
- WUS occasion duration per carrier: WUS monitoring duration corresponding to carrier- WUS occasion duration per carrier: WUS monitoring duration corresponding to carrier
- Periodicity of WUS occasion: 20 ms or 40 ms like as RACH occasion periodicity- Periodicity of WUS occasion: 20 ms or 40 ms like as RACH occasion periodicity
- Start of WUS occasion per WUS design: system frame number (SFN)- Start of WUS occasion per WUS design: system frame number (SFN)
- WUS response window: symbol level, slot level or time level value- WUS response window: symbol level, slot level or time level value
- Carrier frequency and Carrier frequency list (for WUS)- Carrier frequency and Carrier frequency list (for WUS)
- Carrier frequency and Carrier frequency list (for WUS response)- Carrier frequency and Carrier frequency list (for WUS response)
- Data cell ID 또는 physical cell ID (PCI) of data cell- Data cell ID or physical cell ID (PCI) of data cell
- Time adjustment group between Access/sync cell and Data cell- Time adjustment group between Access/sync cell and Data cell
- Data cell position information-Data cell position information
- Number of WUS repetition- Number of WUS repetition
- Number of WUS retransmission- Number of WUS retransmission
- Additional WUS occasion duration for WUS repetition- Additional WUS occasion duration for WUS repetition
- WUS response transmission power-WUS response transmission power
이후 단말이 기지국으로부터 data cell의 후보 캐리어로 {Cell#2(28GHz)(1906), Cell#1(3.5GHz)(1904)}를 설정받으면, 단말은 상기 설정 정보를 기반으로 28GHz의 cell#2을 통해서 WUS occasion #2(1914)에서 최초 WUS 전송을 수행할 수 있다. 최초 WUS 전송 후 Cell#2에 해당하는 WUS 응답 윈도우#0 (1916) 동안 단말이 어떠한 피드백(일례로 Ack)을 수신하지 않으면, 단말은 Cell#1(3.5GHz)을 통해서 WUS occasion #1(1918)에서 WUS 재전송을 수행할 수 있다. WUS 재전송 후 단말이 Cell#1에 해당하는 WUS 응답 윈도우#1(1920) 동안 피드백(Ack, 1922)을 수신하면 단말은 Cell#1로 핸드오버(또는 접속)할 수 있다. 단말은 상기 후보 캐리어들의 WUS 전송/재전송을 위한 우선 순위를 Access/Sync cell로부터 설정받을 수 있다. 상기 우선 순위 정보는 상기 WUS 설정 정보에 포함되거나 또는 미리 결정되어 있을 수 있다. 이후 단말은 상기 우선 순위를 기반으로 WUS 재전송 동작을 수행할 수 있다.Thereafter, if the terminal is configured with {Cell#2 (28GHz) (1906), Cell#1 (3.5GHz) (1904)} as the candidate carrier of the data cell from the base station, the terminal can perform the first WUS transmission at WUS occasion #2 (1914) through cell#2 of 28GHz based on the configuration information. If the terminal does not receive any feedback (e.g., Ack) during the WUS response window #0 (1916) corresponding to Cell#2 after the first WUS transmission, the terminal can perform WUS retransmission at WUS occasion #1 (1918) through Cell#1 (3.5GHz). If the terminal receives feedback (Ack, 1922) during the WUS response window #1 (1920) corresponding to Cell#1 after the WUS retransmission, the terminal can handover (or connect) to Cell#1. The terminal can receive the priority for WUS transmission/retransmission of the candidate carriers from the Access/Sync cell. The above priority information may be included in the above WUS configuration information or may be predetermined. Thereafter, the terminal may perform a WUS retransmission operation based on the above priority.
도 19b는 실시예에 따라 기지국의 에너지 세이빙을 위한 data cell 활성화를 위한 WUS 전송 방법의 또다른 일례를 도시한 도면이다.FIG. 19b is a diagram illustrating another example of a WUS transmission method for activating data cells for energy saving of a base station according to an embodiment.
[WUS 반복 기반 data cell 활성화 (1950)][WUS repetition-based data cell activation (1950)]
단말(1958)은 Access/Sync cell(1952)에 초기 접속하기 위하여 RACH 절차(1960) 이후 Access/Sync cell로부터 해당 cell에 연관된 data cell에 관련된 WUS 설정 정보를 수신할 수 있다. 이 때, 해당 data cell에 대한 WUS 설정 정보(WUS Config)는 해당 data cell의 후보 캐리어 정보와 각 carrier별 WUS occasion 및 WUS format의 정보들을 포함할 수 있다. 또한, 단말은 WUS 전송 이후 WUS에 대한 피드백을 모니터링 해야 하는 WUS 응답 윈도우를 설정 받을 수 있다. 상기 WUS 응답 윈도우는 상기 WUS 설정 정보에 포함되거나 또는 단말 능력을 기반으로 WUS 응답 윈도우의 값이 결정될 수 있다. 상기 WUS 설정 정보에 대해서는 상기 기술된 내용을 참고할 수 있다. The terminal (1958) may receive WUS configuration information related to a data cell associated with the Access/Sync cell (1952) from the Access/Sync cell after the RACH procedure (1960) in order to initially access the Access/Sync cell. At this time, the WUS configuration information (WUS Config) for the data cell may include candidate carrier information of the data cell and information on WUS occasion and WUS format for each carrier. In addition, the terminal may be configured with a WUS response window for monitoring feedback on the WUS after WUS transmission. The WUS response window may be included in the WUS configuration information or the value of the WUS response window may be determined based on the terminal capability. For the WUS configuration information, reference may be made to the above-described content.
이후 단말이 기지국으로부터 data cell의 후보 캐리어로 {Cell#2(28GHz)(1956), Cell#1(3.5GHz)}를 설정받고 WUS의 nrofrepetition(반복의 수)으로 2를 설정받으면, 상기 설정 정보를 기반으로 단말은 3.5GHz의 cell#1(1954)을 통해서 WUS occasion #1(1864)에서 최초 WUS 전송을 수행하고 이후 28GHz의 cell#2(1956)을 통해서 WUS occasion #2(1966)에서 WUS를 반복 전송할 수 있다. 단말은 Cell#1에서 WUS를 전송한 시점부터 해당하는 WUS 응답 윈도우#0(1968)동안 피드백을 모니터링하고 Cell#2에서 WUS를 전송한 이후 WUS 응답 윈도우#1(1970)만큼 이어서 피드백을 모니터링할 수 있다. 이후 단말이 WUS 응답 윈도우#1에서 Cell#2 인덱스를 포함한 Ack 피드백(1972)을 수신하면 단말은 Cell#2로 핸드오버(또는 접속)할 수 있다. Afterwards, when the terminal is set to {Cell#2 (28GHz) (1956), Cell#1 (3.5GHz)} as the candidate carrier of the data cell from the base station and 2 is set as the norepetition (number of repetitions) of WUS, the terminal can perform the initial WUS transmission at WUS occasion #1 (1864) through cell#1 (1954) of 3.5GHz based on the above-mentioned setting information, and thereafter repeatedly transmit the WUS at WUS occasion #2 (1966) through cell#2 (1956) of 28GHz. The terminal can monitor the feedback during the corresponding WUS response window #0 (1968) from the time of transmitting the WUS in Cell#1, and can continuously monitor the feedback for the WUS response window #1 (1970) after transmitting the WUS in Cell#2. Afterwards, when the terminal receives an Ack feedback (1972) including the Cell#2 index in WUS response window#1, the terminal can handover (or connect) to Cell#2.
이때, WUS 반복 전송을 위한 캐리어의 순서(또는 carrier/data cell의 우선 순위)는 Access/Sync cell로부터 설정될 수 있거나 (이 경우 우선 순위 정보는 WUS 설정 정보에 포함될 수 있다) 트래픽에 따라서 또는/및 낮은 carrier frequency 또는 높은 carrier frequency부터 정렬될 수 있다. 또한, 캐리어 스위칭 시간(carrier switching time)을 고려하여 WUS 반복 사이의 갭이 기지국으로부터 단말에게 설정되거나 또는 단말 능력으로 결정될 수 있다.At this time, the order of carriers for WUS repeat transmission (or the priority of carrier/data cell) can be set from the Access/Sync cell (in this case, the priority information can be included in the WUS configuration information) or can be sorted from a low carrier frequency or a high carrier frequency according to traffic. In addition, the gap between WUS repetitions can be set from the base station to the terminal or determined by the terminal capability considering the carrier switching time.
상기 두 방법을 통해서 단말은 data cell의 캐리어를 결정할 수 있으며, WUS를 통해서 data cell을 활성화할 수 있다. 또한, 상기 WUS occasion은 캐리어 별로 중첩될 수 있으며, WUS 응답 윈도우의 carrier frequency는 Access/Sync cell의 carrier frequency 또는 해당 data cell의 carrier frequency 또는 특정 WUS를 위한 carrier frequency로, 단말은 상기 carrier frequency를 통해서 WUS의 피드백을 수신 및 모니터링 할 수 있다.Through the above two methods, the terminal can determine the carrier of the data cell and activate the data cell through the WUS. In addition, the WUS occasions can overlap by carrier, and the carrier frequency of the WUS response window is the carrier frequency of the Access/Sync cell, the carrier frequency of the corresponding data cell, or the carrier frequency for a specific WUS, and the terminal can receive and monitor the feedback of the WUS through the carrier frequency.
<제3 실시예><Example 3>
본 개시의 제3 실시예는, 5G 또는 6G 시스템에서 기지국의 에너지 세이빙을 위한 셀 선택 절차를 제공한다. 보다 구체적으로, 5G 또는 6G 시스템에서 기지국의 에너지 세이빙을 위한 셀 선택 및 WUS 전송을 위한 단말 및 기지국의 절차의 일례가 기술되었다.The third embodiment of the present disclosure provides a cell selection procedure for energy saving of a base station in a 5G or 6G system. More specifically, an example of a procedure of a terminal and a base station for cell selection and WUS transmission for energy saving of a base station in a 5G or 6G system is described.
도 20은 본 개시가 적용되는 5G 또는 6G 시스템에서 기지국의 에너지 세이빙을 위한 셀 선택 방법을 적용하는 단말의 동작의 일례를 도시하는 순서도이다.FIG. 20 is a flowchart illustrating an example of an operation of a terminal that applies a cell selection method for energy saving of a base station in a 5G or 6G system to which the present disclosure is applied.
단말은 셀 type 1(예를 들어, Cell#0 또는 Access/Sync cell)을 기반으로 초기 접속 및 동기화를 수행할 수 있다(2001). 이후, 단말은 셀 type 1으로부터 상위 계층 시그널링 및 L1 시그널링을 통해 셀 type 2(예를 들어, Cell#1-X 또는 Data cell)의 셀에 대한 설정 정보를 수신할 수 있다(2002). 이 때, 상기 설정 정보는 WUS의 설정 정보를 포함할 수 있다. 상기 data cell에 대한 설정 정보와 WUS 설정 정보는 상기 기술된 내용을 참고할 수 있다. 단말은 상기 설정 정보를 기반으로 WUS 전송을 위한 WUS occasion 및 캐리어를 확인할 수 있다(2003). 단말은 상기 선택된 캐리어를 통해 WUS를 전송하고 WUS 응답 윈도우 동안 WUS 피드백을 모니터링할 수 있다(2004). 단말은 WUS 피드백(Ack)이 수신되었는지 여부를 판단하고, 이 때 단말이 WUS의 피드백을 WUS 응답 윈도우 동안 수신하면, 단말은 해당 data cell에 접속할 수 있다(2005). 만약, 단말이 WUS의 피드백을 수신하지 못하거나 Nack(negative acknowledgements)을 수신하면, 단말은 WUS를 재전송 또는/및 반복 전송하고 다시 WUS 피드백을 모니터링할 수 있다(2006). The terminal can perform initial access and synchronization based on cell type 1 (e.g., Cell#0 or Access/Sync cell) (2001). Thereafter, the terminal can receive configuration information for a cell of cell type 2 (e.g., Cell#1-X or Data cell) through upper layer signaling and L1 signaling from cell type 1 (2002). At this time, the configuration information can include configuration information of WUS. The configuration information for the data cell and the WUS configuration information can refer to the contents described above. The terminal can check a WUS occasion and a carrier for WUS transmission based on the configuration information (2003). The terminal can transmit WUS through the selected carrier and monitor WUS feedback during a WUS response window (2004). The terminal determines whether WUS feedback (Ack) has been received, and if the terminal receives feedback of WUS during the WUS response window, the terminal can access the corresponding data cell (2005). If the terminal does not receive the WUS feedback or receives a Nack (negative acknowledgements), the terminal can retransmit or/and repeat the WUS and monitor the WUS feedback again (2006).
도 21a는 본 개시가 적용되는 5G 또는 6G 시스템에서 기지국의 에너지 세이빙을 위한 셀 선택 방법을 적용하는 셀 type 1의 셀을 서빙하는 기지국 동작의 일례를 도시한 순서도이다.FIG. 21A is a flowchart illustrating an example of a base station operation serving a cell of cell type 1 applying a cell selection method for energy saving of a base station in a 5G or 6G system to which the present disclosure is applied.
도 21a를 참고하면, 기지국은 셀 type 1을 지원하기 위하여, 단말에게 초기 접속 & 동기화 및 모빌리티 지원을 위하여 주기적인 기준 신호를 전송할 수 있다(2101). 이러한 주기적인 기준 신호는 일례로 SSB, PSS, SSS 또는 새롭게 정의된 SS 중 적어도 하나가 될 수 있다. 이 때, 페이징 및 시스템 정보도 기지국으로부터 주기적으로 전송될 수 있다. 기지국은, 단말에게 셀 type 2의 셀에 대한 설정 정보를 전송할 수 있다(2102). 상기 설정 정보는 WUS 설정 정보를 포함할 수 있다. 상기 data cell에 대한 설정 정보와 WUS 설정 정보는 상기 기술된 내용을 참고할 수 있다. 이후, 기지국은 Cell type 2의 셀(또는 상기 셀을 서빙하는 기지국)로부터 단말이 전송한 WUS를 측정한 결과를 포함하는 WUS 측정 보고를 수신하고 data 셀 선택을 수행할 수 있다(2103). 기지국의 셀 선택 동작이 수행되지 않을 경우 2103 단계는 생략될 수 있다. Referring to FIG. 21a, in order to support cell type 1, a base station may transmit a periodic reference signal to a terminal for initial access & synchronization and mobility support (2101). The periodic reference signal may be, for example, at least one of SSB, PSS, SSS or newly defined SS. At this time, paging and system information may also be transmitted periodically from the base station. The base station may transmit configuration information for a cell of cell type 2 to the terminal (2102). The configuration information may include WUS configuration information. The configuration information for the data cell and the WUS configuration information may refer to the contents described above. Thereafter, the base station may receive a WUS measurement report including a result of measuring a WUS transmitted by the terminal from a cell of Cell type 2 (or a base station serving the cell) and perform data cell selection (2103). If the cell selection operation of the base station is not performed, step 2103 may be omitted.
도 21b는 본 개시가 적용되는 5G 또는 6G 시스템에서 기지국의 에너지 세이빙을 위한 셀 type 2의 셀을 서빙하는 기지국 동작의 일례를 도시한 순서도이다. FIG. 21b is a flowchart illustrating an example of a base station operation serving a cell of cell type 2 for energy saving of the base station in a 5G or 6G system to which the present disclosure is applied.
도 21b를 참고하면, 기지국은 Access/Sync cell을 통해서 설정된 WUS 설정 정보 또는 미리 정해진 WUS 관련 정보를 기반으로 WUR를 통해서 WUS occasion에서 WUS를 모니터링할 수 있다(2104). 상기 WUS 설정 정보는 상기 기술된 내용을 참고할 수 있다. 이 때 기지국의 Tx 및 Rx RF는 power off 상태일 수 있으나, WUR 은 power on 상태일 수 있다. 이후 기지국은 WUS를 수신하면 WUS를 측정하고 셀 활성화 여부를 결정하여 메인 라디오(main radio)의 활성화 여부를 결정할 수 있고, 또는/및 WUS 측정을 Access/Sync cell한테 보고할 수 있다(2105). 이후 기지국은 WUS 측정 결과, 예를 들어, RSRP 및 RSRQ 등을 미리 결정되어 있거나 셀 type 1 셀을 서빙하는 기지국에 의해 설정되는 임계값과 비교하여(2106), 상기 임계값보다 WUS 측정 결과가 더 큰 경우 (또는 크거나 같은 경우) 단말에게 Ack을 전송할 수 있다(2107). 이후, 셀 type 2 기지국은 Ack 전송 이후 활성화될 수 있으며 단말이 상기 셀 type 2의 셀에 어태치될 수 있다(2107). Referring to FIG. 21b, the base station can monitor WUS at a WUS occasion through WUR based on WUS configuration information set through Access/Sync cell or WUS-related information determined in advance (2104). The WUS configuration information can refer to the content described above. At this time, the Tx and Rx RF of the base station can be powered off, but the WUR can be powered on. Thereafter, when the base station receives the WUS, the base station can measure the WUS and determine whether to activate the cell to determine whether to activate the main radio, and/or report the WUS measurement to the Access/Sync cell (2105). Thereafter, the base station can compare the WUS measurement result, for example, RSRP and RSRQ, with a threshold value that is determined in advance or set by the base station serving the cell type 1 cell (2106), and if the WUS measurement result is greater than (or greater than or equal to) the threshold value, the base station can transmit an Ack to the terminal (2107). Afterwards, the cell type 2 base station can be activated after the Ack transmission and the terminal can be attached to the cell of the cell type 2 (2107).
상술한 순서도들은 본 개시의 원리에 따라 구현될 수 있는 예시적인 방법을 도시하며, 본 명세서에서의 순서도에 도시된 방법에 대해 다양한 변경이 이루어질 수 있다. 예를 들어, 일련의 단계로서 도시되었지만, 각각의 도면의 다양한 단계는 중첩하거나, 병렬로 발생하거나, 상이한 순서로 발생하거나, 여러 번 발생할 수 있다. 다른 예에서, 단계는 생략되거나 다른 단계로 대체될 수 있다.The above-described flowcharts illustrate exemplary methods that may be implemented in accordance with the principles of the present disclosure, and various modifications may be made to the methods illustrated in the flowcharts herein. For example, although illustrated as a series of steps, the various steps in each drawing may overlap, occur in parallel, occur in different orders, or occur multiple times. In other instances, steps may be omitted or replaced with other steps.
도 22는 본 개시의 일 실시예에 따른 단말의 블록도이다. FIG. 22 is a block diagram of a terminal according to one embodiment of the present disclosure.
도 22를 참조하면, 단말(2200)은 송수신부(2201), 제어부(예를 들어 프로세서)(2202) 및 저장부(예를 들어 메모리)(2203)를 포함할 수 있다. 전술한 실시예에 해당하는 방법들 중 적어도 하나 또는 그 결합에 따라, 단말(2200)의 송수신부(2201), 제어부(2202) 및 저장부(2203)가 동작할 수 있다. 다만, 단말(2200)의 구성 요소가 도시된 예에 한정되는 것은 아니다. 다른 실시예에 따라, 단말(2200)은 전술한 구성 요소들 보다 더 많은 구성 요소를 포함하거나 더 적은 구성 요소를 포함할 수도 있다. 뿐만 아니라 특정한 경우 송수신부(2201), 제어부(2202) 및 저장부(2203)가 하나의 칩(chip) 형태로 구현될 수도 있다.Referring to FIG. 22, the terminal (2200) may include a transceiver (2201), a control unit (e.g., a processor) (2202), and a storage unit (e.g., a memory) (2203). The transceiver (2201), the control unit (2202), and the storage unit (2203) of the terminal (2200) may operate according to at least one of the methods corresponding to the above-described embodiments or a combination thereof. However, the components of the terminal (2200) are not limited to the illustrated example. According to other embodiments, the terminal (2200) may include more or fewer components than the components described above. In addition, in certain cases, the transceiver (2201), the control unit (2202), and the storage unit (2203) may be implemented in the form of a single chip.
송수신부(2201)는 일 실시예에 따라, 송신부 및 수신부로 구성될 수도 있다. 송수신부(2201)는 기지국과 신호들을 송수신할 수 있다. 상기 신호는 제어 정보와 데이터를 포함할 수 있다. 송수신부(2201)는 송신되는 신호의 주파수를 상승 변환 및 증폭하는 RF 송신기와, 수신되는 신호를 저 잡음 증폭하고 주파수를 하강 변환하는 RF 수신기를 포함하여 구성될 수 있다. 송수신부(2201)는 무선 채널을 통해 신호를 수신하여 이를 제어부(2202)로 출력하고, 제어부(2202)로부터 출력된 신호를 무선 채널을 통해 전송할 수 있다.The transceiver (2201) may be configured with a transmitter and a receiver according to one embodiment. The transceiver (2201) may transmit and receive signals with a base station. The signals may include control information and data. The transceiver (2201) may be configured to include an RF transmitter that up-converts and amplifies the frequency of a transmitted signal, and an RF receiver that low-noise amplifies and frequency-down-converts a received signal. The transceiver (2201) may receive a signal through a wireless channel and output the same to the control unit (2202), and transmit a signal output from the control unit (2202) through the wireless channel.
제어부(2202)는 상술한 본 개시의 실시예에 따라 단말(2200)이 동작할 수 있는 일련의 절차를 제어할 수 있다. 예컨대, 제어부(2202)는 본 개시의 실시예들에 따른 방법들 중 적어도 하나 또는 그 결합을 수행하기 위한 단말의 동작을 수행하거나 또는 제어할 수 있다. 제어부(2202)는 적어도 하나의 프로세서(processor)를 포함할 수 있다. 예를 들어, 제어부(2202)는 통신을 위한 제어를 수행하는 CP(communication processor) 및 상위 계층(예를 들어 어플리케이션(application))을 제어하는 AP(application processor)를 포함할 수 있다.The control unit (2202) may control a series of procedures that the terminal (2200) may operate according to the embodiments of the present disclosure described above. For example, the control unit (2202) may perform or control an operation of the terminal to perform at least one or a combination of the methods according to the embodiments of the present disclosure. The control unit (2202) may include at least one processor. For example, the control unit (2202) may include a communication processor (CP) that performs control for communication and an application processor (AP) that controls an upper layer (e.g., an application).
저장부(2203)는 제어 정보(예를 들어 단말(2200)에서 획득되는 신호에 포함된 PUSCH에서 전송되는 DMRS들을 사용한 채널 추정과 관련된 정보) 또는 데이터를 저장할 수 있으며, 제어부(2202)의 제어에 필요한 데이터 및 제어부(2202)에서 제어 시 발생되는 데이터를 저장하기 위한 영역을 가질 수 있다. The storage unit (2203) can store control information (e.g., information related to channel estimation using DMRSs transmitted on a PUSCH included in a signal acquired from the terminal (2200)) or data, and can have an area for storing data required for controlling the control unit (2202) and data generated during control by the control unit (2202).
도 23는 일 실시예에 따른 기지국의 블록도이다. Figure 23 is a block diagram of a base station according to one embodiment.
도 23를 참조하면, 기지국(2300)은 송수신부(2301), 제어부(예를 들어 프로세서)(2302) 및 저장부(예를 들어 메모리)(2303)를 포함할 수 있다. 전술한 실시예에 해당하는 방법들 중 적어도 하나 또는 그 결합에 따라, 기지국(2300)의 송수신부(2301), 제어부(2302) 및 저장부(2303)가 동작할 수 있다. 다만, 기지국(2300)의 구성 요소가 도시된 예에 한정되는 것은 아니다. 다른 실시예에 따라, 기지국(2300)은 전술한 구성 요소들 보다 더 많은 구성 요소를 포함하거나 더 적은 구성 요소를 포함할 수도 있다. 뿐만 아니라 특정한 경우, 송수신부(2301), 제어부(2302) 및 저장부(2303)가 하나의 칩(chip) 형태로 구현될 수도 있다. Referring to FIG. 23, the base station (2300) may include a transceiver (2301), a control unit (e.g., a processor) (2302), and a storage unit (e.g., a memory) (2303). The transceiver (2301), the control unit (2302), and the storage unit (2303) of the base station (2300) may operate according to at least one or a combination of the methods corresponding to the above-described embodiments. However, the components of the base station (2300) are not limited to the illustrated example. According to other embodiments, the base station (2300) may include more or fewer components than the above-described components. In addition, in certain cases, the transceiver (2301), the control unit (2302), and the storage unit (2303) may be implemented in the form of a single chip.
송수신부(2301)는 일 실시예에 따라, 송신부 및 수신부로 구성될 수도 있다. 송수신부(2301)는 단말과 신호들을 송수신할 수 있다. 상기 신호는 제어 정보와 데이터를 포함할 수 있다. 송수신부(2301)는 송신되는 신호의 주파수를 상승 변환 및 증폭하는 RF 송신기와, 수신되는 신호를 저 잡음 증폭하고 주파수를 하강 변환하는 RF 수신기를 포함하여 구성될 수 있다. 송수신부(2301)는 무선 채널을 통해 신호를 수신하여 이를 제어부(2302)로 출력하고, 제어부(2302)로부터 출력된 신호를 무선 채널을 통해 전송할 수 있다.The transceiver (2301) may be configured with a transmitter and a receiver according to one embodiment. The transceiver (2301) may transmit and receive signals with a terminal. The signal may include control information and data. The transceiver (2301) may be configured to include an RF transmitter that up-converts and amplifies a frequency of a transmitted signal, and an RF receiver that low-noise amplifies a received signal and down-converts the frequency. The transceiver (2301) may receive a signal through a wireless channel and output the same to the control unit (2302), and transmit a signal output from the control unit (2302) through the wireless channel.
제어부(2302)는 상술한 본 개시의 실시예에 따라 기지국(2300)이 동작할 수 있도록 일련의 절차를 제어할 수 있다. 예컨대, 제어부(2302)는 본 개시의 실시예들에 따른 방법들 중 적어도 하나 또는 그 결합을 수행하기 위한 기지국의 동작을 수행하거나 또는 제어할 수 있다. 제어부(2302)는 적어도 하나의 프로세서(processor)를 포함할 수 있다. 예를 들어, 제어부(2302)는 통신을 위한 제어를 수행하는 CP(communication processor) 및 상위 계층(예를 들어 어플리케이션)을 제어하는 AP(application processor)를 포함할 수 있다.The control unit (2302) may control a series of procedures so that the base station (2300) may operate according to the embodiments of the present disclosure described above. For example, the control unit (2302) may perform or control the operation of the base station to perform at least one or a combination of the methods according to the embodiments of the present disclosure. The control unit (2302) may include at least one processor. For example, the control unit (2302) may include a communication processor (CP) that performs control for communication and an application processor (AP) that controls an upper layer (e.g., an application).
저장부(2303)는 제어 정보(예를 들어 기지국(2300)에서 결정된 PUSCH에서 전송되는 DMRS들을 사용하여 생성된 채널 추정과 관련된 정보), 데이터, 단말로부터 수신된 제어 정보, 또는 데이터를 저장할 수 있으며, 제어부(2302)의 제어에 필요한 데이터 및 제어부(2302)에서 제어 시 발생되는 데이터를 저장하기 위한 영역을 가질 수 있다. The storage unit (2303) can store control information (e.g., information related to channel estimation generated using DMRSs transmitted on a PUSCH determined by the base station (2300), data, control information received from a terminal, or data, and can have an area for storing data required for controlling the control unit (2302) and data generated during control by the control unit (2302).

Claims (14)

  1. 통신 시스템의 단말이 수행하는 방법에 있어서, In a method performed by a terminal of a communication system,
    제1 셀에 해당하는 제1 기지국과 초기 접속 절차를 수행하는 단계;A step of performing an initial connection procedure with a first base station corresponding to the first cell;
    상기 제1 기지국으로부터 웨이크업 신호(wake up signal, WUS) 설정 정보를 수신하는 단계;A step of receiving wake up signal (WUS) setting information from the first base station;
    상기 WUS 설정 정보를 기반으로 제2 셀에 해당하는 제2 기지국으로 WUS를 전송하는 단계; 및 A step of transmitting WUS to a second base station corresponding to a second cell based on the above WUS setting information; and
    상기 WUS에 대응하는 응답 신호(acknowledgement) 를 WUS 응답 윈도우 동안 모니터링하는 단계를 포함하고, Comprising a step of monitoring a response signal (acknowledgement) corresponding to the above WUS during the WUS response window,
    상기 WUS 설정 정보는 상기 제2 셀의 캐리어 주파수 정보, WUS 전송 시점 (occasion) 정보, WUS 포맷 정보 및 WUS 응답 윈도우 설정 정보 중 적어도 하나를 포함하는 것을 특징으로 하는 방법. A method characterized in that the WUS configuration information includes at least one of carrier frequency information of the second cell, WUS transmission time (occasion) information, WUS format information, and WUS response window configuration information.
  2. 제1항에 있어서, In the first paragraph,
    상기 응답 신호를 상기 WUS 응답 윈도우 동안 수신하는 경우, 상기 제2 기지국과 접속을 위한 절차를 수행하는 단계를 더 포함하는 것을 특징으로 하는 방법. A method characterized by further comprising the step of performing a procedure for connection with the second base station when the above response signal is received during the WUS response window.
  3. 제1항에 있어서, In the first paragraph,
    상기 응답 신호를 상기 WUS 응답 윈도우 동안 수신하지 못하는 경우, 상기 WUS 설정 정보를 기반으로 다른 셀에 해당하는 기지국으로 WUS 를 전송하는 단계를 더 포함하는 것을 특징으로 하는 방법. A method characterized by further comprising the step of transmitting a WUS to a base station corresponding to another cell based on the WUS configuration information if the above response signal is not received during the WUS response window.
  4. 제1항에 있어서,In the first paragraph,
    상기 제1 셀은 접속 및 동기화를 위한 셀 타입에 해당하고, 상기 제2 셀은 데이터 송수신을 위한 셀 타입에 해당하는 것을 특징으로 하는 방법. A method characterized in that the first cell corresponds to a cell type for connection and synchronization, and the second cell corresponds to a cell type for data transmission and reception.
  5. 통신 시스템의 제1 셀에 해당하는 제1 기지국이 수행하는 방법에 있어서, In a method performed by a first base station corresponding to a first cell of a communication system,
    단말과 초기 접속 절차를 수행하는 단계; 및 Step of performing an initial connection procedure with the terminal; and
    상기 단말로 웨이크업 신호(wake up signal, WUS) 설정 정보를 전송하는 단계를 포함하고, Including a step of transmitting wake up signal (WUS) setting information to the terminal,
    상기 제1 셀에 해당하는 상기 제1 기지국은 제2 셀에 해당하는 제2 기지국과 연결되고, The first base station corresponding to the first cell is connected to the second base station corresponding to the second cell,
    상기 WUS 설정 정보에 따른 WUS는 상기 단말로부터 상기 제2 기지국으로 전송되고, WUS according to the above WUS setting information is transmitted from the terminal to the second base station,
    상기 WUS 설정 정보는 상기 제2 셀의 캐리어 주파수 정보, WUS 전송 시점 (occasion) 정보, WUS 포맷 정보 및 WUS 응답 윈도우 설정 정보 중 적어도 하나를 포함하는 것을 특징으로 하는 방법. A method characterized in that the WUS configuration information includes at least one of carrier frequency information of the second cell, WUS transmission time (occasion) information, WUS format information, and WUS response window configuration information.
  6. 제5항에 있어서,In paragraph 5,
    상기 제1 셀은 접속 및 동기화를 위한 셀 타입에 해당하고, 상기 제2 셀은 데이터 송수신을 위한 셀 타입에 해당하는 것을 특징으로 하는 방법. A method characterized in that the first cell corresponds to a cell type for connection and synchronization, and the second cell corresponds to a cell type for data transmission and reception.
  7. 통신 시스템의 제2 셀에 해당하는 제2 기지국이 수행하는 방법에 있어서, In a method performed by a second base station corresponding to a second cell of a communication system,
    단말로부터 웨이크업 신호(wake up signal, WUS) 를 수신하는 단계; A step of receiving a wake up signal (WUS) from a terminal;
    상기 단말로 상기 WUS에 대한 응답 신호(acknowledgement) 를 WUS 응답 윈도우 동안 전송하는 단계; 및 A step of transmitting a response signal (acknowledgement) to the WUS to the terminal during the WUS response window; and
    상기 단말과 상기 단말의 상기 제2 셀에 대한 접속 절차를 수행하는 단계를 포함하며, A step of performing a connection procedure for the terminal and the second cell of the terminal,
    WUS 관련 정보가 상기 제2 기지국으로부터 제1 셀에 해당하는 제1 기지국으로 전송되고, WUS related information is transmitted from the second base station to the first base station corresponding to the first cell,
    상기 WUS 관련 정보는 상기 제2 셀의 캐리어 주파수 정보, WUS 전송 시점 (occasion) 정보, WUS 포맷 정보 및 WUS 응답 윈도우 설정 정보 중 적어도 하나를 포함하는 것을 특징으로 하는 방법. A method characterized in that the WUS related information includes at least one of carrier frequency information of the second cell, WUS transmission time (occasion) information, WUS format information, and WUS response window setting information.
  8. 제7항에 있어서,In Article 7,
    상기 제1 셀은 접속 및 동기화를 위한 셀 타입에 해당하고, 상기 제2 셀은 데이터 송수신을 위한 셀 타입에 해당하는 것을 특징으로 하는 방법. A method characterized in that the first cell corresponds to a cell type for connection and synchronization, and the second cell corresponds to a cell type for data transmission and reception.
  9. 통신 시스템의 단말에 있어서,At the terminal of the communication system,
    송수신부; 및 Transmitter and receiver; and
    상기 송수신부와 연결되고 하나 이상의 프로세서를 포함하는 제어부로, 상기 제어부는: A control unit connected to the above transceiver and including one or more processors, wherein the control unit:
    제1 셀에 해당하는 제1 기지국과 초기 접속 절차를 수행하고, Perform an initial connection procedure with the first base station corresponding to the first cell,
    상기 제1 기지국으로부터 웨이크업 신호(wake up signal, WUS) 설정 정보를 수신하고, Receive wake up signal (WUS) setting information from the first base station,
    상기 WUS 설정 정보를 기반으로 제2 셀에 해당하는 제2 기지국으로 WUS를 전송하고, 및 Transmitting WUS to the second base station corresponding to the second cell based on the above WUS setting information, and
    상기 WUS에 대응하는 응답 신호(acknowledgement) 를 WUS 응답 윈도우 동안 모니터링하도록 설정되고, It is set to monitor the response signal (acknowledgement) corresponding to the above WUS during the WUS response window,
    상기 WUS 설정 정보는 상기 제2 셀의 캐리어 주파수 정보, WUS 전송 시점 (occasion) 정보, WUS 포맷 정보 및 WUS 응답 윈도우 설정 정보 중 적어도 하나를 포함하는 것을 특징으로 하는 단말. A terminal characterized in that the WUS configuration information includes at least one of carrier frequency information of the second cell, WUS transmission time (occasion) information, WUS format information, and WUS response window configuration information.
  10. 제9항에 있어서, In Article 9,
    상기 제어부는 상기 응답 신호를 상기 WUS 응답 윈도우 동안 수신하는 경우, 상기 제2 기지국과 접속을 위한 절차를 수행하도록 설정된 것을 특징으로 하는 단말. A terminal characterized in that the control unit is set to perform a procedure for connection with the second base station when the response signal is received during the WUS response window.
  11. 제9항에 있어서, In Article 9,
    상기 제어부는 상기 응답 신호를 상기 WUS 응답 윈도우 동안 수신하지 못하는 경우, 상기 WUS 설정 정보를 기반으로 다른 셀에 해당하는 기지국으로 WUS 를 전송하도록 설정된 것을 특징으로 하는 단말. A terminal characterized in that the control unit is set to transmit a WUS to a base station corresponding to another cell based on the WUS setting information when the response signal is not received during the WUS response window.
  12. 제1항에 있어서,In the first paragraph,
    상기 제1 셀은 접속 및 동기화를 위한 셀 타입에 해당하고, 상기 제2 셀은 데이터 송수신을 위한 셀 타입에 해당하는 것을 특징으로 하는 단말.A terminal characterized in that the first cell corresponds to a cell type for connection and synchronization, and the second cell corresponds to a cell type for data transmission and reception.
  13. 통신 시스템의 제1 셀에 해당하는 제1 기지국에 있어서, In the first base station corresponding to the first cell of the communication system,
    송수신부; 및 Transmitter and receiver; and
    상기 송수신부와 연결되고 하나 이상의 프로세서를 포함하는 제어부로, 상기 제어부는: A control unit connected to the above transceiver and including one or more processors, wherein the control unit:
    단말과 초기 접속 절차를 수행하고, Perform the initial connection procedure with the terminal,
    상기 단말로 웨이크업 신호(wake up signal, WUS) 설정 정보를 전송하도록 설정되고, It is set to transmit wake up signal (WUS) setting information to the above terminal,
    상기 제1 셀에 해당하는 상기 제1 기지국은 제2 셀에 해당하는 제2 기지국과 연결되고, The first base station corresponding to the first cell is connected to the second base station corresponding to the second cell,
    상기 WUS 설정 정보에 따른 WUS는 상기 단말로부터 상기 제2 기지국으로 전송되고, WUS according to the above WUS setting information is transmitted from the terminal to the second base station,
    상기 WUS 설정 정보는 상기 제2 셀의 캐리어 주파수 정보, WUS 전송 시점 (occasion) 정보, WUS 포맷 정보 및 WUS 응답 윈도우 설정 정보 중 적어도 하나를 포함하고, The WUS configuration information includes at least one of carrier frequency information of the second cell, WUS transmission time (occasion) information, WUS format information, and WUS response window configuration information,
    상기 제1 셀은 접속 및 동기화를 위한 셀 타입에 해당하고, 상기 제2 셀은 데이터 송수신을 위한 셀 타입에 해당하는 것을 특징으로 하는 제1 기지국. A first base station, characterized in that the first cell corresponds to a cell type for connection and synchronization, and the second cell corresponds to a cell type for data transmission and reception.
  14. 통신 시스템의 제2 셀에 해당하는 제2 기지국에 있어서, In the second base station corresponding to the second cell of the communication system,
    송수신부; 및 Transmitter and receiver; and
    상기 송수신부와 연결되고 하나 이상의 프로세서를 포함하는 제어부로, 상기 제어부는: A control unit connected to the above transceiver and including one or more processors, wherein the control unit:
    단말로부터 웨이크업 신호(wake up signal, WUS) 를 수신하고, Receive a wake up signal (WUS) from the terminal,
    상기 단말로 상기 WUS에 대한 응답 신호(acknowledgement) 를 WUS 응답 윈도우 동안 전송하고; 및 Transmitting a response signal (acknowledgement) to the WUS to the terminal during the WUS response window; and
    상기 단말과 상기 단말의 상기 제2 셀에 대한 접속 절차를 수행하도록 설정되고,It is set to perform a connection procedure for the above terminal and the second cell of the above terminal,
    WUS 관련 정보가 상기 제2 기지국으로부터 제1 셀에 해당하는 제1 기지국으로 전송되고, WUS related information is transmitted from the second base station to the first base station corresponding to the first cell,
    상기 WUS 관련 정보는 상기 제2 셀의 캐리어 주파수 정보, WUS 전송 시점 (occasion) 정보, WUS 포맷 정보 및 WUS 응답 윈도우 설정 정보 중 적어도 하나를 포함하고, The above WUS related information includes at least one of carrier frequency information of the second cell, WUS transmission time (occasion) information, WUS format information, and WUS response window setting information,
    상기 제1 셀은 접속 및 동기화를 위한 셀 타입에 해당하고, 상기 제2 셀은 데이터 송수신을 위한 셀 타입에 해당하는 것을 특징으로 하는 제2 기지국. A second base station, characterized in that the first cell corresponds to a cell type for connection and synchronization, and the second cell corresponds to a cell type for data transmission and reception.
PCT/KR2024/004697 2023-04-13 2024-04-09 Method and device for energy saving in wireless communication system WO2024215047A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020230048738A KR20240152566A (en) 2023-04-13 2023-04-13 Method and apparatus for energy savings of a wireless communication system
KR10-2023-0048738 2023-04-13

Publications (1)

Publication Number Publication Date
WO2024215047A2 true WO2024215047A2 (en) 2024-10-17

Family

ID=93059764

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2024/004697 WO2024215047A2 (en) 2023-04-13 2024-04-09 Method and device for energy saving in wireless communication system

Country Status (2)

Country Link
KR (1) KR20240152566A (en)
WO (1) WO2024215047A2 (en)

Also Published As

Publication number Publication date
KR20240152566A (en) 2024-10-22

Similar Documents

Publication Publication Date Title
WO2019160353A1 (en) Method and apparatus for power savings at a user equipment
WO2022255796A1 (en) Cross-carrier scheduling across different drx groups
WO2020184836A1 (en) Method for transmitting beam information by user equipment in wireless communication system, and user equipment and base station supporting same
WO2021010747A1 (en) Method for monitoring physical downlink control channel of discontinuous reception-configured terminal and device using method
WO2021230640A1 (en) Method and device for transmitting/receiving csi-rs in wireless communication system
WO2022225328A1 (en) Method and device for repeatedly transmitting downlink control information when performing network cooperative communication
WO2022149774A1 (en) Method and device for beam failure recovery in wireless communication system
WO2020091546A1 (en) Configuration coordination for power efficient operation for nr
WO2020145575A1 (en) Method for reporting beam failure of terminal in wireless communication system, and terminal and base station for supporting same
WO2023136558A1 (en) Communication method and apparatus for reduced-capability ue in wireless communication system
WO2020096436A1 (en) Method for operating discontinuous reception of terminal in wireless communication system, and apparatus using same method
WO2024151129A1 (en) Method and device for saving energy in wireless communication system
WO2024172499A1 (en) Multiple transmissions of a prach
WO2023211101A1 (en) Method and device for saving energy in wireless communication system
WO2024039217A1 (en) Method and apparatus of multi-beam operation for multi-cell scheduling
WO2024035136A1 (en) Resource association and link recovery for repeaters
WO2020204324A1 (en) Method for reporting channel state information by terminal in wireless communication system, and terminal and base station supporting same
WO2023204525A1 (en) Method and apparatus for transmission and reception of control information in wireless communication system
WO2020067804A1 (en) Method by which terminal reports measurement in wireless communication system, and device using method
WO2022158825A1 (en) Method and device for transmitting/receiving uplink in wireless communication system
WO2024215047A2 (en) Method and device for energy saving in wireless communication system
WO2024177375A1 (en) Method and device for performing energy saving in wireless communication system
WO2024063598A1 (en) Method and apparatus for energy savings of a wireless communication system
WO2024210606A2 (en) Method and device for energy saving in wireless communication system
WO2024225731A1 (en) Method and device for energy-saving in communication system