WO2024214754A1 - Exterior material for power storage device, method for manufacturing same, and power storage device - Google Patents

Exterior material for power storage device, method for manufacturing same, and power storage device Download PDF

Info

Publication number
WO2024214754A1
WO2024214754A1 PCT/JP2024/014602 JP2024014602W WO2024214754A1 WO 2024214754 A1 WO2024214754 A1 WO 2024214754A1 JP 2024014602 W JP2024014602 W JP 2024014602W WO 2024214754 A1 WO2024214754 A1 WO 2024214754A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
storage device
exterior material
metal foil
electricity storage
Prior art date
Application number
PCT/JP2024/014602
Other languages
French (fr)
Japanese (ja)
Inventor
真 天野
育万 塩田
千秋 初田
万結 内田
孝典 山下
Original Assignee
大日本印刷株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大日本印刷株式会社 filed Critical 大日本印刷株式会社
Publication of WO2024214754A1 publication Critical patent/WO2024214754A1/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • This disclosure relates to an exterior material for an electricity storage device, a manufacturing method thereof, and an electricity storage device.
  • exterior materials are essential components for sealing the electricity storage device elements, such as the electrodes and electrolyte.
  • metallic exterior materials have been widely used as exterior materials for electricity storage devices.
  • a film-like laminate in which a base layer, a metal foil layer, an adhesive layer, and a heat-sealable resin layer are laminated in this order has been proposed as an exterior material for an electricity storage device that can be easily processed into a variety of shapes and can be made thin and lightweight (see, for example, Patent Document 1).
  • recesses are generally formed by cold forming, electricity storage device elements such as electrodes and electrolyte are placed in the space formed by the recesses, and the heat-sealable resin layer is heat-sealed to obtain an electricity storage device in which the electricity storage device elements are housed inside the exterior material for electricity storage devices.
  • the main objective of this disclosure is to provide an exterior material for an electricity storage device that is composed of a laminate having, from the outside in order, at least a base layer, a metal foil layer, and a heat-sealable resin layer, and that has excellent formability.
  • the inventors of the present disclosure have conducted intensive research to solve the above problems. As a result, they have discovered that in an exterior material for an electricity storage device composed of a laminate including, in order from the outside, at least a base layer, a metal foil layer, and a heat-sealable resin layer, by setting the maximum reflected light intensity A at a light receiving angle range of 0.0° to 90.0°, which is measured at every 0.1° of light receiving angle with a variable goniophotometer under the condition of an incident light angle of 60°, to a predetermined value or less for at least one surface of the metal foil layer, the maximum reflected light intensity A can be obtained.
  • an exterior packaging material for an electricity storage device composed of a laminate including, in order from the outside, at least a base layer, a metal foil layer, and a heat-sealable resin layer, by setting the maximum reflected light intensity B at a light receiving angle range of 45.0° to 75.0° inclusive, measured at every 0.1° of light receiving angle with a goniophotometer under the condition of an incident light angle of 60°, to a predetermined value or more for at least one surface of the metal foil layer.
  • the laminate includes, in order from the outside, at least a base layer, a metal foil layer, and a heat-sealable resin layer.
  • the exterior material for an electricity storage device has a maximum reflected light intensity A of 50 or less in a light receiving angle range of 0.0° or more and 90.0° or less, measured for at least one surface of the metal foil layer at every 0.1° of light receiving angle using a goniophotometer under a condition of an incident light angle of 60°.
  • the exterior material for an electricity storage device may not include a base material layer. That is, the first aspect of the present disclosure may be an exterior material for an electricity storage device that is composed of a laminate including, in order from the outside, at least a metal foil layer and a heat-sealable resin layer, and that has a maximum reflected light intensity A of 50 or less in the light receiving angle range of 0.0° to 90.0°, measured for every 0.1° of light receiving angle at an incident light angle of 60° using a goniophotometer, for at least one surface of the metal foil layer.
  • the laminate includes, in order from the outside, at least a base layer, a metal foil layer, and a heat-sealable resin layer.
  • the exterior material for an electricity storage device has a maximum reflected light intensity B of 300 or more in a light receiving angle range of 45.0° or more and 75.0° or less, measured for at least one surface of the metal foil layer at every 0.1° of light receiving angle using a variable angle photometer under a condition of an incident light angle of 60°.
  • the exterior material for an electricity storage device may not include a base material layer. That is, the second aspect of the present disclosure may be an exterior material for an electricity storage device that is composed of a laminate including, in order from the outside, at least a metal foil layer and a heat-sealable resin layer, and that has a maximum reflected light intensity B of 300 or more for at least one surface of the metal foil layer in a light receiving angle range of 45.0° to 75.0°, measured at every 0.1° of light receiving angle under a condition of an incident light angle of 60° using a goniophotometer.
  • an exterior material for an electricity storage device that is composed of a laminate having, in order from the outside, at least a base layer, a metal foil layer, and a heat-sealable resin layer, and has excellent formability.
  • an exterior material for an electricity storage device that is composed of a laminate having, in order from the outside, at least a metal foil layer, and a heat-sealable resin layer, and has excellent formability.
  • FIG. 1 is a schematic diagram showing an example of a cross-sectional structure of an exterior material for an electricity storage device according to the present disclosure.
  • 1 is a schematic diagram showing an example of a cross-sectional structure of an exterior material for an electricity storage device according to the present disclosure.
  • 1 is a schematic diagram showing an example of a cross-sectional structure of an exterior material for an electricity storage device according to the present disclosure.
  • 1 is a schematic diagram showing an example of a cross-sectional structure of an exterior material for an electricity storage device according to the present disclosure.
  • FIG. 2 is a schematic diagram for illustrating a method for housing an electricity storage device element in a package formed from the exterior material for an electricity storage device of the present disclosure.
  • FIG. 13 is a schematic diagram of a graph showing the relationship between the reflected light intensity of the matte surface and the light receiving angle measured using a goniophotometer for the surface of the metal foil layer in Example 2.
  • FIG. 13 is a schematic diagram of a graph showing the relationship between the reflected light intensity of the glossy surface and the light receiving angle measured using a goniophotometer for the surface of the metal foil layer in Example 2.
  • the exterior material for an electricity storage device is composed of a laminate including, in order from the outside, at least a base layer, a metal foil layer, and a heat-sealable resin layer, and the maximum reflected light intensity A of at least one surface of the metal foil layer is 50 or less in the light receiving angle range of 0.0° to 90.0°, measured at every 0.1° of light receiving angle under the condition of an incident light angle of 60° using a goniophotometer.
  • the exterior material for an electricity storage device may not include a base layer.
  • the exterior material for an electricity storage device is composed of a laminate including, in order from the outside, at least a base layer, a metal foil layer, and a heat-sealable resin layer, and the maximum reflected light intensity B of at least one surface of the metal foil layer is 300 or more in a light receiving angle range of 45.0° to 75.0°, measured at every 0.1° of light receiving angle under a condition of an incident light angle of 60° using a goniophotometer.
  • the exterior material for an electricity storage device may not include a base layer.
  • the upper limit and upper limit, the upper limit and lower limit, or the lower limit and lower limit described separately may be combined to form a numerical range.
  • the upper limit or lower limit described in a certain numerical range may be replaced with a value shown in the examples.
  • the MD (machine direction) and TD (transverse direction) of the metal foil layer 3 described later can usually be determined in the manufacturing process.
  • the metal foil layer 3 is made of a metal foil such as an aluminum alloy foil or a stainless steel foil
  • linear lines called rolling marks are formed on the surface of the metal foil in the rolling direction (RD) of the metal foil. Since the rolling marks extend along the rolling direction, the rolling direction of the metal foil can be determined by observing the surface of the metal foil.
  • the MD of the laminate usually coincides with the RD of the metal foil, so the MD of the laminate can be identified by observing the surface of the metal foil of the laminate and identifying the rolling direction (RD) of the metal foil.
  • the TD of the laminate is perpendicular to the MD of the laminate, the TD of the laminate can also be identified.
  • the MD of the electrical storage device exterior material cannot be identified due to rolling marks on the metal foil such as aluminum alloy foil or stainless steel foil, it can be identified by the following method.
  • One method for confirming the MD of an electrical storage device exterior material is to observe the cross section of the heat-sealable resin layer of the electrical storage device exterior material with an electron microscope to confirm the sea-island structure. In this method, the direction parallel to the cross section in which the average diameter of the shape of the islands in the direction perpendicular to the thickness direction of the heat-sealable resin layer was maximum can be determined as the MD.
  • the cross section in the length direction of the heat-sealable resin layer and each cross section (10 cross sections in total) that is angled 10 degrees from the direction parallel to the cross section in the length direction to the direction perpendicular to the cross section in the length direction are observed with an electron microscope to confirm the sea-island structure.
  • the shape of each individual island is observed in each cross section.
  • the straight line distance connecting the leftmost end in the direction perpendicular to the thickness direction of the heat-sealable resin layer and the rightmost end in the vertical direction is taken as the diameter y.
  • the average of the top 20 diameters y of the island shapes is calculated in descending order of diameter y.
  • the direction parallel to the cross section with the largest average diameter y of the island shapes is determined to be the MD.
  • the exterior material for a power storage device 10 of the present disclosure is composed of a laminate including, in this order from the outside, a base material layer 1, a metal foil layer 3, and a heat-sealable resin layer 4, as shown in FIG. 1, for example.
  • the base material layer 1 is the outermost layer
  • the heat-sealable resin layer 4 is the innermost layer.
  • the heat-sealable resin layers 4 of the exterior material for a power storage device 10 are opposed to each other, and the electricity storage device element is accommodated in a space formed by heat-sealing the periphery.
  • the metal foil layer 3 is used as a reference, and the heat-sealable resin layer 4 side is the inner side of the metal foil layer 3, and the base material layer 1 side is the outer side of the metal foil layer 3.
  • the exterior packaging material 10 for an electricity storage device may be composed of a laminate including, in this order, a metal foil layer 3 and a heat-sealable resin layer 4.
  • the side of the metal foil layer 3 opposite to the heat-sealable resin layer 4 becomes the outermost layer, and the heat-sealable resin layer 4 becomes the innermost layer.
  • the exterior material 10 for an electricity storage device may have an adhesive layer 2 between the base material layer 1 and the metal foil layer 3, if necessary, for the purpose of increasing the adhesion between these layers.
  • the exterior material 10 for an electricity storage device may have an adhesive layer 5 between the metal foil layer 3 and the heat-sealable resin layer 4, if necessary, for the purpose of increasing the adhesion between these layers.
  • a surface coating layer 6 or the like may be provided on the outside of the base material layer 1 (the side opposite to the heat-sealable resin layer 4) if necessary.
  • the thickness of the laminate constituting the exterior material 10 for an electricity storage device is not particularly limited, but from the viewpoint of cost reduction, energy density improvement, etc., examples of the thickness include about 300 ⁇ m or less, preferably about 250 ⁇ m or less, about 210 ⁇ m or less, about 190 ⁇ m or less, about 180 ⁇ m or less, about 155 ⁇ m or less, and about 120 ⁇ m or less.
  • the thickness of the laminate constituting the electricity storage device exterior material 10 is preferably about 35 ⁇ m or more, about 45 ⁇ m or more, about 60 ⁇ m or more, about 155 ⁇ m or more, and about 190 ⁇ m or more.
  • preferred ranges of the laminate constituting the exterior material 10 for an electrical storage device are, for example, about 35 to 300 ⁇ m, about 35 to 250 ⁇ m, about 35 to 210 ⁇ m, about 35 to 190 ⁇ m, about 35 to 180 ⁇ m, about 35 to 155 ⁇ m, about 35 to 120 ⁇ m, about 45 to 300 ⁇ m, about 45 to 250 ⁇ m, about 45 to 210 ⁇ m, about 45 to 190 ⁇ m, about 45 to 180 ⁇ m, about 45 to 155 ⁇ m, about 45 to 120 ⁇ m, about 60 to 300 ⁇ m, about 60 to 250 ⁇ m, about 60 to Examples include about 210 ⁇ m, about 60 to 190 ⁇ m, about 60 to 180 ⁇ m, about 60 to 155 ⁇ m, about 60 to 120 ⁇ m, about 155 to 300 ⁇ m, about 155 to 250 ⁇ m, about 155 to 210 ⁇ m, about 155 to 190 ⁇ m, about 155 to 180 ⁇ m, about 190
  • the ratio of the total thickness of the base material layer 1, the adhesive layer 2 provided as needed, the metal foil layer 3, the adhesive layer 5 provided as needed, the heat-sealable resin layer 4, and the surface coating layer 6 provided as needed to the thickness (total thickness) of the laminate constituting the exterior material 10 for a storage battery device is preferably 90% or more, more preferably 95% or more, and even more preferably 98% or more.
  • the ratio of the total thickness of these layers to the thickness (total thickness) of the laminate constituting the exterior material 10 for a storage battery device is preferably 90% or more, more preferably 95% or more, and even more preferably 98% or more.
  • the ratio of the total thickness of these layers to the thickness (total thickness) of the laminate constituting the exterior material 10 for an electric storage device can be, for example, 80% or more, preferably 90% or more, more preferably 95% or more, and even more preferably 98% or more.
  • the substrate layer 1 is a layer provided for the purpose of exhibiting the function as a substrate of the exterior material for an electricity storage device, etc.
  • the substrate layer 1 is located on the outer layer side of the exterior material for an electricity storage device.
  • the material from which the base layer 1 is made is not particularly limited, as long as it has the function of a base material, i.e., at least insulating properties.
  • the base layer 1 can be made, for example, using a resin, which may contain additives as described below.
  • the substrate layer 1 can be made of, for example, a resin film.
  • a preformed resin film may be used as the substrate layer 1 when the substrate layer 1 is laminated with the metal foil layer 3 or the like to manufacture the exterior material for a storage device 10 of the present disclosure.
  • the resin forming the substrate layer 1 may be formed into a film on the surface of the metal foil layer 3 or the like by extrusion molding or coating to form the substrate layer 1 formed of a resin film.
  • the resin film may be an unstretched film or a stretched film. Examples of stretched films include uniaxially stretched films and biaxially stretched films, and biaxially stretched films are preferred. Examples of stretching methods for forming a biaxially stretched film include sequential biaxial stretching, inflation, and simultaneous biaxial stretching. Examples of methods for applying a resin include roll coating, gravure coating, and extrusion coating.
  • the resin forming the base layer 1 may be, for example, polyester, polyamide, polyolefin, epoxy resin, acrylic resin, fluororesin, polyurethane, silicone resin, phenolic resin, or modified versions of these resins.
  • the resin forming the base layer 1 may also be a copolymer of these resins or a modified version of the copolymer. It may also be a mixture of these resins.
  • the base layer 1 preferably contains these resins as the main component, and more preferably contains polyester or polyamide as the main component.
  • the main component means that the content of the resin components contained in the base layer 1 is, for example, 50% by mass or more, preferably 60% by mass or more, more preferably 70% by mass or more, even more preferably 80% by mass or more, even more preferably 90% by mass or more, even more preferably 95% by mass or more, even more preferably 98% by mass or more, and even more preferably 99% by mass or more.
  • the base layer 1 contains polyester or polyamide as the main component
  • the content of polyester or polyamide among the resin components contained in the base layer 1 is, for example, 50% by mass or more, preferably 60% by mass or more, more preferably 70% by mass or more, even more preferably 80% by mass or more, even more preferably 90% by mass or more, even more preferably 95% by mass or more, even more preferably 98% by mass or more, and even more preferably 99% by mass or more.
  • polyester and polyamide are preferred as resins for forming the base layer 1.
  • polyesters include polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, polybutylene naphthalate, polyethylene isophthalate, and copolymer polyesters.
  • copolymer polyesters include copolymer polyesters in which ethylene terephthalate is the main repeating unit.
  • polyesters in which ethylene terephthalate is the main repeating unit and is polymerized with ethylene isophthalate (hereinafter abbreviated as polyethylene (terephthalate/isophthalate)), polyethylene (terephthalate/adipate), polyethylene (terephthalate/sodium sulfoisophthalate), polyethylene (terephthalate/sodium isophthalate), polyethylene (terephthalate/phenyl-dicarboxylate), and polyethylene (terephthalate/decanedicarboxylate).
  • polyethylene (terephthalate/isophthalate) polyethylene (terephthalate/adipate)
  • polyethylene terephthalate/sodium sulfoisophthalate
  • polyethylene terephthalate/sodium isophthalate
  • polyethylene (terephthalate/phenyl-dicarboxylate) polyethylene (terephthalate/decanedicarboxylate).
  • These polyesters may be used alone or in combination of two or
  • polyamides include aliphatic polyamides such as nylon 6, nylon 66, nylon 610, nylon 12, nylon 46, and copolymers of nylon 6 and nylon 66; hexamethylenediamine-isophthalic acid-terephthalic acid copolymer polyamides such as nylon 6I, nylon 6T, nylon 6IT, and nylon 6I6T (I represents isophthalic acid, T represents terephthalic acid) which contain structural units derived from terephthalic acid and/or isophthalic acid, and aromatic polyamides such as polyamide MXD6 (polymetaxylylene adipamide); alicyclic polyamides such as polyamide PACM6 (polybis(4-aminocyclohexyl)methane adipamide); polyamides copolymerized with lactam components or isocyanate components such as 4,4'-diphenylmethane diisocyanate; polyesteramide copolymers and polyetheresteramide copolymers which are copolymer,
  • the substrate layer 1 preferably includes at least one of a polyester film, a polyamide film, and a polyolefin film, preferably includes at least one of a stretched polyester film, a stretched polyamide film, and a stretched polyolefin film, more preferably includes at least one of a stretched polyethylene terephthalate film, a stretched polybutylene terephthalate film, a stretched nylon film, and a stretched polypropylene film, and even more preferably includes at least one of a biaxially oriented polyethylene terephthalate film, a biaxially oriented polybutylene terephthalate film, a biaxially oriented nylon film, and a biaxially oriented polypropylene film.
  • the base layer 1 may be a single layer, or may be composed of two or more layers.
  • the base layer 1 may be a laminate in which resin films are laminated with an adhesive or the like, or a laminate of resin films in which resins are co-extruded to form two or more layers.
  • a laminate of resin films in which resins are co-extruded to form two or more layers may be used as the base layer 1 without being stretched, or may be uniaxially or biaxially stretched to form the base layer 1.
  • laminates of two or more resin films in the base layer 1 include a laminate of a polyester film and a nylon film, a laminate of two or more nylon films, and a laminate of two or more polyester films, and preferably a laminate of a stretched nylon film and a stretched polyester film, a laminate of two or more stretched nylon films, and a laminate of two or more stretched polyester films.
  • the base layer 1 is a laminate of two resin films
  • a laminate of a polyester resin film and a polyester resin film a laminate of a polyamide resin film and a polyamide resin film, or a laminate of a polyester resin film and a polyamide resin film is preferred
  • a laminate of a polyethylene terephthalate film and a polyethylene terephthalate film, a laminate of a nylon film and a nylon film, or a laminate of a polyethylene terephthalate film and a nylon film is more preferred.
  • the polyester resin film is located in the outermost layer of the base layer 1, because the polyester resin is less likely to discolor when, for example, an electrolyte is attached to the surface.
  • preferred ranges of the thickness of the polyester resin film are about 2 to 33 ⁇ m, about 2 to 28 ⁇ m, about 2 to 23 ⁇ m, about 2 to 18 ⁇ m, about 2 to 11 ⁇ m, about 2 to 8 ⁇ m, about 10 to 33 ⁇ m, about 10 to 28 ⁇ m, about 10 to 23 ⁇ m, about 10 to 18 ⁇ m, about 18 to 33 ⁇ m, and about 18 to 28 ⁇ m.
  • the thickness of the polyamide resin film includes about 2 to 33 ⁇ m, about 2 to 28 ⁇ m, about 2 to 23 ⁇ m, about 2 to 18 ⁇ m, about 2 to 11 ⁇ m, about 2 to 8 ⁇ m, about 10 to 33 ⁇ m, about 10 to 28 ⁇ m, about 10 to 23 ⁇ m, about 10 to 18 ⁇ m, about 18 to 33 ⁇ m, about 18 to 28 ⁇ m, and about 18 to 23 ⁇ m.
  • the two or more resin films may be laminated via an adhesive.
  • Preferred adhesives include those similar to those exemplified in the adhesive layer 2 described below.
  • the method for laminating two or more resin films is not particularly limited, and known methods can be used, such as dry lamination, sandwich lamination, extrusion lamination, and thermal lamination, and preferably dry lamination.
  • a polyurethane adhesive as the adhesive.
  • the thickness of the adhesive is, for example, about 2 to 5 ⁇ m.
  • an anchor coat layer may be formed on the resin film and laminated.
  • the anchor coat layer may be the same as the adhesive exemplified in the adhesive layer 2 described below. In this case, the thickness of the anchor coat layer is, for example, about 0.01 to 1.0 ⁇ m.
  • Additives such as lubricants, flame retardants, antiblocking agents, antioxidants, light stabilizers, tackifiers, antistatic agents, and colorants may be present on at least one of the surface and interior of the base layer 1. Only one type of additive may be used, or two or more types may be mixed together.
  • a lubricant is present on at least one of the surface and the inside of the base material layer 1.
  • the lubricant is not particularly limited, but preferably includes amide-based lubricants.
  • Specific examples of amide-based lubricants include, for example, saturated fatty acid amides, unsaturated fatty acid amides, substituted amides, methylol amides, saturated fatty acid bisamides, unsaturated fatty acid bisamides, fatty acid ester amides, and aromatic bisamides.
  • saturated fatty acid amides include lauric acid amides, palmitic acid amides, stearic acid amides, behenic acid amides, and hydroxystearic acid amides.
  • unsaturated fatty acid amides include oleic acid amides and erucic acid amides.
  • substituted amides include N-oleyl palmitic acid amide, N-stearyl stearic acid amide, N-stearyl oleic acid amide, N-oleyl stearic acid amide, and N-stearyl erucic acid amide.
  • methylol amides include methylol stearic acid amide.
  • saturated fatty acid bisamides include methylene bisstearic acid amide, ethylene biscapric acid amide, ethylene bislauric acid amide, ethylene bisstearic acid amide, ethylene bishydroxystearic acid amide, ethylene bisbehenic acid amide, hexamethylene bisstearic acid amide, hexamethylene bisbehenic acid amide, hexamethylene hydroxystearic acid amide, N,N'-distearyl adipic acid amide, N,N'-distearyl sebacic acid amide, etc.
  • unsaturated fatty acid bisamides include ethylene bisoleic acid amide, ethylene biserucic acid amide, hexamethylene bisoleic acid amide, N,N'-dioleyl adipic acid amide, N,N'-dioleyl sebacic acid amide, etc.
  • fatty acid ester amides include stearamide ethyl stearate, etc.
  • aromatic bisamides include m-xylylene bisstearic acid amide, m-xylylene bishydroxystearic acid amide, and N,N'-distearylisophthalic acid amide.
  • the lubricant may be used alone or in combination of two or more types, preferably in combination of two or more types.
  • the amount of the lubricant present is not particularly limited, but may be, for example, about 3 mg/m 2 or more, preferably about 4 mg/m 2 or more, or about 5 mg/m 2 or more.
  • the amount of the lubricant present on the surface of the base layer 1 may be, for example, about 15 mg/m 2 or less, preferably about 14 mg/m 2 or less, or about 10 mg/m 2 or less.
  • the preferred range of the amount of the lubricant present on the surface of the base layer 1 is about 3 to 15 mg/m 2 , about 3 to 14 mg/m 2 , about 3 to 10 mg/m 2 , about 4 to 15 mg/m 2 , about 4 to 14 mg/m 2 , about 4 to 10 mg/m 2 , about 5 to 15 mg/m 2 , about 5 to 14 mg/m 2 , or about 5 to 10 mg/m 2 .
  • the lubricant present on the surface of the base layer 1 may be a lubricant exuded from the resin that constitutes the base layer 1, or a lubricant applied to the surface of the base layer 1.
  • the thickness of the substrate layer 1 is not particularly limited as long as it functions as a substrate, but may be, for example, about 3 ⁇ m or more, and preferably about 10 ⁇ m or more.
  • the thickness of the substrate layer 1 may be, for example, about 100 ⁇ m or less, about 90 ⁇ m or less, about 70 ⁇ m or less, or about 50 ⁇ m or less, preferably about 35 ⁇ m or less, 11 ⁇ m or less, or 8 ⁇ m or less.
  • preferred ranges of the thickness of the base layer 1 include about 3 to 100 ⁇ m, about 3 to 90 ⁇ m, about 3 to 70 ⁇ m, about 3 to 50 ⁇ m, about 3 to 35 ⁇ m, about 3 to 11 ⁇ m, about 3 to 8 ⁇ m, about 10 to 100 ⁇ m, about 10 to 90 ⁇ m, about 10 to 70 ⁇ m, about 10 to 50 ⁇ m, about 10 to 35 ⁇ m, and about 10 to 11 ⁇ m.
  • about 3 to 35 ⁇ m, about 3 to 11 ⁇ m, and about 3 to 8 ⁇ m are preferred, and when improving moldability, about 35 to 50 ⁇ m is preferred.
  • the thickness of the resin films constituting each layer is not particularly limited, but may be, for example, about 2 ⁇ m or more, preferably about 10 ⁇ m or more, and about 18 ⁇ m or more.
  • the thickness of the resin film constituting each layer is, for example, about 33 ⁇ m or less, preferably about 28 ⁇ m or less, about 23 ⁇ m or less, about 18 ⁇ m or less, 11 ⁇ m or less, or 8 ⁇ m or less.
  • the preferred range of the thickness of the resin film constituting each layer is about 2 to 33 ⁇ m, about 2 to 28 ⁇ m, about 2 to 23 ⁇ m, about 2 to 18 ⁇ m, about 2 to 11 ⁇ m, about 2 to 8 ⁇ m, about 10 to 33 ⁇ m, about 10 to 28 ⁇ m, about 10 to 23 ⁇ m, about 10 to 18 ⁇ m, about 18 to 33 ⁇ m, about 18 to 28 ⁇ m, or about 18 to 23 ⁇ m.
  • the base layer 1 contains a colorant, so that the exterior material for the electricity storage device can be colored.
  • Known colorants such as pigments and dyes can be used as the colorant.
  • only one type of colorant may be used, or two or more types may be mixed together.
  • the type of pigment is not particularly limited as long as it does not impair the function of the substrate layer 1 as a substrate.
  • organic pigments include azo-based, phthalocyanine-based, quinacridone-based, anthraquinone-based, dioxazine-based, indigothioindigo-based, perinone-perylene-based, isoindolenine-based, and benzimidazolone-based pigments
  • examples of inorganic pigments include carbon black-based, titanium oxide-based, cadmium-based, lead-based, chromium oxide-based, and iron-based pigments, as well as finely powdered mica and fish scale foil.
  • carbon black is preferred in order to give the exterior material for an electricity storage device a black appearance. Also, from the perspective of dissipating heat generated by the electricity storage device, it is preferable to use mica.
  • the average particle size of the pigment is not particularly limited, and may be, for example, about 0.03 to 5 ⁇ m, and preferably about 0.05 to 2 ⁇ m.
  • the average particle size of the pigment is the median size measured with a laser diffraction/scattering type particle size distribution measuring device.
  • the content of the colorant or pigment in the base layer 1 is not particularly limited as long as the exterior material for the electricity storage device is colored, and may be, for example, about 5 to 60% by mass, and preferably about 10 to 40% by mass.
  • the adhesive layer 2 is a layer that is provided between the base material layer 1 and the metal foil layer 3 as necessary for the purpose of increasing the adhesion between them.
  • the adhesive layer 2 is formed from an adhesive capable of bonding the base material layer 1 and the metal foil layer 3.
  • the adhesive used to form the adhesive layer 2 may be any of a chemical reaction type, a solvent volatilization type, a hot melt type, a hot pressure type, etc. It may also be a two-component curing adhesive (two-component adhesive), a one-component curing adhesive (one-component adhesive), or a resin that does not involve a curing reaction.
  • the adhesive layer 2 may be a single layer or multiple layers.
  • polyesters such as polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, polybutylene naphthalate, polyethylene isophthalate, and copolymer polyesters; polyethers; polyurethanes; epoxy resins; phenolic resins; polyamides such as nylon 6, nylon 66, nylon 12, and copolymer polyamides; polyolefin resins such as polyolefins, cyclic polyolefins, acid-modified polyolefins, and acid-modified cyclic polyolefins; polyvinyl acetate; cellulose; (meth)acrylic resins; polyimides; polycarbonates; amino resins such as urea resins and melamine resins; rubbers such as chloroprene rubber, nitrile rubber, and styrene-butadiene rubber; and silicone resins.
  • polyesters such as polyethylene terephthalate, polybutylene terephthalate,
  • adhesive components may be used alone or in combination of two or more.
  • polyurethane adhesives are preferred.
  • the adhesive strength of these adhesive component resins can be increased by using an appropriate curing agent in combination.
  • the curing agent is selected from polyisocyanates, polyfunctional epoxy resins, oxazoline group-containing polymers, polyamine resins, acid anhydrides, etc., depending on the functional groups of the adhesive components.
  • the polyurethane adhesive may be, for example, a polyurethane adhesive containing a first agent containing a polyol compound and a second agent containing an isocyanate compound.
  • a two-part curing polyurethane adhesive may preferably be used, in which a polyol such as polyester polyol, polyether polyol, or acrylic polyol is used as the first agent, and an aromatic or aliphatic polyisocyanate is used as the second agent.
  • the polyurethane adhesive may be, for example, a polyurethane adhesive containing a polyurethane compound in which a polyol compound has been reacted with an isocyanate compound in advance, and an isocyanate compound.
  • the polyurethane adhesive may be, for example, a polyurethane adhesive containing a polyurethane compound in which a polyol compound has been reacted with an isocyanate compound in advance, and a polyol compound.
  • the polyurethane adhesive may be, for example, a polyurethane adhesive in which a polyurethane compound in which a polyol compound has been reacted with an isocyanate compound in advance is cured by reacting it with moisture in the air or the like.
  • the polyol compound it is preferable to use a polyester polyol having a hydroxyl group on the side chain in addition to the hydroxyl group at the end of the repeating unit.
  • the second agent may be an aliphatic, alicyclic, aromatic, or araliphatic isocyanate compound.
  • isocyanate compound examples include hexamethylene diisocyanate (HDI), xylylene diisocyanate (XDI), isophorone diisocyanate (IPDI), hydrogenated XDI (H6XDI), hydrogenated MDI (H12MDI), tolylene diisocyanate (TDI), diphenylmethane diisocyanate (MDI), and naphthalene diisocyanate (NDI).
  • polyisocyanate compound examples include polyfunctional isocyanate modified compounds of one or more of these diisocyanates.
  • the adhesive layer 2 is formed from a polyurethane adhesive, which gives the exterior material for the electricity storage device excellent electrolyte resistance, and prevents the base layer 1 from peeling off even if electrolyte adheres to the side surface.
  • the adhesive layer 2 is permitted to contain other components as long as they do not impair adhesion, and may contain colorants, thermoplastic elastomers, tackifiers, fillers, etc.
  • a colorant in the adhesive layer 2, the exterior material for the electricity storage device can be colored.
  • known colorants such as pigments and dyes can be used.
  • only one type of colorant may be used, or two or more types may be mixed together.
  • organic pigments include azo-based, phthalocyanine-based, quinacridone-based, anthraquinone-based, dioxazine-based, indigothioindigo-based, perinone-perylene-based, isoindolenine-based, and benzimidazolone-based pigments
  • inorganic pigments include carbon black-based, titanium oxide-based, cadmium-based, lead-based, chromium oxide-based, and iron-based pigments, as well as finely powdered mica and fish scale foil.
  • carbon black is preferred, for example to give the exterior material for an electricity storage device a black appearance.
  • the average particle size of the pigment is not particularly limited, and may be, for example, about 0.03 to 5 ⁇ m, about 0.05 to 5 ⁇ m, about 0.08 to 5 ⁇ m, and preferably about 0.03 to 2 ⁇ m, about 0.05 to 2 ⁇ m, or about 0.08 to 2 ⁇ m.
  • the average particle size of the pigment is the median size measured using a laser diffraction/scattering type particle size distribution measuring device.
  • the content of the colorant or pigment in the adhesive layer 2 is not particularly limited as long as the exterior material for the electricity storage device is colored, and may be, for example, about 5 to 60% by mass, and preferably 10 to 40% by mass.
  • the thickness of the adhesive layer 2 is not particularly limited as long as it can bond the base layer 1 and the metal foil layer 3, but is, for example, about 1 ⁇ m or more, about 2 ⁇ m or more.
  • the thickness of the adhesive layer 2 is, for example, about 10 ⁇ m or less, about 5 ⁇ m or less. Preferred ranges for the thickness of the adhesive layer 2 include about 1 to 10 ⁇ m, about 1 to 5 ⁇ m, about 2 to 10 ⁇ m, and about 2 to 5 ⁇ m.
  • the colored layer is a layer (not shown) that is provided between the base material layer 1 and the metal foil layer 3 as necessary.
  • a colored layer may be provided between the base material layer 1 and the adhesive layer 2, or between the adhesive layer 2 and the metal foil layer 3.
  • a colored layer may also be provided on the outside of the base material layer 1.
  • the colored layer can be formed, for example, by applying an ink containing a colorant to the surface of the base layer 1 or the surface of the metal foil layer 3.
  • a colorant known pigments, dyes, etc. can be used.
  • only one type of colorant may be used, or two or more types may be mixed together.
  • colorants contained in the colored layer include those exemplified in the [Adhesive layer 2] section.
  • the metal foil layer 3 is a layer that at least prevents the intrusion of moisture (a barrier layer).
  • the metal foil layer 3 is a layer made of a metal material.
  • the metal material that makes up the metal foil layer 3 include aluminum alloys, stainless steel, titanium steel, and steel plates, and it is preferable that the metal foil layer 3 contains at least one of an aluminum alloy foil and a stainless steel foil.
  • the metal foil layer 3 may be provided in multiple layers.
  • the layer made of the above-mentioned metal material may contain recycled metal material.
  • recycled metal material include recycled aluminum alloy, stainless steel, titanium steel, or steel plate. These recycled materials can be obtained by known methods. Recycled aluminum alloy can be obtained by the manufacturing method described in WO 2022/092231.
  • the metal foil layer 3 may be made of only recycled material, or may be made of a mixture of recycled and virgin materials. Note that recycled metal material refers to metal material that has been made reusable by collecting, isolating, and refining various products used in the city and waste from manufacturing processes. Also, virgin metal material refers to new metal material that has been refined from natural metal resources (raw materials) and is not recycled material.
  • the maximum reflected light intensity A at at least one surface of the metal foil layer is 50 or less in the range of 0.0° to 90.0° of light receiving angles, measured at every 0.1° of light receiving angle using a goniophotometer under the condition of an incident light angle of 60°.
  • the surface of the metal foil layer inevitably has a fine uneven shape, but if the value of the maximum reflected light intensity A is greater than 50, it can be said that the surface of the metal foil layer is excessively flat from the viewpoint of formability of the exterior material for a storage battery device.
  • the maximum reflected light intensity A on at least one surface of the metal foil layer is 50 or less, so that the surface of the metal foil layer has a moderately uneven shape, which suppresses peeling between the metal foil layer and the adjacent layer during molding of the exterior material for an electrical storage device, and is considered to exhibit excellent moldability.
  • the method for measuring the maximum reflected light intensity A is described below.
  • the maximum reflected light intensity A is preferably 50 or less for at least one surface of the metal foil layer (preferably the matte surface of the metal foil layer) in the light receiving angle range of 0.0° to 90.0°, measured at every 0.1° of light receiving angle using a goniophotometer under the condition of an incident light angle of 60°.
  • one side of the metal foil layer 3 is a glossy surface (a mirror surface with metallic luster) and the other side is a matte surface (a matte pear-finished surface).
  • the base material layer 1 side of the metal foil layer 3 may be a matte surface, or the heat-sealable resin layer 4 side of the metal foil layer 3 may be a matte surface, but from the viewpoint of making it easy to identify product information, etc. printed on the surface of the base material layer, it is preferable that the base material layer 1 side of the metal foil layer 3 is a matte surface.
  • the surfaces of the metal foil layer 3 are compared, and the surface with a relatively lower gloss is the matte surface, and the surface with a relatively higher gloss is the glossy surface. More specifically, the maximum reflected light intensity on both sides of the metal foil layer is measured, and the surface with the higher maximum reflected light intensity is the glossy surface of the metal foil layer, and the surface with the lower maximum reflected light intensity is the matte surface of the metal foil layer. Also, for example, during the manufacture of aluminum alloy foil, the surface that is in contact with the rolling rolls when the aluminum alloy foil is rolled is the glossy surface, and the surface where the two aluminum alloy foils meet when rolling two sheets of aluminum alloy foil together is the matte surface.
  • the matte surface of the metal foil layer 3 has a maximum reflected light intensity A of 50 or less.
  • the maximum reflected light intensity A on at least one surface of the metal foil layer is preferably 50 or less, more preferably 40 or less, and even more preferably 30 or less.
  • the maximum reflected light intensity A is preferably 10 or more, more preferably 16 or more, and even more preferably 20 or more.
  • Preferred ranges of the maximum reflected light intensity A include about 10 to 50, about 10 to 40, about 10 to 30, about 16 to 50, about 16 to 40, about 16 to 30, about 20 to 50, about 20 to 40, and about 20 to 30.
  • the matte surface of the metal foil layer 3 has these values of maximum reflected light intensity A.
  • the surface of at least one surface of the metal foil layer preferably the matte surface of the metal foil layer
  • the surface of at least one surface of the metal foil layer has these values of maximum reflected light intensity A.
  • the maximum reflected light intensity A In order to adjust the maximum reflected light intensity A to 50 or less, it is effective to adjust the amount of rolling oil used when manufacturing the metal foil layer so that the surface has an appropriate uneven shape, or to adjust the conveying tension during rolling. It is preferable to confirm that the maximum reflected light intensity A of at least one surface of the obtained metal foil layer is 50 or less, and to use it as the metal foil layer of the exterior material for the electricity storage device disclosed herein.
  • the maximum slope C for at least one surface of the metal foil layer is preferably 10.0 or less, more preferably 8.0 or less, and even more preferably 5.0 or less, and the maximum slope C is preferably 0.5 or more, more preferably 1.0 or more, and even more preferably 2.0 or more.
  • Preferred ranges for the maximum slope C include approximately 0.5 to 10.0, approximately 0.5 to 8.0, approximately 0.5 to 5.0, approximately 1.0 to 10.0, approximately 1.0 to 8.0, approximately 1.0 to 5.0, approximately 2.0 to 10.0, approximately 2.0 to 8.0, and approximately 2.0 to 5.0. From the viewpoint of more suitably exerting the effects of the first aspect of the present disclosure, it is more preferable that the matte surface of the metal foil layer 3 has these maximum slope C values. Also, in the second aspect of the present disclosure described below, it is more preferable that at least one surface of the metal foil layer (preferably the matte surface of the metal foil layer 3) has these maximum slope C values.
  • the surface of the metal foil layer can be said to be flat.
  • the layer in contact with the surface e.g., a base layer, an adhesive layer, an adhesive layer, a heat-sealable resin layer, etc.
  • the adhesive strength between the layers is not increased, resulting in poor formability as an exterior material for a storage device.
  • the maximum slope C on at least one surface of the metal foil layer is 10.0 or less
  • the surface of the metal foil layer has a more suitable uneven shape, and peeling between the metal foil layer and the adjacent layer during molding of the exterior material for a storage device is suppressed, and it can be considered that excellent formability is exhibited.
  • the method for measuring the maximum slope C is as described below.
  • the maximum reflected light intensity B for at least one surface of the metal foil layer is 300 or more in the range of light receiving angles of 45.0° or more and 75.0° or less, measured at every 0.1° of light receiving angle at an incident light angle of 60° using a goniophotometer.
  • the surface of the metal foil layer inevitably has a fine uneven shape, and the smaller the value of the maximum reflected light intensity B is below 300, the sharper the convex or concave portion of the fine uneven shape that the metal foil layer inevitably has.
  • the maximum reflected light intensity B on at least one surface of the metal foil layer is 300 or more, and the finely uneven convex or concave portions are flattened, which is believed to favorably suppress cracking of the metal foil layer during molding of the exterior material for an electrical storage device, thereby providing excellent moldability.
  • the maximum reflected light intensity B of the other surface of the metal foil layer is preferably 300 or more in the light receiving angle range of 45.0° to 75.0°, measured at every 0.1° of light receiving angle using a goniophotometer under the condition of an incident light angle of 60°.
  • the maximum reflected light intensity B of the glossy surface of the metal foil layer 3 has a value of 300 or more.
  • the maximum reflected light intensity B on at least one surface of the metal foil layer is preferably 300 or more, more preferably 400 or more, and even more preferably 500 or more, and the maximum reflected light intensity B is preferably 650 or less, more preferably 580 or less, and even more preferably 510 or less, and preferred ranges of the maximum reflected light intensity B include about 300 to 650, about 300 to 580, about 300 to 510, about 400 to 650, about 400 to 580, about 400 to 510, about 500 to 650, about 500 to 580, and about 500 to 510.
  • the glossy surface of the metal foil layer 3 has these values of maximum reflected light intensity B.
  • at least one surface of the metal foil layer preferably the glossy surface of the metal foil layer 3 has these maximum reflected light intensity B values.
  • the maximum reflected light intensity B In order to adjust the maximum reflected light intensity B to 300 or more, it is effective to reduce the surface roughness of the rolling roll and adjust the rolling speed so that the convex parts of the fine uneven shape on the surface are not sharp when manufacturing the metal foil layer, and it is preferable to confirm that the maximum reflected light intensity B of at least one surface of the obtained metal foil layer is 300 or more and use it as the metal foil layer of the exterior material for the electricity storage device of the present disclosure.
  • the maximum slope D in the range of light receiving angles of 45.0° or more and 75.0° or less, measured at every 0.1° of light receiving angle using a goniophotometer under a condition of an incident light angle of 60° is preferably 200 or more, more preferably 300 or more, even more preferably 400 or more, and even more preferably 470 or more, and the maximum slope D is preferably 600 or less, more preferably 500 or less, and even more preferably 470 or less, and preferred ranges for the maximum slope D include approximately 200 to 600, approximately 200 to 500, approximately 200 to 470, approximately 300 to 600, approximately 300 to 500, approximately 300 to 470, approximately 400 to 600, approximately 400 to 500, approximately 400 to 470, approximately 470 to 600, and approximately 470 to 500.
  • the glossy surface of the metal foil layer 3 has these maximum slope D values. Also, in the above-mentioned first aspect of the present disclosure, it is more preferable that at least one surface of the metal foil layer (preferably the glossy surface of the metal foil layer 3) has these maximum slope D values.
  • the surface of the metal foil layer inevitably has a fine uneven shape, and the smaller the value of the maximum slope D is below 200, the sharper the convex or concave portion of the fine uneven shape that the metal foil layer inevitably has.
  • the sharper the convex or concave portion of the uneven shape on the surface of the metal foil layer the more likely it is that cracks will occur in the metal foil layer starting from the sharp convex or concave portion when the metal foil layer is stretched during the molding of the exterior material for the electric storage device.
  • the maximum slope D on at least one surface of the metal foil layer by controlling the maximum slope D on at least one surface of the metal foil layer to 200 or more, it can be considered that cracks in the metal foil layer during the molding of the exterior material for the electric storage device are suitably suppressed and better formability is exhibited.
  • the metal foil layer can also be removed from each electrical storage device exterior material and measured in this manner using the following procedure.
  • Aluminum alloy foil can also be measured.
  • the base material layer of the electrical storage device exterior material is manually peeled off to produce a laminate consisting of the metal foil layer, an adhesive layer that is laminated as necessary, and a heat-sealable resin layer.
  • This laminate is then immersed in orthodichlorobenzene under the following conditions to remove the adhesive layer, heat-sealable resin layer, etc. from the metal foil layer, and the surface of the metal foil layer is washed multiple times with ethanol and left to dry, resulting in a metal foil layer that is the subject of measurement.
  • the maximum reflected light intensity and maximum tilt are measured for each surface of the metal foil layer (matte surface and glossy surface) using a goniophotometer under the following measurement conditions.
  • Standard black glass (black glass reference plate) was used as a reference for reflected light intensity. Specifically, the measurement value of the goniophotometer varies depending on the individual difference of the lamp and the usage condition of the lamp. In order to enable absolute evaluation of the sample, the maximum reflected light intensity of the black glass (black glass reference plate) is set as 100, and the reflected light intensity of the sample is normalized.
  • Measurement target Black glass reference plate BK-7 (black glass reference plate, refractive index 1.518) manufactured by Murakami Color Research Laboratory Co., Ltd.
  • Equipment Variangular photometer Incident angle (IA): 60° Receiving angle: +50° to +70°, measured in 0.1° increments.
  • Facing angle 0° Incident light aperture (VS1): 3 (10.5 mm) Aperture (VS3): 4 (9.1 mm) SENSITIVITY: 950 HIGH VOLT.: 539 (adjusted so that the reflection intensity of black glass (black glass reference plate) is 85)
  • Neutral density filters 1% filter, 50% filter
  • Measurements are carried out under conditions where the reflection intensity from standard black glass (black glass reference plate) is 85. Only the light-reducing filter is changed as necessary so that the reflection intensity is 90 or less.
  • Facing angle 0° Incident light aperture (VS1): 3 (10.5 mm) Aperture (VS3): 4 (9.1 mm) SENSITIVITY: 950 HIGH VOLT.: 539 (Use a value adjusted so that the reflection intensity of standard black plate glass (black glass reference plate BK-7 refractive index 1.518) is 85)
  • Neutral density filter Measurements are performed under conditions where the reflection intensity is 85 with standard black glass (black glass reference plate). Change only the neutral density filter as necessary so that the reflection intensity is 90 or less.
  • Facing angle 0° Incident light aperture (VS1): 3 (10.5 mm) Aperture (VS3): 4 (9.1 mm) SENSITIVITY: 950 HIGH VOLT.: 539 (Use a value adjusted so that the reflection intensity of standard black plate glass (black glass reference plate BK-7 refractive index 1.518) is 85)
  • Neutral density filter Measurements are carried out under conditions where the reflection intensity is 85 with black glass (black glass reference plate). Change only the neutral density filter as necessary so that the reflection intensity is 90 or less.
  • the aluminum alloy foil is preferably a soft aluminum alloy foil made of, for example, an annealed aluminum alloy, and from the viewpoint of further improving the formability, it is preferable that the aluminum alloy foil is an iron-containing aluminum alloy foil.
  • the iron content is preferably 0.1% by mass or more, more preferably 0.5% by mass or more, even more preferably 0.7% by mass or more, even more preferably 1.2% by mass or more, and is preferably 9.0% by mass or less, more preferably 2.0% by mass or less, even more preferably 1.7% by mass or less, even more preferably 1.3% by mass or less, and the preferred ranges are about 0.1 to 9.0% by mass, 0.1 Examples of the iron content include about 0.1 to 2.0% by mass, about 0.1 to 1.7% by mass, about 0.1 to 1.3% by mass, about 0.5 to 9.0% by mass, about 0.5 to 2.0% by mass, about 0.5 to 1.7% by mass, about 0.5 to 1.3% by mass, about 0.7 to 9.0% by mass, about 0.7 to 2.0% by mass, about 0.7 to 1.7% by mass, about 0.7 to 1.3% by mass, about 1.2 to 9.0% by mass, about 1.2 to 2.0% by mass, about 1.2 to 1.7% by mass, and about 1.2 to
  • iron content of 0.1% by mass or more it is possible to obtain an exterior material for a power storage device having better formability.
  • an iron content of 9.0% by mass or less it is possible to obtain an exterior material for a power storage device having better flexibility.
  • silicon, magnesium, copper, manganese, and the like may be added as necessary.
  • softening can be performed by annealing treatment or the like.
  • soft aluminum alloy foils include aluminum alloy foils having a composition specified in JIS H4160:1994 A8021H-O, JIS H4160:1994 A8079H-O, JIS H4000:2014 A8021P-O, or JIS H4000:2014 A8079P-O.
  • JIS A8021 JIS H4160:1994 A8021H-O, JIS H4000:2014 A8021P-O
  • Si is 0.15 mass% or less
  • Fe is 1.2 to 1.7 mass%
  • Cu is 0.05 mass% or less
  • other components are each 0.05 mass% or less
  • the total of the other components is 0.15 mass% or less
  • Al is the balance.
  • JIS A8079 JIS H4160:1994 A8079H-O, JIS H4000:2014 A8079P-O
  • Si is 0.05-0.30 mass%
  • Fe is 0.7-1.3 mass%
  • Cu is 0.05 mass% or less
  • Zn is 0.10 mass% or less
  • other components are each 0.05 mass% or less
  • the total of other components is 0.15 mass% or less
  • Al is the balance.
  • the composition of aluminum alloy foil can be measured by elemental analysis.
  • the Si content of the aluminum alloy foil is preferably 0.08 mass% or more, more preferably about 0.10 mass% or more, even more preferably about 0.12 mass% or more, and is preferably about 1.50 mass% or less, more preferably about 1.20 mass% or less, and even more preferably about 1.00 mass% or less, and preferred ranges include approximately 0.08 to 1.50 mass%, approximately 0.08 to 1.20 mass%, approximately 0.08 to 1.00 mass%, approximately 0.10 to 1.50 mass%, approximately 0.10 to 1.20 mass%, approximately 0.10 to 1.00 mass%, approximately 0.12 to 1.50 mass%, approximately 0.12 to 1.20 mass%, and approximately 0.12 to 1.00 mass%.
  • the Fe content is preferably 0.50 mass% or more, more preferably about 0.80 mass% or more, and even more preferably about 1.00 mass% or more, and is preferably about 1.50 mass% or less, more preferably about 1.40 mass% or less, and even more preferably about 1.30 mass% or less.
  • Preferred ranges include about 0.50 to 1.50 mass%, about 0.50 to 1.40 mass%, about 0.50 to 1.30 mass%, about 0.80 to 1.50 mass%, about 0.80 to 1.4 ...
  • the Mg content include about 0 mass%, about 0.80 to 1.30 mass%, about 1.00 to 1.50 mass%, about 1.00 to 1.40 mass%, and about 1.00 to 1.30 mass%.
  • the Mg content is preferably 0 mass% or more, more preferably 0.80 mass% or more, and is preferably 2.00 mass% or less, more preferably 1.50 mass% or less. Preferred ranges include about 0 to 2.00 mass%, about 0 to 1.50 mass%, about 0.80 to 2.00 mass%, and about 0.80 to 1.50 mass%, and may be 0 mass%.
  • the Al content is preferably 95.00% by mass or more, more preferably about 95.30% by mass or more, and even more preferably about 95.50% by mass or more, and is also preferably about 97.00% by mass or less, more preferably about 96.30% by mass or less, and even more preferably about 95.60% by mass or less.
  • Preferred ranges include about 95.00 to 97.00% by mass, about 95.00 to 96.30% by mass, about 95.00 to 95.60% by mass, about 95.30 to 97.00% by mass, about 95.30 to 96.30% by mass, and about 95.30 to 95.60% by mass. It is preferable that each of the other components (components other than Si, Fe, Mg, and Al) is 0.05% by mass or less, the total of the other components is 0.15% by mass or less, and Al is the remainder.
  • stainless steel foil examples include austenitic, ferritic, austenitic-ferritic, martensitic, and precipitation hardened stainless steel foils. Furthermore, from the viewpoint of providing an exterior material for an electricity storage device with excellent formability, it is preferable that the stainless steel foil is made of austenitic stainless steel.
  • austenitic stainless steels that make up the stainless steel foil include SUS304, SUS301, and SUS316L, with SUS304 being particularly preferred.
  • the thickness of the metal foil layer 3, in the case of metal foil, is sufficient as long as it at least functions as a metal foil layer to prevent the intrusion of moisture, and may be, for example, about 9 to 200 ⁇ m.
  • the thickness of the metal foil layer 3 is preferably about 85 ⁇ m or less, more preferably about 50 ⁇ m or less, even more preferably about 40 ⁇ m or less, and particularly preferably about 35 ⁇ m or less.
  • the thickness of the metal foil layer 3 is preferably about 10 ⁇ m or more, even more preferably about 20 ⁇ m or more, and more preferably about 25 ⁇ m or more.
  • the preferred ranges for the thickness of the metal foil layer 3 include about 10 to 85 ⁇ m, about 10 to 50 ⁇ m, about 10 to 40 ⁇ m, about 10 to 35 ⁇ m, about 20 to 85 ⁇ m, about 20 to 50 ⁇ m, about 20 to 40 ⁇ m, about 20 to 35 ⁇ m, about 25 to 85 ⁇ m, about 25 to 50 ⁇ m, about 25 to 40 ⁇ m, and about 25 to 35 ⁇ m.
  • the metal foil layer 3 is made of an aluminum alloy foil, the above-mentioned range is particularly preferred.
  • the thickness of the metal foil layer 3 is preferably about 35 ⁇ m or more, more preferably about 45 ⁇ m or more, even more preferably about 50 ⁇ m or more, and even more preferably about 55 ⁇ m or more, and is preferably about 200 ⁇ m or less, more preferably about 85 ⁇ m or less, even more preferably about 75 ⁇ m or less, and even more preferably about 70 ⁇ m or less.
  • Preferred ranges are about 35 to 200 ⁇ m, about 35 to 85 ⁇ m, about 35 to 75 ⁇ m, about 35 to 70 ⁇ m, about 45 to 200 ⁇ m, about 45 to 85 ⁇ m, about 45 to 75 ⁇ m, about 45 to 70 ⁇ m, about 50 to 200 ⁇ m, about 50 to 85 ⁇ m, about 50 to 75 ⁇ m, about 50 to 70 ⁇ m, about 55 to 200 ⁇ m, about 55 to 85 ⁇ m, about 55 to 75 ⁇ m, and about 55 to 70 ⁇ m.
  • the thickness of the stainless steel foil is preferably about 60 ⁇ m or less, more preferably about 50 ⁇ m or less, even more preferably about 40 ⁇ m or less, even more preferably about 30 ⁇ m or less, and particularly preferably about 25 ⁇ m or less.
  • the thickness of the stainless steel foil is preferably about 10 ⁇ m or more, more preferably about 15 ⁇ m or more.
  • Preferred ranges for the thickness of the stainless steel foil include about 10 to 60 ⁇ m, about 10 to 50 ⁇ m, about 10 to 40 ⁇ m, about 10 to 30 ⁇ m, about 10 to 25 ⁇ m, about 15 to 60 ⁇ m, about 15 to 50 ⁇ m, about 15 to 40 ⁇ m, about 15 to 30 ⁇ m, and about 15 to 25 ⁇ m.
  • the metal foil layer 3 is preferably provided with a corrosion-resistant film at least on the surface opposite to the base layer in order to prevent dissolution and corrosion.
  • the metal foil layer 3 may be provided with a corrosion-resistant film on both sides.
  • the corrosion-resistant film refers to a thin film that is provided with corrosion resistance (e.g., acid resistance, alkali resistance, etc.) by performing, for example, hydrothermal transformation treatment such as boehmite treatment, chemical conversion treatment, anodizing treatment, plating treatment with nickel or chromium, or corrosion prevention treatment by applying a coating agent on the surface of the metal foil layer.
  • the corrosion-resistant film means a film that improves the acid resistance of the metal foil layer (acid-resistant film), a film that improves the alkali resistance of the metal foil layer (alkali-resistant film), etc.
  • the treatment for forming the corrosion-resistant film may be one type, or two or more types may be combined. In addition to one layer, multiple layers can be formed.
  • the hydrothermal transformation treatment and the anodizing treatment are treatments in which the metal foil surface is dissolved by a treatment agent to form a metal compound with excellent corrosion resistance. These treatments may also be included in the definition of chemical conversion treatment. Also, if the metal foil layer 3 has a corrosion-resistant coating, the corrosion-resistant coating is included in the metal foil layer 3.
  • the corrosion-resistant coating prevents delamination between the metal foil layer (e.g., aluminum alloy foil) and the base layer during molding of the exterior material for the power storage device, prevents dissolution and corrosion of the surface of the metal foil layer due to hydrogen fluoride produced by the reaction between the electrolyte and moisture, and in particular prevents dissolution and corrosion of aluminum oxide present on the surface of the metal foil layer when the metal foil layer is an aluminum alloy foil, and improves the adhesion (wettability) of the surface of the metal foil layer, preventing delamination between the base layer and metal foil layer during heat sealing and between the base layer and metal foil layer during molding.
  • the metal foil layer e.g., aluminum alloy foil
  • Various corrosion-resistant films formed by chemical conversion treatments are known, including mainly corrosion-resistant films containing at least one of phosphates, chromates, fluorides, triazine thiol compounds, and rare earth oxides.
  • Chemical conversion treatments using phosphates and chromates include, for example, chromate chromate treatment, phosphoric acid chromate treatment, phosphoric acid-chromate treatment, and chromate treatment.
  • chromium compounds used in these treatments include chromium nitrate, chromium fluoride, chromium sulfate, chromium acetate, chromium oxalate, chromium biphosphate, chromate acetyl acetate, chromium chloride, and potassium chromium sulfate.
  • phosphorus compounds used in these treatments include sodium phosphate, potassium phosphate, ammonium phosphate, and polyphosphoric acid.
  • chromate treatments include etching chromate treatment, electrolytic chromate treatment, and coating-type chromate treatment, with coating-type chromate treatment being preferred.
  • a metal foil layer e.g., aluminum alloy foil
  • a known method such as an alkali immersion method, an electrolytic cleaning method, an acid cleaning method, an electrolytic acid cleaning method, or an acid activation method, and then the degreased surface is coated with a treatment liquid mainly composed of a metal phosphate such as Cr (chromium) phosphate, Ti (titanium) phosphate, Zr (zirconium) phosphate, or Zn (zinc) phosphate, or a mixture of these metal salts, or a treatment liquid mainly composed of a nonmetallic phosphate and a mixture of these nonmetallic salts, or a treatment liquid consisting of a mixture of these with a synthetic resin, or the like, by a known coating method such as a roll coating method, a gravure printing method, or a dipping method, and then dried.
  • a known coating method such as a roll coating method, a gravure printing method, or a dipping method
  • the treatment liquid various solvents such as water, alcohol-based solvents, hydrocarbon-based solvents, ketone-based solvents, ester-based solvents, and ether-based solvents can be used, and water is preferred.
  • the resin component used here may be a polymer such as a phenolic resin or an acrylic resin, and may be a chromate treatment using an aminated phenolic polymer having a repeating unit represented by the following general formulas (1) to (4).
  • the repeating units represented by the following general formulas (1) to (4) may be contained alone or in any combination of two or more.
  • the acrylic resin is preferably polyacrylic acid, acrylic acid methacrylic acid ester copolymer, acrylic acid maleic acid copolymer, acrylic acid styrene copolymer, or a derivative thereof such as a sodium salt, an ammonium salt, or an amine salt.
  • a derivative of polyacrylic acid such as an ammonium salt, a sodium salt, or an amine salt of polyacrylic acid is preferable.
  • polyacrylic acid means a polymer of acrylic acid.
  • the acrylic resin is also preferably a copolymer of acrylic acid and a dicarboxylic acid or a dicarboxylic anhydride, and is also preferably an ammonium salt, a sodium salt, or an amine salt of a copolymer of acrylic acid and a dicarboxylic acid or a dicarboxylic anhydride. Only one type of acrylic resin may be used, or two or more types may be mixed and used.
  • X represents a hydrogen atom, a hydroxy group, an alkyl group, a hydroxyalkyl group, an allyl group, or a benzyl group.
  • R 1 and R 2 may be the same or different and represent a hydroxy group, an alkyl group, or a hydroxyalkyl group.
  • examples of the alkyl group represented by X, R 1 , and R 2 include linear or branched alkyl groups having 1 to 4 carbon atoms, such as a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, and a tert-butyl group.
  • Examples of the hydroxyalkyl group represented by X, R 1, and R 2 include linear or branched alkyl groups having 1 to 4 carbon atoms and substituted with one hydroxy group, such as a hydroxymethyl group, a 1-hydroxyethyl group, a 2-hydroxyethyl group, a 1-hydroxypropyl group, a 2-hydroxypropyl group, a 3-hydroxypropyl group, a 1-hydroxybutyl group, a 2-hydroxybutyl group, a 3-hydroxybutyl group, and a 4-hydroxybutyl group.
  • the alkyl groups and hydroxyalkyl groups represented by X, R 1, and R 2 may be the same or different.
  • X is preferably a hydrogen atom, a hydroxy group, or a hydroxyalkyl group.
  • the number average molecular weight of the aminated phenol polymer having the repeating units represented by the general formulae (1) to (4) is preferably about 500 to 1,000,000, for example, and more preferably about 1,000 to 20,000.
  • the aminated phenol polymer is produced, for example, by polycondensing a phenol compound or a naphthol compound with formaldehyde to produce a polymer consisting of the repeating units represented by the general formula (1) or (3), and then introducing a functional group (-CH 2 NR 1 R 2 ) into the polymer obtained above using formaldehyde and an amine (R 1 R 2 NH).
  • the aminated phenol polymer may be used alone or in combination of two or more types.
  • corrosion-resistant films include thin films formed by a coating-type corrosion prevention treatment in which a coating agent containing at least one selected from the group consisting of rare earth element oxide sol, anionic polymer, and cationic polymer is applied.
  • the coating agent may further contain phosphoric acid or phosphate, and a crosslinking agent for crosslinking the polymer.
  • the rare earth element oxide sol has rare earth element oxide fine particles (e.g., particles with an average particle size of 100 nm or less) dispersed in a liquid dispersion medium.
  • rare earth element oxides include cerium oxide, yttrium oxide, neodymium oxide, and lanthanum oxide, and cerium oxide is preferred from the viewpoint of further improving adhesion.
  • the rare earth element oxide contained in the corrosion-resistant film can be used alone or in combination of two or more types.
  • liquid dispersion media for the rare earth element oxide sol include various solvents such as water, alcohol-based solvents, hydrocarbon-based solvents, ketone-based solvents, ester-based solvents, and ether-based solvents, and water is preferred.
  • the cationic polymer for example, polyethyleneimine, an ionic polymer complex consisting of a polymer having polyethyleneimine and a carboxylic acid, a primary amine grafted acrylic resin in which a primary amine is graft-polymerized to an acrylic main skeleton, polyallylamine or a derivative thereof, aminated phenol, etc. are preferable.
  • the anionic polymer poly(meth)acrylic acid or a salt thereof, or a copolymer mainly composed of (meth)acrylic acid or a salt thereof is preferable.
  • the crosslinking agent is at least one selected from the group consisting of a compound having any one of the functional groups of an isocyanate group, a glycidyl group, a carboxyl group, and an oxazoline group, and a silane coupling agent.
  • the phosphoric acid or the phosphoric acid salt is a condensed phosphoric acid or a condensed phosphate salt.
  • a corrosion-resistant coating is one formed by applying a solution of fine particles of metal oxides such as aluminum oxide, titanium oxide, cerium oxide, and tin oxide, or barium sulfate dispersed in phosphoric acid to the surface of a metal foil layer and baking the coating at 150°C or higher.
  • metal oxides such as aluminum oxide, titanium oxide, cerium oxide, and tin oxide, or barium sulfate dispersed in phosphoric acid
  • the corrosion-resistant coating may have a laminated structure in which at least one of a cationic polymer and an anionic polymer is further laminated.
  • a cationic polymer and anionic polymer include those described above.
  • composition of the corrosion-resistant coating can be analyzed, for example, using time-of-flight secondary ion mass spectrometry.
  • the amount of the corrosion-resistant coating formed on the surface of the metal foil layer 3 in the chemical conversion treatment is not particularly limited, but for example, in the case of performing a coating-type chromate treatment, it is desirable that the chromate compound is contained in an amount , calculated as chromium, of about 0.5 to 50 mg, preferably about 1.0 to 40 mg, the phosphorus compound is contained in an amount, calculated as phosphorus, of about 0.5 to 50 mg, preferably about 1.0 to 40 mg, and the aminated phenol polymer is contained in an amount, calculated as phosphorus, of about 1.0 to 200 mg, preferably about 5.0 to 150 mg, per 1 m2 of the surface of the metal foil layer 3.
  • the chromate compound is contained in an amount , calculated as chromium, of about 0.5 to 50 mg, preferably about 1.0 to 40 mg
  • the phosphorus compound is contained in an amount, calculated as phosphorus, of about 0.5 to 50 mg, preferably about 1.0 to 40 mg
  • the thickness of the corrosion-resistant film is not particularly limited, but is preferably about 1 nm to 20 ⁇ m, more preferably about 1 nm to 100 nm, and even more preferably about 1 nm to 50 nm, from the viewpoint of the cohesive force of the film and the adhesive force with the metal foil layer and the heat-sealable resin layer.
  • the thickness of the corrosion-resistant film can be measured by observation with a transmission electron microscope, or by a combination of observation with a transmission electron microscope and energy dispersive X-ray spectroscopy or electron energy loss spectroscopy.
  • a peak derived from a secondary ion composed of Ce, P, and O (for example, at least one of Ce 2 PO 4 + and CePO 4 - ) or a secondary ion composed of Cr, P, and O (for example, at least one of CrPO 2 + and CrPO 4 - ) is detected.
  • the chemical conversion treatment is carried out by applying a solution containing a compound used to form a corrosion-resistant film to the surface of the metal foil layer by bar coating, roll coating, gravure coating, immersion, or other methods, and then heating the metal foil layer to a temperature of about 70 to 200°C.
  • the metal foil layer may be subjected to a degreasing treatment using an alkali immersion method, electrolytic cleaning method, acid cleaning method, electrolytic acid cleaning method, or other method.
  • an acid degreasing agent in which a fluorine-containing compound is dissolved in an inorganic acid for the degreasing treatment, it is possible to not only degrease the metal foil but also form a fluoride of the metal, which is in a passive state, and in such cases, only the degreasing treatment may be carried out.
  • the heat-sealable resin layer 4 corresponds to the innermost layer, and has the function of sealing the electricity storage device elements by heat-sealing the heat-sealable resin layers to each other when assembling the electricity storage device. It is a layer (sealant layer) that exhibits the above-mentioned properties.
  • the resin constituting the heat-sealable resin layer 4 is not particularly limited as long as it is heat-sealable, but is preferably a resin containing a polyolefin skeleton such as polyolefin or acid-modified polyolefin.
  • the resin constituting the heat-sealable resin layer 4 can be analyzed to contain a polyolefin skeleton, for example, by infrared spectroscopy, gas chromatography mass spectrometry, etc.
  • a peak derived from maleic anhydride is detected near the wave number 1760 cm -1 and near the wave number 1780 cm -1 .
  • the heat-sealable resin layer 4 is a layer composed of maleic anhydride-modified polyolefin, a peak derived from maleic anhydride is detected by infrared spectroscopy.
  • the degree of acid modification is low, the peak may be small and not detected. In that case, it can be analyzed by nuclear magnetic resonance spectroscopy.
  • the heat-sealable resin layer 4 preferably contains a resin containing a polyolefin skeleton as a main component, more preferably contains polyolefin as a main component, and even more preferably contains polypropylene as a main component.
  • the main component means that the content of the resin components contained in the heat-sealable resin layer 4 is, for example, 50% by mass or more, preferably 60% by mass or more, more preferably 70% by mass or more, even more preferably 80% by mass or more, even more preferably 90% by mass or more, even more preferably 95% by mass or more, even more preferably 98% by mass or more, and even more preferably 99% by mass or more.
  • the heat-sealable resin layer 4 containing polypropylene as a main component means that the content of polypropylene among the resin components contained in the heat-sealable resin layer 4 is, for example, 50% by mass or more, preferably 60% by mass or more, more preferably 70% by mass or more, even more preferably 80% by mass or more, even more preferably 90% by mass or more, even more preferably 95% by mass or more, even more preferably 98% by mass or more, and even more preferably 99% by mass or more.
  • polyolefins include polyethylenes such as low-density polyethylene, medium-density polyethylene, high-density polyethylene, and linear low-density polyethylene; ethylene- ⁇ -olefin copolymers; polypropylenes such as homopolypropylene, block copolymers of polypropylene (e.g., block copolymers of propylene and ethylene), and random copolymers of polypropylene (e.g., random copolymers of propylene and ethylene); propylene- ⁇ -olefin copolymers; and ethylene-butene-propylene terpolymers.
  • polypropylene is preferred.
  • the polyolefin resin is a copolymer, it may be a block copolymer or a random copolymer. These polyolefin resins may be used alone or in combination of two or more types.
  • the polyolefin may also be a cyclic polyolefin.
  • Cyclic polyolefins are copolymers of olefins and cyclic monomers, and examples of olefins that are constituent monomers of the cyclic polyolefins include ethylene, propylene, 4-methyl-1-pentene, styrene, butadiene, and isoprene.
  • Examples of cyclic monomers that are constituent monomers of cyclic polyolefins include cyclic alkenes such as norbornene; and cyclic dienes such as cyclopentadiene, dicyclopentadiene, cyclohexadiene, and norbornadiene. Among these, cyclic alkenes are preferred, and norbornene is more preferred.
  • the polyolefin may be an acid-modified polyolefin.
  • An acid-modified polyolefin is a polymer modified by block polymerization or graft polymerization of a polyolefin with an acid component.
  • the polyolefin to be acid-modified may be the above-mentioned polyolefin, a copolymer obtained by copolymerizing the above-mentioned polyolefin with a polar molecule such as acrylic acid or methacrylic acid, or a polymer such as a cross-linked polyolefin.
  • the acid component used for the acid modification include carboxylic acids or anhydrides such as maleic acid, acrylic acid, itaconic acid, crotonic acid, maleic anhydride, and itaconic anhydride.
  • the acid-modified polyolefin may be an acid-modified cyclic polyolefin.
  • An acid-modified cyclic polyolefin is a polymer obtained by copolymerizing a part of the monomers constituting the cyclic polyolefin by replacing it with an acid component, or by block polymerizing or graft polymerizing an acid component onto a cyclic polyolefin.
  • the cyclic polyolefin to be acid-modified is the same as described above.
  • the acid component used for the acid modification is the same as the acid component used for the modification of the polyolefin described above.
  • Preferred acid-modified polyolefins include polyolefins modified with carboxylic acids or their anhydrides, polypropylenes modified with carboxylic acids or their anhydrides, maleic anhydride-modified polyolefins, and maleic anhydride-modified polypropylenes.
  • the heat-sealable resin layer 4 may be formed of one type of resin alone, or may be formed of a blend polymer of two or more types of resin. Furthermore, the heat-sealable resin layer 4 may be formed of only one layer, or may be formed of two or more layers of the same or different resins.
  • the heat-sealable resin layer 4 When manufacturing the exterior material 10 for an electricity storage device of the present disclosure by laminating the heat-sealable resin layer 4 with the metal foil layer 3, the adhesive layer 5, etc., a preformed resin film may be used as the heat-sealable resin layer 4.
  • the heat-sealable resin that forms the heat-sealable resin layer 4 may be formed into a film on the surface of the metal foil layer 3, the adhesive layer 5, etc. by extrusion molding, coating, etc., to form the heat-sealable resin layer 4 from the resin film.
  • the heat-sealable resin layer 4 may also contain a lubricant, etc., if necessary.
  • a lubricant When the heat-sealable resin layer 4 contains a lubricant, the moldability of the exterior material for the power storage device can be improved. There are no particular limitations on the lubricant, and any known lubricant can be used.
  • the lubricant is not particularly limited, but preferably an amide-based lubricant is used. Specific examples of the lubricant include those exemplified for the base layer 1.
  • the lubricant may be used alone or in combination of two or more types, and it is preferable to use a combination of two or more types.
  • a lubricant is present on at least one of the surface and the inside of the heat-sealable resin layer 4.
  • the lubricant is not particularly limited, but preferably includes amide-based lubricants.
  • Specific examples of amide-based lubricants include, for example, saturated fatty acid amides, unsaturated fatty acid amides, substituted amides, methylol amides, saturated fatty acid bisamides, unsaturated fatty acid bisamides, fatty acid ester amides, and aromatic bisamides.
  • saturated fatty acid amides include lauric acid amides, palmitic acid amides, stearic acid amides, behenic acid amides, and hydroxystearic acid amides.
  • unsaturated fatty acid amides include oleic acid amides and erucic acid amides.
  • substituted amides include N-oleyl palmitic acid amide, N-stearyl stearic acid amide, N-stearyl oleic acid amide, N-oleyl stearic acid amide, and N-stearyl erucic acid amide.
  • methylol amides include methylol stearic acid amide.
  • saturated fatty acid bisamides include methylene bisstearic acid amide, ethylene biscapric acid amide, ethylene bislauric acid amide, ethylene bisstearic acid amide, ethylene bishydroxystearic acid amide, ethylene bisbehenic acid amide, hexamethylene bisstearic acid amide, hexamethylene bisbehenic acid amide, hexamethylene hydroxystearic acid amide, N,N'-distearyl adipic acid amide, N,N'-distearyl sebacic acid amide, etc.
  • unsaturated fatty acid bisamides include ethylene bisoleic acid amide, ethylene biserucic acid amide, hexamethylene bisoleic acid amide, N,N'-dioleyl adipic acid amide, N,N'-dioleyl sebacic acid amide, etc.
  • fatty acid ester amides include stearamide ethyl stearate, etc.
  • aromatic bisamides include m-xylylene bisstearic acid amide, m-xylylene bishydroxystearic acid amide, and N,N'-distearylisophthalic acid amide.
  • the lubricant may be used alone or in combination of two or more types, preferably in combination of two or more types.
  • the amount thereof is not particularly limited, but from the viewpoint of improving the moldability of the exterior material for a storage battery device, it is preferably about 1 mg / m 2 or more, more preferably about 3 mg / m 2 or more, even more preferably about 5 mg / m 2 or more, even more preferably about 10 mg / m 2 or more, and even more preferably about 15 mg / m 2 or more, and also preferably about 50 mg / m 2 or less, and even more preferably about 40 mg / m 2 or less, and preferred ranges include about 1 to 50 mg / m 2 , about 1 to 40 mg / m 2 , about 3 to 50 mg / m 2 , about 3 to 40 mg / m 2 , about 5 to 50 mg / m 2 , about 5 to 40 mg / m 2 , about 10 to 50 mg / m 2 , about 10 to 40 mg / m 2 , about 10 to 40 mg / m 2 , about 10 to 40 mg /
  • the amount thereof is not particularly limited, but from the viewpoint of improving the formability of the exterior material for an electrical storage device, it is preferably at least about 100 ppm, more preferably at least about 300 ppm, even more preferably at least about 500 ppm, and is preferably at most about 3000 ppm, more preferably at most about 2000 ppm, and preferred ranges include about 100-3000 ppm, about 100-2000 ppm, about 300-3000 ppm, about 300-2000 ppm, about 500-3000 ppm, and about 500-2000 ppm.
  • the above amount of lubricant is the total amount of lubricant.
  • the amount of the first type of lubricant is not particularly limited, but from the viewpoint of improving the formability of the exterior material for an electrical storage device, it is preferably about 100 ppm or more, more preferably about 300 ppm or more, and even more preferably about 500 ppm or more, and is preferably about 3000 ppm or less, more preferably about 2000 ppm or less, and preferred ranges include about 100 to 3000 ppm, about 100 to 2000 ppm, about 300 to 3000 ppm, about 300 to 2000 ppm, about 500 to 3000 ppm, and about 500 to 2000 ppm.
  • the amount of the second type of lubricant is not particularly limited, but from the viewpoint of improving the moldability of the exterior material for an electrical storage device, it is preferably about 50 ppm or more, more preferably about 100 ppm or more, and even more preferably about 200 ppm or more, and is preferably about 1500 ppm or less, more preferably about 1000 ppm or less, and preferred ranges include about 50 to 1500 ppm, about 50 to 1000 ppm, about 100 to 1500 ppm, about 100 to 1000 ppm, about 200 to 1500 ppm, and about 200 to 1000 ppm.
  • the lubricant present on the surface of the heat-sealable resin layer 4 may be a lubricant exuded from the resin that constitutes the heat-sealable resin layer 4, or a lubricant applied to the surface of the heat-sealable resin layer 4.
  • the thickness of the heat-sealable resin layer 4 is not particularly limited as long as the heat-sealable resin layers are heat-sealed to each other to seal the electricity storage device element, but may be, for example, about 100 ⁇ m or less, preferably about 85 ⁇ m or less, and more preferably about 15 to 85 ⁇ m.
  • the thickness of the adhesive layer 5 described below is 10 ⁇ m or more
  • the thickness of the heat-sealable resin layer 4 is preferably about 85 ⁇ m or less, and more preferably about 15 to 45 ⁇ m.
  • the thickness of the heat-sealable resin layer 4 is preferably about 20 ⁇ m or more, and more preferably about 35 to 85 ⁇ m.
  • the adhesive layer 5 is a layer that is provided, if necessary, between the metal foil layer 3 (or the corrosion-resistant film) and the heat-sealable resin layer 4 in order to firmly bond them together.
  • the adhesive layer 5 is formed from a resin capable of bonding the metal foil layer 3 and the heat-sealable resin layer 4.
  • the resin used to form the adhesive layer 5 may be, for example, the same adhesive as exemplified for the adhesive layer 2.
  • the resin used to form the adhesive layer 5 preferably contains a polyolefin skeleton, and examples of the resin include the polyolefin, acid-modified polyolefin, cyclic polyolefin, and acid-modified cyclic polyolefin exemplified in the heat-sealable resin layer 4 described above.
  • the adhesive layer 5 preferably contains an acid-modified polyolefin.
  • the acid-modified component examples include dicarboxylic acids such as maleic acid, itaconic acid, succinic acid, and adipic acid, and their anhydrides, acrylic acid, and methacrylic acid, but maleic anhydride is most preferred in terms of ease of modification and versatility.
  • the olefin component is preferably a polypropylene-based resin, and the adhesive layer 5 most preferably contains maleic anhydride-modified polypropylene.
  • the adhesive layer 5 preferably contains a resin containing a polyolefin skeleton as a main component, more preferably contains an acid-modified polyolefin as a main component, and even more preferably contains an acid-modified polypropylene as a main component.
  • the main component means that the content of the resin components contained in the adhesive layer 5 is, for example, 50% by mass or more, preferably 60% by mass or more, more preferably 70% by mass or more, even more preferably 80% by mass or more, even more preferably 90% by mass or more, even more preferably 95% by mass or more, even more preferably 98% by mass or more, and even more preferably 99% by mass or more.
  • the adhesive layer 5 contains acid-modified polypropylene as a main component
  • the content of the acid-modified polypropylene among the resin components contained in the adhesive layer 5 is, for example, 50% by mass or more, preferably 60% by mass or more, more preferably 70% by mass or more, even more preferably 80% by mass or more, even more preferably 90% by mass or more, even more preferably 95% by mass or more, even more preferably 98% by mass or more, and even more preferably 99% by mass or more.
  • the resin constituting the adhesive layer 5 can be analyzed for polyolefin skeleton by infrared spectroscopy, gas chromatography mass spectrometry, or the like, and the analysis method is not particularly limited.
  • the resin constituting the adhesive layer 5 can be analyzed for acid-modified polyolefin by, for example, measuring maleic anhydride-modified polyolefin by infrared spectroscopy, whereby peaks derived from maleic anhydride are detected at wave numbers of about 1760 cm -1 and about 1780 cm -1 . However, if the degree of acid modification is low, the peaks may become small and not be detected. In that case, analysis can be performed by nuclear magnetic resonance spectroscopy.
  • the adhesive layer 5 is a cured product of a resin composition containing an acid-modified polyolefin and a curing agent.
  • Preferred examples of the acid-modified polyolefin include those mentioned above.
  • the adhesive layer 5 is preferably a cured product of a resin composition containing an acid-modified polyolefin and at least one selected from the group consisting of a compound having an isocyanate group, a compound having an oxazoline group, and a compound having an epoxy group, and is particularly preferably a cured product of a resin composition containing an acid-modified polyolefin and at least one selected from the group consisting of a compound having an isocyanate group and a compound having an epoxy group.
  • the adhesive layer 5 preferably contains at least one selected from the group consisting of polyurethane, polyester, and epoxy resin, and more preferably contains polyurethane and epoxy resin.
  • an ester resin formed by the reaction of an epoxy group with a maleic anhydride group, and an amide ester resin formed by the reaction of an oxazoline group with a maleic anhydride group are preferable.
  • a curing agent such as a compound having an isocyanate group, a compound having an oxazoline group, or an epoxy resin remain in the adhesive layer 5
  • the presence of the unreacted substances can be confirmed by a method selected from, for example, infrared spectroscopy, Raman spectroscopy, time-of-flight secondary ion mass spectrometry (TOF-SIMS), etc.
  • a curing agent having a heterocycle include curing agents having an oxazoline group and curing agents having an epoxy group.
  • curing agents having a C-O-C bond include curing agents having an oxazoline group and curing agents having an epoxy group.
  • the adhesive layer 5 is a cured product of a resin composition containing these curing agents can be confirmed by methods such as gas chromatography mass spectrometry (GCMS), infrared spectroscopy (IR), time-of-flight secondary ion mass spectrometry (TOF-SIMS), and X-ray photoelectron spectroscopy (XPS).
  • GCMS gas chromatography mass spectrometry
  • IR infrared spectroscopy
  • TOF-SIMS time-of-flight secondary ion mass spectrometry
  • XPS X-ray photoelectron spectroscopy
  • the compound having an isocyanate group is not particularly limited, but from the viewpoint of effectively increasing the adhesion between the metal foil layer 3 and the adhesive layer 5, a polyfunctional isocyanate compound is preferably used.
  • the polyfunctional isocyanate compound is not particularly limited as long as it has two or more isocyanate groups.
  • Specific examples of polyfunctional isocyanate-based curing agents include pentane diisocyanate (PDI), isophorone diisocyanate (IPDI), hexamethylene diisocyanate (HDI), tolylene diisocyanate (TDI), diphenylmethane diisocyanate (MDI), polymerized or nurated versions of these, mixtures of these, and copolymers with other polymers.
  • Other examples include adducts, biurets, and isocyanurates.
  • the content of the compound having an isocyanate group in the adhesive layer 5 is preferably in the range of 0.1 to 50 mass % in the resin composition constituting the adhesive layer 5, and more preferably in the range of 0.5 to 40 mass %. This effectively improves the adhesion between the metal foil layer 3 and the adhesive layer 5.
  • the compound having an oxazoline group is not particularly limited as long as it has an oxazoline skeleton.
  • Specific examples of compounds having an oxazoline group include those having a polystyrene main chain and those having an acrylic main chain.
  • examples of commercially available products include the Epocross series manufactured by Nippon Shokubai Co., Ltd.
  • the proportion of the compound having an oxazoline group in the adhesive layer 5 is preferably in the range of 0.1 to 50 mass %, and more preferably in the range of 0.5 to 40 mass %, in the resin composition constituting the adhesive layer 5. This effectively improves the adhesion between the metal foil layer 3 and the adhesive layer 5.
  • An example of a compound having an epoxy group is an epoxy resin.
  • the epoxy resin there are no particular limitations on the epoxy resin, so long as it is a resin capable of forming a crosslinked structure by the epoxy groups present in the molecule, and any known epoxy resin can be used.
  • the weight average molecular weight of the epoxy resin is preferably about 50 to 2000, more preferably about 100 to 1000, and even more preferably about 200 to 800.
  • the weight average molecular weight of the epoxy resin is a value measured by gel permeation chromatography (GPC) under conditions in which polystyrene is used as a standard sample.
  • epoxy resins include glycidyl ether derivatives of trimethylolpropane, bisphenol A diglycidyl ether, modified bisphenol A diglycidyl ether, bisphenol F glycidyl ether, novolac glycidyl ether, glycerin polyglycidyl ether, polyglycerin polyglycidyl ether, etc.
  • One type of epoxy resin may be used alone, or two or more types may be used in combination.
  • the proportion of epoxy resin in the adhesive layer 5 is preferably in the range of 0.1 to 50 mass % in the resin composition constituting the adhesive layer 5, and more preferably in the range of 0.5 to 40 mass %. This effectively improves the adhesion between the metal foil layer 3 and the adhesive layer 5.
  • the polyurethane is not particularly limited, and any known polyurethane can be used.
  • the adhesive layer 5 may be, for example, a cured product of a two-component curing polyurethane.
  • the proportion of polyurethane in the adhesive layer 5 is preferably in the range of 0.1 to 50 mass % in the resin composition constituting the adhesive layer 5, and more preferably in the range of 0.5 to 40 mass %. This effectively improves the adhesion between the metal foil layer 3 and the adhesive layer 5 in an atmosphere containing components that induce corrosion of the metal foil layer, such as an electrolyte.
  • the adhesive layer 5 is a cured product of a resin composition containing at least one selected from the group consisting of a compound having an isocyanate group, a compound having an oxazoline group, and an epoxy resin, and the acid-modified polyolefin, the acid-modified polyolefin functions as a base agent, and the compound having an isocyanate group, the compound having an oxazoline group, and the compound having an epoxy group each function as a curing agent.
  • the adhesive layer 5 may contain a modifier having a carbodiimide group.
  • the heat-sealable resin layer 4 When manufacturing the exterior material 10 for an electricity storage device of the present disclosure by laminating the adhesive layer 5 with the metal foil layer 3, the heat-sealable resin layer 4, etc., a preformed resin film may be used as the adhesive layer 5.
  • the heat-sealable resin that forms the adhesive layer 5 may be formed into a film on the surface of the metal foil layer 3, the heat-sealable resin layer 4, etc. by extrusion molding, coating, etc., to form the adhesive layer 5 from the resin film.
  • the thickness of the adhesive layer 5 is preferably about 50 ⁇ m or less, about 40 ⁇ m or less, about 30 ⁇ m or less, about 20 ⁇ m or less, or about 5 ⁇ m or less.
  • the thickness of the adhesive layer 5 is preferably about 0.1 ⁇ m or more, or about 0.5 ⁇ m or more.
  • the thickness of the adhesive layer 5 is preferably in the range of about 0.1 to 50 ⁇ m, about 0.1 to 40 ⁇ m, about 0.1 to 30 ⁇ m, about 0.1 to 20 ⁇ m, about 0.1 to 5 ⁇ m, about 0.5 to 50 ⁇ m, about 0.5 to 40 ⁇ m, about 0.5 to 30 ⁇ m, about 0.5 to 20 ⁇ m, or about 0.5 to 5 ⁇ m.
  • the thickness is preferably about 1 to 10 ⁇ m, and more preferably about 1 to 5 ⁇ m.
  • the thickness is preferably about 2 to 50 ⁇ m, more preferably about 10 to 40 ⁇ m.
  • the adhesive layer 5 can be formed, for example, by applying the resin composition and curing it by heating or the like.
  • the heat-sealable resin layer 4 and the adhesive layer 5 can be formed, for example, by extrusion molding.
  • the exterior material for an electricity storage device may, if necessary, have a surface coating layer 6 on the substrate layer 1 (the side of the substrate layer 1 opposite to the metal foil layer 3) for the purpose of improving at least one of design, electrolyte resistance, scratch resistance, formability, etc.
  • the surface coating layer 6 is a layer located on the outermost layer side of the exterior material for an electricity storage device when an electricity storage device is assembled using the exterior material for an electricity storage device.
  • the surface coating layer 6 may be made of, for example, a resin such as polyvinylidene chloride, polyester, polyamide, epoxy resin, acrylic resin, fluororesin, polyurethane, silicone resin, or phenol resin, or a modified product of these resins. It may also be a copolymer of these resins, or a modified product of the copolymer. It may also be a mixture of these resins.
  • the resin is preferably a curable resin.
  • the surface coating layer 6 is preferably made of a cured product of a resin composition containing a curable resin.
  • the resin forming the surface coating layer 6 is a curable resin
  • the resin may be either a one-component curable type or a two-component curable type, but is preferably a two-component curable type.
  • two-component curable resins include two-component curable polyurethane, two-component curable polyester, and two-component curable epoxy resin. Among these, two-component curable polyurethane is preferred.
  • the two-component curing polyurethane may be, for example, a polyurethane containing a first agent containing a polyol compound and a second agent containing an isocyanate compound.
  • the two-component curing polyurethane may be a polyurethane containing a polyol such as polyester polyol, polyether polyol, or acrylic polyol as the first agent and an aromatic or aliphatic polyisocyanate as the second agent.
  • the polyurethane may be, for example, a polyurethane compound in which a polyol compound has been reacted with an isocyanate compound in advance, and a polyurethane containing an isocyanate compound.
  • the polyurethane may be, for example, a polyurethane compound in which a polyol compound has been reacted with an isocyanate compound in advance, and a polyurethane containing a polyol compound.
  • the polyurethane may be, for example, a polyurethane compound in which a polyol compound has been reacted with an isocyanate compound in advance, and a polyurethane containing a polyol compound.
  • the polyurethane may be, for example, a polyurethane compound in which a polyol compound has been reacted with an isocyanate compound in advance, and cured by reacting it with moisture in the air or the like.
  • polystyrene resin As the polyol compound, it is preferable to use a polyester polyol having a hydroxyl group on the side chain in addition to the hydroxyl group at the end of the repeating unit.
  • a polyester polyol having a hydroxyl group on the side chain in addition to the hydroxyl group at the end of the repeating unit.
  • an aliphatic, alicyclic, aromatic, or araliphatic isocyanate compound may be used.
  • isocyanate compounds include hexamethylene diisocyanate (HDI), xylylene diisocyanate (XDI), isophorone diisocyanate (IPDI), hydrogenated XDI (H6XDI), hydrogenated MDI (H12MDI), tolylene diisocyanate (TDI), diphenylmethane diisocyanate (MDI), and naphthalene diisocyanate (NDI).
  • examples of the isocyanate compounds include polyfunctional isocyanate modified products of one or more of these diisocyanates.
  • a polymer e.g., a trimer
  • an aliphatic isocyanate compound refers to an isocyanate that has an aliphatic group and does not have an aromatic ring
  • an alicyclic isocyanate compound refers to an isocyanate that has an alicyclic hydrocarbon group
  • an aromatic isocyanate compound refers to an isocyanate that has an aromatic ring.
  • the surface coating layer 6 is formed from polyurethane, which gives the exterior material for the electricity storage device excellent electrolyte resistance.
  • the surface coating layer 6 may contain additives such as lubricants, flame retardants, antiblocking agents, matting agents, antioxidants, light stabilizers, tackifiers, and antistatic agents, depending on the functionality to be provided to the surface of the surface coating layer 6 and its surface, at least on the surface and/or inside the surface coating layer 6, as necessary.
  • additives include fine particles with an average particle size of about 0.5 nm to 5 ⁇ m.
  • the average particle size of the additive is the median size measured by a laser diffraction/scattering type particle size distribution measuring device.
  • the additive may be either inorganic or organic. There are also no particular limitations on the shape of the additive, and examples include spherical, fibrous, plate-like, amorphous, and scaly shapes.
  • additives include talc, silica, graphite, kaolin, montmorillonite, mica, hydrotalcite, silica gel, zeolite, aluminum hydroxide, magnesium hydroxide, zinc oxide, magnesium oxide, aluminum oxide, neodymium oxide, antimony oxide, titanium oxide, cerium oxide, calcium sulfate, barium sulfate, calcium carbonate, calcium silicate, lithium carbonate, calcium benzoate, calcium oxalate, magnesium stearate, alumina, carbon black, carbon nanotubes, high melting point nylon, acrylate resin, cross-linked acrylic, cross-linked styrene, cross-linked polyethylene, benzoguanamine, gold, aluminum, copper, nickel, etc.
  • the additives may be used alone or in combination of two or more.
  • silica, barium sulfate, and titanium oxide are preferable from the viewpoint of dispersion stability and cost.
  • the additives may be subjected to various surface treatments such as insulation treatment and high dispersion treatment.
  • the method for forming the surface coating layer 6 is not particularly limited, and examples include a method of applying a resin that forms the surface coating layer 6. When an additive is added to the surface coating layer 6, a resin mixed with the additive may be applied.
  • a lubricant is present on at least one of the surface and the inside of the surface coating layer 6.
  • the lubricant is not particularly limited, but preferably includes amide-based lubricants.
  • Specific examples of amide-based lubricants include, for example, saturated fatty acid amides, unsaturated fatty acid amides, substituted amides, methylol amides, saturated fatty acid bisamides, unsaturated fatty acid bisamides, fatty acid ester amides, and aromatic bisamides.
  • saturated fatty acid amides include lauric acid amides, palmitic acid amides, stearic acid amides, behenic acid amides, and hydroxystearic acid amides.
  • unsaturated fatty acid amides include oleic acid amides and erucic acid amides.
  • substituted amides include N-oleyl palmitic acid amide, N-stearyl stearic acid amide, N-stearyl oleic acid amide, N-oleyl stearic acid amide, and N-stearyl erucic acid amide.
  • methylol amides include methylol stearic acid amide.
  • saturated fatty acid bisamides include methylene bisstearic acid amide, ethylene biscapric acid amide, ethylene bislauric acid amide, ethylene bisstearic acid amide, ethylene bishydroxystearic acid amide, ethylene bisbehenic acid amide, hexamethylene bisstearic acid amide, hexamethylene bisbehenic acid amide, hexamethylene hydroxystearic acid amide, N,N'-distearyl adipic acid amide, N,N'-distearyl sebacic acid amide, etc.
  • unsaturated fatty acid bisamides include ethylene bisoleic acid amide, ethylene biserucic acid amide, hexamethylene bisoleic acid amide, N,N'-dioleyl adipic acid amide, N,N'-dioleyl sebacic acid amide, etc.
  • fatty acid ester amides include stearamide ethyl stearate, etc.
  • aromatic bisamides include m-xylylene bisstearic acid amide, m-xylylene bishydroxystearic acid amide, and N,N'-distearylisophthalic acid amide.
  • the lubricant may be used alone or in combination of two or more types, preferably in combination of two or more types.
  • the amount of the lubricant present is not particularly limited, and may be, for example, about 3 mg/m 2 or more, preferably about 4 mg/m 2 or more, or about 5 mg/m 2 or more.
  • the amount of the lubricant present on the surface of the surface coating layer 6 may be, for example, about 15 mg/m 2 or less, preferably about 14 mg/m 2 or less, or about 10 mg/m 2 or less.
  • the preferred range of the amount of the lubricant present on the surface of the surface coating layer 6 may be about 3 to 15 mg/m 2 , about 3 to 14 mg/m 2 , about 3 to 10 mg/m 2 , about 4 to 15 mg/m 2 , about 4 to 14 mg/m 2 , about 4 to 10 mg/m 2 , about 5 to 15 mg/m 2 , about 5 to 14 mg/m 2 , or about 5 to 10 mg/m 2 .
  • the lubricant present on the surface of the surface coating layer 6 may be a lubricant exuded from the resin that constitutes the surface coating layer 6, or a lubricant applied to the surface of the surface coating layer 6.
  • the surface coating layer 6 contains a colorant, so that the exterior material for the electricity storage device can be colored.
  • Known colorants such as pigments and dyes can be used as the colorant.
  • only one type of colorant may be used, or two or more types may be mixed together.
  • the type of pigment is not particularly limited, and examples of organic pigments include azo, phthalocyanine, quinacridone, anthraquinone, dioxazine, indigothioindigo, perinone-perylene, isoindolenine, and benzimidazolone pigments, while examples of inorganic pigments include carbon black, titanium oxide, cadmium, lead, chromium oxide, and iron pigments, as well as finely powdered mica and fish scale foil.
  • colorants carbon black is preferred in order to give the exterior material for an electricity storage device a black appearance. Also, from the viewpoint of dissipating heat generated by the electricity storage device, it is preferable to use mica.
  • the average particle size of the pigment is not particularly limited, and may be, for example, about 0.03 to 5 ⁇ m, and preferably about 0.05 to 2 ⁇ m.
  • the average particle size of the pigment is the median size measured with a laser diffraction/scattering type particle size distribution measuring device.
  • the content of the colorant or pigment in the surface coating layer 6 is not particularly limited as long as the exterior material for the electricity storage device is colored, and may be, for example, about 5 to 60% by mass, and preferably about 10 to 40% by mass.
  • the thickness of the surface coating layer 6 is not particularly limited as long as it exhibits the above-mentioned functions of the surface coating layer 6, and may be, for example, about 0.5 to 10 ⁇ m, and preferably about 1 to 5 ⁇ m.
  • the manufacturing method of the exterior material for a power storage device is not particularly limited as long as a laminate in which each layer included in the exterior material for a power storage device of the present invention is laminated can be obtained. That is, the manufacturing method of the exterior material for a power storage device of the first aspect of the present disclosure includes a step of obtaining a laminate in which at least a base layer, a metal foil layer, and a heat-sealable resin layer are laminated in order from the outside, and the maximum reflected light intensity A in the range of a light receiving angle of 0.0° to 90.0° is 50 or less for at least one surface of the metal foil layer, measured at every 0.1° of the light receiving angle under the condition of an incident light angle of 60° using a variable angle photometer.
  • the manufacturing method of the exterior material for an electric storage device of the second aspect of the present disclosure includes a step of obtaining a laminate in which, from the outside, at least a base layer, a metal foil layer, and a heat-sealable resin layer are laminated, and the maximum reflected light intensity B in the range of a light receiving angle of 45.0° to 75.0°, measured at every 0.1° of the light receiving angle under the condition of an incident light angle of 60° using a variable angle photometer, for at least one surface of the metal foil layer, is 300 or more.
  • the manufacturing method of the exterior material for an electric storage device of the present disclosure includes a step of obtaining a laminate in which, from the outside, at least a metal foil layer and a heat-sealable resin layer are laminated.
  • laminate A An example of a manufacturing method for the exterior material for a power storage device according to the present disclosure is as follows. First, a laminate (hereinafter sometimes referred to as "laminate A") is formed in which a base layer 1, an adhesive layer 2, and a metal foil layer 3 are laminated in this order. Specifically, laminate A can be formed by a dry lamination method in which the adhesive used to form the adhesive layer 2 is applied to the base layer 1 or to the metal foil layer 3, the surface of which has been chemically treated as necessary, by a coating method such as gravure coating or roll coating, and then dried, and the metal foil layer 3 or base layer 1 is laminated thereon, and the adhesive layer 2 is cured.
  • a dry lamination method in which the adhesive used to form the adhesive layer 2 is applied to the base layer 1 or to the metal foil layer 3, the surface of which has been chemically treated as necessary, by a coating method such as gravure coating or roll coating, and then dried, and the metal foil layer 3 or base layer 1 is laminated thereon, and the adhesive layer 2
  • the heat-sealable resin layer 4 is laminated on the metal foil layer 3 of the laminate A.
  • the heat-sealable resin layer 4 may be laminated on the metal foil layer 3 of the laminate A by a method such as thermal lamination or extrusion lamination.
  • the adhesive layer 5 and the heat-sealable resin layer 4 may be laminated, for example, by (1) extrusion lamination, (2) thermal lamination, (3) sandwich lamination, or (4) dry lamination.
  • Extrusion lamination includes, for example, a method of laminating the adhesive layer 5 and the heat-sealable resin layer 4 by extruding them onto the metal foil layer 3 of the laminate A (co-extrusion lamination, tandem lamination).
  • Examples of the (2) thermal lamination method include a method of forming a laminate in which an adhesive layer 5 and a heat-sealable resin layer 4 are laminated separately, and laminating this on the metal foil layer 3 of the laminate A, or a method of forming a laminate in which an adhesive layer 5 is laminated on the metal foil layer 3 of the laminate A, and laminating this on the heat-sealable resin layer 4.
  • Examples of the (3) sandwich lamination method include a method of laminating the laminate A and the heat-sealable resin layer 4 through the adhesive layer 5 while pouring a molten adhesive layer 5 between the metal foil layer 3 of the laminate A and the heat-sealable resin layer 4 previously formed into a sheet.
  • Examples of the (4) dry lamination method include a method of coating the metal foil layer 3 of the laminate A with an adhesive for forming the adhesive layer 5, drying the adhesive, or baking the adhesive, and laminating the heat-sealable resin layer 4 previously formed into a sheet on the adhesive layer 5.
  • the surface coating layer 6 is laminated on the surface of the base layer 1 opposite the metal foil layer 3.
  • the surface coating layer 6 can be formed, for example, by applying the above-mentioned resin that forms the surface coating layer 6 to the surface of the base layer 1.
  • the order of the step of laminating the metal foil layer 3 on the surface of the base layer 1 and the step of laminating the surface coating layer 6 on the surface of the base layer 1 is not particularly limited.
  • the metal foil layer 3 may be formed on the surface of the base layer 1 opposite the surface coating layer 6.
  • a laminate which includes, in this order, the optional surface coating layer 6, the base layer 1, the optional adhesive layer 2, the metal foil layer 3, the optional adhesive layer 5, and the heat-sealable resin layer 4.
  • the laminate may be subjected to a heat treatment.
  • each layer constituting the laminate may be subjected to a surface activation treatment such as corona treatment, blast treatment, oxidation treatment, or ozone treatment, as necessary, to improve its suitability for processing.
  • a surface activation treatment such as corona treatment, blast treatment, oxidation treatment, or ozone treatment, as necessary, to improve its suitability for processing.
  • the exterior material for an electricity storage device according to the present disclosure is used in a package for hermetically housing an electricity storage device element such as a positive electrode, a negative electrode, an electrolyte, etc.
  • an electricity storage device element including at least a positive electrode, a negative electrode, and an electrolyte can be housed in a package formed from the exterior material for an electricity storage device according to the present disclosure to form an electricity storage device.
  • an electricity storage device element having at least a positive electrode, a negative electrode, and an electrolyte is covered with the exterior material for an electricity storage device of the present disclosure in such a manner that a flange portion (a region where the heat-sealable resin layers contact each other) can be formed around the periphery of the electricity storage device element with metal terminals connected to each of the positive electrode and negative electrode protruding outward, and the heat-sealable resin layers of the flange portion are heat-sealed to provide an electricity storage device using the exterior material for an electricity storage device.
  • a flange portion a region where the heat-sealable resin layers contact each other
  • the package is formed so that the heat-sealable resin portion of the exterior material for an electricity storage device of the present disclosure faces inside (the surface in contact with the electricity storage device element).
  • the heat-sealable resin layers of two electrical storage device exterior materials may be stacked facing each other, and the peripheral portions of the stacked electrical storage device exterior materials may be heat-sealed to form a package.
  • one electrical storage device exterior material may be folded back and stacked, and the peripheral portions may be heat-sealed to form a package.
  • the sides other than the folded side may be heat-sealed to form a package by sealing on three sides, or the materials may be folded back and sealed on all four sides so that a flange portion can be formed.
  • the package may be formed by heat-sealing the innermost heat-sealable resin layer and the outermost heat-sealable resin layer.
  • the power storage device element may be sealed by a lid in addition to the exterior material for the power storage device. That is, the exterior material for the power storage device and the lid constitute an exterior body (exterior body for the power storage device) that seals the power storage device element.
  • the power storage device element may be housed inside the exterior material for the power storage device that is configured in a cylindrical shape, and the opening may be closed by the lid.
  • the power storage device element connected to the lid may be housed inside the exterior material for the power storage device that is configured in a cylindrical shape so that an opening is formed, and the opening may be closed by the lid.
  • the lid and the exterior material for the power storage device are preferably joined by any means. From the viewpoint of reducing the dead space between the power storage device element and the exterior material for the power storage device in order to improve the volumetric energy density of the power storage device, the exterior material for the power storage device is preferably wrapped around the power storage device element and the lid.
  • the lid body can be formed, for example, from a resin molded product, a metal molded product, an exterior material for an electricity storage device, or a combination of these.
  • the lid body when the lid body is expressed as a resin molded product, this does not include an embodiment in which the lid body is composed only of a film as defined by JIS K6900-1994 [Plastics terminology].
  • the lid body when the lid body is a metal molded product, the lid body also functions as a metal terminal, so the metal terminal can be omitted.
  • the lid body may be composed of a resin material and a conductive material.
  • a recess for accommodating an electricity storage device element may be formed in the exterior material for the electricity storage device by deep drawing or stretch molding.
  • a recess may be provided in one exterior material for the electricity storage device and no recess may be provided in the other exterior material for the electricity storage device, or a recess may be provided in the other exterior material for the electricity storage device.
  • the exterior material for an electricity storage device of the present disclosure can be suitably used for electricity storage devices such as batteries (including condensers, capacitors, etc.).
  • the exterior material for an electricity storage device of the present disclosure may be used for either a primary battery or a secondary battery, but is preferably used for a secondary battery.
  • the type of secondary battery to which the exterior material for an electricity storage device of the present disclosure is applied is not particularly limited, and examples thereof include lithium ion batteries, lithium ion polymer batteries, all-solid batteries, semi-solid batteries, quasi-solid batteries, polymer batteries, all-resin batteries, lead-acid batteries, nickel-hydrogen batteries, nickel-cadmium batteries, nickel-iron batteries, nickel-zinc batteries, silver oxide-zinc batteries, metal-air batteries, polyvalent cation batteries, condensers, capacitors, etc.
  • the exterior material for an electricity storage device of the present disclosure is suitably applied to lithium ion batteries and lithium ion polymer batteries.
  • Example 1 A stretched nylon film (thickness 25 ⁇ m) was prepared as the substrate layer.
  • each aluminum alloy foil A (thickness 40 ⁇ m) having the surface properties and composition described in Table 1 was prepared as the metal foil layer.
  • the matte side of the aluminum alloy foil was the substrate layer side, and the glossy side was the heat-fusible resin layer side. Details of each aluminum alloy foil used in the examples and comparative examples will be described later.
  • the stretched nylon film side of the aluminum alloy foil and the substrate layer were laminated by dry lamination so that the thickness of the adhesive layer after curing was 3 ⁇ m, and then aging treatment was performed to produce a substrate layer/adhesive layer/metal foil layer laminate.
  • Both sides of the aluminum alloy foil were subjected to chemical conversion treatment.
  • the chemical conversion treatment of the aluminum alloy foil was performed by applying a treatment solution consisting of a phenolic resin, a chromium fluoride compound, and phosphoric acid to both sides of the aluminum alloy foil by roll coating so that the amount of chromium applied was 10 mg/ m2 (dry mass), and baking the solution.
  • maleic anhydride modified polypropylene as an adhesive layer (thickness 22.5 ⁇ m) and random polypropylene as a heat-sealable resin layer (thickness 22.5 ⁇ m) were co-extruded onto the metal foil layer of each laminate obtained above, thereby laminating the adhesive layer/heat-sealable resin layer on top of the metal foil layer, thereby obtaining an exterior material for an electricity storage device in which the substrate layer/adhesive layer/metal foil layer/adhesive layer/heat-sealable resin layer were laminated in this order.
  • Example 2 An exterior material for an electricity storage device was obtained in the same manner as in Example 1, except that aluminum alloy foil B (having a thickness of 40 ⁇ m) described below was used instead of aluminum alloy foil A.
  • Example 3 An exterior material for an electricity storage device was obtained in the same manner as in Example 1, except that aluminum alloy foil C (having a thickness of 40 ⁇ m) described below was used instead of aluminum alloy foil A.
  • Comparative Example 1 An exterior material for an electricity storage device was obtained in the same manner as in Example 1, except that aluminum alloy foil E (having a thickness of 40 ⁇ m) described below was used instead of aluminum alloy foil A.
  • Aluminum alloy foil A (used in Example 1): Aluminum alloy foil having the composition of JIS A8021 and the composition in Table 1 was adjusted to have the surface properties in Table 1 by setting the rolling speed and the tensile tension during rolling under predetermined conditions.
  • Aluminum alloy foil B (used in Example 2): Aluminum alloy foil having the composition of JIS A8021 and the composition in Table 1 (Si content is increased compared to Aluminum Alloy Foil A) was adjusted to have the surface properties in Table 1 by setting the rolling speed and the tensile tension during rolling under predetermined conditions.
  • a Aluminum alloy foil C (used in Example 3): Aluminum alloy foil having the composition of JIS A8021 and the composition in Table 1 (Si content is further increased compared to Aluminum Alloy Foil B) was adjusted to have the surface properties in Table 1 by setting the rolling speed and tensile tension during rolling under predetermined conditions.
  • Aluminum alloy foil E (used in Comparative Example 1): Aluminum alloy foil having the composition of JIS A8006 and the composition in Table 1 was adjusted to have the surface properties in Table 1 by setting the rolling speed and tensile tension during rolling under predetermined conditions.
  • Each aluminum alloy foil was removed from each exterior material for power storage devices using the following procedure and used as the measurement subject.
  • the base layer of the exterior material for power storage devices was manually peeled off to leave a laminate of aluminum alloy foil, adhesive layer, and heat-sealable resin layer.
  • This laminate was then immersed in orthodichlorobenzene under the following conditions to remove the adhesive layer and heat-sealable resin layer from the aluminum alloy foil, and the surface of the aluminum alloy foil was washed multiple times with ethanol and left to dry, and the resulting aluminum alloy foil was used as the measurement subject.
  • Measurement conditions for standard black glass using a variable angle photometer Measurement target: Black glass reference plate BK-7 (black glass reference plate, refractive index 1.518) manufactured by Murakami Color Research Laboratory Co., Ltd. Equipment: Variable angle photometer GP-200 manufactured by Murakami Color Research Laboratory Co., Ltd. Incident angle (IA): 60° Receiving angle: +50° to +70°, measured in 0.1° increments.
  • Facing angle 0° Incident light aperture (VS1): 3 (10.5 mm) Aperture (VS3): 4 (9.1 mm) SENSITIVITY: 950 HIGH VOLT.: 539 (adjusted so that the reflection intensity of black glass (black glass reference plate) is 85)
  • Neutral density filters 1% filter, 50% filter
  • Facing angle 0° Incident light aperture (VS1): 3 (10.5 mm) Aperture (VS3): 4 (9.1 mm) SENSITIVITY: 950 HIGH VOLT.: 539 (Use a value adjusted so that the reflection intensity of standard black plate glass (black glass reference plate BK-7 refractive index 1.518) is 85)
  • Neutral density filter 1% filter Incident direction: Parallel to the rolling direction of the aluminum alloy foil
  • Facing angle 0° Incident light aperture (VS1): 3 (10.5 mm) Aperture (VS3): 4 (9.1 mm) SENSITIVITY: 950 HIGH VOLT.: 539 (Used a value adjusted so that the reflection intensity of standard black plate glass (black glass reference plate BK-7 refractive index 1.518) is 85)
  • Neutral density filters 1% filter, 10% filter, 50% filter Incident direction: Parallel to the rolling direction of the aluminum alloy foil
  • Each electrical storage device exterior material was cut into a square with a length (MD) of 170 mm and a width (TD) of 170 mm to prepare a test sample.
  • the MD of the electrical storage device exterior material corresponds to the rolling direction (RD) of the aluminum alloy foil
  • the TD of the electrical storage device exterior material corresponds to the TD of the aluminum alloy foil.
  • the maximum height roughness (nominal value of Rz) specified in Table 2 of the comparative surface roughness standard piece is 3.2 ⁇ m.
  • the molding depth was changed in 0.5 mm increments from the molding depth of 0.5 mm at a pressing pressure (surface pressure) of 0.5 MPa, and cold molding (one-stage drawing molding) was performed on 10 samples each.
  • the above test sample was placed on the female mold so that the heat-fusible resin layer side was located on the male mold side and molding was performed.
  • the clearance between the male mold and the female mold was set to 0.3 mm.
  • the sample after cold molding was irradiated with light from a penlight in a dark room to confirm whether pinholes or cracks were generated in the aluminum alloy foil due to light transmission.
  • the deepest molding depth at which pinholes and cracks did not occur in the exterior material for power storage devices in all 10 samples was determined as the limit molding depth of the sample.
  • the evaluation criteria for the formability of the exterior material for an electricity storage device were as follows, and the results are shown in Table 1.
  • the limit forming depth is 13.5 mm or more.
  • Example 4 The substrate layer (stretched nylon film (thickness 25 ⁇ m)) was replaced with a substrate layer (stretched nylon film (thickness 20 ⁇ m)), the adhesive layer (maleic anhydride-modified polypropylene (thickness 22.5 ⁇ m)) was replaced with an adhesive layer (maleic anhydride-modified polypropylene (thickness 20 ⁇ m)), and the heat-sealable resin layer (random polypropylene (thickness 22.5 ⁇ m)) was replaced with a heat-sealable resin layer (random polypropylene (thickness 15 ⁇ m)).
  • a substrate layer (stretched nylon film (thickness 20 m)) / adhesive layer (thickness 3 ⁇ m) / metal foil layer (aluminum alloy foil B (thickness is 40 ⁇ m)) / adhesive layer (maleic anhydride-modified polypropylene (thickness is 20 ⁇ m)) / heat-sealable resin layer (random polypropylene (thickness 15 ⁇ m)) was laminated in the same manner as in Example 2 to obtain an exterior material for a storage device.
  • Example 4 two types of lubricants, a saturated fatty acid amide (behenic acid amide) and an unsaturated fatty acid amide (erucic acid amide), were used in combination as the lubricant contained in the heat-sealable resin layer.
  • the exterior material for an electricity storage device of Example 4 was evaluated as having the same moldability as Example 2.
  • Example 5 instead of the base layer (stretched nylon film (thickness 25 ⁇ m)), a base layer (a laminated film in which a polyethylene terephthalate film (thickness 12 ⁇ m) and a stretched nylon film (thickness 15 ⁇ m) are laminated with an adhesive layer (thickness 3 ⁇ m)), instead of the adhesive layer (maleic anhydride modified polypropylene (thickness 22.5 ⁇ m)), an adhesive layer (maleic anhydride modified polypropylene (thickness 40 ⁇ m)), instead of the heat-sealing resin layer (random polypropylene (thickness 22.5 ⁇ m)), Except for using the laminated film (thickness 40 ⁇ m) of the laminated film, the laminated film was a laminated film of a polyethylene terephthalate film (thickness 12 ⁇ m) and a stretched nylon film (thickness 15 ⁇ m) with an adhesive layer (thickness 3 ⁇ m))/adhesive layer
  • Example 5 In the production of the electrical storage device exterior material, the stretched nylon film side of the base material layer was bonded to the metal foil layer via the adhesive layer. In addition, in Example 5, two types of lubricants, saturated fatty acid amide (behenic acid amide) and unsaturated fatty acid amide (erucic acid amide), were used in combination as the lubricant contained in the thermal adhesive resin layer.
  • the electrical storage device exterior material of Example 5 had the same moldability evaluation as Example 1.
  • the laminate includes, in order from the outside, at least an optional base material layer, a metal foil layer, and a heat-sealable resin layer;
  • the exterior material for an electricity storage device has a maximum reflected light intensity A of 50 or less in a light receiving angle range of 0.0° or more and 90.0° or less, measured for at least one surface of the metal foil layer at every 0.1° of light receiving angle using a goniophotometer under a condition of an incident light angle of 60°.
  • the laminate includes, in order from the outside, at least an optional base material layer, a metal foil layer, and a heat-sealable resin layer;
  • the exterior material for an electricity storage device has a maximum reflected light intensity B of 300 or more in a light receiving angle range of 45.0° or more and 75.0° or less, measured for at least one surface of the metal foil layer at every 0.1° of light receiving angle using a variable angle photometer under a condition of an incident light angle of 60°.
  • Item 4 The exterior material for an electricity storage device according to Item 3, wherein the surface of the metal foil layer is a glossy surface.
  • a maximum slope C of at least one surface of the metal foil layer is 10.0 or less in a light-receiving angle range of 0.0° to 90.0°, as measured at every 0.1° of light-receiving angle using a goniophotometer under a condition of an incident light angle of 60°.
  • a maximum slope D of at least one surface of the metal foil layer is 200 or more within a light-receiving angle range of 45.0° to 75.0°, as measured at every 0.1° of the light-receiving angle using a goniophotometer under a condition of an incident light angle of 60°.
  • Item 7 The exterior material for an electricity storage device according to any one of Items 1 to 6, wherein the metal foil layer includes at least one of an aluminum alloy foil and a stainless steel foil.
  • Item 8 The exterior material for an electricity storage device according to any one of Items 1 to 7, further comprising an adhesive layer between the base material layer and the metal foil layer.
  • the packaging material for an electricity storage device according to any one of Items 1 to 8, further comprising an adhesive layer between the metal foil layer and the heat-fusible resin layer.
  • Item 10 The exterior material for a storage battery device according to any one of Items 1 to 9, wherein the base material layer includes a laminate of a polyester film and a polyamide film, a laminate of a polyester film and a polyester film, or a laminate of a polyamide film and a polyamide film.
  • the laminate has a thickness of 155 ⁇ m or less.
  • the exterior material for a storage battery device according to any one of Items 1 to 14, wherein at least two selected from the group consisting of saturated fatty acid amides, unsaturated fatty acid amides, substituted amides, methylol amides, saturated fatty acid bisamides, unsaturated fatty acid bisamides, fatty acid ester amides, and aromatic bisamides are present on at least one of the surface and the interior of the base layer.
  • Item 16 The exterior material for an electricity storage device according to any one of Items 1 to 15, wherein the base material layer has a thickness of 35 ⁇ m or less.
  • Item 18 The exterior material for an electricity storage device according to any one of Items 1 to 17, wherein the metal foil layer has a thickness of 50 ⁇ m or less.
  • Item 19 The exterior material for an electricity storage device according to any one of Items 1 to 18, wherein the metal foil layer has a thickness of 50 ⁇ m or more and 200 ⁇ m or less.
  • the exterior material for a storage battery device according to any one of Items 1 to 20, wherein the heat-sealable resin layer contains at least one selected from the group consisting of polyolefins, cyclic polyolefins, acid-modified polyolefins, and acid-modified cyclic polyolefins.
  • Item 22 The exterior packaging material for an electricity storage device according to any one of Items 1 to 21, wherein the heat-fusible resin layer is formed of a blend polymer in which two or more types of resins are combined.
  • Item 23. The exterior packaging material for an electricity storage device according to any one of Items 1 to 22, wherein the heat-sealable resin layer is formed of two or more layers of the same or different resins.
  • the exterior packaging material for an electricity storage device according to any one of Items 1 to 23, wherein two or more types of lubricants are present on at least one of a surface and an interior of the heat-sealable resin layer.
  • Item 25 The exterior material for a storage battery device according to any one of Items 1 to 24, wherein at least two selected from the group consisting of saturated fatty acid amides, unsaturated fatty acid amides, substituted amides, methylol amides, saturated fatty acid bisamides, unsaturated fatty acid bisamides, fatty acid ester amides, and aromatic bisamides are present on at least one of the surface and the interior of the heat-sealable resin layer.
  • Item 26 The exterior packaging material for an electricity storage device according to any one of Items 1 to 23, wherein two or more types of lubricants are present on at least one of a surface and an interior of the heat-sealable resin layer.
  • An adhesive layer is further provided between the base layer and the metal foil layer, Item 27.
  • Item 28. The exterior material for an electricity storage device according to any one of Items 1 to 27, further comprising a colored layer between the base layer and the metal foil layer.
  • Item 29. The exterior material for an electricity storage device according to any one of Items 1 to 28, further comprising a surface coating layer on the opposite side of the base material layer to the metal foil layer side.
  • Item 30. The exterior material for a storage battery device according to Item 29, wherein the surface coating layer contains a colorant.
  • Item 31 The exterior material for an electricity storage device according to Item 29, wherein the surface coating layer contains titanium oxide.
  • Item 33 The exterior material for a power storage device according to Item 29, wherein the surface coating layer contains at least one selected from the group consisting of talc, silica, graphite, kaolin, montmorillonite, mica, hydrotalcite, silica gel, zeolite, aluminum hydroxide, magnesium hydroxide, zinc oxide, magnesium oxide, aluminum oxide, neodymium oxide, antimony oxide, titanium oxide, cerium oxide, calcium sulfate, barium sulfate, calcium carbonate, calcium silicate, lithium carbonate, calcium benzoate, calcium oxalate, magnesium stearate, alumina, carbon black, carbon nanotubes, high melting point nylon, acrylate resin, crosslinked acrylic, crosslinked styrene, crosslinked polyethylene, benzo
  • the method includes a step of obtaining a laminate in which at least an arbitrary base material layer, a metal foil layer, and a heat-sealable resin layer are laminated in this order from the outside, a maximum reflected light intensity A of 50 or less in a light-receiving angle range of 0.0° or more and 90.0° or less, measured for at least one surface of the metal foil layer at every 0.1° light-receiving angle using a goniophotometer under a condition of an incident light angle of 60°.
  • a maximum reflected light intensity A of 50 or less in a light-receiving angle range of 0.0° or more and 90.0° or less
  • the method includes a step of obtaining a laminate in which at least an arbitrary base material layer, a metal foil layer, and a heat-sealable resin layer are laminated in this order from the outside, a maximum reflected light intensity B of 300 or more at a light-receiving angle range of 45.0° or more and 75.0° or less, measured at every 0.1° of a light-receiving angle using a goniophotometer under a condition of an incident light angle of 60°, for at least one surface of the metal foil layer.
  • An adhesive layer is further provided between the metal foil layer and the heat-sealable resin layer, Item 36.
  • Item 37. The method for producing an exterior material for an electricity storage device according to Item 36, wherein the heat-sealable resin layer is formed of two or more layers of the same or different resins.
  • An electricity storage device comprising an electricity storage device element including at least a positive electrode, a negative electrode, and an electrolyte, housed in a package formed from the exterior material for an electricity storage device according to any one of Items 1 to 33.
  • Base material layer 2 Adhesive layer 3
  • Metal foil layer 4 Heat-fusible resin layer 5
  • Adhesive layer 6 Surface coating layer 10 Exterior material for power storage device

Landscapes

  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Sealing Battery Cases Or Jackets (AREA)

Abstract

An exterior material for a power storage device, the exterior material being configured from a laminate provided with at least a base layer, a metal foil layer, and a heat-fusible resin layer in the stated order from the outer side. The surface on at least one side of the metal foil layer has a maximum reflected light intensity of 50 or less in a light reception angle range of 0.0-90.0°, measured at every 0.1° of the light reception angle using a variable-angle photometer under the condition of an incident light angle of 60°.

Description

蓄電デバイス用外装材、その製造方法、及び蓄電デバイスExterior material for power storage device, manufacturing method thereof, and power storage device
 本開示は、蓄電デバイス用外装材、その製造方法、及び蓄電デバイスに関する。 This disclosure relates to an exterior material for an electricity storage device, a manufacturing method thereof, and an electricity storage device.
 従来、様々なタイプの蓄電デバイスが開発されているが、あらゆる蓄電デバイスにおいて、電極や電解質などの蓄電デバイス素子を封止するために外装材が不可欠な部材になっている。従来、蓄電デバイス用外装材として金属製の外装材が多用されていた。 Various types of electricity storage devices have been developed to date, but in all electricity storage devices, exterior materials are essential components for sealing the electricity storage device elements, such as the electrodes and electrolyte. Traditionally, metallic exterior materials have been widely used as exterior materials for electricity storage devices.
 一方、近年、電気自動車、ハイブリッド電気自動車、パソコン、カメラ、携帯電話などの高性能化に伴い、蓄電デバイスには、多様な形状が要求されると共に、薄型化や軽量化が求められている。しかしながら、従来多用されていた金属製の蓄電デバイス用外装材では、形状の多様化に追従することが困難であり、しかも軽量化にも限界があるという欠点がある。 On the other hand, in recent years, with the increasing performance of electric vehicles, hybrid electric vehicles, personal computers, cameras, mobile phones, and the like, there is a demand for electricity storage devices to be more diverse in shape, as well as thinner and lighter in weight. However, the metallic exterior materials for electricity storage devices that have been widely used up until now have the drawback of being difficult to keep up with the diversification of shapes, and there is also a limit to how much they can be made lighter.
 そこで、従来、多様な形状に加工が容易で、薄型化や軽量化を実現し得る蓄電デバイス用外装材として、基材層/金属箔層/接着層/熱融着性樹脂層が順次積層されたフィルム状の積層体が提案されている(例えば、特許文献1を参照)。 Therefore, a film-like laminate in which a base layer, a metal foil layer, an adhesive layer, and a heat-sealable resin layer are laminated in this order has been proposed as an exterior material for an electricity storage device that can be easily processed into a variety of shapes and can be made thin and lightweight (see, for example, Patent Document 1).
 このような蓄電デバイス用外装材においては、一般的に、冷間成形により凹部が形成され、当該凹部によって形成された空間に電極や電解液などの蓄電デバイス素子を配し、熱融着性樹脂層を熱融着させることにより、蓄電デバイス用外装材の内部に蓄電デバイス素子が収容された蓄電デバイスが得られる。 In such exterior materials for electricity storage devices, recesses are generally formed by cold forming, electricity storage device elements such as electrodes and electrolyte are placed in the space formed by the recesses, and the heat-sealable resin layer is heat-sealed to obtain an electricity storage device in which the electricity storage device elements are housed inside the exterior material for electricity storage devices.
特開2008-287971号公報JP 2008-287971 A
 フィルム状の外装材には、蓄電デバイスのエネルギー密度をより一層高める観点などから、蓄電デバイス素子を収容する凹部を外装材に深く形成することが求められている。しかしながら、フィルム状の外装材を成形して凹部を形成する場合に、クラックやピンホールが発生しやすいという問題がある。 In order to further increase the energy density of the power storage device, it is necessary to form a deep recess in the film-like exterior material to accommodate the power storage device element. However, when forming the recess by molding the film-like exterior material, there is a problem in that cracks and pinholes are likely to occur.
 本開示は、外側から順に、少なくとも、基材層、金属箔層、及び熱融着性樹脂層を備える積層体から構成され、成形性に優れた蓄電デバイス用外装材を提供することを主な目的とする。 The main objective of this disclosure is to provide an exterior material for an electricity storage device that is composed of a laminate having, from the outside in order, at least a base layer, a metal foil layer, and a heat-sealable resin layer, and that has excellent formability.
 本開示の発明者は、上記のような課題を解決すべく鋭意検討を行った。その結果、外側から順に、少なくとも、基材層、金属箔層、及び熱融着性樹脂層を備える積層体から構成された蓄電デバイス用外装材において、金属箔層の少なくとも一方側の表面について、変角光度計を用い、入射光角度60°の条件で受光角度0.1°ごとに測定される、受光角度0.0°以上90.0°以下の範囲における最大反射光強度Aを所定値以下に設定することにより、成形性に優れた蓄電デバイス用外装材が得られることを見出した。 The inventors of the present disclosure have conducted intensive research to solve the above problems. As a result, they have discovered that in an exterior material for an electricity storage device composed of a laminate including, in order from the outside, at least a base layer, a metal foil layer, and a heat-sealable resin layer, by setting the maximum reflected light intensity A at a light receiving angle range of 0.0° to 90.0°, which is measured at every 0.1° of light receiving angle with a variable goniophotometer under the condition of an incident light angle of 60°, to a predetermined value or less for at least one surface of the metal foil layer, the maximum reflected light intensity A can be obtained.
 また、本開示の発明者は、外側から順に、少なくとも、基材層、金属箔層、及び熱融着性樹脂層を備える積層体から構成された蓄電デバイス用外装材において、金属箔層の少なくとも一方側の表面について、変角光度計を用い、入射光角度60°の条件で受光角度0.1°ごとに測定される、受光角度45.0°以上75.0°以下の範囲における最大反射光強度Bを所定値以上に設定することによっても、成形性に優れた蓄電デバイス用外装材が得られることを見出した。 The inventors of the present disclosure have also discovered that in an exterior packaging material for an electricity storage device composed of a laminate including, in order from the outside, at least a base layer, a metal foil layer, and a heat-sealable resin layer, by setting the maximum reflected light intensity B at a light receiving angle range of 45.0° to 75.0° inclusive, measured at every 0.1° of light receiving angle with a goniophotometer under the condition of an incident light angle of 60°, to a predetermined value or more for at least one surface of the metal foil layer.
 本開示は、これらの新規な知見に基づいて、更に検討を重ねることにより完成したものである。 This disclosure was completed through further investigation based on these new findings.
 即ち、本開示の第1の態様は、下記に掲げる態様の発明を提供する。
 外側から順に、少なくとも、基材層、金属箔層、及び熱融着性樹脂層を備える積層体から構成されており、
 前記金属箔層の少なくとも一方側の表面について、変角光度計を用い、入射光角度60°の条件で受光角度0.1°ごとに測定される、受光角度0.0°以上90.0°以下の範囲における最大反射光強度Aが、50以下である、蓄電デバイス用外装材。
That is, a first aspect of the present disclosure provides the invention of the following aspects.
The laminate includes, in order from the outside, at least a base layer, a metal foil layer, and a heat-sealable resin layer.
The exterior material for an electricity storage device has a maximum reflected light intensity A of 50 or less in a light receiving angle range of 0.0° or more and 90.0° or less, measured for at least one surface of the metal foil layer at every 0.1° of light receiving angle using a goniophotometer under a condition of an incident light angle of 60°.
 本開示の第1の態様において、蓄電デバイス用外装材は、基材層を備えていないものであってもよい。すなわち、本開示の第1の態様は、外側から順に、少なくとも、金属箔層、及び熱融着性樹脂層を備える積層体から構成されており、金属箔層の少なくとも一方側の表面について、変角光度計を用い、入射光角度60°の条件で受光角度0.1°ごとに測定される、受光角度0.0°以上90.0°以下の範囲における最大反射光強度Aが、50以下である、蓄電デバイス用外装材であってもよい。 In the first aspect of the present disclosure, the exterior material for an electricity storage device may not include a base material layer. That is, the first aspect of the present disclosure may be an exterior material for an electricity storage device that is composed of a laminate including, in order from the outside, at least a metal foil layer and a heat-sealable resin layer, and that has a maximum reflected light intensity A of 50 or less in the light receiving angle range of 0.0° to 90.0°, measured for every 0.1° of light receiving angle at an incident light angle of 60° using a goniophotometer, for at least one surface of the metal foil layer.
 また、本開示の第2の態様は、下記に掲げる態様の発明を提供する。
 外側から順に、少なくとも、基材層、金属箔層、及び熱融着性樹脂層を備える積層体から構成されており、
 前記金属箔層の少なくとも一方側の表面について、変角光度計を用い、入射光角度60°の条件で受光角度0.1°ごとに測定される、受光角度45.0°以上75.0°以下の範囲における最大反射光強度Bが、300以上である、蓄電デバイス用外装材。
A second aspect of the present disclosure provides the invention having the following aspects.
The laminate includes, in order from the outside, at least a base layer, a metal foil layer, and a heat-sealable resin layer.
The exterior material for an electricity storage device has a maximum reflected light intensity B of 300 or more in a light receiving angle range of 45.0° or more and 75.0° or less, measured for at least one surface of the metal foil layer at every 0.1° of light receiving angle using a variable angle photometer under a condition of an incident light angle of 60°.
 本開示の第2の態様において、蓄電デバイス用外装材は、基材層を備えていないものであってもよい。すなわち、本開示の第2の態様は、外側から順に、少なくとも、金属箔層、及び熱融着性樹脂層を備える積層体から構成されており、前記金属箔層の少なくとも一方側の表面について、変角光度計を用い、入射光角度60°の条件で受光角度0.1°ごとに測定される、受光角度45.0°以上75.0°以下の範囲における最大反射光強度Bが、300以上である、蓄電デバイス用外装材であってもよい。 In a second aspect of the present disclosure, the exterior material for an electricity storage device may not include a base material layer. That is, the second aspect of the present disclosure may be an exterior material for an electricity storage device that is composed of a laminate including, in order from the outside, at least a metal foil layer and a heat-sealable resin layer, and that has a maximum reflected light intensity B of 300 or more for at least one surface of the metal foil layer in a light receiving angle range of 45.0° to 75.0°, measured at every 0.1° of light receiving angle under a condition of an incident light angle of 60° using a goniophotometer.
 本開示によれば、外側から順に、少なくとも、基材層、金属箔層、及び熱融着性樹脂層を備える積層体から構成され、成形性に優れた蓄電デバイス用外装材を提供することができる。本開示によれば、外側から順に、少なくとも、金属箔層、及び熱融着性樹脂層を備える積層体から構成され、成形性に優れた蓄電デバイス用外装材を提供することもできる。また、本開示によれば、これらの蓄電デバイス用外装材の製造方法、及びこれらの蓄電デバイス用外装材を利用した蓄電デバイスを提供することもできる。 According to the present disclosure, it is possible to provide an exterior material for an electricity storage device that is composed of a laminate having, in order from the outside, at least a base layer, a metal foil layer, and a heat-sealable resin layer, and has excellent formability.According to the present disclosure, it is possible to provide an exterior material for an electricity storage device that is composed of a laminate having, in order from the outside, at least a metal foil layer, and a heat-sealable resin layer, and has excellent formability.In addition, according to the present disclosure, it is possible to provide a manufacturing method for these exterior materials for electricity storage devices, and an electricity storage device that uses these exterior materials for electricity storage devices.
本開示の蓄電デバイス用外装材の断面構造の一例を示す模式図である。1 is a schematic diagram showing an example of a cross-sectional structure of an exterior material for an electricity storage device according to the present disclosure. 本開示の蓄電デバイス用外装材の断面構造の一例を示す模式図である。1 is a schematic diagram showing an example of a cross-sectional structure of an exterior material for an electricity storage device according to the present disclosure. 本開示の蓄電デバイス用外装材の断面構造の一例を示す模式図である。1 is a schematic diagram showing an example of a cross-sectional structure of an exterior material for an electricity storage device according to the present disclosure. 本開示の蓄電デバイス用外装材の断面構造の一例を示す模式図である。1 is a schematic diagram showing an example of a cross-sectional structure of an exterior material for an electricity storage device according to the present disclosure. 本開示の蓄電デバイス用外装材により形成された包装体中に蓄電デバイス素子を収容する方法を説明するための模式図である。FIG. 2 is a schematic diagram for illustrating a method for housing an electricity storage device element in a package formed from the exterior material for an electricity storage device of the present disclosure. 実施例2の金属箔層の表面について、変角光度計を用いて測定される艶消し面の反射光強度と受光角度との関係を示すグラフの模式図である。FIG. 13 is a schematic diagram of a graph showing the relationship between the reflected light intensity of the matte surface and the light receiving angle measured using a goniophotometer for the surface of the metal foil layer in Example 2. 実施例2の金属箔層の表面について、変角光度計を用いて測定される艶面の反射光強度と受光角度との関係を示すグラフの模式図である。FIG. 13 is a schematic diagram of a graph showing the relationship between the reflected light intensity of the glossy surface and the light receiving angle measured using a goniophotometer for the surface of the metal foil layer in Example 2.
 本開示の第1の態様に係る蓄電デバイス用外装材は、外側から順に、少なくとも、基材層、金属箔層、及び熱融着性樹脂層を備える積層体から構成されており、前記金属箔層の少なくとも一方側の表面について、変角光度計を用い、入射光角度60°の条件で受光角度0.1°ごとに測定される、受光角度0.0°以上90.0°以下の範囲における最大反射光強度Aが、50以下である。前記の通り、本開示の第1の態様において、蓄電デバイス用外装材は、基材層を備えていないものであってもよい。 The exterior material for an electricity storage device according to the first aspect of the present disclosure is composed of a laminate including, in order from the outside, at least a base layer, a metal foil layer, and a heat-sealable resin layer, and the maximum reflected light intensity A of at least one surface of the metal foil layer is 50 or less in the light receiving angle range of 0.0° to 90.0°, measured at every 0.1° of light receiving angle under the condition of an incident light angle of 60° using a goniophotometer. As described above, in the first aspect of the present disclosure, the exterior material for an electricity storage device may not include a base layer.
 また、本開示の第2の態様に係る蓄電デバイス用外装材は、外側から順に、少なくとも、基材層、金属箔層、及び熱融着性樹脂層を備える積層体から構成されており、前記金属箔層の少なくとも一方側の表面について、変角光度計を用い、入射光角度60°の条件で受光角度0.1°ごとに測定される、受光角度45.0°以上75.0°以下の範囲における最大反射光強度Bが、300以上である。前記の通り、本開示の第2の態様において、蓄電デバイス用外装材は、基材層を備えていないものであってもよい。 Furthermore, the exterior material for an electricity storage device according to the second aspect of the present disclosure is composed of a laminate including, in order from the outside, at least a base layer, a metal foil layer, and a heat-sealable resin layer, and the maximum reflected light intensity B of at least one surface of the metal foil layer is 300 or more in a light receiving angle range of 45.0° to 75.0°, measured at every 0.1° of light receiving angle under a condition of an incident light angle of 60° using a goniophotometer. As described above, in the second aspect of the present disclosure, the exterior material for an electricity storage device may not include a base layer.
 以下、本開示の蓄電デバイス用外装材について詳述する。なお、以下の説明において、第1の態様又は第2の態様に特有の事項については、それぞれ、何れの態様に関する説明であるか明示し、第1の態様及び第2の態様に共通する事項については、特に明示せずに本開示に関する説明とする。また、本明細書において、「~」で示される数値範囲は「以上」、「以下」を意味する。例えば、2~15mmとの表記は、2mm以上15mm以下を意味する。本開示に段階的に記載されている数値範囲において、ある数値範囲で記載された上限値又は下限値は、他の段階的な記載の数値範囲の上限値又は下限値に置き換えてもよい。また、別個に記載された、上限値と上限値、上限値と下限値、又は下限値と下限値を組み合わせて、それぞれ、数値範囲としてもよい。また、本開示に記載されている数値範囲において、ある数値範囲で記載された上限値又は下限値は、実施例に示されている値に置き換えてもよい。 The exterior material for a power storage device of the present disclosure will be described in detail below. In the following description, matters specific to the first or second embodiment will be clearly indicated as to which embodiment they relate to, and matters common to the first and second embodiments will be described without any particular indication as to the present disclosure. In addition, in this specification, a numerical range indicated by "~" means "not less than" or "not more than". For example, the expression "2 to 15 mm" means 2 mm or more and 15 mm or less. In the numerical ranges described in stages in this disclosure, the upper limit or lower limit described in a certain numerical range may be replaced with the upper limit or lower limit of another numerical range described in stages. In addition, the upper limit and upper limit, the upper limit and lower limit, or the lower limit and lower limit described separately may be combined to form a numerical range. In addition, in the numerical ranges described in this disclosure, the upper limit or lower limit described in a certain numerical range may be replaced with a value shown in the examples.
 なお、蓄電デバイス用外装材において、後述の金属箔層3については、通常、その製造過程におけるMD(Machine Direction)とTD(Transverse Direction)を判別することができる。例えば、金属箔層3がアルミニウム合金箔やステンレス鋼箔等の金属箔により構成されている場合、金属箔の圧延方向(RD:Rolling Direction)には、金属箔の表面に、いわゆる圧延痕と呼ばれる線状の筋が形成されている。圧延痕は、圧延方向に沿って伸びているため、金属箔の表面を観察することによって、金属箔の圧延方向を把握することができる。また、積層体の製造過程においては、通常、積層体のMDと、金属箔のRDとが一致するため、積層体の金属箔の表面を観察し、金属箔の圧延方向(RD)を特定することにより、積層体のMDを特定することができる。また、積層体のTDは、積層体のMDとは垂直方向であるため、積層体のTDについても特定することができる。 In the case of the exterior material for the electric storage device, the MD (machine direction) and TD (transverse direction) of the metal foil layer 3 described later can usually be determined in the manufacturing process. For example, when the metal foil layer 3 is made of a metal foil such as an aluminum alloy foil or a stainless steel foil, linear lines called rolling marks are formed on the surface of the metal foil in the rolling direction (RD) of the metal foil. Since the rolling marks extend along the rolling direction, the rolling direction of the metal foil can be determined by observing the surface of the metal foil. In the manufacturing process of the laminate, the MD of the laminate usually coincides with the RD of the metal foil, so the MD of the laminate can be identified by observing the surface of the metal foil of the laminate and identifying the rolling direction (RD) of the metal foil. In addition, since the TD of the laminate is perpendicular to the MD of the laminate, the TD of the laminate can also be identified.
 また、アルミニウム合金箔やステンレス鋼箔等の金属箔の圧延痕により蓄電デバイス用外装材のMDが特定できない場合は、次の方法により特定することができる。蓄電デバイス用外装材のMDの確認方法として、蓄電デバイス用外装材の熱融着性樹脂層の断面を電子顕微鏡で観察し海島構造を確認する方法がある。当該方法においては、熱融着性樹脂層の厚み方向に対して垂直な方向の島の形状の径の平均が最大であった断面と平行な方向を、MDと判断することができる。具体的には、熱融着性樹脂層の長さ方向の断面と、当該長さ方向の断面と平行な方向から10度ずつ角度を変更し、長さ方向の断面に対して垂直な方向までの各断面(合計10の断面)について、それぞれ、電子顕微鏡写真で観察して海島構造を確認する。次に、各断面において、それぞれ、個々の島の形状を観察する。個々の島の形状について、熱融着性樹脂層の厚み方向に対して垂直方向の最左端と、当該垂直方向の最右端とを結ぶ直線距離を径yとする。各断面において、島の形状の当該径yが大きい順に上位20個の径yの平均を算出する。島の形状の当該径yの平均が最も大きかった断面と平行な方向をMDと判断する。 In addition, when the MD of the electrical storage device exterior material cannot be identified due to rolling marks on the metal foil such as aluminum alloy foil or stainless steel foil, it can be identified by the following method. One method for confirming the MD of an electrical storage device exterior material is to observe the cross section of the heat-sealable resin layer of the electrical storage device exterior material with an electron microscope to confirm the sea-island structure. In this method, the direction parallel to the cross section in which the average diameter of the shape of the islands in the direction perpendicular to the thickness direction of the heat-sealable resin layer was maximum can be determined as the MD. Specifically, the cross section in the length direction of the heat-sealable resin layer and each cross section (10 cross sections in total) that is angled 10 degrees from the direction parallel to the cross section in the length direction to the direction perpendicular to the cross section in the length direction are observed with an electron microscope to confirm the sea-island structure. Next, the shape of each individual island is observed in each cross section. For each island shape, the straight line distance connecting the leftmost end in the direction perpendicular to the thickness direction of the heat-sealable resin layer and the rightmost end in the vertical direction is taken as the diameter y. For each cross section, the average of the top 20 diameters y of the island shapes is calculated in descending order of diameter y. The direction parallel to the cross section with the largest average diameter y of the island shapes is determined to be the MD.
1.蓄電デバイス用外装材の積層構造
 本開示の蓄電デバイス用外装材10は、例えば図1に示すように、外側から順に、基材層1、金属箔層3、及び熱融着性樹脂層4をこの順に備える積層体から構成されている。蓄電デバイス用外装材10において、基材層1が最外層側になり、熱融着性樹脂層4は最内層になる。蓄電デバイス用外装材10と蓄電デバイス素子を用いて蓄電デバイスを組み立てる際に、蓄電デバイス用外装材10の熱融着性樹脂層4同士を対向させた状態で、周縁部を熱融着させることによって形成された空間に、蓄電デバイス素子が収容される。本開示の蓄電デバイス用外装材10を構成する積層体において、金属箔層3を基準とし、金属箔層3よりも熱融着性樹脂層4側が内側であり、金属箔層3よりも基材層1側が外側である。本開示の蓄電デバイス用外装材10は、金属箔層3及び熱融着性樹脂層4をこの順に備える積層体から構成されていてもよい。この場合、金属箔層3の熱融着性樹脂層4側とは反対側が最外層側になり、熱融着性樹脂層4は最内層になる。
1. Laminated structure of the exterior material for a power storage device The exterior material for a power storage device 10 of the present disclosure is composed of a laminate including, in this order from the outside, a base material layer 1, a metal foil layer 3, and a heat-sealable resin layer 4, as shown in FIG. 1, for example. In the exterior material for a power storage device 10, the base material layer 1 is the outermost layer, and the heat-sealable resin layer 4 is the innermost layer. When assembling an electricity storage device using the exterior material for a power storage device 10 and an electricity storage device element, the heat-sealable resin layers 4 of the exterior material for a power storage device 10 are opposed to each other, and the electricity storage device element is accommodated in a space formed by heat-sealing the periphery. In the laminate constituting the exterior material for a power storage device 10 of the present disclosure, the metal foil layer 3 is used as a reference, and the heat-sealable resin layer 4 side is the inner side of the metal foil layer 3, and the base material layer 1 side is the outer side of the metal foil layer 3. The exterior packaging material 10 for an electricity storage device according to the present disclosure may be composed of a laminate including, in this order, a metal foil layer 3 and a heat-sealable resin layer 4. In this case, the side of the metal foil layer 3 opposite to the heat-sealable resin layer 4 becomes the outermost layer, and the heat-sealable resin layer 4 becomes the innermost layer.
 蓄電デバイス用外装材10は、例えば図2から図4に示すように、基材層1と金属箔層3との間に、これらの層間の接着性を高めることなどを目的として、必要に応じて接着剤層2を有していてもよい。また、例えば図3及び図4に示すように、金属箔層3と熱融着性樹脂層4との間に、これらの層間の接着性を高めることなどを目的として、必要に応じて接着層5を有していてもよい。また、図4に示すように、基材層1の外側(熱融着性樹脂層4側とは反対側)には、必要に応じて表面被覆層6などが設けられていてもよい。 As shown in Figures 2 to 4, for example, the exterior material 10 for an electricity storage device may have an adhesive layer 2 between the base material layer 1 and the metal foil layer 3, if necessary, for the purpose of increasing the adhesion between these layers. Also, as shown in Figures 3 and 4, for example, the exterior material 10 for an electricity storage device may have an adhesive layer 5 between the metal foil layer 3 and the heat-sealable resin layer 4, if necessary, for the purpose of increasing the adhesion between these layers. Also, as shown in Figure 4, a surface coating layer 6 or the like may be provided on the outside of the base material layer 1 (the side opposite to the heat-sealable resin layer 4) if necessary.
 蓄電デバイス用外装材10を構成する積層体の厚みとしては、特に制限されないが、コスト削減、エネルギー密度向上等の観点からは、例えば約300μm以下、好ましくは約250μm以下、約210μm以下、約190μm以下、約180μm以下、約155μm以下、約120μm以下が挙げられる。また、蓄電デバイス用外装材10を構成する積層体の厚みとしては、蓄電デバイス素子を保護するという蓄電デバイス用外装材の機能を維持する観点からは、好ましくは約35μm以上、約45μm以上、約60μm以上、約155μm以上、約190μm以上が挙げられる。また、蓄電デバイス用外装材10を構成する積層体の好ましい範囲については、例えば、35~300μm程度、35~250μm程度、35~210μm程度、35~190μm程度、35~180μm程度、35~155μm程度、35~120μm程度、45~300μm程度、45~250μm程度、45~210μm程度、45~190μm程度、45~180μm程度、45~155μm程度、45~120μm程度、60~300μm程度、60~250μm程度、60~210μm程度、60~190μm程度、60~180μm程度、60~155μm程度、60~120μm程度、155~300μm程度、155~250μm程度、155~210μm程度、155~190μm程度、155~180μm程度、190~300μm程度、190~250μm程度、190~210μm程度が挙げられ、特に蓄電デバイスを軽量薄膜化する場合には60~155μm程度が好ましく、成形性を向上させる場合には155~190μm程度が好ましい。 The thickness of the laminate constituting the exterior material 10 for an electricity storage device is not particularly limited, but from the viewpoint of cost reduction, energy density improvement, etc., examples of the thickness include about 300 μm or less, preferably about 250 μm or less, about 210 μm or less, about 190 μm or less, about 180 μm or less, about 155 μm or less, and about 120 μm or less. In addition, from the viewpoint of maintaining the function of the exterior material for an electricity storage device, which is to protect the electricity storage device elements, the thickness of the laminate constituting the electricity storage device exterior material 10 is preferably about 35 μm or more, about 45 μm or more, about 60 μm or more, about 155 μm or more, and about 190 μm or more. In addition, preferred ranges of the laminate constituting the exterior material 10 for an electrical storage device are, for example, about 35 to 300 μm, about 35 to 250 μm, about 35 to 210 μm, about 35 to 190 μm, about 35 to 180 μm, about 35 to 155 μm, about 35 to 120 μm, about 45 to 300 μm, about 45 to 250 μm, about 45 to 210 μm, about 45 to 190 μm, about 45 to 180 μm, about 45 to 155 μm, about 45 to 120 μm, about 60 to 300 μm, about 60 to 250 μm, about 60 to Examples include about 210 μm, about 60 to 190 μm, about 60 to 180 μm, about 60 to 155 μm, about 60 to 120 μm, about 155 to 300 μm, about 155 to 250 μm, about 155 to 210 μm, about 155 to 190 μm, about 155 to 180 μm, about 190 to 300 μm, about 190 to 250 μm, and about 190 to 210 μm. In particular, about 60 to 155 μm is preferred when making the power storage device lighter and thinner, and about 155 to 190 μm is preferred when improving formability.
 蓄電デバイス用外装材10において、蓄電デバイス用外装材10を構成する積層体の厚み(総厚み)に対する、基材層1、必要に応じて設けられる接着剤層2、金属箔層3、必要に応じて設けられる接着層5、熱融着性樹脂層4、及び必要に応じて設けられる表面被覆層6の合計厚みの割合は、好ましくは90%以上であり、より好ましくは95%以上であり、さらに好ましくは98%以上である。具体例としては、本開示の蓄電デバイス用外装材10が、基材層1、接着剤層2、金属箔層3、接着層5、及び熱融着性樹脂層4を含む場合、蓄電デバイス用外装材10を構成する積層体の厚み(総厚み)に対する、これら各層の合計厚みの割合は、好ましくは90%以上であり、より好ましくは95%以上であり、さらに好ましくは98%以上である。また、本開示の蓄電デバイス用外装材10が、基材層1、接着剤層2、金属箔層3、及び熱融着性樹脂層4を含む積層体である場合にも、蓄電デバイス用外装材10を構成する積層体の厚み(総厚み)に対する、これら各層の合計厚みの割合は、例えば80%以上、好ましくは90%以上、より好ましくは95%以上、さらに好ましくは98%以上とすることができる。 In the exterior material 10 for a storage battery device, the ratio of the total thickness of the base material layer 1, the adhesive layer 2 provided as needed, the metal foil layer 3, the adhesive layer 5 provided as needed, the heat-sealable resin layer 4, and the surface coating layer 6 provided as needed to the thickness (total thickness) of the laminate constituting the exterior material 10 for a storage battery device is preferably 90% or more, more preferably 95% or more, and even more preferably 98% or more. As a specific example, when the exterior material 10 for a storage battery device of the present disclosure includes the base material layer 1, the adhesive layer 2, the metal foil layer 3, the adhesive layer 5, and the heat-sealable resin layer 4, the ratio of the total thickness of these layers to the thickness (total thickness) of the laminate constituting the exterior material 10 for a storage battery device is preferably 90% or more, more preferably 95% or more, and even more preferably 98% or more. Also, even when the exterior material 10 for an electric storage device of the present disclosure is a laminate including a base layer 1, an adhesive layer 2, a metal foil layer 3, and a heat-sealable resin layer 4, the ratio of the total thickness of these layers to the thickness (total thickness) of the laminate constituting the exterior material 10 for an electric storage device can be, for example, 80% or more, preferably 90% or more, more preferably 95% or more, and even more preferably 98% or more.
2.蓄電デバイス用外装材を形成する各層
[基材層1]
 本開示において、基材層1は、蓄電デバイス用外装材の基材としての機能を発揮させることなどを目的として設けられる層である。基材層1は、蓄電デバイス用外装材の外層側に位置する。
2. Layers forming the exterior material for an electricity storage device [Base material layer 1]
In the present disclosure, the substrate layer 1 is a layer provided for the purpose of exhibiting the function as a substrate of the exterior material for an electricity storage device, etc. The substrate layer 1 is located on the outer layer side of the exterior material for an electricity storage device.
 基材層1を形成する素材については、基材としての機能、すなわち少なくとも絶縁性を備えるものであることを限度として特に制限されない。基材層1は、例えば樹脂を用いて形成することができ、樹脂には後述の添加剤が含まれていてもよい。 The material from which the base layer 1 is made is not particularly limited, as long as it has the function of a base material, i.e., at least insulating properties. The base layer 1 can be made, for example, using a resin, which may contain additives as described below.
 基材層1が樹脂により形成されている場合、基材層1は、例えば、樹脂フィルムにより形成することができる。基材層1を樹脂フィルムにより形成する場合、基材層1を金属箔層3などと積層して本開示の蓄電デバイス用外装材10を製造する際に、予め形成された樹脂フィルムを基材層1として用いてもよい。また、基材層1を形成する樹脂を、押出成形や塗布などによって金属箔層3などの表面上でフィルム化して、樹脂フィルムにより形成された基材層1としてもよい。樹脂フィルムは、未延伸フィルムであってもよいし、延伸フィルムであってもよい。延伸フィルムとしては、一軸延伸フィルム、二軸延伸フィルムが挙げられ、二軸延伸フィルムが好ましい。二軸延伸フィルムを形成する延伸方法としては、例えば、逐次二軸延伸法、インフレーション法、同時二軸延伸法等が挙げられる。樹脂を塗布する方法としては、ロールコーティング法、グラビアコーティング法、押出コーティング法などが挙げられる。 When the substrate layer 1 is made of a resin, the substrate layer 1 can be made of, for example, a resin film. When the substrate layer 1 is made of a resin film, a preformed resin film may be used as the substrate layer 1 when the substrate layer 1 is laminated with the metal foil layer 3 or the like to manufacture the exterior material for a storage device 10 of the present disclosure. In addition, the resin forming the substrate layer 1 may be formed into a film on the surface of the metal foil layer 3 or the like by extrusion molding or coating to form the substrate layer 1 formed of a resin film. The resin film may be an unstretched film or a stretched film. Examples of stretched films include uniaxially stretched films and biaxially stretched films, and biaxially stretched films are preferred. Examples of stretching methods for forming a biaxially stretched film include sequential biaxial stretching, inflation, and simultaneous biaxial stretching. Examples of methods for applying a resin include roll coating, gravure coating, and extrusion coating.
 基材層1を形成する樹脂としては、例えば、ポリエステル、ポリアミド、ポリオレフィン、エポキシ樹脂、アクリル樹脂、フッ素樹脂、ポリウレタン、珪素樹脂、フェノール樹脂などの樹脂や、これらの樹脂の変性物が挙げられる。また、基材層1を形成する樹脂は、これらの樹脂の共重合物であってもよいし、共重合物の変性物であってもよい。さらに、これらの樹脂の混合物であってもよい。 The resin forming the base layer 1 may be, for example, polyester, polyamide, polyolefin, epoxy resin, acrylic resin, fluororesin, polyurethane, silicone resin, phenolic resin, or modified versions of these resins. The resin forming the base layer 1 may also be a copolymer of these resins or a modified version of the copolymer. It may also be a mixture of these resins.
 基材層1は、これらの樹脂を主成分として含んでいることが好ましく、ポリエステル又はポリアミドを主成分として含んでいることがより好ましい。ここで、主成分とは、基材層1に含まれる樹脂成分のうち、含有率が、例えば50質量%以上、好ましくは60質量%以上、より好ましくは70質量%以上、さらに好ましくは80質量%以上、さらに好ましくは90質量%以上、さらに好ましくは95質量%以上、さらに好ましくは98質量%以上、さらに好ましくは99質量%以上の樹脂成分であることを意味する。例えば、基材層1がポリエステル又はポリアミドを主成分として含むとは、基材層1に含まれる樹脂成分のうち、ポリエステル又はポリアミドの含有率が、それぞれ、例えば50質量%以上、好ましくは60質量%以上、より好ましくは70質量%以上、さらに好ましくは80質量%以上、さらに好ましくは90質量%以上、さらに好ましくは95質量%以上、さらに好ましくは98質量%以上、さらに好ましくは99質量%以上であることを意味する。 The base layer 1 preferably contains these resins as the main component, and more preferably contains polyester or polyamide as the main component. Here, the main component means that the content of the resin components contained in the base layer 1 is, for example, 50% by mass or more, preferably 60% by mass or more, more preferably 70% by mass or more, even more preferably 80% by mass or more, even more preferably 90% by mass or more, even more preferably 95% by mass or more, even more preferably 98% by mass or more, and even more preferably 99% by mass or more. For example, when the base layer 1 contains polyester or polyamide as the main component, it means that the content of polyester or polyamide among the resin components contained in the base layer 1 is, for example, 50% by mass or more, preferably 60% by mass or more, more preferably 70% by mass or more, even more preferably 80% by mass or more, even more preferably 90% by mass or more, even more preferably 95% by mass or more, even more preferably 98% by mass or more, and even more preferably 99% by mass or more.
 基材層1を形成する樹脂としては、これらの中でも、好ましくはポリエステル、ポリアミドが挙げられる。 Among these, polyester and polyamide are preferred as resins for forming the base layer 1.
 ポリエステルとしては、具体的には、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンナフタレート、ポリエチレンイソフタレート、共重合ポリエステル等が挙げられる。また、共重合ポリエステルとしては、エチレンテレフタレートを繰り返し単位の主体とした共重合ポリエステル等が挙げられる。具体的には、エチレンテレフタレートを繰り返し単位の主体としてエチレンイソフタレートと重合する共重合体ポリエステル(以下、ポリエチレン(テレフタレート/イソフタレート)にならって略す)、ポリエチレン(テレフタレート/アジペート)、ポリエチレン(テレフタレート/ナトリウムスルホイソフタレート)、ポリエチレン(テレフタレート/ナトリウムイソフタレート)、ポリエチレン(テレフタレート/フェニル-ジカルボキシレート)、ポリエチレン(テレフタレート/デカンジカルボキシレート)等が挙げられる。これらのポリエステルは、1種単独で使用してもよく、また2種以上を組み合わせて使用してもよい。 Specific examples of polyesters include polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, polybutylene naphthalate, polyethylene isophthalate, and copolymer polyesters. Examples of copolymer polyesters include copolymer polyesters in which ethylene terephthalate is the main repeating unit. Specific examples include copolymer polyesters in which ethylene terephthalate is the main repeating unit and is polymerized with ethylene isophthalate (hereinafter abbreviated as polyethylene (terephthalate/isophthalate)), polyethylene (terephthalate/adipate), polyethylene (terephthalate/sodium sulfoisophthalate), polyethylene (terephthalate/sodium isophthalate), polyethylene (terephthalate/phenyl-dicarboxylate), and polyethylene (terephthalate/decanedicarboxylate). These polyesters may be used alone or in combination of two or more.
 また、ポリアミドとしては、具体的には、ナイロン6、ナイロン66、ナイロン610、ナイロン12、ナイロン46、ナイロン6とナイロン66との共重合体等の脂肪族ポリアミド;テレフタル酸及び/又はイソフタル酸に由来する構成単位を含むナイロン6I、ナイロン6T、ナイロン6IT、ナイロン6I6T(Iはイソフタル酸、Tはテレフタル酸を表す)等のヘキサメチレンジアミン-イソフタル酸-テレフタル酸共重合ポリアミド、ポリアミドMXD6(ポリメタキシリレンアジパミド)等の芳香族を含むポリアミド;ポリアミドPACM6(ポリビス(4-アミノシクロヘキシル)メタンアジパミド)等の脂環式ポリアミド;さらにラクタム成分や、4,4’-ジフェニルメタン-ジイソシアネート等のイソシアネート成分を共重合させたポリアミド、共重合ポリアミドとポリエステルやポリアルキレンエーテルグリコールとの共重合体であるポリエステルアミド共重合体やポリエーテルエステルアミド共重合体;これらの共重合体等のポリアミドが挙げられる。これらのポリアミドは、1種単独で使用してもよく、また2種以上を組み合わせて使用してもよい。 Specific examples of polyamides include aliphatic polyamides such as nylon 6, nylon 66, nylon 610, nylon 12, nylon 46, and copolymers of nylon 6 and nylon 66; hexamethylenediamine-isophthalic acid-terephthalic acid copolymer polyamides such as nylon 6I, nylon 6T, nylon 6IT, and nylon 6I6T (I represents isophthalic acid, T represents terephthalic acid) which contain structural units derived from terephthalic acid and/or isophthalic acid, and aromatic polyamides such as polyamide MXD6 (polymetaxylylene adipamide); alicyclic polyamides such as polyamide PACM6 (polybis(4-aminocyclohexyl)methane adipamide); polyamides copolymerized with lactam components or isocyanate components such as 4,4'-diphenylmethane diisocyanate; polyesteramide copolymers and polyetheresteramide copolymers which are copolymers of copolymerized polyamides with polyesters or polyalkylene ether glycols; and polyamides such as copolymers of these copolymers. These polyamides may be used alone or in combination of two or more.
 基材層1は、ポリエステルフィルム、ポリアミドフィルム、及びポリオレフィンフィルムのうち少なくとも1つを含むことが好ましく、延伸ポリエステルフィルム、及び延伸ポリアミドフィルム、及び延伸ポリオレフィンフィルムのうち少なくとも1つを含むことが好ましく、延伸ポリエチレンテレフタレートフィルム、延伸ポリブチレンテレフタレートフィルム、延伸ナイロンフィルム、延伸ポリプロピレンフィルムのうち少なくとも1つを含むことがさらに好ましく、二軸延伸ポリエチレンテレフタレートフィルム、二軸延伸ポリブチレンテレフタレートフィルム、二軸延伸ナイロンフィルム、二軸延伸ポリプロピレンフィルムのうち少なくとも1つを含むことがさらに好ましい。 The substrate layer 1 preferably includes at least one of a polyester film, a polyamide film, and a polyolefin film, preferably includes at least one of a stretched polyester film, a stretched polyamide film, and a stretched polyolefin film, more preferably includes at least one of a stretched polyethylene terephthalate film, a stretched polybutylene terephthalate film, a stretched nylon film, and a stretched polypropylene film, and even more preferably includes at least one of a biaxially oriented polyethylene terephthalate film, a biaxially oriented polybutylene terephthalate film, a biaxially oriented nylon film, and a biaxially oriented polypropylene film.
 基材層1は、単層であってもよいし、2層以上により構成されていてもよい。基材層1が2層以上により構成されている場合、基材層1は、樹脂フィルムを接着剤などで積層させた積層体であってもよいし、樹脂を共押出しして2層以上とした樹脂フィルムの積層体であってもよい。また、樹脂を共押出しして2層以上とした樹脂フィルムの積層体を、未延伸のまま基材層1としてもよいし、一軸延伸または二軸延伸して基材層1としてもよい。 The base layer 1 may be a single layer, or may be composed of two or more layers. When the base layer 1 is composed of two or more layers, the base layer 1 may be a laminate in which resin films are laminated with an adhesive or the like, or a laminate of resin films in which resins are co-extruded to form two or more layers. Furthermore, a laminate of resin films in which resins are co-extruded to form two or more layers may be used as the base layer 1 without being stretched, or may be uniaxially or biaxially stretched to form the base layer 1.
 基材層1において、2層以上の樹脂フィルムの積層体の具体例としては、ポリエステルフィルムとナイロンフィルムとの積層体、2層以上のナイロンフィルムの積層体、2層以上のポリエステルフィルムの積層体などが挙げられ、好ましくは、延伸ナイロンフィルムと延伸ポリエステルフィルムとの積層体、2層以上の延伸ナイロンフィルムの積層体、2層以上の延伸ポリエステルフィルムの積層体が好ましい。例えば、基材層1が2層の樹脂フィルムの積層体である場合、ポリエステル樹脂フィルムとポリエステル樹脂フィルムの積層体、ポリアミド樹脂フィルムとポリアミド樹脂フィルムの積層体、またはポリエステル樹脂フィルムとポリアミド樹脂フィルムの積層体が好ましく、ポリエチレンテレフタレートフィルムとポリエチレンテレフタレートフィルムの積層体、ナイロンフィルムとナイロンフィルムの積層体、またはポリエチレンテレフタレートフィルムとナイロンフィルムの積層体がより好ましい。また、ポリエステル樹脂は、例えば電解液が表面に付着した際に変色し難いことなどから、基材層1が2層以上の樹脂フィルムの積層体である場合、ポリエステル樹脂フィルムが基材層1の最外層に位置することが好ましい。ポリエステル樹脂フィルムとポリアミド樹脂フィルムの積層体において、ポリエステル樹脂フィルムの厚みの好ましい範囲としては、2~33μm程度、2~28μm程度、2~23μm程度、2~18μm程度、2~11μm程度、2~8μm程度、10~33μm程度、10~28μm程度、10~23μm程度、10~18μm程度、18~33μm程度、18~28μm程度、18~23μm程度、また、ポリアミド樹脂フィルムの厚みの好ましい範囲としては、2~33μm程度、2~28μm程度、2~23μm程度、2~18μm程度、2~11μm程度、2~8μm程度、10~33μm程度、10~28μm程度、10~23μm程度、10~18μm程度、18~33μm程度、18~28μm程度、18~23μm程度が挙げられる。 Specific examples of laminates of two or more resin films in the base layer 1 include a laminate of a polyester film and a nylon film, a laminate of two or more nylon films, and a laminate of two or more polyester films, and preferably a laminate of a stretched nylon film and a stretched polyester film, a laminate of two or more stretched nylon films, and a laminate of two or more stretched polyester films. For example, when the base layer 1 is a laminate of two resin films, a laminate of a polyester resin film and a polyester resin film, a laminate of a polyamide resin film and a polyamide resin film, or a laminate of a polyester resin film and a polyamide resin film is preferred, and a laminate of a polyethylene terephthalate film and a polyethylene terephthalate film, a laminate of a nylon film and a nylon film, or a laminate of a polyethylene terephthalate film and a nylon film is more preferred. In addition, when the base layer 1 is a laminate of two or more resin films, it is preferred that the polyester resin film is located in the outermost layer of the base layer 1, because the polyester resin is less likely to discolor when, for example, an electrolyte is attached to the surface. In the laminate of the polyester resin film and the polyamide resin film, preferred ranges of the thickness of the polyester resin film are about 2 to 33 μm, about 2 to 28 μm, about 2 to 23 μm, about 2 to 18 μm, about 2 to 11 μm, about 2 to 8 μm, about 10 to 33 μm, about 10 to 28 μm, about 10 to 23 μm, about 10 to 18 μm, about 18 to 33 μm, and about 18 to 28 μm. degree, about 18 to 23 μm, and preferred ranges for the thickness of the polyamide resin film include about 2 to 33 μm, about 2 to 28 μm, about 2 to 23 μm, about 2 to 18 μm, about 2 to 11 μm, about 2 to 8 μm, about 10 to 33 μm, about 10 to 28 μm, about 10 to 23 μm, about 10 to 18 μm, about 18 to 33 μm, about 18 to 28 μm, and about 18 to 23 μm.
 基材層1が、2層以上の樹脂フィルムの積層体である場合、2層以上の樹脂フィルムは、接着剤を介して積層させてもよい。好ましい接着剤については、後述の接着剤層2で例示する接着剤と同様のものが挙げられる。なお、2層以上の樹脂フィルムを積層させる方法としては、特に制限されず、公知方法が採用でき、例えばドライラミネート法、サンドイッチラミネート法、押出ラミネート法、サーマルラミネート法などが挙げられ、好ましくはドライラミネート法が挙げられる。ドライラミネート法により積層させる場合には、接着剤としてポリウレタン接着剤を用いることが好ましい。このとき、接着剤の厚みとしては、例えば2~5μm程度が挙げられる。また、樹脂フィルムにアンカーコート層を形成し積層させても良い。アンカーコート層は、後述の接着剤層2で例示する接着剤と同様のものが挙げられる。このとき、アンカーコート層の厚みとしては、例えば0.01~1.0μm程度が挙げられる。 When the base layer 1 is a laminate of two or more resin films, the two or more resin films may be laminated via an adhesive. Preferred adhesives include those similar to those exemplified in the adhesive layer 2 described below. The method for laminating two or more resin films is not particularly limited, and known methods can be used, such as dry lamination, sandwich lamination, extrusion lamination, and thermal lamination, and preferably dry lamination. When laminating by the dry lamination method, it is preferable to use a polyurethane adhesive as the adhesive. In this case, the thickness of the adhesive is, for example, about 2 to 5 μm. Alternatively, an anchor coat layer may be formed on the resin film and laminated. The anchor coat layer may be the same as the adhesive exemplified in the adhesive layer 2 described below. In this case, the thickness of the anchor coat layer is, for example, about 0.01 to 1.0 μm.
 また、基材層1の表面及び内部の少なくとも一方には、滑剤、難燃剤、アンチブロッキング剤、酸化防止剤、光安定剤、粘着付与剤、耐電防止剤、着色剤等の添加剤が存在していてもよい。添加剤は、1種類のみを用いてもよいし、2種類以上を混合して用いてもよい。 Additives such as lubricants, flame retardants, antiblocking agents, antioxidants, light stabilizers, tackifiers, antistatic agents, and colorants may be present on at least one of the surface and interior of the base layer 1. Only one type of additive may be used, or two or more types may be mixed together.
 本開示において、蓄電デバイス用外装材の成形性を高める観点からは、基材層1の表面及び内部の少なくとも一方には、滑剤が存在していることが好ましい。滑剤としては、特に制限されないが、好ましくはアミド系滑剤が挙げられる。アミド系滑剤の具体例としては、例えば、飽和脂肪酸アミド、不飽和脂肪酸アミド、置換アミド、メチロールアミド、飽和脂肪酸ビスアミド、不飽和脂肪酸ビスアミド、脂肪酸エステルアミド、芳香族ビスアミドなどが挙げられる。飽和脂肪酸アミドの具体例としては、ラウリン酸アミド、パルミチン酸アミド、ステアリン酸アミド、ベヘン酸アミド、ヒドロキシステアリン酸アミドなどが挙げられる。不飽和脂肪酸アミドの具体例としては、オレイン酸アミド、エルカ酸アミドなどが挙げられる。置換アミドの具体例としては、N-オレイルパルミチン酸アミド、N-ステアリルステアリン酸アミド、N-ステアリルオレイン酸アミド、N-オレイルステアリン酸アミド、N-ステアリルエルカ酸アミドなどが挙げられる。また、メチロールアミドの具体例としては、メチロールステアリン酸アミドなどが挙げられる。飽和脂肪酸ビスアミドの具体例としては、メチレンビスステアリン酸アミド、エチレンビスカプリン酸アミド、エチレンビスラウリン酸アミド、エチレンビスステアリン酸アミド、エチレンビスヒドロキシステアリン酸アミド、エチレンビスベヘン酸アミド、ヘキサメチレンビスステアリン酸アミド、ヘキサメチレンビスベヘン酸アミド、ヘキサメチレンヒドロキシステアリン酸アミド、N,N’-ジステアリルアジピン酸アミド、N,N’-ジステアリルセバシン酸アミドなどが挙げられる。不飽和脂肪酸ビスアミドの具体例としては、エチレンビスオレイン酸アミド、エチレンビスエルカ酸アミド、ヘキサメチレンビスオレイン酸アミド、N,N’-ジオレイルアジピン酸アミド、N,N’-ジオレイルセバシン酸アミドなどが挙げられる。脂肪酸エステルアミドの具体例としては、ステアロアミドエチルステアレートなどが挙げられる。また、芳香族ビスアミドの具体例としては、m-キシリレンビスステアリン酸アミド、m-キシリレンビスヒドロキシステアリン酸アミド、N,N’-ジステアリルイソフタル酸アミドなどが挙げられる。滑剤は、1種類単独で使用してもよいし、2種類以上を組み合わせて使用してもよく、2種類以上を組み合わせることが好ましい。 In the present disclosure, from the viewpoint of improving the formability of the exterior material for a storage battery device, it is preferable that a lubricant is present on at least one of the surface and the inside of the base material layer 1. The lubricant is not particularly limited, but preferably includes amide-based lubricants. Specific examples of amide-based lubricants include, for example, saturated fatty acid amides, unsaturated fatty acid amides, substituted amides, methylol amides, saturated fatty acid bisamides, unsaturated fatty acid bisamides, fatty acid ester amides, and aromatic bisamides. Specific examples of saturated fatty acid amides include lauric acid amides, palmitic acid amides, stearic acid amides, behenic acid amides, and hydroxystearic acid amides. Specific examples of unsaturated fatty acid amides include oleic acid amides and erucic acid amides. Specific examples of substituted amides include N-oleyl palmitic acid amide, N-stearyl stearic acid amide, N-stearyl oleic acid amide, N-oleyl stearic acid amide, and N-stearyl erucic acid amide. Specific examples of methylol amides include methylol stearic acid amide. Specific examples of saturated fatty acid bisamides include methylene bisstearic acid amide, ethylene biscapric acid amide, ethylene bislauric acid amide, ethylene bisstearic acid amide, ethylene bishydroxystearic acid amide, ethylene bisbehenic acid amide, hexamethylene bisstearic acid amide, hexamethylene bisbehenic acid amide, hexamethylene hydroxystearic acid amide, N,N'-distearyl adipic acid amide, N,N'-distearyl sebacic acid amide, etc. Specific examples of unsaturated fatty acid bisamides include ethylene bisoleic acid amide, ethylene biserucic acid amide, hexamethylene bisoleic acid amide, N,N'-dioleyl adipic acid amide, N,N'-dioleyl sebacic acid amide, etc. Specific examples of fatty acid ester amides include stearamide ethyl stearate, etc. Specific examples of aromatic bisamides include m-xylylene bisstearic acid amide, m-xylylene bishydroxystearic acid amide, and N,N'-distearylisophthalic acid amide. The lubricant may be used alone or in combination of two or more types, preferably in combination of two or more types.
 基材層1の表面に滑剤が存在する場合、その存在量としては、特に制限されないが、例えば約3mg/m2以上、好ましくは約4mg/m2以上、約5mg/m2以上が挙げられる。また、基材層1の表面に存在する滑剤量としては、例えば約15mg/m2以下、好ましくは約14mg/m2以下、約10mg/m2以下が挙げられる。また、基材層1の表面に存在する滑剤量の好ましい範囲としては、3~15mg/m2程度、3~14mg/m2程度、3~10mg/m2程度、4~15mg/m2程度、4~14mg/m2程度、4~10mg/m2程度、5~15mg/m2程度、5~14mg/m2程度、5~10mg/m2程度が挙げられる。 When a lubricant is present on the surface of the base layer 1, the amount of the lubricant present is not particularly limited, but may be, for example, about 3 mg/m 2 or more, preferably about 4 mg/m 2 or more, or about 5 mg/m 2 or more. The amount of the lubricant present on the surface of the base layer 1 may be, for example, about 15 mg/m 2 or less, preferably about 14 mg/m 2 or less, or about 10 mg/m 2 or less. The preferred range of the amount of the lubricant present on the surface of the base layer 1 is about 3 to 15 mg/m 2 , about 3 to 14 mg/m 2 , about 3 to 10 mg/m 2 , about 4 to 15 mg/m 2 , about 4 to 14 mg/m 2 , about 4 to 10 mg/m 2 , about 5 to 15 mg/m 2 , about 5 to 14 mg/m 2 , or about 5 to 10 mg/m 2 .
 基材層1の表面に存在する滑剤は、基材層1を構成する樹脂に含まれる滑剤を滲出させたものであってもよいし、基材層1の表面に滑剤を塗布したものであってもよい。 The lubricant present on the surface of the base layer 1 may be a lubricant exuded from the resin that constitutes the base layer 1, or a lubricant applied to the surface of the base layer 1.
 基材層1の厚みについては、基材としての機能を発揮すれば特に制限されないが、例えば約3μm以上、好ましくは約10μm以上が挙げられる。また、基材層1の厚みとしては、例えば約100μm以下、約90μm以下、約70μm以下、約50μm以下、好ましくは約35μm以下、11μm以下、8μm以下が挙げられる。また、基材層1の厚みの好ましい範囲としては、3~100μm程度、3~90μm程度、3~70μm程度、3~50μm程度、3~35μm程度、3~11μm程度、3~8μm程度、10~100μm程度、10~90μm程度、10~70μm程度、10~50μm程度、10~35μm程度、10~11μm程度が挙げられ、特に蓄電デバイスを軽量薄膜化する場合には3~35μm程度、3~11μm程度、3~8μm程度が好ましく、成形性を向上させる場合には35~50μm程度が好ましい。基材層1が、2層以上の樹脂フィルムの積層体である場合、各層を構成している樹脂フィルムの厚みとしては、特に制限されないが、それぞれ、例えば約2μm以上、好ましくは約10μm以上、約18μm以上が挙げられる。また、各層を構成している樹脂フィルムの厚みとしては、例えば約33μm以下、好ましくは約28μm以下、約23μm以下、約18μm以下、11μm以下、8μm以下が挙げられる。また、各層を構成している樹脂フィルムの厚みの好ましい範囲としては、2~33μm程度、2~28μm程度、2~23μm程度、2~18μm程度、2~11μm程度、2~8μm程度、10~33μm程度、10~28μm程度、10~23μm程度、10~18μm程度、18~33μm程度、18~28μm程度、18~23μm程度が挙げられる。 The thickness of the substrate layer 1 is not particularly limited as long as it functions as a substrate, but may be, for example, about 3 μm or more, and preferably about 10 μm or more. The thickness of the substrate layer 1 may be, for example, about 100 μm or less, about 90 μm or less, about 70 μm or less, or about 50 μm or less, preferably about 35 μm or less, 11 μm or less, or 8 μm or less. In addition, preferred ranges of the thickness of the base layer 1 include about 3 to 100 μm, about 3 to 90 μm, about 3 to 70 μm, about 3 to 50 μm, about 3 to 35 μm, about 3 to 11 μm, about 3 to 8 μm, about 10 to 100 μm, about 10 to 90 μm, about 10 to 70 μm, about 10 to 50 μm, about 10 to 35 μm, and about 10 to 11 μm. In particular, when making the electric storage device lighter and thinner, about 3 to 35 μm, about 3 to 11 μm, and about 3 to 8 μm are preferred, and when improving moldability, about 35 to 50 μm is preferred. When the base layer 1 is a laminate of two or more layers of resin films, the thickness of the resin films constituting each layer is not particularly limited, but may be, for example, about 2 μm or more, preferably about 10 μm or more, and about 18 μm or more. The thickness of the resin film constituting each layer is, for example, about 33 μm or less, preferably about 28 μm or less, about 23 μm or less, about 18 μm or less, 11 μm or less, or 8 μm or less. The preferred range of the thickness of the resin film constituting each layer is about 2 to 33 μm, about 2 to 28 μm, about 2 to 23 μm, about 2 to 18 μm, about 2 to 11 μm, about 2 to 8 μm, about 10 to 33 μm, about 10 to 28 μm, about 10 to 23 μm, about 10 to 18 μm, about 18 to 33 μm, about 18 to 28 μm, or about 18 to 23 μm.
 基材層1が着色剤を含んでいることにより、蓄電デバイス用外装材を着色することができる。着色剤としては、顔料、染料などの公知のものが使用できる。また、着色剤は、1種類のみを用いてもよいし、2種類以上を混合して用いてもよい。 The base layer 1 contains a colorant, so that the exterior material for the electricity storage device can be colored. Known colorants such as pigments and dyes can be used as the colorant. Furthermore, only one type of colorant may be used, or two or more types may be mixed together.
 顔料の種類は、基材層1の基材としての機能を損なわない範囲であれば、特に限定されない。有機顔料としては、例えば、アゾ系、フタロシアニン系、キナクリドン系、アンスラキノン系、ジオキサジン系、インジゴチオインジゴ系、ペリノン-ペリレン系、イソインドレニン系、ベンズイミダゾロン系等の顔料が挙げられ、無機顔料としては、カーボンブラック系、酸化チタン系、カドミウム系、鉛系、酸化クロム系、鉄系等の顔料が挙げられ、その他に、マイカ(雲母)の微粉末、魚鱗箔等が挙げられる。 The type of pigment is not particularly limited as long as it does not impair the function of the substrate layer 1 as a substrate. Examples of organic pigments include azo-based, phthalocyanine-based, quinacridone-based, anthraquinone-based, dioxazine-based, indigothioindigo-based, perinone-perylene-based, isoindolenine-based, and benzimidazolone-based pigments, while examples of inorganic pigments include carbon black-based, titanium oxide-based, cadmium-based, lead-based, chromium oxide-based, and iron-based pigments, as well as finely powdered mica and fish scale foil.
 着色剤の中でも、例えば蓄電デバイス用外装材の外観を黒色とするためには、カーボンブラックが好ましい。また、蓄電デバイスから発生する熱を放熱する観点からは、マイカを用いることが好ましい。 Among colorants, carbon black is preferred in order to give the exterior material for an electricity storage device a black appearance. Also, from the perspective of dissipating heat generated by the electricity storage device, it is preferable to use mica.
 顔料の平均粒子径としては、特に制限されず、例えば、0.03~5μm程度、好ましくは0.05~2μm程度が挙げられる。なお、顔料の平均粒子径は、レーザ回折/散乱式粒子径分布測定装置で測定されたメジアン径とする。 The average particle size of the pigment is not particularly limited, and may be, for example, about 0.03 to 5 μm, and preferably about 0.05 to 2 μm. The average particle size of the pigment is the median size measured with a laser diffraction/scattering type particle size distribution measuring device.
 基材層1における着色剤や、顔料の含有量としては、蓄電デバイス用外装材が着色されれば特に制限されず、例えば5~60質量%程度、好ましくは10~40質量%程度が挙げられる。 The content of the colorant or pigment in the base layer 1 is not particularly limited as long as the exterior material for the electricity storage device is colored, and may be, for example, about 5 to 60% by mass, and preferably about 10 to 40% by mass.
[接着剤層2]
 本開示の蓄電デバイス用外装材において、接着剤層2は、基材層1と金属箔層3との接着性を高めることを目的として、必要に応じて、これらの間に設けられる層である。
[Adhesive layer 2]
In the exterior material for an electricity storage device of the present disclosure, the adhesive layer 2 is a layer that is provided between the base material layer 1 and the metal foil layer 3 as necessary for the purpose of increasing the adhesion between them.
 接着剤層2は、基材層1と金属箔層3とを接着可能である接着剤によって形成される。接着剤層2の形成に使用される接着剤は限定されないが、化学反応型、溶剤揮発型、熱溶融型、熱圧型等のいずれであってもよい。また、2液硬化型接着剤(2液性接着剤)であってもよく、1液硬化型接着剤(1液性接着剤)であってもよく、硬化反応を伴わない樹脂でもよい。また、接着剤層2は単層であってもよいし、多層であってもよい。 The adhesive layer 2 is formed from an adhesive capable of bonding the base material layer 1 and the metal foil layer 3. There are no limitations on the adhesive used to form the adhesive layer 2, and it may be any of a chemical reaction type, a solvent volatilization type, a hot melt type, a hot pressure type, etc. It may also be a two-component curing adhesive (two-component adhesive), a one-component curing adhesive (one-component adhesive), or a resin that does not involve a curing reaction. The adhesive layer 2 may be a single layer or multiple layers.
 接着剤に含まれる接着成分としては、具体的には、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンナフタレート、ポリエチレンイソフタレート、共重合ポリエステル等のポリエステル;ポリエーテル;ポリウレタン;エポキシ樹脂;フェノール樹脂;ナイロン6、ナイロン66、ナイロン12、共重合ポリアミド等のポリアミド;ポリオレフィン、環状ポリオレフィン、酸変性ポリオレフィン、酸変性環状ポリオレフィンなどのポリオレフィン系樹脂;ポリ酢酸ビニル;セルロース;(メタ)アクリル樹脂;ポリイミド;ポリカーボネート;尿素樹脂、メラミン樹脂等のアミノ樹脂;クロロプレンゴム、ニトリルゴム、スチレン-ブタジエンゴム等のゴム;シリコーン樹脂等が挙げられる。これらの接着成分は1種単独で使用してもよく、また2種以上を組み合わせて使用してもよい。これらの接着成分の中でも、好ましくはポリウレタン接着剤が挙げられる。また、これらの接着成分となる樹脂は適切な硬化剤を併用して接着強度を高めることができる。前記硬化剤は、接着成分の持つ官能基に応じて、ポリイソシアネート、多官能エポキシ樹脂、オキサゾリン基含有ポリマー、ポリアミン樹脂、酸無水物などから適切なものを選択する。 Specific examples of adhesive components contained in the adhesive include polyesters such as polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, polybutylene naphthalate, polyethylene isophthalate, and copolymer polyesters; polyethers; polyurethanes; epoxy resins; phenolic resins; polyamides such as nylon 6, nylon 66, nylon 12, and copolymer polyamides; polyolefin resins such as polyolefins, cyclic polyolefins, acid-modified polyolefins, and acid-modified cyclic polyolefins; polyvinyl acetate; cellulose; (meth)acrylic resins; polyimides; polycarbonates; amino resins such as urea resins and melamine resins; rubbers such as chloroprene rubber, nitrile rubber, and styrene-butadiene rubber; and silicone resins. These adhesive components may be used alone or in combination of two or more. Of these adhesive components, polyurethane adhesives are preferred. Furthermore, the adhesive strength of these adhesive component resins can be increased by using an appropriate curing agent in combination. The curing agent is selected from polyisocyanates, polyfunctional epoxy resins, oxazoline group-containing polymers, polyamine resins, acid anhydrides, etc., depending on the functional groups of the adhesive components.
 ポリウレタン接着剤としては、例えば、ポリオール化合物を含有する第1剤と、イソシアネート化合物を含有する第2剤とを含むポリウレタン接着剤が挙げられる。好ましくはポリエステルポリオール、ポリエーテルポリオール、およびアクリルポリオール等のポリオールを第1剤として、芳香族系又は脂肪族系のポリイソシアネートを第2剤とした二液硬化型のポリウレタン接着剤が挙げられる。また、ポリウレタン接着剤としては、例えば、予めポリオール化合物とイソシアネート化合物とを反応させたポリウレタン化合物と、イソシアネート化合物とを含むポリウレタン接着剤が挙げられる。また、ポリウレタン接着剤としては、例えば、予めポリオール化合物とイソシアネート化合物とを反応させたポリウレタン化合物と、ポリオール化合物とを含むポリウレタン接着剤が挙げられる。また、ポリウレタン接着剤としては、例えば、予めポリオール化合物とイソシアネート化合物とを反応させたポリウレタン化合物を、空気中などの水分と反応させることによって硬化させたポリウレタン接着剤が挙げられる。ポリオール化合物としては、繰り返し単位の末端の水酸基に加えて、側鎖にも水酸基を有するポリエステルポリオールを用いることが好ましい。第2剤としては、脂肪族、脂環式、芳香族、芳香脂肪族のイソシアネート系化合物が挙げられる。イソシアネート系化合物としては、例えばヘキサメチレンジイソシアネート(HDI)、キシリレンジイソシアネート(XDI)、イソホロンジイソシアネート(IPDI)、水素化XDI(H6XDI)、水素化MDI(H12MDI)、トリレンジイソシアネート(TDI)、ジフェニルメタンジイソシアネート(MDI)、ナフタレンジイソシアネート(NDI)等が挙げられる。また、これらのジイソシアネートの1種類又は2種類以上からの多官能イソシアネート変性体等が挙げられる。また、ポリイソシアネート化合物として多量体(例えば三量体)を使用することもできる。このような多量体には、アダクト体、ビウレット体、ヌレート体等が挙げられる。接着剤層2がポリウレタン接着剤により形成されていることで蓄電デバイス用外装材に優れた電解液耐性が付与され、側面に電解液が付着しても基材層1が剥がれることが抑制される。 The polyurethane adhesive may be, for example, a polyurethane adhesive containing a first agent containing a polyol compound and a second agent containing an isocyanate compound. A two-part curing polyurethane adhesive may preferably be used, in which a polyol such as polyester polyol, polyether polyol, or acrylic polyol is used as the first agent, and an aromatic or aliphatic polyisocyanate is used as the second agent. In addition, the polyurethane adhesive may be, for example, a polyurethane adhesive containing a polyurethane compound in which a polyol compound has been reacted with an isocyanate compound in advance, and an isocyanate compound. In addition, the polyurethane adhesive may be, for example, a polyurethane adhesive containing a polyurethane compound in which a polyol compound has been reacted with an isocyanate compound in advance, and a polyol compound. In addition, the polyurethane adhesive may be, for example, a polyurethane adhesive in which a polyurethane compound in which a polyol compound has been reacted with an isocyanate compound in advance is cured by reacting it with moisture in the air or the like. As the polyol compound, it is preferable to use a polyester polyol having a hydroxyl group on the side chain in addition to the hydroxyl group at the end of the repeating unit. The second agent may be an aliphatic, alicyclic, aromatic, or araliphatic isocyanate compound. Examples of the isocyanate compound include hexamethylene diisocyanate (HDI), xylylene diisocyanate (XDI), isophorone diisocyanate (IPDI), hydrogenated XDI (H6XDI), hydrogenated MDI (H12MDI), tolylene diisocyanate (TDI), diphenylmethane diisocyanate (MDI), and naphthalene diisocyanate (NDI). Examples of the polyisocyanate compound include polyfunctional isocyanate modified compounds of one or more of these diisocyanates. In addition, a polymer (e.g., a trimer) may be used as the polyisocyanate compound. Examples of such polymers include adducts, biurets, and nurates. The adhesive layer 2 is formed from a polyurethane adhesive, which gives the exterior material for the electricity storage device excellent electrolyte resistance, and prevents the base layer 1 from peeling off even if electrolyte adheres to the side surface.
 また、接着剤層2は、接着性を阻害しない限り他成分の添加が許容され、着色剤や熱可塑性エラストマー、粘着付与剤、フィラーなどを含有してもよい。接着剤層2が着色剤を含んでいることにより、蓄電デバイス用外装材を着色することができる。着色剤としては、顔料、染料などの公知のものが使用できる。また、着色剤は、1種類のみを用いてもよいし、2種類以上を混合して用いてもよい。 Furthermore, the adhesive layer 2 is permitted to contain other components as long as they do not impair adhesion, and may contain colorants, thermoplastic elastomers, tackifiers, fillers, etc. By including a colorant in the adhesive layer 2, the exterior material for the electricity storage device can be colored. As the colorant, known colorants such as pigments and dyes can be used. Furthermore, only one type of colorant may be used, or two or more types may be mixed together.
 顔料の種類は、接着剤層2の接着性を損なわない範囲であれば、特に限定されない。有機顔料としては、例えば、アゾ系、フタロシアニン系、キナクリドン系、アンスラキノン系、ジオキサジン系、インジゴチオインジゴ系、ペリノン-ペリレン系、イソインドレニン系、ベンズイミダゾロン系等の顔料が挙げられ、無機顔料としては、カーボンブラック系、酸化チタン系、カドミウム系、鉛系、酸化クロム系、鉄系等の顔料が挙げられ、その他に、マイカ(雲母)の微粉末、魚鱗箔等が挙げられる。 There are no particular limitations on the type of pigment, so long as it does not impair the adhesiveness of the adhesive layer 2. Examples of organic pigments include azo-based, phthalocyanine-based, quinacridone-based, anthraquinone-based, dioxazine-based, indigothioindigo-based, perinone-perylene-based, isoindolenine-based, and benzimidazolone-based pigments, while examples of inorganic pigments include carbon black-based, titanium oxide-based, cadmium-based, lead-based, chromium oxide-based, and iron-based pigments, as well as finely powdered mica and fish scale foil.
 着色剤の中でも、例えば蓄電デバイス用外装材の外観を黒色とするためには、カーボンブラックが好ましい。 Among colorants, carbon black is preferred, for example to give the exterior material for an electricity storage device a black appearance.
 顔料の平均粒子径としては、特に制限されず、例えば、0.03~5μm程度、0.05~5μm程度、、0.08~5μm程度、好ましくは0.03~2μm程度、0.05~2μm程度、0.08~2μm程度が挙げられる。なお、顔料の平均粒子径は、レーザ回折/散乱式粒子径分布測定装置で測定されたメジアン径とする。 The average particle size of the pigment is not particularly limited, and may be, for example, about 0.03 to 5 μm, about 0.05 to 5 μm, about 0.08 to 5 μm, and preferably about 0.03 to 2 μm, about 0.05 to 2 μm, or about 0.08 to 2 μm. The average particle size of the pigment is the median size measured using a laser diffraction/scattering type particle size distribution measuring device.
 接着剤層2における着色剤や、顔料の含有量としては、蓄電デバイス用外装材が着色されれば特に制限されず、例えば5~60質量%程度、好ましくは10~40質量%が挙げられる。 The content of the colorant or pigment in the adhesive layer 2 is not particularly limited as long as the exterior material for the electricity storage device is colored, and may be, for example, about 5 to 60% by mass, and preferably 10 to 40% by mass.
 接着剤層2の厚みは、基材層1と金属箔層3とを接着できれば、特に制限されないが、例えば、約1μm以上、約2μm以上である。また、接着剤層2の厚みは、例えば、約10μm以下、約5μm以下である。また、接着剤層2の厚みの好ましい範囲については、1~10μm程度、1~5μm程度、2~10μm程度、2~5μm程度が挙げられる。 The thickness of the adhesive layer 2 is not particularly limited as long as it can bond the base layer 1 and the metal foil layer 3, but is, for example, about 1 μm or more, about 2 μm or more. The thickness of the adhesive layer 2 is, for example, about 10 μm or less, about 5 μm or less. Preferred ranges for the thickness of the adhesive layer 2 include about 1 to 10 μm, about 1 to 5 μm, about 2 to 10 μm, and about 2 to 5 μm.
[着色層]
 着色層は、基材層1と金属箔層3との間に必要に応じて設けられる層である(図示を省略する)。接着剤層2を有する場合には、基材層1と接着剤層2との間、接着剤層2と金属箔層3との間に着色層を設けてもよい。また、基材層1の外側に着色層を設けてもよい。着色層を設けることにより、蓄電デバイス用外装材を着色することができる。
[Colored layer]
The colored layer is a layer (not shown) that is provided between the base material layer 1 and the metal foil layer 3 as necessary. When the adhesive layer 2 is provided, a colored layer may be provided between the base material layer 1 and the adhesive layer 2, or between the adhesive layer 2 and the metal foil layer 3. A colored layer may also be provided on the outside of the base material layer 1. By providing a colored layer, the exterior material for an electricity storage device can be colored.
 着色層は、例えば、着色剤を含むインキを基材層1の表面、または金属箔層3の表面に塗布することにより形成することができる。着色剤としては、顔料、染料などの公知のものが使用できる。また、着色剤は、1種類のみを用いてもよいし、2種類以上を混合して用いてもよい。 The colored layer can be formed, for example, by applying an ink containing a colorant to the surface of the base layer 1 or the surface of the metal foil layer 3. As the colorant, known pigments, dyes, etc. can be used. Furthermore, only one type of colorant may be used, or two or more types may be mixed together.
 着色層に含まれる着色剤の具体例としては、[接着剤層2]の欄で例示したものと同じものが例示される。 Specific examples of colorants contained in the colored layer include those exemplified in the [Adhesive layer 2] section.
[金属箔層3]
 蓄電デバイス用外装材において、金属箔層3は、少なくとも水分の浸入を抑止する層(バリア層)である。
[Metal foil layer 3]
In the packaging material for an electricity storage device, the metal foil layer 3 is a layer that at least prevents the intrusion of moisture (a barrier layer).
 金属箔層3は、金属材料により構成された層である。金属箔層3を構成する金属材料としては、具体的には、アルミニウム合金、ステンレス鋼、チタン鋼、鋼板などが挙げられ、金属箔層3は、アルミニウム合金箔及びステンレス鋼箔の少なくとも一方を含むことが好ましい。金属箔層3は、複数層設けてもよい。 The metal foil layer 3 is a layer made of a metal material. Specific examples of the metal material that makes up the metal foil layer 3 include aluminum alloys, stainless steel, titanium steel, and steel plates, and it is preferable that the metal foil layer 3 contains at least one of an aluminum alloy foil and a stainless steel foil. The metal foil layer 3 may be provided in multiple layers.
 金属箔層3において、前述した金属材料により構成された層は、金属材料のリサイクル材を含んでいてもよい。金属材料のリサイクル材としては、例えば、アルミニウム合金、ステンレス鋼、チタン鋼、又は鋼板のリサイクル材が挙げられる。これらのリサイクル材は、それぞれ、公知の方法で入手できる。アルミニウム合金のリサイクル材は、例えば、国際公開第2022/092231号に記載の製造方法によって入手できる。金属箔層3は、リサイクル材のみによって構成されてもよいし、リサイクル材とバージン材との混合材料によって構成されもよい。なお、金属材料のリサイクル材とは、いわゆる市中で使用された各種製品や、製造工程から出る廃棄物などを回収・単離・精製などを行って再利用可能な状態にした金属材料をいう。また、金属材料のバージン材とは、金属の天然資源(原材料)から精錬された新品の金属材料であって、リサイクル材でないものをいう。 In the metal foil layer 3, the layer made of the above-mentioned metal material may contain recycled metal material. Examples of recycled metal material include recycled aluminum alloy, stainless steel, titanium steel, or steel plate. These recycled materials can be obtained by known methods. Recycled aluminum alloy can be obtained by the manufacturing method described in WO 2022/092231. The metal foil layer 3 may be made of only recycled material, or may be made of a mixture of recycled and virgin materials. Note that recycled metal material refers to metal material that has been made reusable by collecting, isolating, and refining various products used in the city and waste from manufacturing processes. Also, virgin metal material refers to new metal material that has been refined from natural metal resources (raw materials) and is not recycled material.
 本開示の第1の態様において、金属箔層の少なくとも一方側の表面について、変角光度計を用い、入射光角度60°の条件で受光角度0.1°ごとに測定される、受光角度0.0°以上90.0°以下の範囲における最大反射光強度Aが、50以下である。金属箔層の表面は微細な凹凸形状を不可避的に備えているが、当該最大反射光強度Aの値が50より大きいと、蓄電デバイス用外装材の成形性の観点からは、金属箔層の当該表面が過剰に平坦であるといえる。当該表面が過剰に平滑であると、凹凸形状によるアンカー効果が小さく、金属箔層と接する層(例えば、基材層、接着剤層、接着層、熱融着性樹脂層など)との界面における接着強度が高められず、蓄電デバイス用外装材としての成形性が低下する傾向にある。本開示においては、金属箔層の少なくとも一方側の表面における当該最大反射光強度Aが50以下であることにより、金属箔層の表面が適度な凹凸形状を備えており、蓄電デバイス用外装材の成形時の金属箔層とこれに隣接する層との剥離が抑制され、優れた成形性を発揮していると考えることができる。当該最大反射光強度Aの測定方法は後述の通りである。 In the first aspect of the present disclosure, the maximum reflected light intensity A at at least one surface of the metal foil layer is 50 or less in the range of 0.0° to 90.0° of light receiving angles, measured at every 0.1° of light receiving angle using a goniophotometer under the condition of an incident light angle of 60°. The surface of the metal foil layer inevitably has a fine uneven shape, but if the value of the maximum reflected light intensity A is greater than 50, it can be said that the surface of the metal foil layer is excessively flat from the viewpoint of formability of the exterior material for a storage battery device. If the surface is excessively smooth, the anchor effect due to the uneven shape is small, and the adhesive strength at the interface with the layer in contact with the metal foil layer (e.g., substrate layer, adhesive layer, adhesive layer, heat-sealable resin layer, etc.) is not increased, and the formability as an exterior material for a storage battery device tends to decrease. In the present disclosure, the maximum reflected light intensity A on at least one surface of the metal foil layer is 50 or less, so that the surface of the metal foil layer has a moderately uneven shape, which suppresses peeling between the metal foil layer and the adjacent layer during molding of the exterior material for an electrical storage device, and is considered to exhibit excellent moldability. The method for measuring the maximum reflected light intensity A is described below.
 後述する本開示の第2の態様においても、金属箔層の少なくとも一方側の表面(好ましくは金属箔層の艶消し面)について、変角光度計を用い、入射光角度60°の条件で受光角度0.1°ごとに測定される、受光角度0.0°以上90.0°以下の範囲における最大反射光強度Aが、好ましくは50以下である。 In the second aspect of the present disclosure described below, the maximum reflected light intensity A is preferably 50 or less for at least one surface of the metal foil layer (preferably the matte surface of the metal foil layer) in the light receiving angle range of 0.0° to 90.0°, measured at every 0.1° of light receiving angle using a goniophotometer under the condition of an incident light angle of 60°.
 本開示において、例えば、金属箔層3の一方面が艶面(金属光沢のある鏡面)であり、他方面が艶消し面(マット調の梨地面)である。本開示の蓄電デバイス用外装材において、金属箔層3の基材層1側が艶消し面であってもよいし、金属箔層3の熱融着性樹脂層4側が艶消し面であってもよいが、基材層表面へ印字した製品情報等が識別し易い観点からは、金属箔層3の基材層1側が艶消し面であることが好ましい。 In the present disclosure, for example, one side of the metal foil layer 3 is a glossy surface (a mirror surface with metallic luster) and the other side is a matte surface (a matte pear-finished surface). In the exterior material for an energy storage device of the present disclosure, the base material layer 1 side of the metal foil layer 3 may be a matte surface, or the heat-sealable resin layer 4 side of the metal foil layer 3 may be a matte surface, but from the viewpoint of making it easy to identify product information, etc. printed on the surface of the base material layer, it is preferable that the base material layer 1 side of the metal foil layer 3 is a matte surface.
 本開示において、金属箔層3の表面を比較して、相対的に艶の低い側の表面が艶消し面であり、相対的に艶の高い側の表面が艶面である。より具体的には、金属箔層の両面の最大反射光強度を測定し、最大反射光強度の高い側の面が金属箔層の艶面、最大反射光強度の低い側の面が金属箔層の艶消し面となる。また、例えばアルミニウム合金箔の製造時において、アルミニウム合金箔の圧延時に圧延ロールに接している面が艶面となり、2枚圧延時に2枚のアルミニウム合金箔同士が合わさる面が艶消し面となる。 In the present disclosure, the surfaces of the metal foil layer 3 are compared, and the surface with a relatively lower gloss is the matte surface, and the surface with a relatively higher gloss is the glossy surface. More specifically, the maximum reflected light intensity on both sides of the metal foil layer is measured, and the surface with the higher maximum reflected light intensity is the glossy surface of the metal foil layer, and the surface with the lower maximum reflected light intensity is the matte surface of the metal foil layer. Also, for example, during the manufacture of aluminum alloy foil, the surface that is in contact with the rolling rolls when the aluminum alloy foil is rolled is the glossy surface, and the surface where the two aluminum alloy foils meet when rolling two sheets of aluminum alloy foil together is the matte surface.
 本開示の効果をより好適に発揮する観点から、第1の態様及び第2の態様のいずれについても、金属箔層3の艶消し面は、最大反射光強度Aが50以下の値を有することが好ましい。 In order to more effectively exert the effects of the present disclosure, in both the first and second aspects, it is preferable that the matte surface of the metal foil layer 3 has a maximum reflected light intensity A of 50 or less.
 本開示の第1の態様の効果をより一層好適に発揮する観点から、金属箔層の少なくとも一方側の表面における当該最大反射光強度Aは、好ましくは50以下、より好ましくは40以下、さらに好ましくは30以下であり、また、当該最大反射光強度Aは、好ましくは10以上、より好ましくは16以上、さらに好ましくは20以上であり、当該最大反射光強度Aの好ましい範囲としては、10~50程度、10~40程度、10~30程度、16~50程度、16~40程度、16~30程度、20~50程度、20~40程度、20~30程度が挙げられる。本開示の効果をより好適に発揮する観点から、金属箔層3の艶消し面が、これらの最大反射光強度Aの値を有することがより好ましい。後述する本開示の第2の態様においても、金属箔層の少なくとも一方側の表面(好ましくは金属箔層の艶消し面)は、これらの最大反射光強度Aの値を有することがより好ましい。 From the viewpoint of more suitably exerting the effect of the first aspect of the present disclosure, the maximum reflected light intensity A on at least one surface of the metal foil layer is preferably 50 or less, more preferably 40 or less, and even more preferably 30 or less. The maximum reflected light intensity A is preferably 10 or more, more preferably 16 or more, and even more preferably 20 or more. Preferred ranges of the maximum reflected light intensity A include about 10 to 50, about 10 to 40, about 10 to 30, about 16 to 50, about 16 to 40, about 16 to 30, about 20 to 50, about 20 to 40, and about 20 to 30. From the viewpoint of more suitably exerting the effect of the present disclosure, it is more preferable that the matte surface of the metal foil layer 3 has these values of maximum reflected light intensity A. In the second aspect of the present disclosure described later, it is also more preferable that the surface of at least one surface of the metal foil layer (preferably the matte surface of the metal foil layer) has these values of maximum reflected light intensity A.
 当該最大反射光強度Aを50以下に調整するためには、金属箔層を製造する際、表面が適度な凹凸形状を備えるようにするため、圧延油の量を調整する、圧延時の搬送張力を調整することなどが有効であり、得られた金属箔層の少なくとも一方の表面の当該最大反射光強度Aが50以下になっていることを確認し、本開示の蓄電デバイス用外装材の金属箔層として利用することが好ましい。 In order to adjust the maximum reflected light intensity A to 50 or less, it is effective to adjust the amount of rolling oil used when manufacturing the metal foil layer so that the surface has an appropriate uneven shape, or to adjust the conveying tension during rolling. It is preferable to confirm that the maximum reflected light intensity A of at least one surface of the obtained metal foil layer is 50 or less, and to use it as the metal foil layer of the exterior material for the electricity storage device disclosed herein.
 また、本開示の第1の態様の効果をより一層好適に発揮する観点から、金属箔層の少なくとも一方側の表面について、変角光度計を用い、入射光角度60°の条件で受光角度0.1°ごとに測定される、受光角度0.0°以上90.0°以下の範囲における傾き最大値Cが、好ましくは10.0以下、より好ましくは8.0以下、さらに好ましくは5.0以下であり、また、当該傾き最大値Cは、好ましくは0.5以上、より好ましくは1.0以上、さらに好ましくは2.0以上であり、当該傾き最大値Cの好ましい範囲としては、0.5~10.0程度、0.5~8.0程度、0.5~5.0程度、1.0~10.0程度、1.0~8.0程度、1.0~5.0程度、2.0~10.0程度、2.0~8.0程度、2.0~5.0程度が挙げられる。本開示の第1の態様の効果をより好適に発揮する観点から、金属箔層3の艶消し面が、これらの傾き最大値Cの値を有することがより好ましい。また、後述する本開示の第2の態様においても、金属箔層の少なくとも一方側の表面(好ましくは金属箔層3の艶消し面)は、これらの傾き最大値Cの値を有することがより好ましい。 Furthermore, from the viewpoint of more optimally exerting the effects of the first aspect of the present disclosure, the maximum slope C for at least one surface of the metal foil layer, measured at every 0.1° of light receiving angle using a goniophotometer under a condition of an incident light angle of 60°, within the range of light receiving angles of 0.0° to 90.0° is preferably 10.0 or less, more preferably 8.0 or less, and even more preferably 5.0 or less, and the maximum slope C is preferably 0.5 or more, more preferably 1.0 or more, and even more preferably 2.0 or more. Preferred ranges for the maximum slope C include approximately 0.5 to 10.0, approximately 0.5 to 8.0, approximately 0.5 to 5.0, approximately 1.0 to 10.0, approximately 1.0 to 8.0, approximately 1.0 to 5.0, approximately 2.0 to 10.0, approximately 2.0 to 8.0, and approximately 2.0 to 5.0. From the viewpoint of more suitably exerting the effects of the first aspect of the present disclosure, it is more preferable that the matte surface of the metal foil layer 3 has these maximum slope C values. Also, in the second aspect of the present disclosure described below, it is more preferable that at least one surface of the metal foil layer (preferably the matte surface of the metal foil layer 3) has these maximum slope C values.
 当該傾き最大値Cの値が10.0より大きいと、金属箔層の当該表面が平坦であるといえる。前記の通り、金属箔層の当該表面が過剰に平滑であると、当該表面と接する層(例えば、基材層、接着剤層、接着層、熱融着性樹脂層など)が、凹凸形状によるアンカー効果が小さく、層間の接着強度が高められず蓄電デバイス用外装材としての成形性が低くなる。本開示において、金属箔層の少なくとも一方側の表面における当該傾き最大値Cが10.0以下である場合、金属箔層の表面がより一層好適な凹凸形状を備えており、蓄電デバイス用外装材の成形時の金属箔層とこれに隣接する層との剥離が抑制され、優れた成形性を発揮すると考えることができる。当該傾き最大値Cの値を10.0以下に調整するためには、金属箔層を製造する際、表面が適度な凹凸形状を備えるようにするため、圧延油の量を調整する、圧延時の搬送張力を調整することなどが有効である。当該傾き最大値Cの測定方法は後述の通りである。 When the value of the maximum slope C is greater than 10.0, the surface of the metal foil layer can be said to be flat. As described above, if the surface of the metal foil layer is excessively smooth, the layer in contact with the surface (e.g., a base layer, an adhesive layer, an adhesive layer, a heat-sealable resin layer, etc.) has a small anchor effect due to the uneven shape, and the adhesive strength between the layers is not increased, resulting in poor formability as an exterior material for a storage device. In the present disclosure, when the maximum slope C on at least one surface of the metal foil layer is 10.0 or less, the surface of the metal foil layer has a more suitable uneven shape, and peeling between the metal foil layer and the adjacent layer during molding of the exterior material for a storage device is suppressed, and it can be considered that excellent formability is exhibited. In order to adjust the value of the maximum slope C to 10.0 or less, it is effective to adjust the amount of rolling oil when manufacturing the metal foil layer, adjust the conveying tension during rolling, etc., so that the surface has a moderate uneven shape. The method for measuring the maximum slope C is as described below.
 また、本開示の第2の態様において、金属箔層の少なくとも一方側の表面について、変角光度計を用い、入射光角度60°の条件で受光角度0.1°ごとに測定される、受光角度45.0°以上75.0°以下の範囲における最大反射光強度Bが、300以上である。金属箔層の表面は微細な凹凸形状を不可避的に備えているが、当該最大反射光強度Bの値が300より小さい程、金属箔層が不可避的に備える微細な凹凸形状の凸部又は凹部が尖っていることを意味している。金属箔層の表面の凹凸形状の凸部又は凹部が尖っているほど、蓄電デバイス用外装材の成形時に金属箔層が引き延ばされる際に、尖った凸部又は凹部を起点として、金属箔層に割れが生じ易くなる。本開示の第2の態様においては、金属箔層の少なくとも一方側の表面における当該最大反射光強度Bが300以上であることにより、微細な凹凸形状の凸部又は凹部が平坦化されていることで、蓄電デバイス用外装材の成形時の金属箔層の割れが好適に抑制され、優れた成形性を発揮すると考えることができる。 In addition, in a second aspect of the present disclosure, the maximum reflected light intensity B for at least one surface of the metal foil layer is 300 or more in the range of light receiving angles of 45.0° or more and 75.0° or less, measured at every 0.1° of light receiving angle at an incident light angle of 60° using a goniophotometer. The surface of the metal foil layer inevitably has a fine uneven shape, and the smaller the value of the maximum reflected light intensity B is below 300, the sharper the convex or concave portion of the fine uneven shape that the metal foil layer inevitably has. The sharper the convex or concave portion of the uneven shape on the surface of the metal foil layer, the more likely it is that cracks will occur in the metal foil layer, starting from the sharp convex or concave portion, when the metal foil layer is stretched during molding of the exterior material for an electricity storage device. In the second aspect of the present disclosure, the maximum reflected light intensity B on at least one surface of the metal foil layer is 300 or more, and the finely uneven convex or concave portions are flattened, which is believed to favorably suppress cracking of the metal foil layer during molding of the exterior material for an electrical storage device, thereby providing excellent moldability.
 前述の本開示の第1の態様においても、金属箔層の他方側の表面(好ましくは金属箔層の艶面)について、変角光度計を用い、入射光角度60°の条件で受光角度0.1°ごとに測定される、受光角度45.0°以上75.0°以下の範囲における最大反射光強度Bが、好ましくは300以上である。 In the first aspect of the present disclosure described above, the maximum reflected light intensity B of the other surface of the metal foil layer (preferably the glossy surface of the metal foil layer) is preferably 300 or more in the light receiving angle range of 45.0° to 75.0°, measured at every 0.1° of light receiving angle using a goniophotometer under the condition of an incident light angle of 60°.
 また、本開示の効果をより好適に発揮する観点から、第1の態様及び第2の態様のいずれにおいても、金属箔層3の艶面の最大反射光強度Bが、300以上の値を有することが好ましい。 In addition, from the viewpoint of more optimally exerting the effects of the present disclosure, in both the first and second aspects, it is preferable that the maximum reflected light intensity B of the glossy surface of the metal foil layer 3 has a value of 300 or more.
 本開示の第2の態様の効果をより一層好適に発揮する観点から、金属箔層の少なくとも一方側の表面における当該最大反射光強度Bは、好ましくは300以上、より好ましくは400以上、さらに好ましくは500以上であり、また、当該最大反射光強度Bは、好ましくは650以下、より好ましくは580以下、さらに好ましくは510以下であり、当該最大反射光強度Bの好ましい範囲としては、300~650程度、300~580程度、300~510程度、400~650程度、400~580程度、400~510程度、500~650程度、500~580程度、500~510程度が挙げられる。本開示の効果をより好適に発揮する観点から、金属箔層3の艶面が、これらの最大反射光強度Bの値を有することがより好ましい。前述の本開示の第1の態様においても、金属箔層の少なくとも一方側の表面(好ましくは金属箔層3の艶面)は、これらの最大反射光強度Bの値を有することがより好ましい。当該最大反射光強度Bを300以上に調整するためには、金属箔層を製造する際、表面の微細な凹凸形状の凸部が尖らないようにするため、圧延ロールの表面粗さを低くする、圧延速度を調整することなどが有効であり、得られた金属箔層の少なくとも一方の表面の当該最大反射光強度Bが300以上になっていることを確認し、本開示の蓄電デバイス用外装材の金属箔層として利用することが好ましい。 From the viewpoint of more suitably exerting the effects of the second aspect of the present disclosure, the maximum reflected light intensity B on at least one surface of the metal foil layer is preferably 300 or more, more preferably 400 or more, and even more preferably 500 or more, and the maximum reflected light intensity B is preferably 650 or less, more preferably 580 or less, and even more preferably 510 or less, and preferred ranges of the maximum reflected light intensity B include about 300 to 650, about 300 to 580, about 300 to 510, about 400 to 650, about 400 to 580, about 400 to 510, about 500 to 650, about 500 to 580, and about 500 to 510. From the viewpoint of more suitably exerting the effects of the present disclosure, it is more preferable that the glossy surface of the metal foil layer 3 has these values of maximum reflected light intensity B. In the first aspect of the present disclosure, it is more preferable that at least one surface of the metal foil layer (preferably the glossy surface of the metal foil layer 3) has these maximum reflected light intensity B values. In order to adjust the maximum reflected light intensity B to 300 or more, it is effective to reduce the surface roughness of the rolling roll and adjust the rolling speed so that the convex parts of the fine uneven shape on the surface are not sharp when manufacturing the metal foil layer, and it is preferable to confirm that the maximum reflected light intensity B of at least one surface of the obtained metal foil layer is 300 or more and use it as the metal foil layer of the exterior material for the electricity storage device of the present disclosure.
 また、本開示の第2の態様の効果をより一層好適に発揮する観点から、金属箔層の少なくとも一方側の表面について、変角光度計を用い、入射光角度60°の条件で受光角度0.1°ごとに測定される、受光角度45.0°以上75.0°以下の範囲における傾き最大値Dが、好ましくは200以上、より好ましくは300以上、さらに好ましくは400以上であり、さらにより好ましくは470以上であり、また、当該傾き最大値Dは、好ましくは600以下、より好ましくは500以下、さらに好ましくは470以下であり、当該傾き最大値Dの好ましい範囲としては、200~600程度、200~500程度、200~470程度、300~600程度、300~500程度、300~470程度、400~600程度、400~500程度、400~470程度、470~600程度、470~500程度が挙げられる。本開示の第2の態様の効果をより好適に発揮する観点から、金属箔層3の艶面が、これらの傾き最大値Dの値を有することがより好ましい。また、前述の本開示の第1の態様においても、金属箔層の少なくとも一方側の表面(好ましくは金属箔層3の艶面)は、これらの傾き最大値Dの値を有することがより好ましい。 Furthermore, from the viewpoint of more suitably exerting the effect of the second aspect of the present disclosure, the maximum slope D in the range of light receiving angles of 45.0° or more and 75.0° or less, measured at every 0.1° of light receiving angle using a goniophotometer under a condition of an incident light angle of 60°, is preferably 200 or more, more preferably 300 or more, even more preferably 400 or more, and even more preferably 470 or more, and the maximum slope D is preferably 600 or less, more preferably 500 or less, and even more preferably 470 or less, and preferred ranges for the maximum slope D include approximately 200 to 600, approximately 200 to 500, approximately 200 to 470, approximately 300 to 600, approximately 300 to 500, approximately 300 to 470, approximately 400 to 600, approximately 400 to 500, approximately 400 to 470, approximately 470 to 600, and approximately 470 to 500. From the viewpoint of more suitably exerting the effects of the second aspect of the present disclosure, it is more preferable that the glossy surface of the metal foil layer 3 has these maximum slope D values. Also, in the above-mentioned first aspect of the present disclosure, it is more preferable that at least one surface of the metal foil layer (preferably the glossy surface of the metal foil layer 3) has these maximum slope D values.
 前記の通り、金属箔層の表面は微細な凹凸形状を不可避的に備えているが、当該傾き最大値Dの値が200より小さい程、金属箔層が不可避的に備える微細な凹凸形状の凸部又は凹部が尖っていることを意味している。前記の通り、金属箔層の表面の凹凸形状の凸部又は凹部が尖っているほど、蓄電デバイス用外装材の成形時に金属箔層が引き延ばされる際に、尖った凸部又は凹部を起点として、金属箔層に割れが生じ易くなる。本開示においては、金属箔層の少なくとも一方側の表面における当該傾き最大値Dが200以上に制御されることで、蓄電デバイス用外装材の成形時の金属箔層の割れが好適に抑制され、より優れた成形性を発揮すると考えることができる。当該傾き最大値Dの値を200以上に調整するためには、金属箔層を製造する際、表面が適度な凹凸形状を備えるようにするため、圧延油の量を調整する、圧延時の搬送張力を調整することなどが有効である。 As described above, the surface of the metal foil layer inevitably has a fine uneven shape, and the smaller the value of the maximum slope D is below 200, the sharper the convex or concave portion of the fine uneven shape that the metal foil layer inevitably has. As described above, the sharper the convex or concave portion of the uneven shape on the surface of the metal foil layer, the more likely it is that cracks will occur in the metal foil layer starting from the sharp convex or concave portion when the metal foil layer is stretched during the molding of the exterior material for the electric storage device. In the present disclosure, by controlling the maximum slope D on at least one surface of the metal foil layer to 200 or more, it can be considered that cracks in the metal foil layer during the molding of the exterior material for the electric storage device are suitably suppressed and better formability is exhibited. In order to adjust the value of the maximum slope D to 200 or more, it is effective to adjust the amount of rolling oil and the conveying tension during rolling in order to provide a suitable uneven shape on the surface when manufacturing the metal foil layer.
 傾きC,Dを求めるグラフの関数は、y=((x+0.5°の反射光強度値)-(xの反射光強度値))/0.5である。ある角度での反射光強度Aとし、ある角度+0.5°での反射光強度をBとしたとき、(B-A)/0.5を求める。この計算を測定範囲すべてで行い、最も大きい数字を傾き最大値C,Dとする。 The graph function for calculating the slopes C and D is y = ((reflected light intensity value at x + 0.5°) - (reflected light intensity value at x)) / 0.5. If the reflected light intensity at a certain angle is A and the reflected light intensity at an angle of +0.5° is B, then calculate (B - A) / 0.5. This calculation is performed over the entire measurement range, and the largest number is taken as the maximum slope value C or D.
<金属箔層の表面物性(変角光度計)>
 蓄電デバイス用外装材の金属箔層の表面(艶消し面及び艶面)について、それぞれ、変角光度計を用いて、最大反射光強度及び傾き最大値を以下のようにして測定する。
<Surface properties of metal foil layer (goniophotometer)>
For each of the surfaces (matte surface and glossy surface) of the metal foil layer of the packaging material for an electricity storage device, the maximum reflected light intensity and maximum tilt value are measured using a goniophotometer as follows.
 金属箔層は、以下の手順にて各蓄電デバイス用外装材から取り出してこのようにも測定できる。アルミニウム合金箔についても測定できる。蓄電デバイス用外装材の基材層を手作業で剥離して金属箔層、必要に応じて積層される接着層、及び熱融着性樹脂層等の積層体とする。さらに、この積層体を以下の条件でオルトジクロロベンゼンに浸漬することで金属箔層から、接着層、熱融着性樹脂層等を除去し、金属箔層の表面をエタノールにて複数回洗浄し、乾燥するまで放置して得られた金属箔層を測定対象とする。 The metal foil layer can also be removed from each electrical storage device exterior material and measured in this manner using the following procedure. Aluminum alloy foil can also be measured. The base material layer of the electrical storage device exterior material is manually peeled off to produce a laminate consisting of the metal foil layer, an adhesive layer that is laminated as necessary, and a heat-sealable resin layer. This laminate is then immersed in orthodichlorobenzene under the following conditions to remove the adhesive layer, heat-sealable resin layer, etc. from the metal foil layer, and the surface of the metal foil layer is washed multiple times with ethanol and left to dry, resulting in a metal foil layer that is the subject of measurement.
 次に、以下の測定条件にて、金属箔層の表面(艶消し面及び艶面)について、それぞれ、変角光度計を用いて、最大反射光強度及び傾き最大値を測定する。 Next, the maximum reflected light intensity and maximum tilt are measured for each surface of the metal foil layer (matte surface and glossy surface) using a goniophotometer under the following measurement conditions.
(標準板黒ガラスについての変角光度計の測定条件)
 標準黒ガラス(黒ガラス基準板)を反射光強度のリファレンスとした。具体的には、変角光度計は、ランプの個体差、ランプの使用状況によって測定値が変動する。サンプルの絶対評価を可能にするため、黒ガラス(黒ガラス基準板)の最大反射光強度を100として、サンプルの反射光強度を規格化する。
測定対象:株式会社 村上色彩技術研究所製の黒ガラス基準板BK-7(黒ガラス基準板 屈折率1.518)
装置:変角光度計
入射角(IA):60°
受光角:+50°~+70°で0.1°ずつ測定
あおり角(FA):0°
入射光絞り(VS1):3(10.5mm)
受光絞り(VS3):4(9.1mm)
SENSITIVITY(感度):950
HIGH VOLT.:539(黒ガラス(黒ガラス基準板)の反射強度が85になるように調整)
減光フィルター:1%フィルター、50%フィルター
(Measurement conditions for standard black glass using a variable angle photometer)
Standard black glass (black glass reference plate) was used as a reference for reflected light intensity. Specifically, the measurement value of the goniophotometer varies depending on the individual difference of the lamp and the usage condition of the lamp. In order to enable absolute evaluation of the sample, the maximum reflected light intensity of the black glass (black glass reference plate) is set as 100, and the reflected light intensity of the sample is normalized.
Measurement target: Black glass reference plate BK-7 (black glass reference plate, refractive index 1.518) manufactured by Murakami Color Research Laboratory Co., Ltd.
Equipment: Variangular photometer Incident angle (IA): 60°
Receiving angle: +50° to +70°, measured in 0.1° increments. Facing angle (FA): 0°
Incident light aperture (VS1): 3 (10.5 mm)
Aperture (VS3): 4 (9.1 mm)
SENSITIVITY: 950
HIGH VOLT.: 539 (adjusted so that the reflection intensity of black glass (black glass reference plate) is 85)
Neutral density filters: 1% filter, 50% filter
(変角光度計の測定条件(艶消し面))
 標準黒ガラス(黒ガラス基準板)で反射強度が85となった条件で測定を実施する。反射強度が90以下になるように減光フィルターのみ必要に応じて変更する。
装置:変角光度計
試料固定: 吸引試料台で試料を固定する。(サンプル数n=5以上で平均値をとる)吸引試料台がない場合は、黒く着色したガラスに両面テーブで貼付け周囲を黒テープで覆う方法で行い、サンプル数n=5以上で平均値をとる。
入射角(IA):60°
受光角:0~+90°で0.1°ずつ測定
あおり角(FA):0°
入射光絞り(VS1):3(10.5mm)
受光絞り(VS3):4(9.1mm)
SENSITIVITY(感度):950
HIGH VOLT.:539(標準黒板ガラス(黒ガラス基準板 BK-7 屈折率1.518)の反射強度が85になるように調整した値を使用する)
減光フィルター:標準黒ガラス(黒ガラス基準板)で反射強度が85となった条件で測定を実施する。反射強度が90以下になるように減光フィルターのみ必要に応じて変更する。黒ガラス(黒ガラス基準板)よりも反射強度が弱く反射強度10を下回る場合は、1%フィルターのみ、10%フィルターのみ、50%フィルターのみ、10%フィルターと50%フィルターの組合せのように調整する。黒ガラス(黒ガラス基準板)よりも反射強度が強い場合は、10%フィルターと50%フィルターの組合せ、1%フィルターと10%フィルターと50%フィルターの組合せのように調整する。
入射方向:アルミニウム合金箔の圧延方向と平行
(Measurement conditions for the variable angle photometer (matte surface))
Measurements are carried out under conditions where the reflection intensity from standard black glass (black glass reference plate) is 85. Only the light-reducing filter is changed as necessary so that the reflection intensity is 90 or less.
Equipment: Goniophotometer Sample fixing: Fix the sample on a suction sample stage. (The average value is taken for n=5 or more samples.) If a suction sample stage is not available, attach the sample to black-colored glass with double-sided tape and cover the periphery with black tape, and take the average value for n=5 or more samples.
Incident angle (IA): 60°
Receiving angle: 0 to +90°, measured in 0.1° increments. Facing angle (FA): 0°
Incident light aperture (VS1): 3 (10.5 mm)
Aperture (VS3): 4 (9.1 mm)
SENSITIVITY: 950
HIGH VOLT.: 539 (Use a value adjusted so that the reflection intensity of standard black plate glass (black glass reference plate BK-7 refractive index 1.518) is 85)
Neutral density filter: Measurements are performed under conditions where the reflection intensity is 85 with standard black glass (black glass reference plate). Change only the neutral density filter as necessary so that the reflection intensity is 90 or less. If the reflection intensity is weaker than that of black glass (black glass reference plate) and falls below 10, adjust with a 1% filter only, a 10% filter only, a 50% filter only, or a combination of a 10% filter and a 50% filter. If the reflection intensity is stronger than that of black glass (black glass reference plate), adjust with a 10% filter and a 50% filter, or a combination of a 1% filter, a 10% filter, and a 50% filter.
Incident direction: Parallel to the rolling direction of the aluminum alloy foil
(変角光度計の測定条件(艶面))
装置:市販品
試料固定:吸引試料台で試料を固定する(サンプル数n=5以上で平均値をとる)。吸引試料台がない場合は、黒く着色したガラスに両面テーブで貼付け周囲を黒テープで覆う方法で行い、サンプル数n=5以上で平均値をとる。
入射角(IA):60°
受光角:+45°~+75°で0.1°ずつ測定
あおり角(FA):0°
入射光絞り(VS1):3(10.5mm)
受光絞り(VS3):4(9.1mm)
SENSITIVITY(感度):950
HIGH VOLT.:539(標準黒板ガラス(黒ガラス基準板 BK-7 屈折率1.518)の反射強度が85になるように調整した値を使用する)
減光フィルター: 黒ガラス(黒ガラス基準板)で反射強度が85となった条件で測定を実施する。反射強度が90以下になるように減光フィルターのみ必要に応じて変更する。標準黒ガラス(黒ガラス基準板)よりも反射強度が弱く反射強度10を下回る場合は、1%フィルターのみ、10%フィルターのみ、50%フィルターのみ、10%フィルターと50%フィルターの組合せのように調整する。標準黒ガラス(黒ガラス基準板)よりも反射強度が強い場合は、10%フィルターと50%フィルターの組合せ、1%フィルターと10%フィルターと50%フィルターの組合せのように調整する。
入射方向:アルミニウム合金箔の圧延方向と平行
(Measurement conditions for the variable angle photometer (glossy surface))
Equipment: Commercial product Sample fixation: Fix the sample with a suction sample stage (sample number n = 5 or more and take the average value). If a suction sample stage is not available, attach the sample to a black-colored glass with double-sided tape and cover the periphery with black tape, and take the average value with sample number n = 5 or more.
Incident angle (IA): 60°
Receiving angle: +45° to +75°, measured in 0.1° increments. Facing angle (FA): 0°
Incident light aperture (VS1): 3 (10.5 mm)
Aperture (VS3): 4 (9.1 mm)
SENSITIVITY: 950
HIGH VOLT.: 539 (Use a value adjusted so that the reflection intensity of standard black plate glass (black glass reference plate BK-7 refractive index 1.518) is 85)
Neutral density filter: Measurements are carried out under conditions where the reflection intensity is 85 with black glass (black glass reference plate). Change only the neutral density filter as necessary so that the reflection intensity is 90 or less. If the reflection intensity is weaker than that of standard black glass (black glass reference plate) and falls below 10, adjust with a 1% filter only, a 10% filter only, a 50% filter only, or a combination of a 10% filter and a 50% filter. If the reflection intensity is stronger than that of standard black glass (black glass reference plate), adjust with a 10% filter and a 50% filter, or a combination of a 1% filter, a 10% filter, and a 50% filter.
Incident direction: Parallel to the rolling direction of the aluminum alloy foil
 アルミニウム合金箔は、蓄電デバイス用外装材の成形性を向上させる観点から、例えば、焼きなまし処理済みのアルミニウム合金などにより構成された軟質アルミニウム合金箔であることがより好ましく、より成形性を向上させる観点から、鉄を含むアルミニウム合金箔であることが好ましい。鉄を含むアルミニウム合金箔(100質量%)において、鉄の含有量は、好ましくは0.1質量%以上、より好ましくは0.5質量%以上、さらに好ましくは0.7質量%以上、さらに好ましくは1.2質量%以上であり、また、好ましくは9.0質量%以下、より好ましくは2.0質量%以下、さらに好ましくは1.7質量%以下、さらに好ましくは1.3質量%以下であり、好ましい範囲としては、0.1~9.0質量%程度、0.1~2.0質量%程度、0.1~1.7質量%程度、0.1~1.3質量%程度、0.5~9.0質量%程度、0.5~2.0質量%程度、0.5~1.7質量%程度、0.5~1.3質量%程度、0.7~9.0質量%程度、0.7~2.0質量%程度、0.7~1.7質量%程度、0.7~1.3質量%程度、1.2~9.0質量%程度、1.2~2.0質量%程度、1.2~1.7質量%程度、1.2~1.3質量%程度が挙げられる。鉄の含有量が0.1質量%以上であることにより、より優れた成形性を有する蓄電デバイス用外装材を得ることができる。鉄の含有量が9.0質量%以下であることにより、より柔軟性に優れた蓄電デバイス用外装材を得ることができる。また必要に応じて、ケイ素、マグネシウム、銅、マンガンなどが添加されていてもよい。また軟質化は焼鈍処理などで行うことができる。 From the viewpoint of improving the formability of the exterior material for the power storage device, the aluminum alloy foil is preferably a soft aluminum alloy foil made of, for example, an annealed aluminum alloy, and from the viewpoint of further improving the formability, it is preferable that the aluminum alloy foil is an iron-containing aluminum alloy foil. In the iron-containing aluminum alloy foil (100% by mass), the iron content is preferably 0.1% by mass or more, more preferably 0.5% by mass or more, even more preferably 0.7% by mass or more, even more preferably 1.2% by mass or more, and is preferably 9.0% by mass or less, more preferably 2.0% by mass or less, even more preferably 1.7% by mass or less, even more preferably 1.3% by mass or less, and the preferred ranges are about 0.1 to 9.0% by mass, 0.1 Examples of the iron content include about 0.1 to 2.0% by mass, about 0.1 to 1.7% by mass, about 0.1 to 1.3% by mass, about 0.5 to 9.0% by mass, about 0.5 to 2.0% by mass, about 0.5 to 1.7% by mass, about 0.5 to 1.3% by mass, about 0.7 to 9.0% by mass, about 0.7 to 2.0% by mass, about 0.7 to 1.7% by mass, about 0.7 to 1.3% by mass, about 1.2 to 9.0% by mass, about 1.2 to 2.0% by mass, about 1.2 to 1.7% by mass, and about 1.2 to 1.3% by mass. By having an iron content of 0.1% by mass or more, it is possible to obtain an exterior material for a power storage device having better formability. By having an iron content of 9.0% by mass or less, it is possible to obtain an exterior material for a power storage device having better flexibility. Furthermore, silicon, magnesium, copper, manganese, and the like may be added as necessary. Furthermore, softening can be performed by annealing treatment or the like.
 軟質アルミニウム合金箔としては、例えば、JIS H4160:1994 A8021H-O、JIS H4160:1994 A8079H-O、JIS H4000:2014 A8021P-O、又はJIS H4000:2014 A8079P-Oで規定される組成を備えるアルミニウム合金箔が挙げられる。JISのA8021の組成(JIS H4160:1994 A8021H-O、JIS H4000:2014 A8021P-Oの組成)は、Siが0.15質量%以下、Feが1.2~1.7質量%、Cuが0.05質量%以下であって、その他の成分(Si,Fe,Cu,Alとは異なる成分)が個々に0.05質量%以下であって、その他の成分の合計は0.15質量%以下、Alが残部と規定されている。また、JISのA8079の組成(JIS H4160:1994 A8079H-O、JIS H4000:2014 A8079P-Oの組成)は、Siが0.05~0.30質量%、Feが0.7~1.3質量%、Cuが0.05質量%以下、Znが0.10質量%以下であって、その他の成分(Si,Fe,Cu,Zn,Alとは異なる成分)が個々に0.05質量%以下であって、その他の成分の合計は0.15質量%以下、Alが残部と規定されている。アルミニウム合金箔の組成は、元素分析によって測定することができる。 Examples of soft aluminum alloy foils include aluminum alloy foils having a composition specified in JIS H4160:1994 A8021H-O, JIS H4160:1994 A8079H-O, JIS H4000:2014 A8021P-O, or JIS H4000:2014 A8079P-O. The composition of JIS A8021 (JIS H4160:1994 A8021H-O, JIS H4000:2014 A8021P-O) is specified as follows: Si is 0.15 mass% or less, Fe is 1.2 to 1.7 mass%, Cu is 0.05 mass% or less, other components (components other than Si, Fe, Cu, and Al) are each 0.05 mass% or less, the total of the other components is 0.15 mass% or less, and Al is the balance. In addition, the composition of JIS A8079 (JIS H4160:1994 A8079H-O, JIS H4000:2014 A8079P-O) is specified as follows: Si is 0.05-0.30 mass%, Fe is 0.7-1.3 mass%, Cu is 0.05 mass% or less, Zn is 0.10 mass% or less, other components (components other than Si, Fe, Cu, Zn, and Al) are each 0.05 mass% or less, the total of other components is 0.15 mass% or less, and Al is the balance. The composition of aluminum alloy foil can be measured by elemental analysis.
 本開示の効果をより一層好適に発揮する観点から、アルミニウム合金箔のSi含有率は、好ましくは0.08質量%以上、より好ましくは約0.10質量%以上、さらに好ましくは約0.12質量%以上であり、また、好ましくは約1.50質量%以下、より好ましくは約1.20質量%以下、さらに好ましくは約1.00質量%以下であり、好ましい範囲としては、0.08~1.50質量%程度、0.08~1.20質量%程度、0.08~1.00質量%程度、0.10~1.50質量%程度、0.10~1.20質量%程度、0.10~1.00質量%程度、0.12~1.50質量%程度、0.12~1.20質量%程度、0.12~1.00質量%程度などが挙げられる。これらのSi含有率を満たすアルミニウム合金箔の中でも、さらに、Fe含有率は、好ましくは0.50質量%以上、より好ましくは約0.80質量%以上、さらに好ましくは約1.00質量%以上であり、また、好ましくは約1.50質量%以下、より好ましくは約1.40質量%以下、さらに好ましくは約1.30質量%以下であり、好ましい範囲としては、0.50~1.50質量%程度、0.50~1.40質量%程度、0.50~1.30質量%程度、0.80~1.50質量%程度、0.80~1.40質量%程度、0.80~1.30質量%程度、1.00~1.50質量%程度、1.00~1.40質量%程度、1.00~1.30質量%程度などが挙げられ、Mg含有率は、好ましくは0質量%以上、より好ましくは0.80質量%以上であり、また、好ましくは2.00質量%以下、より好ましくは1.50質量%以下であり、好ましい範囲としては、0~2.00質量%程度、0~1.50質量%程度、0.80~2.00質量%程度、0.80~1.50質量%程度などが挙げられ、0質量%でもよい。Al含有率は、好ましくは95.00質量%以上、より好ましくは約95.30質量%以上、さらに好ましくは約95.50質量%以上であり、また、好ましくは約97.00質量%以下、より好ましくは約96.30質量%以下、さらに好ましくは約95.60質量%以下であり、好ましい範囲としては、95.00~97.00質量%程度、95.00~96.30質量%程度、95.00~95.60質量%程度、95.30~97.00質量%程度、95.30~96.30質量%程度、95.30~95.60質量%程度などが挙げられ、その他の成分(Si,Fe,Mg,Alとは異なる成分)が個々に0.05質量%以下であって、その他の成分の合計は0.15質量%以下、Alが残部であることが好ましい。 From the viewpoint of more optimally exerting the effects of the present disclosure, the Si content of the aluminum alloy foil is preferably 0.08 mass% or more, more preferably about 0.10 mass% or more, even more preferably about 0.12 mass% or more, and is preferably about 1.50 mass% or less, more preferably about 1.20 mass% or less, and even more preferably about 1.00 mass% or less, and preferred ranges include approximately 0.08 to 1.50 mass%, approximately 0.08 to 1.20 mass%, approximately 0.08 to 1.00 mass%, approximately 0.10 to 1.50 mass%, approximately 0.10 to 1.20 mass%, approximately 0.10 to 1.00 mass%, approximately 0.12 to 1.50 mass%, approximately 0.12 to 1.20 mass%, and approximately 0.12 to 1.00 mass%. Among aluminum alloy foils satisfying these Si contents, the Fe content is preferably 0.50 mass% or more, more preferably about 0.80 mass% or more, and even more preferably about 1.00 mass% or more, and is preferably about 1.50 mass% or less, more preferably about 1.40 mass% or less, and even more preferably about 1.30 mass% or less. Preferred ranges include about 0.50 to 1.50 mass%, about 0.50 to 1.40 mass%, about 0.50 to 1.30 mass%, about 0.80 to 1.50 mass%, about 0.80 to 1.4 ... Examples of the Mg content include about 0 mass%, about 0.80 to 1.30 mass%, about 1.00 to 1.50 mass%, about 1.00 to 1.40 mass%, and about 1.00 to 1.30 mass%. The Mg content is preferably 0 mass% or more, more preferably 0.80 mass% or more, and is preferably 2.00 mass% or less, more preferably 1.50 mass% or less. Preferred ranges include about 0 to 2.00 mass%, about 0 to 1.50 mass%, about 0.80 to 2.00 mass%, and about 0.80 to 1.50 mass%, and may be 0 mass%. The Al content is preferably 95.00% by mass or more, more preferably about 95.30% by mass or more, and even more preferably about 95.50% by mass or more, and is also preferably about 97.00% by mass or less, more preferably about 96.30% by mass or less, and even more preferably about 95.60% by mass or less. Preferred ranges include about 95.00 to 97.00% by mass, about 95.00 to 96.30% by mass, about 95.00 to 95.60% by mass, about 95.30 to 97.00% by mass, about 95.30 to 96.30% by mass, and about 95.30 to 95.60% by mass. It is preferable that each of the other components (components other than Si, Fe, Mg, and Al) is 0.05% by mass or less, the total of the other components is 0.15% by mass or less, and Al is the remainder.
 また、ステンレス鋼箔としては、オーステナイト系、フェライト系、オーステナイト・フェライト系、マルテンサイト系、析出硬化系のステンレス鋼箔などが挙げられる。さらに成形性に優れた蓄電デバイス用外装材を提供する観点から、ステンレス鋼箔は、オーステナイト系のステンレス鋼により構成されていることが好ましい。 Furthermore, examples of stainless steel foil include austenitic, ferritic, austenitic-ferritic, martensitic, and precipitation hardened stainless steel foils. Furthermore, from the viewpoint of providing an exterior material for an electricity storage device with excellent formability, it is preferable that the stainless steel foil is made of austenitic stainless steel.
 ステンレス鋼箔を構成するオーステナイト系のステンレス鋼の具体例としては、SUS304、SUS301、SUS316Lなどが挙げられ、これら中でも、SUS304が特に好ましい。 Specific examples of austenitic stainless steels that make up the stainless steel foil include SUS304, SUS301, and SUS316L, with SUS304 being particularly preferred.
 金属箔層3の厚みは、金属箔の場合、少なくとも水分の浸入を抑止する金属箔層としての機能を発揮すればよく、例えば9~200μm程度が挙げられる。金属箔層3の厚みは、好ましくは約85μm以下、より好ましくは約50μm以下、さらに好ましくは約40μm以下、特に好ましくは約35μm以下である。また、金属箔層3の厚みは、好ましくは約10μm以上、さらに好ましくは約20μm以上、より好ましくは約25μm以上である。また、金属箔層3の厚みの好ましい範囲としては、10~85μm程度、10~50μm程度、10~40μm程度、10~35μm程度、20~85μm程度、20~50μm程度、20~40μm程度、20~35μm程度、25~85μm程度、25~50μm程度、25~40μm程度、25~35μm程度が挙げられる。金属箔層3がアルミニウム合金箔により構成されている場合、上述した範囲が特に好ましい。また、蓄電デバイス用外装材10に高成形性及び高剛性を付与する観点からは、金属箔層3の厚みは、好ましくは約35μm以上、より好ましくは約45μm以上、さらに好ましくは約50μm以上、さらに好ましくは約55μm以上であり、また、好ましくは約200μm以下、より好ましくは約85μm以下、さらに好ましくは約75μm以下、さらに好ましくは約70μm以下であり、好ましい範囲としては、35~200μm程度、35~85μm程度、35~75μm程度、35~70μm程度、45~200μm程度、45~85μm程度、45~75μm程度、45~70μm程度、50~200μm程度、50~85μm程度、50~75μm程度、50~70μm程度、55~200μm程度、55~85μm程度、55~75μm程度、55~70μm程度である。蓄電デバイス用外装材10が高成形性を備えることにより、深絞り成形が容易となり、蓄電デバイスの高容量化に寄与し得る。また、蓄電デバイスが高容量化されると、蓄電デバイスの重量が増加するが、蓄電デバイス用外装材10の剛性が高められることにより、蓄電デバイスの高い密封性に寄与できる。また、特に、金属箔層3がステンレス鋼箔により構成されている場合、ステンレス鋼箔の厚みは、好ましくは約60μm以下、より好ましくは約50μm以下、さらに好ましくは約40μm以下、さらに好ましくは約30μm以下、特に好ましくは約25μm以下である。また、ステンレス鋼箔の厚みは、好ましくは約10μm以上、より好ましくは約15μm以上である。また、ステンレス鋼箔の厚みの好ましい範囲としては、10~60μm程度、10~50μm程度、10~40μm程度、10~30μm程度、10~25μm程度、15~60μm程度、15~50μm程度、15~40μm程度、15~30μm程度、15~25μm程度が挙げられる。 The thickness of the metal foil layer 3, in the case of metal foil, is sufficient as long as it at least functions as a metal foil layer to prevent the intrusion of moisture, and may be, for example, about 9 to 200 μm. The thickness of the metal foil layer 3 is preferably about 85 μm or less, more preferably about 50 μm or less, even more preferably about 40 μm or less, and particularly preferably about 35 μm or less. The thickness of the metal foil layer 3 is preferably about 10 μm or more, even more preferably about 20 μm or more, and more preferably about 25 μm or more. The preferred ranges for the thickness of the metal foil layer 3 include about 10 to 85 μm, about 10 to 50 μm, about 10 to 40 μm, about 10 to 35 μm, about 20 to 85 μm, about 20 to 50 μm, about 20 to 40 μm, about 20 to 35 μm, about 25 to 85 μm, about 25 to 50 μm, about 25 to 40 μm, and about 25 to 35 μm. When the metal foil layer 3 is made of an aluminum alloy foil, the above-mentioned range is particularly preferred. From the viewpoint of imparting high formability and high rigidity to the exterior material 10 for an electric storage device, the thickness of the metal foil layer 3 is preferably about 35 μm or more, more preferably about 45 μm or more, even more preferably about 50 μm or more, and even more preferably about 55 μm or more, and is preferably about 200 μm or less, more preferably about 85 μm or less, even more preferably about 75 μm or less, and even more preferably about 70 μm or less. Preferred ranges are about 35 to 200 μm, about 35 to 85 μm, about 35 to 75 μm, about 35 to 70 μm, about 45 to 200 μm, about 45 to 85 μm, about 45 to 75 μm, about 45 to 70 μm, about 50 to 200 μm, about 50 to 85 μm, about 50 to 75 μm, about 50 to 70 μm, about 55 to 200 μm, about 55 to 85 μm, about 55 to 75 μm, and about 55 to 70 μm. By providing the exterior material 10 for an electric storage device with high formability, deep drawing can be easily performed, which can contribute to increasing the capacity of the electric storage device. In addition, when the capacity of the electric storage device is increased, the weight of the electric storage device increases, but the rigidity of the exterior material 10 for an electric storage device is increased, which can contribute to high sealing of the electric storage device. In particular, when the metal foil layer 3 is made of stainless steel foil, the thickness of the stainless steel foil is preferably about 60 μm or less, more preferably about 50 μm or less, even more preferably about 40 μm or less, even more preferably about 30 μm or less, and particularly preferably about 25 μm or less. The thickness of the stainless steel foil is preferably about 10 μm or more, more preferably about 15 μm or more. Preferred ranges for the thickness of the stainless steel foil include about 10 to 60 μm, about 10 to 50 μm, about 10 to 40 μm, about 10 to 30 μm, about 10 to 25 μm, about 15 to 60 μm, about 15 to 50 μm, about 15 to 40 μm, about 15 to 30 μm, and about 15 to 25 μm.
 また、金属箔層3は、溶解や腐食の防止などのために、少なくとも基材層と反対側の面に耐腐食性皮膜を備えていることが好ましい。金属箔層3は、耐腐食性皮膜を両面に備えていてもよい。ここで、耐腐食性皮膜とは、例えば、ベーマイト処理などの熱水変成処理、化成処理、陽極酸化処理、ニッケルやクロムなどのメッキ処理、コーティング剤を塗工する腐食防止処理を金属箔層の表面に行い、金属箔層に耐腐食性(例えば耐酸性、耐アルカリ性など)を備えさせる薄膜をいう。耐腐食性皮膜は、具体的には、金属箔層の耐酸性を向上させる皮膜(耐酸性皮膜)、金属箔層の耐アルカリ性を向上させる皮膜(耐アルカリ性皮膜)などを意味している。耐腐食性皮膜を形成する処理としては、1種類を行ってもよいし、2種類以上を組み合わせて行ってもよい。また、1層だけではなく多層化することもできる。さらに、これらの処理のうち、熱水変成処理及び陽極酸化処理は、処理剤によって金属箔表面を溶解させ、耐腐食性に優れる金属化合物を形成させる処理である。なお、これらの処理は、化成処理の定義に包含される場合もある。また、金属箔層3が耐腐食性皮膜を備えている場合、耐腐食性皮膜を含めて金属箔層3とする。 In addition, the metal foil layer 3 is preferably provided with a corrosion-resistant film at least on the surface opposite to the base layer in order to prevent dissolution and corrosion. The metal foil layer 3 may be provided with a corrosion-resistant film on both sides. Here, the corrosion-resistant film refers to a thin film that is provided with corrosion resistance (e.g., acid resistance, alkali resistance, etc.) by performing, for example, hydrothermal transformation treatment such as boehmite treatment, chemical conversion treatment, anodizing treatment, plating treatment with nickel or chromium, or corrosion prevention treatment by applying a coating agent on the surface of the metal foil layer. Specifically, the corrosion-resistant film means a film that improves the acid resistance of the metal foil layer (acid-resistant film), a film that improves the alkali resistance of the metal foil layer (alkali-resistant film), etc. The treatment for forming the corrosion-resistant film may be one type, or two or more types may be combined. In addition to one layer, multiple layers can be formed. Furthermore, among these treatments, the hydrothermal transformation treatment and the anodizing treatment are treatments in which the metal foil surface is dissolved by a treatment agent to form a metal compound with excellent corrosion resistance. These treatments may also be included in the definition of chemical conversion treatment. Also, if the metal foil layer 3 has a corrosion-resistant coating, the corrosion-resistant coating is included in the metal foil layer 3.
 耐腐食性皮膜は、蓄電デバイス用外装材の成形時において、金属箔層(例えば、アルミニウム合金箔)と基材層との間のデラミネーション防止、電解質と水分とによる反応で生成するフッ化水素により、金属箔層表面の溶解、腐食、特に金属箔層がアルミニウム合金箔である場合に金属箔層表面に存在する酸化アルミニウムが溶解、腐食することを防止し、かつ、金属箔層表面の接着性(濡れ性)を向上させ、ヒートシール時の基材層と金属箔層とのデラミネーション防止、成形時の基材層と金属箔層とのデラミネーション防止の効果を示す。 The corrosion-resistant coating prevents delamination between the metal foil layer (e.g., aluminum alloy foil) and the base layer during molding of the exterior material for the power storage device, prevents dissolution and corrosion of the surface of the metal foil layer due to hydrogen fluoride produced by the reaction between the electrolyte and moisture, and in particular prevents dissolution and corrosion of aluminum oxide present on the surface of the metal foil layer when the metal foil layer is an aluminum alloy foil, and improves the adhesion (wettability) of the surface of the metal foil layer, preventing delamination between the base layer and metal foil layer during heat sealing and between the base layer and metal foil layer during molding.
 化成処理によって形成される耐腐食性皮膜としては、種々のものが知られており、主には、リン酸塩、クロム酸塩、フッ化物、トリアジンチオール化合物、及び希土類酸化物のうち少なくとも1種を含む耐腐食性皮膜などが挙げられる。リン酸塩、クロム酸塩を用いた化成処理としては、例えば、クロム酸クロメート処理、リン酸クロメート処理、リン酸-クロム酸塩処理、クロム酸塩処理などが挙げられ、これらの処理に用いるクロム化合物としては、例えば、硝酸クロム、フッ化クロム、硫酸クロム、酢酸クロム、蓚酸クロム、重リン酸クロム、クロム酸アセチルアセテート、塩化クロム、硫酸カリウムクロムなどが挙げられる。また、これらの処理に用いるリン化合物としては、リン酸ナトリウム、リン酸カリウム、リン酸アンモニウム、ポリリン酸などが挙げられる。また、クロメート処理としてはエッチングクロメート処理、電解クロメート処理、塗布型クロメート処理などが挙げられ、塗布型クロメート処理が好ましい。この塗布型クロメート処理は、金属箔層(例えばアルミニウム合金箔)の少なくとも内層側の面を、まず、アルカリ浸漬法、電解洗浄法、酸洗浄法、電解酸洗浄法、酸活性化法等の周知の処理方法で脱脂処理を行い、その後、脱脂処理面にリン酸Cr(クロム)塩、リン酸Ti(チタン)塩、リン酸Zr(ジルコニウム)塩、リン酸Zn(亜鉛)塩などのリン酸金属塩及びこれらの金属塩の混合体を主成分とする処理液、または、リン酸非金属塩及びこれらの非金属塩の混合体を主成分とする処理液、あるいは、これらと合成樹脂などとの混合物からなる処理液をロールコート法、グラビア印刷法、浸漬法等の周知の塗工法で塗工し、乾燥する処理である。処理液は例えば、水、アルコール系溶剤、炭化水素系溶剤、ケトン系溶剤、エステル系溶剤、エーテル系溶剤など各種溶媒を用いることができ、水が好ましい。また、このとき用いる樹脂成分としては、フェノール系樹脂やアクリル系樹脂などの高分子などが挙げられ、下記一般式(1)~(4)で表される繰り返し単位を有するアミノ化フェノール重合体を用いたクロメート処理などが挙げられる。なお、当該アミノ化フェノール重合体において、下記一般式(1)~(4)で表される繰り返し単位は、1種類単独で含まれていてもよいし、2種類以上の任意の組み合わせであってもよい。アクリル系樹脂は、ポリアクリル酸、アクリル酸メタクリル酸エステル共重合体、アクリル酸マレイン酸共重合体、アクリル酸スチレン共重合体、またはこれらのナトリウム塩、アンモニウム塩、アミン塩等の誘導体であることが好ましい。特にポリアクリル酸のアンモニウム塩、ナトリウム塩、又はアミン塩等のポリアクリル酸の誘導体が好ましい。本開示において、ポリアクリル酸とは、アクリル酸の重合体を意味している。また、アクリル系樹脂は、アクリル酸とジカルボン酸又はジカルボン酸無水物との共重合体であることも好ましく、アクリル酸とジカルボン酸又はジカルボン酸無水物との共重合体のアンモニウム塩、ナトリウム塩、又はアミン塩であることも好ましい。アクリル系樹脂は、1種類のみを用いてもよいし、2種類以上を混合して用いてもよい。 Various corrosion-resistant films formed by chemical conversion treatments are known, including mainly corrosion-resistant films containing at least one of phosphates, chromates, fluorides, triazine thiol compounds, and rare earth oxides. Chemical conversion treatments using phosphates and chromates include, for example, chromate chromate treatment, phosphoric acid chromate treatment, phosphoric acid-chromate treatment, and chromate treatment. Examples of chromium compounds used in these treatments include chromium nitrate, chromium fluoride, chromium sulfate, chromium acetate, chromium oxalate, chromium biphosphate, chromate acetyl acetate, chromium chloride, and potassium chromium sulfate. Examples of phosphorus compounds used in these treatments include sodium phosphate, potassium phosphate, ammonium phosphate, and polyphosphoric acid. Examples of chromate treatments include etching chromate treatment, electrolytic chromate treatment, and coating-type chromate treatment, with coating-type chromate treatment being preferred. In this coating type chromate treatment, at least the inner surface of a metal foil layer (e.g., aluminum alloy foil) is first degreased by a known method such as an alkali immersion method, an electrolytic cleaning method, an acid cleaning method, an electrolytic acid cleaning method, or an acid activation method, and then the degreased surface is coated with a treatment liquid mainly composed of a metal phosphate such as Cr (chromium) phosphate, Ti (titanium) phosphate, Zr (zirconium) phosphate, or Zn (zinc) phosphate, or a mixture of these metal salts, or a treatment liquid mainly composed of a nonmetallic phosphate and a mixture of these nonmetallic salts, or a treatment liquid consisting of a mixture of these with a synthetic resin, or the like, by a known coating method such as a roll coating method, a gravure printing method, or a dipping method, and then dried. As the treatment liquid, various solvents such as water, alcohol-based solvents, hydrocarbon-based solvents, ketone-based solvents, ester-based solvents, and ether-based solvents can be used, and water is preferred. The resin component used here may be a polymer such as a phenolic resin or an acrylic resin, and may be a chromate treatment using an aminated phenolic polymer having a repeating unit represented by the following general formulas (1) to (4). In the aminated phenolic polymer, the repeating units represented by the following general formulas (1) to (4) may be contained alone or in any combination of two or more. The acrylic resin is preferably polyacrylic acid, acrylic acid methacrylic acid ester copolymer, acrylic acid maleic acid copolymer, acrylic acid styrene copolymer, or a derivative thereof such as a sodium salt, an ammonium salt, or an amine salt. In particular, a derivative of polyacrylic acid such as an ammonium salt, a sodium salt, or an amine salt of polyacrylic acid is preferable. In the present disclosure, polyacrylic acid means a polymer of acrylic acid. The acrylic resin is also preferably a copolymer of acrylic acid and a dicarboxylic acid or a dicarboxylic anhydride, and is also preferably an ammonium salt, a sodium salt, or an amine salt of a copolymer of acrylic acid and a dicarboxylic acid or a dicarboxylic anhydride. Only one type of acrylic resin may be used, or two or more types may be mixed and used.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 一般式(1)~(4)中、Xは、水素原子、ヒドロキシ基、アルキル基、ヒドロキシアルキル基、アリル基またはベンジル基を示す。また、R1及びR2は、それぞれ同一または異なって、ヒドロキシ基、アルキル基、またはヒドロキシアルキル基を示す。一般式(1)~(4)において、X、R1及びR2で示されるアルキル基としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、tert-ブチル基などの炭素数1~4の直鎖または分枝鎖状アルキル基が挙げられる。また、X、R1及びR2で示されるヒドロキシアルキル基としては、例えば、ヒドロキシメチル基、1-ヒドロキシエチル基、2-ヒドロキシエチル基、1-ヒドロキシプロピル基、2-ヒドロキシプロピル基、3-ヒドロキシプロピル基、1-ヒドロキシブチル基、2-ヒドロキシブチル基、3-ヒドロキシブチル基、4-ヒドロキシブチル基などのヒドロキシ基が1個置換された炭素数1~4の直鎖または分枝鎖状アルキル基が挙げられる。一般式(1)~(4)において、X、R1及びR2で示されるアルキル基及びヒドロキシアルキル基は、それぞれ同一であってもよいし、異なっていてもよい。一般式(1)~(4)において、Xは、水素原子、ヒドロキシ基またはヒドロキシアルキル基であることが好ましい。一般式(1)~(4)で表される繰り返し単位を有するアミノ化フェノール重合体の数平均分子量は、例えば、500~100万程度であることが好ましく、1000~2万程度であることがより好ましい。アミノ化フェノール重合体は、例えば、フェノール化合物又はナフトール化合物とホルムアルデヒドとを重縮合して上記一般式(1)又は一般式(3)で表される繰返し単位からなる重合体を製造し、次いでホルムアルデヒド及びアミン(R12NH)を用いて官能基(-CH2NR12)を上記で得られた重合体に導入することにより、製造される。アミノ化フェノール重合体は、1種単独で又は2種以上混合して使用される。 In the general formulae (1) to (4), X represents a hydrogen atom, a hydroxy group, an alkyl group, a hydroxyalkyl group, an allyl group, or a benzyl group. R 1 and R 2 may be the same or different and represent a hydroxy group, an alkyl group, or a hydroxyalkyl group. In the general formulae (1) to (4), examples of the alkyl group represented by X, R 1 , and R 2 include linear or branched alkyl groups having 1 to 4 carbon atoms, such as a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, and a tert-butyl group. Examples of the hydroxyalkyl group represented by X, R 1, and R 2 include linear or branched alkyl groups having 1 to 4 carbon atoms and substituted with one hydroxy group, such as a hydroxymethyl group, a 1-hydroxyethyl group, a 2-hydroxyethyl group, a 1-hydroxypropyl group, a 2-hydroxypropyl group, a 3-hydroxypropyl group, a 1-hydroxybutyl group, a 2-hydroxybutyl group, a 3-hydroxybutyl group, and a 4-hydroxybutyl group. In the general formulae (1) to (4), the alkyl groups and hydroxyalkyl groups represented by X, R 1, and R 2 may be the same or different. In the general formulae (1) to (4), X is preferably a hydrogen atom, a hydroxy group, or a hydroxyalkyl group. The number average molecular weight of the aminated phenol polymer having the repeating units represented by the general formulae (1) to (4) is preferably about 500 to 1,000,000, for example, and more preferably about 1,000 to 20,000. The aminated phenol polymer is produced, for example, by polycondensing a phenol compound or a naphthol compound with formaldehyde to produce a polymer consisting of the repeating units represented by the general formula (1) or (3), and then introducing a functional group (-CH 2 NR 1 R 2 ) into the polymer obtained above using formaldehyde and an amine (R 1 R 2 NH). The aminated phenol polymer may be used alone or in combination of two or more types.
 耐腐食性皮膜の他の例としては、希土類元素酸化物ゾル、アニオン性ポリマー、カチオン性ポリマーからなる群から選ばれる少なくとも1種を含有するコーティング剤を塗工するコーティングタイプの腐食防止処理によって形成される薄膜が挙げられる。コーティング剤には、さらにリン酸またはリン酸塩、ポリマーを架橋させる架橋剤を含んでもよい。希土類元素酸化物ゾルには、液体分散媒中に希土類元素酸化物の微粒子(例えば、平均粒径100nm以下の粒子)が分散されている。希土類元素酸化物としては、酸化セリウム、酸化イットリウム、酸化ネオジウム、酸化ランタン等が挙げられ、密着性をより向上させる観点から酸化セリウムが好ましい。耐腐食性皮膜に含まれる希土類元素酸化物は1種を単独で又は2種以上を組み合わせて用いることができる。希土類元素酸化物ゾルの液体分散媒としては、例えば、水、アルコール系溶剤、炭化水素系溶剤、ケトン系溶剤、エステル系溶剤、エーテル系溶剤など各種溶媒を用いることができ、水が好ましい。カチオン性ポリマーとしては、例えば、ポリエチレンイミン、ポリエチレンイミンとカルボン酸を有するポリマーからなるイオン高分子錯体、アクリル主骨格に1級アミンをグラフト重合させた1級アミングラフトアクリル樹脂、ポリアリルアミンまたはその誘導体、アミノ化フェノールなどが好ましい。また、アニオン性ポリマーとしては、ポリ(メタ)アクリル酸またはその塩、あるいは(メタ)アクリル酸またはその塩を主成分とする共重合体であることが好ましい。また、架橋剤が、イソシアネート基、グリシジル基、カルボキシル基、オキサゾリン基のいずれかの官能基を有する化合物とシランカップリング剤よりなる群から選ばれる少なくとも1種であることが好ましい。また、前記リン酸またはリン酸塩が、縮合リン酸または縮合リン酸塩であることが好ましい。 Other examples of corrosion-resistant films include thin films formed by a coating-type corrosion prevention treatment in which a coating agent containing at least one selected from the group consisting of rare earth element oxide sol, anionic polymer, and cationic polymer is applied. The coating agent may further contain phosphoric acid or phosphate, and a crosslinking agent for crosslinking the polymer. The rare earth element oxide sol has rare earth element oxide fine particles (e.g., particles with an average particle size of 100 nm or less) dispersed in a liquid dispersion medium. Examples of rare earth element oxides include cerium oxide, yttrium oxide, neodymium oxide, and lanthanum oxide, and cerium oxide is preferred from the viewpoint of further improving adhesion. The rare earth element oxide contained in the corrosion-resistant film can be used alone or in combination of two or more types. Examples of liquid dispersion media for the rare earth element oxide sol include various solvents such as water, alcohol-based solvents, hydrocarbon-based solvents, ketone-based solvents, ester-based solvents, and ether-based solvents, and water is preferred. As the cationic polymer, for example, polyethyleneimine, an ionic polymer complex consisting of a polymer having polyethyleneimine and a carboxylic acid, a primary amine grafted acrylic resin in which a primary amine is graft-polymerized to an acrylic main skeleton, polyallylamine or a derivative thereof, aminated phenol, etc. are preferable. As the anionic polymer, poly(meth)acrylic acid or a salt thereof, or a copolymer mainly composed of (meth)acrylic acid or a salt thereof is preferable. Furthermore, it is preferable that the crosslinking agent is at least one selected from the group consisting of a compound having any one of the functional groups of an isocyanate group, a glycidyl group, a carboxyl group, and an oxazoline group, and a silane coupling agent. Furthermore, it is preferable that the phosphoric acid or the phosphoric acid salt is a condensed phosphoric acid or a condensed phosphate salt.
 耐腐食性皮膜の一例としては、リン酸中に、酸化アルミニウム、酸化チタン、酸化セリウム、酸化スズなどの金属酸化物や硫酸バリウムの微粒子を分散させたものを金属箔層の表面に塗布し、150℃以上で焼付け処理を行うことにより形成したものが挙げられる。 One example of a corrosion-resistant coating is one formed by applying a solution of fine particles of metal oxides such as aluminum oxide, titanium oxide, cerium oxide, and tin oxide, or barium sulfate dispersed in phosphoric acid to the surface of a metal foil layer and baking the coating at 150°C or higher.
 耐腐食性皮膜は、必要に応じて、さらにカチオン性ポリマー及びアニオン性ポリマーの少なくとも一方を積層した積層構造としてもよい。カチオン性ポリマー、アニオン性ポリマーとしては、上述したものが挙げられる。 If necessary, the corrosion-resistant coating may have a laminated structure in which at least one of a cationic polymer and an anionic polymer is further laminated. Examples of the cationic polymer and anionic polymer include those described above.
 なお、耐腐食性皮膜の組成の分析は、例えば、飛行時間型2次イオン質量分析法を用いて行うことができる。 The composition of the corrosion-resistant coating can be analyzed, for example, using time-of-flight secondary ion mass spectrometry.
 化成処理において金属箔層3の表面に形成させる耐腐食性皮膜の量については、特に制限されないが、例えば、塗布型クロメート処理を行う場合であれば、金属箔層3の表面1m2当たり、クロム酸化合物がクロム換算で例えば0.5~50mg程度、好ましくは1.0~40mg程度、リン化合物がリン換算で例えば0.5~50mg程度、好ましくは1.0~40mg程度、及びアミノ化フェノール重合体が例えば1.0~200mg程度、好ましくは5.0~150mg程度の割合で含有されていることが望ましい。 The amount of the corrosion-resistant coating formed on the surface of the metal foil layer 3 in the chemical conversion treatment is not particularly limited, but for example, in the case of performing a coating-type chromate treatment, it is desirable that the chromate compound is contained in an amount , calculated as chromium, of about 0.5 to 50 mg, preferably about 1.0 to 40 mg, the phosphorus compound is contained in an amount, calculated as phosphorus, of about 0.5 to 50 mg, preferably about 1.0 to 40 mg, and the aminated phenol polymer is contained in an amount, calculated as phosphorus, of about 1.0 to 200 mg, preferably about 5.0 to 150 mg, per 1 m2 of the surface of the metal foil layer 3.
 耐腐食性皮膜の厚みとしては、特に制限されないが、皮膜の凝集力や、金属箔層や熱融着性樹脂層との密着力の観点から、好ましくは1nm~20μm程度、より好ましくは1nm~100nm程度、さらに好ましくは1nm~50nm程度が挙げられる。なお、耐腐食性皮膜の厚みは、透過電子顕微鏡による観察、または、透過電子顕微鏡による観察と、エネルギー分散型X線分光法もしくは電子線エネルギー損失分光法との組み合わせによって測定することができる。飛行時間型2次イオン質量分析法を用いた耐腐食性皮膜の組成の分析により、例えば、CeとPとOからなる2次イオン(例えば、Ce2PO4 +、CePO4 -などの少なくとも1種)や、例えば、CrとPとOからなる2次イオン(例えば、CrPO2 +、CrPO4 -などの少なくとも1種)に由来するピークが検出される。 The thickness of the corrosion-resistant film is not particularly limited, but is preferably about 1 nm to 20 μm, more preferably about 1 nm to 100 nm, and even more preferably about 1 nm to 50 nm, from the viewpoint of the cohesive force of the film and the adhesive force with the metal foil layer and the heat-sealable resin layer. The thickness of the corrosion-resistant film can be measured by observation with a transmission electron microscope, or by a combination of observation with a transmission electron microscope and energy dispersive X-ray spectroscopy or electron energy loss spectroscopy. By analyzing the composition of the corrosion-resistant film using time-of-flight secondary ion mass spectrometry, for example, a peak derived from a secondary ion composed of Ce, P, and O (for example, at least one of Ce 2 PO 4 + and CePO 4 - ) or a secondary ion composed of Cr, P, and O (for example, at least one of CrPO 2 + and CrPO 4 - ) is detected.
 化成処理は、耐腐食性皮膜の形成に使用される化合物を含む溶液を、バーコート法、ロールコート法、グラビアコート法、浸漬法などによって、金属箔層の表面に塗布した後に、金属箔層の温度が70~200℃程度になるように加熱することにより行われる。また、金属箔層に化成処理を施す前に、予め金属箔層を、アルカリ浸漬法、電解洗浄法、酸洗浄法、電解酸洗浄法などによる脱脂処理に供してもよい。このように脱脂処理を行うことにより、金属箔層の表面の化成処理をより効率的に行うことが可能となる。また、脱脂処理にフッ素含有化合物を無機酸で溶解させた酸脱脂剤を用いることで、金属箔の脱脂効果だけでなく不動態である金属のフッ化物を形成させることが可能であり、このような場合には脱脂処理だけを行ってもよい。 The chemical conversion treatment is carried out by applying a solution containing a compound used to form a corrosion-resistant film to the surface of the metal foil layer by bar coating, roll coating, gravure coating, immersion, or other methods, and then heating the metal foil layer to a temperature of about 70 to 200°C. In addition, before applying the chemical conversion treatment to the metal foil layer, the metal foil layer may be subjected to a degreasing treatment using an alkali immersion method, electrolytic cleaning method, acid cleaning method, electrolytic acid cleaning method, or other method. By carrying out a degreasing treatment in this manner, it is possible to carry out the chemical conversion treatment of the surface of the metal foil layer more efficiently. In addition, by using an acid degreasing agent in which a fluorine-containing compound is dissolved in an inorganic acid for the degreasing treatment, it is possible to not only degrease the metal foil but also form a fluoride of the metal, which is in a passive state, and in such cases, only the degreasing treatment may be carried out.
[熱融着性樹脂層4]
 本開示の蓄電デバイス用外装材において、熱融着性樹脂層4は、最内層に該当し、蓄電デバイスの組み立て時に熱融着性樹脂層同士が熱融着して蓄電デバイス素子を密封する機能を発揮する層(シーラント層)である。
[Thermofusible resin layer 4]
In the exterior packaging material for an electricity storage device according to the present disclosure, the heat-sealable resin layer 4 corresponds to the innermost layer, and has the function of sealing the electricity storage device elements by heat-sealing the heat-sealable resin layers to each other when assembling the electricity storage device. It is a layer (sealant layer) that exhibits the above-mentioned properties.
 熱融着性樹脂層4を構成している樹脂については、熱融着可能であることを限度として特に制限されないが、ポリオレフィン、酸変性ポリオレフィンなどのポリオレフィン骨格を含む樹脂が好ましい。熱融着性樹脂層4を構成している樹脂がポリオレフィン骨格を含むことは、例えば、赤外分光法、ガスクロマトグラフィー質量分析法などにより分析可能である。また、熱融着性樹脂層4を構成している樹脂を赤外分光法で分析すると、無水マレイン酸に由来するピークが検出されることが好ましい。例えば、赤外分光法にて無水マレイン酸変性ポリオレフィンを測定すると、波数1760cm-1付近と波数1780cm-1付近に無水マレイン酸由来のピークが検出される。熱融着性樹脂層4が無水マレイン酸変性ポリオレフィンより構成された層である場合、赤外分光法にて測定すると、無水マレイン酸由来のピークが検出される。ただし、酸変性度が低いとピークが小さくなり検出されない場合がある。その場合は核磁気共鳴分光法にて分析可能である。 The resin constituting the heat-sealable resin layer 4 is not particularly limited as long as it is heat-sealable, but is preferably a resin containing a polyolefin skeleton such as polyolefin or acid-modified polyolefin. The resin constituting the heat-sealable resin layer 4 can be analyzed to contain a polyolefin skeleton, for example, by infrared spectroscopy, gas chromatography mass spectrometry, etc. In addition, when the resin constituting the heat-sealable resin layer 4 is analyzed by infrared spectroscopy, it is preferable that a peak derived from maleic anhydride is detected. For example, when maleic anhydride-modified polyolefin is measured by infrared spectroscopy, a peak derived from maleic anhydride is detected near the wave number 1760 cm -1 and near the wave number 1780 cm -1 . When the heat-sealable resin layer 4 is a layer composed of maleic anhydride-modified polyolefin, a peak derived from maleic anhydride is detected by infrared spectroscopy. However, if the degree of acid modification is low, the peak may be small and not detected. In that case, it can be analyzed by nuclear magnetic resonance spectroscopy.
 熱融着性樹脂層4は、ポリオレフィン骨格を含む樹脂を主成分として含んでいることが好ましく、ポリオレフィンを主成分として含んでいることがより好ましく、ポリプロピレンを主成分として含んでいることがさらに好ましい。ここで、主成分とは、熱融着性樹脂層4に含まれる樹脂成分のうち、含有率が、例えば50質量%以上、好ましくは60質量%以上、より好ましくは70質量%以上、さらに好ましくは80質量%以上、さらに好ましくは90質量%以上、さらに好ましくは95質量%以上、さらに好ましくは98質量%以上、さらに好ましくは99質量%以上の樹脂成分であることを意味する。例えば、熱融着性樹脂層4がポリプロピレンを主成分として含むとは、熱融着性樹脂層4に含まれる樹脂成分のうち、ポリプロピレンの含有率が、例えば50質量%以上、好ましくは60質量%以上、より好ましくは70質量%以上、さらに好ましくは80質量%以上、さらに好ましくは90質量%以上、さらに好ましくは95質量%以上、さらに好ましくは98質量%以上、さらに好ましくは99質量%以上であることを意味する。 The heat-sealable resin layer 4 preferably contains a resin containing a polyolefin skeleton as a main component, more preferably contains polyolefin as a main component, and even more preferably contains polypropylene as a main component. Here, the main component means that the content of the resin components contained in the heat-sealable resin layer 4 is, for example, 50% by mass or more, preferably 60% by mass or more, more preferably 70% by mass or more, even more preferably 80% by mass or more, even more preferably 90% by mass or more, even more preferably 95% by mass or more, even more preferably 98% by mass or more, and even more preferably 99% by mass or more. For example, the heat-sealable resin layer 4 containing polypropylene as a main component means that the content of polypropylene among the resin components contained in the heat-sealable resin layer 4 is, for example, 50% by mass or more, preferably 60% by mass or more, more preferably 70% by mass or more, even more preferably 80% by mass or more, even more preferably 90% by mass or more, even more preferably 95% by mass or more, even more preferably 98% by mass or more, and even more preferably 99% by mass or more.
 ポリオレフィンとしては、具体的には、低密度ポリエチレン、中密度ポリエチレン、高密度ポリエチレン、線状低密度ポリエチレン等のポリエチレン;エチレン-αオレフィン共重合体;ホモポリプロピレン、ポリプロピレンのブロックコポリマー(例えば、プロピレンとエチレンのブロックコポリマー)、ポリプロピレンのランダムコポリマー(例えば、プロピレンとエチレンのランダムコポリマー)等のポリプロピレン;プロピレン-αオレフィン共重合体;エチレン-ブテン-プロピレンのターポリマー等が挙げられる。これらの中でも、ポリプロピレンが好ましい。共重合体である場合のポリオレフィン樹脂は、ブロック共重合体であってもよく、ランダム共重合体であってもよい。これらポリオレフィン系樹脂は、1種を単独で使用してもよく、2種以上を併用してもよい。 Specific examples of polyolefins include polyethylenes such as low-density polyethylene, medium-density polyethylene, high-density polyethylene, and linear low-density polyethylene; ethylene-α-olefin copolymers; polypropylenes such as homopolypropylene, block copolymers of polypropylene (e.g., block copolymers of propylene and ethylene), and random copolymers of polypropylene (e.g., random copolymers of propylene and ethylene); propylene-α-olefin copolymers; and ethylene-butene-propylene terpolymers. Among these, polypropylene is preferred. When the polyolefin resin is a copolymer, it may be a block copolymer or a random copolymer. These polyolefin resins may be used alone or in combination of two or more types.
 また、ポリオレフィンは、環状ポリオレフィンであってもよい。環状ポリオレフィンは、オレフィンと環状モノマーとの共重合体であり、前記環状ポリオレフィンの構成モノマーであるオレフィンとしては、例えば、エチレン、プロピレン、4-メチル-1-ペンテン、スチレン、ブタジエン、イソプレン等が挙げられる。また、環状ポリオレフィンの構成モノマーである環状モノマーとしては、例えば、ノルボルネン等の環状アルケン;シクロペンタジエン、ジシクロペンタジエン、シクロヘキサジエン、ノルボルナジエン等の環状ジエン等が挙げられる。これらの中でも、好ましくは環状アルケン、さらに好ましくはノルボルネンが挙げられる。 The polyolefin may also be a cyclic polyolefin. Cyclic polyolefins are copolymers of olefins and cyclic monomers, and examples of olefins that are constituent monomers of the cyclic polyolefins include ethylene, propylene, 4-methyl-1-pentene, styrene, butadiene, and isoprene. Examples of cyclic monomers that are constituent monomers of cyclic polyolefins include cyclic alkenes such as norbornene; and cyclic dienes such as cyclopentadiene, dicyclopentadiene, cyclohexadiene, and norbornadiene. Among these, cyclic alkenes are preferred, and norbornene is more preferred.
 また、ポリオレフィンは、酸変性ポリオレフィンであってもよい。酸変性ポリオレフィンとは、ポリオレフィンを酸成分でブロック重合又はグラフト重合することにより変性したポリマーである。酸変性されるポリオレフィンとしては、前記のポリオレフィンや、前記のポリオレフィンにアクリル酸若しくはメタクリル酸等の極性分子を共重合させた共重合体、又は、架橋ポリオレフィン等の重合体等も使用できる。また、酸変性に使用される酸成分としては、例えば、マレイン酸、アクリル酸、イタコン酸、クロトン酸、無水マレイン酸、無水イタコン酸等のカルボン酸またはその無水物が挙げられる。 The polyolefin may be an acid-modified polyolefin. An acid-modified polyolefin is a polymer modified by block polymerization or graft polymerization of a polyolefin with an acid component. The polyolefin to be acid-modified may be the above-mentioned polyolefin, a copolymer obtained by copolymerizing the above-mentioned polyolefin with a polar molecule such as acrylic acid or methacrylic acid, or a polymer such as a cross-linked polyolefin. Examples of the acid component used for the acid modification include carboxylic acids or anhydrides such as maleic acid, acrylic acid, itaconic acid, crotonic acid, maleic anhydride, and itaconic anhydride.
 酸変性ポリオレフィンは、酸変性環状ポリオレフィンであってもよい。酸変性環状ポリオレフィンとは、環状ポリオレフィンを構成するモノマーの一部を、酸成分に代えて共重合することにより、または環状ポリオレフィンに対して酸成分をブロック重合又はグラフト重合することにより得られるポリマーである。酸変性される環状ポリオレフィンについては、前記と同様である。また、酸変性に使用される酸成分としては、前記のポリオレフィンの変性に使用される酸成分と同様である。 The acid-modified polyolefin may be an acid-modified cyclic polyolefin. An acid-modified cyclic polyolefin is a polymer obtained by copolymerizing a part of the monomers constituting the cyclic polyolefin by replacing it with an acid component, or by block polymerizing or graft polymerizing an acid component onto a cyclic polyolefin. The cyclic polyolefin to be acid-modified is the same as described above. The acid component used for the acid modification is the same as the acid component used for the modification of the polyolefin described above.
 好ましい酸変性ポリオレフィンとしては、カルボン酸またはその無水物で変性されたポリオレフィン、カルボン酸またはその無水物で変性されたポリプロピレン、無水マレイン酸変性ポリオレフィン、無水マレイン酸変性ポリプロピレンが挙げられる。 Preferred acid-modified polyolefins include polyolefins modified with carboxylic acids or their anhydrides, polypropylenes modified with carboxylic acids or their anhydrides, maleic anhydride-modified polyolefins, and maleic anhydride-modified polypropylenes.
 熱融着性樹脂層4は、1種の樹脂単独で形成してもよく、また2種以上の樹脂を組み合わせたブレンドポリマーにより形成してもよい。さらに、熱融着性樹脂層4は、1層のみで形成されていてもよいが、同一又は異なる樹脂によって2層以上で形成されていてもよい。 The heat-sealable resin layer 4 may be formed of one type of resin alone, or may be formed of a blend polymer of two or more types of resin. Furthermore, the heat-sealable resin layer 4 may be formed of only one layer, or may be formed of two or more layers of the same or different resins.
 熱融着性樹脂層4を金属箔層3や接着層5などと積層して本開示の蓄電デバイス用外装材10を製造する際に、予め形成された樹脂フィルムを熱融着性樹脂層4として用いてもよい。また、熱融着性樹脂層4を形成する熱融着性樹脂を、押出成形や塗布などによって金属箔層3や接着層5などの表面上でフィルム化して、樹脂フィルムにより形成された熱融着性樹脂層4としてもよい。 When manufacturing the exterior material 10 for an electricity storage device of the present disclosure by laminating the heat-sealable resin layer 4 with the metal foil layer 3, the adhesive layer 5, etc., a preformed resin film may be used as the heat-sealable resin layer 4. In addition, the heat-sealable resin that forms the heat-sealable resin layer 4 may be formed into a film on the surface of the metal foil layer 3, the adhesive layer 5, etc. by extrusion molding, coating, etc., to form the heat-sealable resin layer 4 from the resin film.
 また、熱融着性樹脂層4は、必要に応じて滑剤などを含んでいてもよい。熱融着性樹脂層4が滑剤を含む場合、蓄電デバイス用外装材の成形性を高め得る。滑剤としては、特に制限されず、公知の滑剤を用いることができる。 The heat-sealable resin layer 4 may also contain a lubricant, etc., if necessary. When the heat-sealable resin layer 4 contains a lubricant, the moldability of the exterior material for the power storage device can be improved. There are no particular limitations on the lubricant, and any known lubricant can be used.
 滑剤としては、特に制限されないが、好ましくはアミド系滑剤が挙げられる。滑剤の具体例としては、基材層1で例示したものが挙げられる。滑剤は、1種類単独で使用してもよいし、2種類以上を組み合わせて使用してもよく、2種類以上を組み合わせることが好ましい。 The lubricant is not particularly limited, but preferably an amide-based lubricant is used. Specific examples of the lubricant include those exemplified for the base layer 1. The lubricant may be used alone or in combination of two or more types, and it is preferable to use a combination of two or more types.
 本開示において、蓄電デバイス用外装材の成形性を高める観点からは、熱融着性樹脂層4の表面及び内部の少なくとも一方には、滑剤が存在していることが好ましい。滑剤としては、特に制限されないが、好ましくはアミド系滑剤が挙げられる。アミド系滑剤の具体例としては、例えば、飽和脂肪酸アミド、不飽和脂肪酸アミド、置換アミド、メチロールアミド、飽和脂肪酸ビスアミド、不飽和脂肪酸ビスアミド、脂肪酸エステルアミド、芳香族ビスアミドなどが挙げられる。飽和脂肪酸アミドの具体例としては、ラウリン酸アミド、パルミチン酸アミド、ステアリン酸アミド、ベヘン酸アミド、ヒドロキシステアリン酸アミドなどが挙げられる。不飽和脂肪酸アミドの具体例としては、オレイン酸アミド、エルカ酸アミドなどが挙げられる。置換アミドの具体例としては、N-オレイルパルミチン酸アミド、N-ステアリルステアリン酸アミド、N-ステアリルオレイン酸アミド、N-オレイルステアリン酸アミド、N-ステアリルエルカ酸アミドなどが挙げられる。また、メチロールアミドの具体例としては、メチロールステアリン酸アミドなどが挙げられる。飽和脂肪酸ビスアミドの具体例としては、メチレンビスステアリン酸アミド、エチレンビスカプリン酸アミド、エチレンビスラウリン酸アミド、エチレンビスステアリン酸アミド、エチレンビスヒドロキシステアリン酸アミド、エチレンビスベヘン酸アミド、ヘキサメチレンビスステアリン酸アミド、ヘキサメチレンビスベヘン酸アミド、ヘキサメチレンヒドロキシステアリン酸アミド、N,N’-ジステアリルアジピン酸アミド、N,N’-ジステアリルセバシン酸アミドなどが挙げられる。不飽和脂肪酸ビスアミドの具体例としては、エチレンビスオレイン酸アミド、エチレンビスエルカ酸アミド、ヘキサメチレンビスオレイン酸アミド、N,N’-ジオレイルアジピン酸アミド、N,N’-ジオレイルセバシン酸アミドなどが挙げられる。脂肪酸エステルアミドの具体例としては、ステアロアミドエチルステアレートなどが挙げられる。また、芳香族ビスアミドの具体例としては、m-キシリレンビスステアリン酸アミド、m-キシリレンビスヒドロキシステアリン酸アミド、N,N’-ジステアリルイソフタル酸アミドなどが挙げられる。滑剤は、1種類単独で使用してもよいし、2種類以上を組み合わせて使用してもよく、2種類以上を組み合わせることが好ましい。 In the present disclosure, from the viewpoint of improving the formability of the exterior material for a power storage device, it is preferable that a lubricant is present on at least one of the surface and the inside of the heat-sealable resin layer 4. The lubricant is not particularly limited, but preferably includes amide-based lubricants. Specific examples of amide-based lubricants include, for example, saturated fatty acid amides, unsaturated fatty acid amides, substituted amides, methylol amides, saturated fatty acid bisamides, unsaturated fatty acid bisamides, fatty acid ester amides, and aromatic bisamides. Specific examples of saturated fatty acid amides include lauric acid amides, palmitic acid amides, stearic acid amides, behenic acid amides, and hydroxystearic acid amides. Specific examples of unsaturated fatty acid amides include oleic acid amides and erucic acid amides. Specific examples of substituted amides include N-oleyl palmitic acid amide, N-stearyl stearic acid amide, N-stearyl oleic acid amide, N-oleyl stearic acid amide, and N-stearyl erucic acid amide. Specific examples of methylol amides include methylol stearic acid amide. Specific examples of saturated fatty acid bisamides include methylene bisstearic acid amide, ethylene biscapric acid amide, ethylene bislauric acid amide, ethylene bisstearic acid amide, ethylene bishydroxystearic acid amide, ethylene bisbehenic acid amide, hexamethylene bisstearic acid amide, hexamethylene bisbehenic acid amide, hexamethylene hydroxystearic acid amide, N,N'-distearyl adipic acid amide, N,N'-distearyl sebacic acid amide, etc. Specific examples of unsaturated fatty acid bisamides include ethylene bisoleic acid amide, ethylene biserucic acid amide, hexamethylene bisoleic acid amide, N,N'-dioleyl adipic acid amide, N,N'-dioleyl sebacic acid amide, etc. Specific examples of fatty acid ester amides include stearamide ethyl stearate, etc. Specific examples of aromatic bisamides include m-xylylene bisstearic acid amide, m-xylylene bishydroxystearic acid amide, and N,N'-distearylisophthalic acid amide. The lubricant may be used alone or in combination of two or more types, preferably in combination of two or more types.
 熱融着性樹脂層4の表面に滑剤が存在する場合、その存在量としては、特に制限されないが、蓄電デバイス用外装材の成形性を高める観点からは、好ましくは約1mg/m2以上、より好ましくは約3mg/m2以上、さらに好ましくは約5mg/m2以上、さらに好ましくは約10mg/m2以上、さらに好ましくは約15mg/m2以上であり、また、好ましくは約50mg/m2以下、さらに好ましくは約40mg/m2以下であり、好ましい範囲としては、1~50mg/m2程度、1~40mg/m2程度、3~50mg/m2程度、3~40mg/m2程度、5~50mg/m2程度、5~40mg/m2程度、10~50mg/m2程度、10~40mg/m2程度、15~50mg/m2程度、15~40mg/m2程度が挙げられる。 When a lubricant is present on the surface of the heat-fusible resin layer 4, the amount thereof is not particularly limited, but from the viewpoint of improving the moldability of the exterior material for a storage battery device, it is preferably about 1 mg / m 2 or more, more preferably about 3 mg / m 2 or more, even more preferably about 5 mg / m 2 or more, even more preferably about 10 mg / m 2 or more, and even more preferably about 15 mg / m 2 or more, and also preferably about 50 mg / m 2 or less, and even more preferably about 40 mg / m 2 or less, and preferred ranges include about 1 to 50 mg / m 2 , about 1 to 40 mg / m 2 , about 3 to 50 mg / m 2 , about 3 to 40 mg / m 2 , about 5 to 50 mg / m 2 , about 5 to 40 mg / m 2 , about 10 to 50 mg / m 2 , about 10 to 40 mg / m 2 , about 15 to 50 mg / m 2 , and about 15 to 40 mg / m 2 .
 熱融着性樹脂層4の内部に滑剤が存在する場合、その存在量としては、特に制限されないが、蓄電デバイス用外装材の成形性を高める観点からは、好ましくは約100ppm以上、より好ましくは約300ppm以上、さらに好ましくは約500ppm以上であり、また、好ましくは約3000ppm以下、より好ましくは約2000ppm以下であり、好ましい範囲としては、100~3000ppm程度、100~2000ppm程度、300~3000ppm程度、300~2000ppm程度、500~3000ppm程度、500~2000ppm程度が挙げられる。熱融着性樹脂層4の内部に滑剤が2種類以上存在する場合、上記の滑剤量は合計滑剤量である。また、熱融着性樹脂層4の内部に滑剤が2種類以上存在する場合、1種類目の滑剤の存在量は、特に制限されないが、蓄電デバイス用外装材の成形性を高める観点からは、好ましくは約100ppm以上、より好ましくは約300ppm以上、さらに好ましくは約500ppm以上であり、また、好ましくは約3000ppm以下、より好ましくは約2000ppm以下であり、好ましい範囲としては、100~3000ppm程度、100~2000ppm程度、300~3000ppm程度、300~2000ppm程度、500~3000ppm程度、500~2000ppm程度が挙げられる。2種類目の滑剤の存在量は、特に制限されないが、蓄電デバイス用外装材の成形性を高める観点からは、好ましくは約50ppm以上、より好ましくは約100ppm以上、さらに好ましくは約200ppm以上であり、また、好ましくは約1500ppm以下、より好ましくは約1000ppm以下であり、好ましい範囲としては、50~1500ppm程度、50~1000ppm程度、100~1500ppm程度、100~1000ppm程度、200~1500ppm程度、200~1000ppm程度が挙げられる。 When a lubricant is present inside the heat-sealable resin layer 4, the amount thereof is not particularly limited, but from the viewpoint of improving the formability of the exterior material for an electrical storage device, it is preferably at least about 100 ppm, more preferably at least about 300 ppm, even more preferably at least about 500 ppm, and is preferably at most about 3000 ppm, more preferably at most about 2000 ppm, and preferred ranges include about 100-3000 ppm, about 100-2000 ppm, about 300-3000 ppm, about 300-2000 ppm, about 500-3000 ppm, and about 500-2000 ppm. When two or more types of lubricant are present inside the heat-sealable resin layer 4, the above amount of lubricant is the total amount of lubricant. Furthermore, when two or more types of lubricants are present inside the heat-sealable resin layer 4, the amount of the first type of lubricant is not particularly limited, but from the viewpoint of improving the formability of the exterior material for an electrical storage device, it is preferably about 100 ppm or more, more preferably about 300 ppm or more, and even more preferably about 500 ppm or more, and is preferably about 3000 ppm or less, more preferably about 2000 ppm or less, and preferred ranges include about 100 to 3000 ppm, about 100 to 2000 ppm, about 300 to 3000 ppm, about 300 to 2000 ppm, about 500 to 3000 ppm, and about 500 to 2000 ppm. The amount of the second type of lubricant is not particularly limited, but from the viewpoint of improving the moldability of the exterior material for an electrical storage device, it is preferably about 50 ppm or more, more preferably about 100 ppm or more, and even more preferably about 200 ppm or more, and is preferably about 1500 ppm or less, more preferably about 1000 ppm or less, and preferred ranges include about 50 to 1500 ppm, about 50 to 1000 ppm, about 100 to 1500 ppm, about 100 to 1000 ppm, about 200 to 1500 ppm, and about 200 to 1000 ppm.
 熱融着性樹脂層4の表面に存在する滑剤は、熱融着性樹脂層4を構成する樹脂に含まれる滑剤を滲出させたものであってもよいし、熱融着性樹脂層4の表面に滑剤を塗布したものであってもよい。 The lubricant present on the surface of the heat-sealable resin layer 4 may be a lubricant exuded from the resin that constitutes the heat-sealable resin layer 4, or a lubricant applied to the surface of the heat-sealable resin layer 4.
 また、熱融着性樹脂層4の厚みとしては、熱融着性樹脂層同士が熱融着して蓄電デバイス素子を密封する機能を発揮すれば特に制限されないが、例えば約100μm以下、好ましくは約85μm以下、より好ましくは15~85μm程度が挙げられる。なお、例えば、後述の接着層5の厚みが10μm以上である場合には、熱融着性樹脂層4の厚みとしては、好ましくは約85μm以下、より好ましくは15~45μm程度が挙げられ、例えば後述の接着層5の厚みが10μm未満である場合や接着層5が設けられていない場合には、熱融着性樹脂層4の厚みとしては、好ましくは約20μm以上、より好ましくは35~85μm程度が挙げられる。 The thickness of the heat-sealable resin layer 4 is not particularly limited as long as the heat-sealable resin layers are heat-sealed to each other to seal the electricity storage device element, but may be, for example, about 100 μm or less, preferably about 85 μm or less, and more preferably about 15 to 85 μm. For example, when the thickness of the adhesive layer 5 described below is 10 μm or more, the thickness of the heat-sealable resin layer 4 is preferably about 85 μm or less, and more preferably about 15 to 45 μm. For example, when the thickness of the adhesive layer 5 described below is less than 10 μm or when the adhesive layer 5 is not provided, the thickness of the heat-sealable resin layer 4 is preferably about 20 μm or more, and more preferably about 35 to 85 μm.
[接着層5]
 本開示の蓄電デバイス用外装材において、接着層5は、金属箔層3(又は耐腐食性皮膜)と熱融着性樹脂層4を強固に接着させるために、これらの間に必要に応じて設けられる層である。
[Adhesive layer 5]
In the packaging material for an electricity storage device of the present disclosure, the adhesive layer 5 is a layer that is provided, if necessary, between the metal foil layer 3 (or the corrosion-resistant film) and the heat-sealable resin layer 4 in order to firmly bond them together.
 接着層5は、金属箔層3と熱融着性樹脂層4とを接着可能である樹脂によって形成される。接着層5の形成に使用される樹脂としては、例えば接着剤層2で例示した接着剤と同様のものが使用できる。 The adhesive layer 5 is formed from a resin capable of bonding the metal foil layer 3 and the heat-sealable resin layer 4. The resin used to form the adhesive layer 5 may be, for example, the same adhesive as exemplified for the adhesive layer 2.
 また、接着層5と熱融着性樹脂層4とを強固に接着する観点から、接着層5の形成に使用される樹脂としてはポリオレフィン骨格を含んでいることが好ましく、前述の熱融着性樹脂層4で例示したポリオレフィン、酸変性ポリオレフィン、環状ポリオレフィン、酸変性環状ポリオレフィンが挙げられる。一方、金属箔層3と接着層5とを強固に接着する観点から、接着層5は酸変性ポリオレフィンを含むことが好ましい。酸変性成分としては、マレイン酸、イタコン酸、コハク酸、アジピン酸などのジカルボン酸やこれらの無水物、アクリル酸、メタクリル酸などが挙げられるが、変性のし易さや汎用性などの点から無水マレイン酸が最も好ましい。また、蓄電デバイス用外装材の耐熱性の観点からは、オレフィン成分はポリプロピレン系樹脂であることが好ましく、接着層5は無水マレイン酸変性ポリプロピレンを含むことが最も好ましい。 In addition, from the viewpoint of firmly adhering the adhesive layer 5 and the heat-sealable resin layer 4, the resin used to form the adhesive layer 5 preferably contains a polyolefin skeleton, and examples of the resin include the polyolefin, acid-modified polyolefin, cyclic polyolefin, and acid-modified cyclic polyolefin exemplified in the heat-sealable resin layer 4 described above. On the other hand, from the viewpoint of firmly adhering the metal foil layer 3 and the adhesive layer 5, the adhesive layer 5 preferably contains an acid-modified polyolefin. Examples of the acid-modified component include dicarboxylic acids such as maleic acid, itaconic acid, succinic acid, and adipic acid, and their anhydrides, acrylic acid, and methacrylic acid, but maleic anhydride is most preferred in terms of ease of modification and versatility. In addition, from the viewpoint of the heat resistance of the exterior material for the electric storage device, the olefin component is preferably a polypropylene-based resin, and the adhesive layer 5 most preferably contains maleic anhydride-modified polypropylene.
 接着層5の形成に使用される樹脂としてはポリオレフィン骨格を含んでいる場合、接着層5は、ポリオレフィン骨格を含む樹脂を主成分として含んでいることが好ましく、酸変性ポリオレフィンを主成分として含んでいることがより好ましく、酸変性ポリプロピレンを主成分として含んでいることがさらに好ましい。ここで、主成分とは、接着層5に含まれる樹脂成分のうち、含有率が、例えば50質量%以上、好ましくは60質量%以上、より好ましくは70質量%以上、さらに好ましくは80質量%以上、さらに好ましくは90質量%以上、さらに好ましくは95質量%以上、さらに好ましくは98質量%以上、さらに好ましくは99質量%以上の樹脂成分であることを意味する。例えば、接着層5が酸変性ポリプロピレンを主成分として含むとは、接着層5に含まれる樹脂成分のうち、酸変性ポリプロピレンの含有率が、例えば50質量%以上、好ましくは60質量%以上、より好ましくは70質量%以上、さらに好ましくは80質量%以上、さらに好ましくは90質量%以上、さらに好ましくは95質量%以上、さらに好ましくは98質量%以上、さらに好ましくは99質量%以上であることを意味する。 When the resin used to form the adhesive layer 5 contains a polyolefin skeleton, the adhesive layer 5 preferably contains a resin containing a polyolefin skeleton as a main component, more preferably contains an acid-modified polyolefin as a main component, and even more preferably contains an acid-modified polypropylene as a main component. Here, the main component means that the content of the resin components contained in the adhesive layer 5 is, for example, 50% by mass or more, preferably 60% by mass or more, more preferably 70% by mass or more, even more preferably 80% by mass or more, even more preferably 90% by mass or more, even more preferably 95% by mass or more, even more preferably 98% by mass or more, and even more preferably 99% by mass or more. For example, when the adhesive layer 5 contains acid-modified polypropylene as a main component, it means that the content of the acid-modified polypropylene among the resin components contained in the adhesive layer 5 is, for example, 50% by mass or more, preferably 60% by mass or more, more preferably 70% by mass or more, even more preferably 80% by mass or more, even more preferably 90% by mass or more, even more preferably 95% by mass or more, even more preferably 98% by mass or more, and even more preferably 99% by mass or more.
 接着層5を構成している樹脂がポリオレフィン骨格を含むことは、例えば、赤外分光法、ガスクロマトグラフィー質量分析法などにより分析可能であり、分析方法は特に問わない。また、接着層5を構成している樹脂が酸変性ポリオレフィンを含むことは、例えば、赤外分光法にて無水マレイン酸変性ポリオレフィンを測定すると、波数1760cm-1付近と波数1780cm-1付近に無水マレイン酸由来のピークが検出される。ただし、酸変性度が低いとピークが小さくなり検出されない場合がある。その場合は核磁気共鳴分光法にて分析可能である。 The resin constituting the adhesive layer 5 can be analyzed for polyolefin skeleton by infrared spectroscopy, gas chromatography mass spectrometry, or the like, and the analysis method is not particularly limited. The resin constituting the adhesive layer 5 can be analyzed for acid-modified polyolefin by, for example, measuring maleic anhydride-modified polyolefin by infrared spectroscopy, whereby peaks derived from maleic anhydride are detected at wave numbers of about 1760 cm -1 and about 1780 cm -1 . However, if the degree of acid modification is low, the peaks may become small and not be detected. In that case, analysis can be performed by nuclear magnetic resonance spectroscopy.
 さらに、蓄電デバイス用外装材の耐熱性や耐内容物性などの耐久性や、厚みを薄くしつつ成形性を担保する観点からは、接着層5は酸変性ポリオレフィンと硬化剤を含む樹脂組成物の硬化物であることがより好ましい。酸変性ポリオレフィンとしては、好ましくは、前記のものが例示できる。 Furthermore, from the viewpoint of ensuring durability such as heat resistance and resistance to contents of the exterior material for the power storage device, and of ensuring moldability while reducing the thickness, it is more preferable that the adhesive layer 5 is a cured product of a resin composition containing an acid-modified polyolefin and a curing agent. Preferred examples of the acid-modified polyolefin include those mentioned above.
 また、接着層5は、酸変性ポリオレフィンと、イソシアネート基を有する化合物、オキサゾリン基を有する化合物、及びエポキシ基を有する化合物からなる群より選択される少なくとも1種とを含む樹脂組成物の硬化物であることが好ましく、酸変性ポリオレフィンと、イソシアネート基を有する化合物及びエポキシ基を有する化合物からなる群より選択される少なくとも1種とを含む樹脂組成物の硬化物であることが特に好ましい。また、接着層5は、ポリウレタン、ポリエステル、及びエポキシ樹脂からなる群より選択される少なくとも1種を含むことが好ましく、ポリウレタン及びエポキシ樹脂を含むことがより好ましい。ポリエステルとしては、例えばエポキシ基と無水マレイン酸基の反応により生成するエステル樹脂、オキサゾリン基と無水マレイン酸基の反応で生成するアミドエステル樹脂が好ましい。なお、接着層5に、イソシアネート基を有する化合物、オキサゾリン基を有する化合物、エポキシ樹脂などの硬化剤の未反応物が残存している場合、未反応物の存在は、例えば、赤外分光法、ラマン分光法、飛行時間型二次イオン質量分析法(TOF-SIMS)などから選択される方法で確認することが可能である。 The adhesive layer 5 is preferably a cured product of a resin composition containing an acid-modified polyolefin and at least one selected from the group consisting of a compound having an isocyanate group, a compound having an oxazoline group, and a compound having an epoxy group, and is particularly preferably a cured product of a resin composition containing an acid-modified polyolefin and at least one selected from the group consisting of a compound having an isocyanate group and a compound having an epoxy group. The adhesive layer 5 preferably contains at least one selected from the group consisting of polyurethane, polyester, and epoxy resin, and more preferably contains polyurethane and epoxy resin. As the polyester, for example, an ester resin formed by the reaction of an epoxy group with a maleic anhydride group, and an amide ester resin formed by the reaction of an oxazoline group with a maleic anhydride group are preferable. In addition, when unreacted substances of a curing agent such as a compound having an isocyanate group, a compound having an oxazoline group, or an epoxy resin remain in the adhesive layer 5, the presence of the unreacted substances can be confirmed by a method selected from, for example, infrared spectroscopy, Raman spectroscopy, time-of-flight secondary ion mass spectrometry (TOF-SIMS), etc.
 また、金属箔層3と接着層5との密着性をより高める観点から、接着層5は、酸素原子、複素環、C=N結合、及びC-O-C結合からなる群より選択される少なくとも1種を有する硬化剤を含む樹脂組成物の硬化物であることが好ましい。複素環を有する硬化剤としては、例えば、オキサゾリン基を有する硬化剤、エポキシ基を有する硬化剤などが挙げられる。また、C=N結合を有する硬化剤としては、オキサゾリン基を有する硬化剤、イソシアネート基を有する硬化剤などが挙げられる。また、C-O-C結合を有する硬化剤としては、オキサゾリン基を有する硬化剤、エポキシ基を有する硬化剤などが挙げられる。接着層5がこれらの硬化剤を含む樹脂組成物の硬化物であることは、例えば、ガスクロマトグラフ質量分析(GCMS)、赤外分光法(IR)、飛行時間型二次イオン質量分析法(TOF-SIMS)、X線光電子分光法(XPS)などの方法で確認することができる。 In order to further increase the adhesion between the metal foil layer 3 and the adhesive layer 5, the adhesive layer 5 is preferably a cured product of a resin composition containing a curing agent having at least one selected from the group consisting of an oxygen atom, a heterocycle, a C=N bond, and a C-O-C bond. Examples of curing agents having a heterocycle include curing agents having an oxazoline group and curing agents having an epoxy group. Examples of curing agents having a C=N bond include curing agents having an oxazoline group and curing agents having an isocyanate group. Examples of curing agents having a C-O-C bond include curing agents having an oxazoline group and curing agents having an epoxy group. The fact that the adhesive layer 5 is a cured product of a resin composition containing these curing agents can be confirmed by methods such as gas chromatography mass spectrometry (GCMS), infrared spectroscopy (IR), time-of-flight secondary ion mass spectrometry (TOF-SIMS), and X-ray photoelectron spectroscopy (XPS).
 イソシアネート基を有する化合物としては、特に制限されないが、金属箔層3と接着層5との密着性を効果的に高める観点からは、好ましくは多官能イソシアネート化合物が挙げられる。多官能イソシアネート化合物は、2つ以上のイソシアネート基を有する化合物であれば、特に限定されない。多官能イソシアネート系硬化剤の具体例としては、ペンタンジイソシアネート(PDI)、イソホロンジイソシアネート(IPDI)、ヘキサメチレンジイソシアネート(HDI)、トリレンジイソシアネート(TDI)、ジフェニルメタンジイソシアネート(MDI)、これらをポリマー化やヌレート化したもの、これらの混合物や他ポリマーとの共重合物などが挙げられる。また、アダクト体、ビウレット体、イソシアヌレート体などが挙げられる。 The compound having an isocyanate group is not particularly limited, but from the viewpoint of effectively increasing the adhesion between the metal foil layer 3 and the adhesive layer 5, a polyfunctional isocyanate compound is preferably used. The polyfunctional isocyanate compound is not particularly limited as long as it has two or more isocyanate groups. Specific examples of polyfunctional isocyanate-based curing agents include pentane diisocyanate (PDI), isophorone diisocyanate (IPDI), hexamethylene diisocyanate (HDI), tolylene diisocyanate (TDI), diphenylmethane diisocyanate (MDI), polymerized or nurated versions of these, mixtures of these, and copolymers with other polymers. Other examples include adducts, biurets, and isocyanurates.
 接着層5における、イソシアネート基を有する化合物の含有量としては、接着層5を構成する樹脂組成物中、0.1~50質量%の範囲にあることが好ましく、0.5~40質量%の範囲にあることがより好ましい。これにより、金属箔層3と接着層5との密着性を効果的に高めることができる。 The content of the compound having an isocyanate group in the adhesive layer 5 is preferably in the range of 0.1 to 50 mass % in the resin composition constituting the adhesive layer 5, and more preferably in the range of 0.5 to 40 mass %. This effectively improves the adhesion between the metal foil layer 3 and the adhesive layer 5.
 オキサゾリン基を有する化合物は、オキサゾリン骨格を備える化合物であれば、特に限定されない。オキサゾリン基を有する化合物の具体例としては、ポリスチレン主鎖を有するもの、アクリル主鎖を有するものなどが挙げられる。また、市販品としては、例えば、日本触媒社製のエポクロスシリーズなどが挙げられる。 The compound having an oxazoline group is not particularly limited as long as it has an oxazoline skeleton. Specific examples of compounds having an oxazoline group include those having a polystyrene main chain and those having an acrylic main chain. In addition, examples of commercially available products include the Epocross series manufactured by Nippon Shokubai Co., Ltd.
 接着層5における、オキサゾリン基を有する化合物の割合としては、接着層5を構成する樹脂組成物中、0.1~50質量%の範囲にあることが好ましく、0.5~40質量%の範囲にあることがより好ましい。これにより、金属箔層3と接着層5との密着性を効果的に高めることができる。 The proportion of the compound having an oxazoline group in the adhesive layer 5 is preferably in the range of 0.1 to 50 mass %, and more preferably in the range of 0.5 to 40 mass %, in the resin composition constituting the adhesive layer 5. This effectively improves the adhesion between the metal foil layer 3 and the adhesive layer 5.
 エポキシ基を有する化合物としては、例えば、エポキシ樹脂が挙げられる。エポキシ樹脂としては、分子内に存在するエポキシ基によって架橋構造を形成することが可能な樹脂であれば、特に制限されず、公知のエポキシ樹脂を用いることができる。エポキシ樹脂の重量平均分子量としては、好ましくは50~2000程度、より好ましくは100~1000程度、さらに好ましくは200~800程度が挙げられる。なお、第1の開示において、エポキシ樹脂の重量平均分子量は、標準サンプルとしてポリスチレンを用いた条件で測定された、ゲル浸透クロマトグラフィ(GPC)により測定された値である。 An example of a compound having an epoxy group is an epoxy resin. There are no particular limitations on the epoxy resin, so long as it is a resin capable of forming a crosslinked structure by the epoxy groups present in the molecule, and any known epoxy resin can be used. The weight average molecular weight of the epoxy resin is preferably about 50 to 2000, more preferably about 100 to 1000, and even more preferably about 200 to 800. In the first disclosure, the weight average molecular weight of the epoxy resin is a value measured by gel permeation chromatography (GPC) under conditions in which polystyrene is used as a standard sample.
 エポキシ樹脂の具体例としては、トリメチロールプロパンのグリシジルエーテル誘導体、ビスフェノールAジグリシジルエーテル、変性ビスフェノールAジグリシジルエーテル、ビスフェノールF型グリシジルエーテル、ノボラックグリシジルエーテル、グリセリンポリグリシジルエーテル、ポリグリセリンポリグリシジルエーテルなどが挙げられる。エポキシ樹脂は、1種類単独で使用してもよいし、2種類以上を組み合わせて使用してもよい。 Specific examples of epoxy resins include glycidyl ether derivatives of trimethylolpropane, bisphenol A diglycidyl ether, modified bisphenol A diglycidyl ether, bisphenol F glycidyl ether, novolac glycidyl ether, glycerin polyglycidyl ether, polyglycerin polyglycidyl ether, etc. One type of epoxy resin may be used alone, or two or more types may be used in combination.
 接着層5における、エポキシ樹脂の割合としては、接着層5を構成する樹脂組成物中、0.1~50質量%の範囲にあることが好ましく、0.5~40質量%の範囲にあることがより好ましい。これにより、金属箔層3と接着層5との密着性を効果的に高めることができる。 The proportion of epoxy resin in the adhesive layer 5 is preferably in the range of 0.1 to 50 mass % in the resin composition constituting the adhesive layer 5, and more preferably in the range of 0.5 to 40 mass %. This effectively improves the adhesion between the metal foil layer 3 and the adhesive layer 5.
 ポリウレタンとしては、特に制限されず、公知のポリウレタンを使用することができる。接着層5は、例えば、2液硬化型ポリウレタンの硬化物であってもよい。 The polyurethane is not particularly limited, and any known polyurethane can be used. The adhesive layer 5 may be, for example, a cured product of a two-component curing polyurethane.
 接着層5における、ポリウレタンの割合としては、接着層5を構成する樹脂組成物中、0.1~50質量%の範囲にあることが好ましく、0.5~40質量%の範囲にあることがより好ましい。これにより、電解液などの金属箔層の腐食を誘発する成分が存在する雰囲気における、金属箔層3と接着層5との密着性を効果的に高めることができる。 The proportion of polyurethane in the adhesive layer 5 is preferably in the range of 0.1 to 50 mass % in the resin composition constituting the adhesive layer 5, and more preferably in the range of 0.5 to 40 mass %. This effectively improves the adhesion between the metal foil layer 3 and the adhesive layer 5 in an atmosphere containing components that induce corrosion of the metal foil layer, such as an electrolyte.
 なお、接着層5が、イソシアネート基を有する化合物、オキサゾリン基を有する化合物、及びエポキシ樹脂からなる群より選択される少なくとも1種と、前記酸変性ポリオレフィンとを含む樹脂組成物の硬化物である場合、酸変性ポリオレフィンが主剤として機能し、イソシアネート基を有する化合物、オキサゾリン基を有する化合物、及びエポキシ基を有する化合物は、それぞれ、硬化剤として機能する。 When the adhesive layer 5 is a cured product of a resin composition containing at least one selected from the group consisting of a compound having an isocyanate group, a compound having an oxazoline group, and an epoxy resin, and the acid-modified polyolefin, the acid-modified polyolefin functions as a base agent, and the compound having an isocyanate group, the compound having an oxazoline group, and the compound having an epoxy group each function as a curing agent.
 接着層5には、カルボジイミド基を有する改質剤が含まれていてもよい。 The adhesive layer 5 may contain a modifier having a carbodiimide group.
 接着層5を金属箔層3や熱融着性樹脂層4などと積層して本開示の蓄電デバイス用外装材10を製造する際に、予め形成された樹脂フィルムを接着層5として用いてもよい。また、接着層5を形成する熱融着性樹脂を、押出成形や塗布などによって金属箔層3や熱融着性樹脂層4などの表面上でフィルム化して、樹脂フィルムにより形成された接着層5としてもよい。 When manufacturing the exterior material 10 for an electricity storage device of the present disclosure by laminating the adhesive layer 5 with the metal foil layer 3, the heat-sealable resin layer 4, etc., a preformed resin film may be used as the adhesive layer 5. In addition, the heat-sealable resin that forms the adhesive layer 5 may be formed into a film on the surface of the metal foil layer 3, the heat-sealable resin layer 4, etc. by extrusion molding, coating, etc., to form the adhesive layer 5 from the resin film.
 接着層5の厚さは、好ましくは、約50μm以下、約40μm以下、約30μm以下、約20μm以下、約5μm以下である。また、接着層5の厚さは、好ましくは、約0.1μm以上、約0.5μm以上である。また、接着層5の厚さの範囲としては、好ましくは、0.1~50μm程度、0.1~40μm程度、0.1~30μm程度、0.1~20μm程度、0.1~5μm程度、0.5~50μm程度、0.5~40μm程度、0.5~30μm程度、0.5~20μm程度、0.5~5μm程度が挙げられる。より具体的には、接着剤層2で例示した接着剤や、酸変性ポリオレフィンと硬化剤との硬化物である場合は、好ましくは1~10μm程度、より好ましくは1~5μm程度が挙げられる。また、熱融着性樹脂層4で例示した樹脂を用いる場合であれば、好ましくは2~50μm程度、より好ましくは10~40μm程度が挙げられる。なお、接着層5が接着剤層2で例示した接着剤や、酸変性ポリオレフィンと硬化剤を含む樹脂組成物の硬化物である場合、例えば、当該樹脂組成物を塗布し、加熱等により硬化させることにより、接着層5を形成することができる。また、熱融着性樹脂層4で例示した樹脂を用いる場合、例えば、熱融着性樹脂層4と接着層5との押出成形により形成することができる。 The thickness of the adhesive layer 5 is preferably about 50 μm or less, about 40 μm or less, about 30 μm or less, about 20 μm or less, or about 5 μm or less. The thickness of the adhesive layer 5 is preferably about 0.1 μm or more, or about 0.5 μm or more. The thickness of the adhesive layer 5 is preferably in the range of about 0.1 to 50 μm, about 0.1 to 40 μm, about 0.1 to 30 μm, about 0.1 to 20 μm, about 0.1 to 5 μm, about 0.5 to 50 μm, about 0.5 to 40 μm, about 0.5 to 30 μm, about 0.5 to 20 μm, or about 0.5 to 5 μm. More specifically, in the case of the adhesive exemplified in the adhesive layer 2 or a cured product of an acid-modified polyolefin and a curing agent, the thickness is preferably about 1 to 10 μm, and more preferably about 1 to 5 μm. In addition, when using a resin exemplified as the heat-sealable resin layer 4, the thickness is preferably about 2 to 50 μm, more preferably about 10 to 40 μm. When the adhesive layer 5 is an adhesive exemplified as the adhesive layer 2 or a cured product of a resin composition containing an acid-modified polyolefin and a curing agent, the adhesive layer 5 can be formed, for example, by applying the resin composition and curing it by heating or the like. In addition, when using a resin exemplified as the heat-sealable resin layer 4, the heat-sealable resin layer 4 and the adhesive layer 5 can be formed, for example, by extrusion molding.
[表面被覆層6]
 本開示の蓄電デバイス用外装材は、意匠性、耐電解液性、耐傷性、成形性などの向上の少なくとも1つを目的として、必要に応じて、基材層1の上(基材層1の金属箔層3とは反対側)に、表面被覆層6を備えていてもよい。表面被覆層6は、蓄電デバイス用外装材を用いて蓄電デバイスを組み立てた時に、蓄電デバイス用外装材の最外層側に位置する層である。
[Surface coating layer 6]
The exterior material for an electricity storage device according to the present disclosure may, if necessary, have a surface coating layer 6 on the substrate layer 1 (the side of the substrate layer 1 opposite to the metal foil layer 3) for the purpose of improving at least one of design, electrolyte resistance, scratch resistance, formability, etc. The surface coating layer 6 is a layer located on the outermost layer side of the exterior material for an electricity storage device when an electricity storage device is assembled using the exterior material for an electricity storage device.
 表面被覆層6は、例えば、ポリ塩化ビニリデン、ポリエステル、ポリアミド、エポキシ樹脂、アクリル樹脂、フッ素樹脂、ポリウレタン、珪素樹脂、フェノール樹脂などの樹脂や、これらの樹脂の変性物が挙げられる。また、これらの樹脂の共重合物であってもよいし、共重合物の変性物であってもよい。さらに、これらの樹脂の混合物であってもよい。樹脂は、好ましくは硬化性樹脂である。すなわち、表面被覆層6は、硬化性樹脂を含む樹脂組成物の硬化物から構成されていることが好ましい。 The surface coating layer 6 may be made of, for example, a resin such as polyvinylidene chloride, polyester, polyamide, epoxy resin, acrylic resin, fluororesin, polyurethane, silicone resin, or phenol resin, or a modified product of these resins. It may also be a copolymer of these resins, or a modified product of the copolymer. It may also be a mixture of these resins. The resin is preferably a curable resin. In other words, the surface coating layer 6 is preferably made of a cured product of a resin composition containing a curable resin.
 表面被覆層6を形成する樹脂が硬化型の樹脂である場合、当該樹脂は、1液硬化型及び2液硬化型のいずれであってもよいが、好ましくは2液硬化型である。2液硬化型樹脂としては、例えば、2液硬化型ポリウレタン、2液硬化型ポリエステル、2液硬化型エポキシ樹脂などが挙げられる。これらの中でも2液硬化型ポリウレタンが好ましい。 When the resin forming the surface coating layer 6 is a curable resin, the resin may be either a one-component curable type or a two-component curable type, but is preferably a two-component curable type. Examples of two-component curable resins include two-component curable polyurethane, two-component curable polyester, and two-component curable epoxy resin. Among these, two-component curable polyurethane is preferred.
 2液硬化型ポリウレタンとしては、例えば、ポリオール化合物を含有する第1剤と、イソシアネート化合物を含有する第2剤とを含むポリウレタンが挙げられる。好ましくはポリエステルポリオール、ポリエーテルポリオール、およびアクリルポリオール等のポリオールを第1剤として、芳香族系又は脂肪族系のポリイソシアネートを第2剤とした二液硬化型のポリウレタンが挙げられる。また、ポリウレタンとしては、例えば、予めポリオール化合物とイソシアネート化合物とを反応させたポリウレタン化合物と、イソシアネート化合物とを含むポリウレタンが挙げられる。ポリウレタンとしては、例えば、予めポリオール化合物とイソシアネート化合物とを反応させたポリウレタン化合物と、ポリオール化合物とを含むポリウレタンが挙げられる。ポリウレタンとしては、例えば、予めポリオール化合物とイソシアネート化合物とを反応させたポリウレタン化合物を、空気中などの水分と反応させることによって硬化させたポリウレタンが挙げられる。ポリオール化合物としては、繰り返し単位の末端の水酸基に加えて、側鎖にも水酸基を有するポリエステルポリオールを用いることが好ましい。第2剤としては、脂肪族、脂環式、芳香族、芳香脂肪族のイソシアネート系化合物が挙げられる。イソシアネート系化合物としては、例えばヘキサメチレンジイソシアネート(HDI)、キシリレンジイソシアネート(XDI)、イソホロンジイソシアネート(IPDI)、水素化XDI(H6XDI)、水素化MDI(H12MDI)、トリレンジイソシアネート(TDI)、ジフェニルメタンジイソシアネート(MDI)、ナフタレンジイソシアネート(NDI)等が挙げられる。また、これらのジイソシアネートの1種類又は2種類以上からの多官能イソシアネート変性体等が挙げられる。また、ポリイソシアネート化合物として多量体(例えば三量体)を使用することもできる。このような多量体には、アダクト体、ビウレット体、ヌレート体等が挙げられる。なお、脂肪族イソシアネート系化合物とは脂肪族基を有し芳香環を有さないイソシアネートを指し、脂環式イソシアネート系化合物とは脂環式炭化水素基を有するイソシアネートを指し、芳香族イソシアネート系化合物とは芳香環を有するイソシアネートを指す。表面被覆層6がポリウレタンにより形成されていることで蓄電デバイス用外装材に優れた電解液耐性が付与される。 The two-component curing polyurethane may be, for example, a polyurethane containing a first agent containing a polyol compound and a second agent containing an isocyanate compound. Preferably, the two-component curing polyurethane may be a polyurethane containing a polyol such as polyester polyol, polyether polyol, or acrylic polyol as the first agent and an aromatic or aliphatic polyisocyanate as the second agent. In addition, the polyurethane may be, for example, a polyurethane compound in which a polyol compound has been reacted with an isocyanate compound in advance, and a polyurethane containing an isocyanate compound. The polyurethane may be, for example, a polyurethane compound in which a polyol compound has been reacted with an isocyanate compound in advance, and a polyurethane containing a polyol compound. The polyurethane may be, for example, a polyurethane compound in which a polyol compound has been reacted with an isocyanate compound in advance, and a polyurethane containing a polyol compound. The polyurethane may be, for example, a polyurethane compound in which a polyol compound has been reacted with an isocyanate compound in advance, and cured by reacting it with moisture in the air or the like. As the polyol compound, it is preferable to use a polyester polyol having a hydroxyl group on the side chain in addition to the hydroxyl group at the end of the repeating unit. As the second agent, an aliphatic, alicyclic, aromatic, or araliphatic isocyanate compound may be used. Examples of isocyanate compounds include hexamethylene diisocyanate (HDI), xylylene diisocyanate (XDI), isophorone diisocyanate (IPDI), hydrogenated XDI (H6XDI), hydrogenated MDI (H12MDI), tolylene diisocyanate (TDI), diphenylmethane diisocyanate (MDI), and naphthalene diisocyanate (NDI). In addition, examples of the isocyanate compounds include polyfunctional isocyanate modified products of one or more of these diisocyanates. In addition, a polymer (e.g., a trimer) can also be used as the polyisocyanate compound. Examples of such polymers include adducts, biurets, and nurates. In addition, an aliphatic isocyanate compound refers to an isocyanate that has an aliphatic group and does not have an aromatic ring, an alicyclic isocyanate compound refers to an isocyanate that has an alicyclic hydrocarbon group, and an aromatic isocyanate compound refers to an isocyanate that has an aromatic ring. The surface coating layer 6 is formed from polyurethane, which gives the exterior material for the electricity storage device excellent electrolyte resistance.
 表面被覆層6は、表面被覆層6の表面及び内部の少なくとも一方には、該表面被覆層6やその表面に備えさせるべき機能性等に応じて、必要に応じて、滑剤、難燃剤、アンチブロッキング剤、艶消し剤、酸化防止剤、光安定化剤、粘着付与剤、耐電防止剤等の添加剤を含んでいてもよい。添加剤としては、例えば、平均粒子径が0.5nm~5μm程度の微粒子が挙げられる。添加剤の平均粒子径は、レーザ回折/散乱式粒子径分布測定装置で測定されたメジアン径とする。 The surface coating layer 6 may contain additives such as lubricants, flame retardants, antiblocking agents, matting agents, antioxidants, light stabilizers, tackifiers, and antistatic agents, depending on the functionality to be provided to the surface of the surface coating layer 6 and its surface, at least on the surface and/or inside the surface coating layer 6, as necessary. Examples of additives include fine particles with an average particle size of about 0.5 nm to 5 μm. The average particle size of the additive is the median size measured by a laser diffraction/scattering type particle size distribution measuring device.
 添加剤は、無機物及び有機物のいずれであってもよい。また、添加剤の形状についても、特に制限されず、例えば、球状、繊維状、板状、不定形、鱗片状などが挙げられる。 The additive may be either inorganic or organic. There are also no particular limitations on the shape of the additive, and examples include spherical, fibrous, plate-like, amorphous, and scaly shapes.
 添加剤の具体例としては、タルク、シリカ、グラファイト、カオリン、モンモリロナイト、マイカ、ハイドロタルサイト、シリカゲル、ゼオライト、水酸化アルミニウム、水酸化マグネシウム、酸化亜鉛、酸化マグネシウム、酸化アルミニウム、酸化ネオジウム、酸化アンチモン、酸化チタン、酸化セリウム、硫酸カルシウム、硫酸バリウム、炭酸カルシウム、ケイ酸カルシウム、炭酸リチウム、安息香酸カルシウム、シュウ酸カルシウム、ステアリン酸マグネシウム、アルミナ、カーボンブラック、カーボンナノチューブ、高融点ナイロン、アクリレート樹脂、架橋アクリル、架橋スチレン、架橋ポリエチレン、ベンゾグアナミン、金、アルミニウム、銅、ニッケルなどが挙げられる。添加剤は、1種単独で使用してもよく、また2種以上を組み合わせて使用してもよい。これらの添加剤の中でも、分散安定性やコストなどの観点から、好ましくはシリカ、硫酸バリウム、酸化チタンが挙げられる。また、添加剤には、表面に絶縁処理、高分散性処理などの各種表面処理を施してもよい。 Specific examples of additives include talc, silica, graphite, kaolin, montmorillonite, mica, hydrotalcite, silica gel, zeolite, aluminum hydroxide, magnesium hydroxide, zinc oxide, magnesium oxide, aluminum oxide, neodymium oxide, antimony oxide, titanium oxide, cerium oxide, calcium sulfate, barium sulfate, calcium carbonate, calcium silicate, lithium carbonate, calcium benzoate, calcium oxalate, magnesium stearate, alumina, carbon black, carbon nanotubes, high melting point nylon, acrylate resin, cross-linked acrylic, cross-linked styrene, cross-linked polyethylene, benzoguanamine, gold, aluminum, copper, nickel, etc. The additives may be used alone or in combination of two or more. Among these additives, silica, barium sulfate, and titanium oxide are preferable from the viewpoint of dispersion stability and cost. In addition, the additives may be subjected to various surface treatments such as insulation treatment and high dispersion treatment.
 表面被覆層6を形成する方法としては、特に制限されず、例えば、表面被覆層6を形成する樹脂を塗布する方法が挙げられる。表面被覆層6に添加剤を配合する場合には、添加剤を混合した樹脂を塗布すればよい。 The method for forming the surface coating layer 6 is not particularly limited, and examples include a method of applying a resin that forms the surface coating layer 6. When an additive is added to the surface coating layer 6, a resin mixed with the additive may be applied.
 本開示において、蓄電デバイス用外装材の成形性を高める観点からは、表面被覆層6の表面及び内部の少なくとも一方には、滑剤が存在していることが好ましい。滑剤としては、特に制限されないが、好ましくはアミド系滑剤が挙げられる。アミド系滑剤の具体例としては、例えば、飽和脂肪酸アミド、不飽和脂肪酸アミド、置換アミド、メチロールアミド、飽和脂肪酸ビスアミド、不飽和脂肪酸ビスアミド、脂肪酸エステルアミド、芳香族ビスアミドなどが挙げられる。飽和脂肪酸アミドの具体例としては、ラウリン酸アミド、パルミチン酸アミド、ステアリン酸アミド、ベヘン酸アミド、ヒドロキシステアリン酸アミドなどが挙げられる。不飽和脂肪酸アミドの具体例としては、オレイン酸アミド、エルカ酸アミドなどが挙げられる。置換アミドの具体例としては、N-オレイルパルミチン酸アミド、N-ステアリルステアリン酸アミド、N-ステアリルオレイン酸アミド、N-オレイルステアリン酸アミド、N-ステアリルエルカ酸アミドなどが挙げられる。また、メチロールアミドの具体例としては、メチロールステアリン酸アミドなどが挙げられる。飽和脂肪酸ビスアミドの具体例としては、メチレンビスステアリン酸アミド、エチレンビスカプリン酸アミド、エチレンビスラウリン酸アミド、エチレンビスステアリン酸アミド、エチレンビスヒドロキシステアリン酸アミド、エチレンビスベヘン酸アミド、ヘキサメチレンビスステアリン酸アミド、ヘキサメチレンビスベヘン酸アミド、ヘキサメチレンヒドロキシステアリン酸アミド、N,N’-ジステアリルアジピン酸アミド、N,N’-ジステアリルセバシン酸アミドなどが挙げられる。不飽和脂肪酸ビスアミドの具体例としては、エチレンビスオレイン酸アミド、エチレンビスエルカ酸アミド、ヘキサメチレンビスオレイン酸アミド、N,N’-ジオレイルアジピン酸アミド、N,N’-ジオレイルセバシン酸アミドなどが挙げられる。脂肪酸エステルアミドの具体例としては、ステアロアミドエチルステアレートなどが挙げられる。また、芳香族ビスアミドの具体例としては、m-キシリレンビスステアリン酸アミド、m-キシリレンビスヒドロキシステアリン酸アミド、N,N’-ジステアリルイソフタル酸アミドなどが挙げられる。滑剤は、1種類単独で使用してもよいし、2種類以上を組み合わせて使用してもよく、2種類以上を組み合わせることが好ましい。 In the present disclosure, from the viewpoint of improving the formability of the exterior material for a storage battery device, it is preferable that a lubricant is present on at least one of the surface and the inside of the surface coating layer 6. The lubricant is not particularly limited, but preferably includes amide-based lubricants. Specific examples of amide-based lubricants include, for example, saturated fatty acid amides, unsaturated fatty acid amides, substituted amides, methylol amides, saturated fatty acid bisamides, unsaturated fatty acid bisamides, fatty acid ester amides, and aromatic bisamides. Specific examples of saturated fatty acid amides include lauric acid amides, palmitic acid amides, stearic acid amides, behenic acid amides, and hydroxystearic acid amides. Specific examples of unsaturated fatty acid amides include oleic acid amides and erucic acid amides. Specific examples of substituted amides include N-oleyl palmitic acid amide, N-stearyl stearic acid amide, N-stearyl oleic acid amide, N-oleyl stearic acid amide, and N-stearyl erucic acid amide. Specific examples of methylol amides include methylol stearic acid amide. Specific examples of saturated fatty acid bisamides include methylene bisstearic acid amide, ethylene biscapric acid amide, ethylene bislauric acid amide, ethylene bisstearic acid amide, ethylene bishydroxystearic acid amide, ethylene bisbehenic acid amide, hexamethylene bisstearic acid amide, hexamethylene bisbehenic acid amide, hexamethylene hydroxystearic acid amide, N,N'-distearyl adipic acid amide, N,N'-distearyl sebacic acid amide, etc. Specific examples of unsaturated fatty acid bisamides include ethylene bisoleic acid amide, ethylene biserucic acid amide, hexamethylene bisoleic acid amide, N,N'-dioleyl adipic acid amide, N,N'-dioleyl sebacic acid amide, etc. Specific examples of fatty acid ester amides include stearamide ethyl stearate, etc. Specific examples of aromatic bisamides include m-xylylene bisstearic acid amide, m-xylylene bishydroxystearic acid amide, and N,N'-distearylisophthalic acid amide. The lubricant may be used alone or in combination of two or more types, preferably in combination of two or more types.
 表面被覆層6の表面に滑剤が存在する場合、その存在量としては、特に制限されないが、例えば約3mg/m2以上、好ましくは約4mg/m2以上、約5mg/m2以上が挙げられる。また、表面被覆層6の表面に存在する滑剤量としては、例えば約15mg/m2以下、好ましくは約14mg/m2以下、約10mg/m2以下が挙げられる。また、表面被覆層6の表面に存在する滑剤量の好ましい範囲としては、3~15mg/m2程度、3~14mg/m2程度、3~10mg/m2程度、4~15mg/m2程度、4~14mg/m2程度、4~10mg/m2程度、5~15mg/m2程度、5~14mg/m2程度、5~10mg/m2程度が挙げられる。 When a lubricant is present on the surface of the surface coating layer 6, the amount of the lubricant present is not particularly limited, and may be, for example, about 3 mg/m 2 or more, preferably about 4 mg/m 2 or more, or about 5 mg/m 2 or more. The amount of the lubricant present on the surface of the surface coating layer 6 may be, for example, about 15 mg/m 2 or less, preferably about 14 mg/m 2 or less, or about 10 mg/m 2 or less. The preferred range of the amount of the lubricant present on the surface of the surface coating layer 6 may be about 3 to 15 mg/m 2 , about 3 to 14 mg/m 2 , about 3 to 10 mg/m 2 , about 4 to 15 mg/m 2 , about 4 to 14 mg/m 2 , about 4 to 10 mg/m 2 , about 5 to 15 mg/m 2 , about 5 to 14 mg/m 2 , or about 5 to 10 mg/m 2 .
 表面被覆層6の表面に存在する滑剤は、表面被覆層6を構成する樹脂に含まれる滑剤を滲出させたものであってもよいし、表面被覆層6の表面に滑剤を塗布したものであってもよい。 The lubricant present on the surface of the surface coating layer 6 may be a lubricant exuded from the resin that constitutes the surface coating layer 6, or a lubricant applied to the surface of the surface coating layer 6.
 表面被覆層6が着色剤を含んでいることにより、蓄電デバイス用外装材を着色することができる。着色剤としては、顔料、染料などの公知のものが使用できる。また、着色剤は、1種類のみを用いてもよいし、2種類以上を混合して用いてもよい。 The surface coating layer 6 contains a colorant, so that the exterior material for the electricity storage device can be colored. Known colorants such as pigments and dyes can be used as the colorant. Furthermore, only one type of colorant may be used, or two or more types may be mixed together.
 顔料の種類は、特に限定されず、有機顔料としては、例えば、アゾ系、フタロシアニン系、キナクリドン系、アンスラキノン系、ジオキサジン系、インジゴチオインジゴ系、ペリノン-ペリレン系、イソインドレニン系、ベンズイミダゾロン系等の顔料が挙げられ、無機顔料としては、カーボンブラック系、酸化チタン系、カドミウム系、鉛系、酸化クロム系、鉄系等の顔料が挙げられ、その他に、マイカ(雲母)の微粉末、魚鱗箔等が挙げられる。 The type of pigment is not particularly limited, and examples of organic pigments include azo, phthalocyanine, quinacridone, anthraquinone, dioxazine, indigothioindigo, perinone-perylene, isoindolenine, and benzimidazolone pigments, while examples of inorganic pigments include carbon black, titanium oxide, cadmium, lead, chromium oxide, and iron pigments, as well as finely powdered mica and fish scale foil.
 着色剤の中でも、例えば蓄電デバイス用外装材の外観を黒色とするためには、カーボンブラックが好ましい。また、蓄電デバイスから発生する熱を放熱する観点からは、マイカを用いることが好ましい。 Among colorants, carbon black is preferred in order to give the exterior material for an electricity storage device a black appearance. Also, from the viewpoint of dissipating heat generated by the electricity storage device, it is preferable to use mica.
 顔料の平均粒子径としては、特に制限されず、例えば、0.03~5μm程度、好ましくは0.05~2μm程度が挙げられる。なお、顔料の平均粒子径は、レーザ回折/散乱式粒子径分布測定装置で測定されたメジアン径とする。 The average particle size of the pigment is not particularly limited, and may be, for example, about 0.03 to 5 μm, and preferably about 0.05 to 2 μm. The average particle size of the pigment is the median size measured with a laser diffraction/scattering type particle size distribution measuring device.
 表面被覆層6における着色剤や、顔料の含有量としては、蓄電デバイス用外装材が着色されれば特に制限されず、例えば5~60質量%程度、好ましくは10~40質量%程度が挙げられる。 The content of the colorant or pigment in the surface coating layer 6 is not particularly limited as long as the exterior material for the electricity storage device is colored, and may be, for example, about 5 to 60% by mass, and preferably about 10 to 40% by mass.
 表面被覆層6の厚みとしては、表面被覆層6としての上記の機能を発揮すれば特に制限されず、例えば0.5~10μm程度、好ましくは1~5μm程度が挙げられる。 The thickness of the surface coating layer 6 is not particularly limited as long as it exhibits the above-mentioned functions of the surface coating layer 6, and may be, for example, about 0.5 to 10 μm, and preferably about 1 to 5 μm.
3.蓄電デバイス用外装材の製造方法
 蓄電デバイス用外装材の製造方法については、本発明の蓄電デバイス用外装材が備える各層を積層させた積層体が得られる限り、特に制限されない。すなわち、本開示の第1の態様の蓄電デバイス用外装材の製造方法は、外側から順に、少なくとも、基材層と、金属箔層と、熱融着性樹脂層とが積層された積層体を得る工程を備えており、金属箔層の少なくとも一方側の表面について、変角光度計を用い、入射光角度60°の条件で受光角度0.1°ごとに測定される、受光角度0.0°以上90.0°以下の範囲における最大反射光強度Aが、50以下である。また、本開示の第2の態様の蓄電デバイス用外装材の製造方法は、外側から順に、少なくとも、基材層と、金属箔層と、熱融着性樹脂層とが積層された積層体を得る工程を備えており、金属箔層の少なくとも一方側の表面について、変角光度計を用い、入射光角度60°の条件で受光角度0.1°ごとに測定される、受光角度45.0°以上75.0°以下の範囲における最大反射光強度Bが、300以上である。前記のように、本開示の蓄電デバイス用外装材を構成する積層体が基材層を備えていない場合には、本開示の蓄電デバイス用外装材の製造方法は、外側から順に、少なくとも、金属箔層と、熱融着性樹脂層とが積層された積層体を得る工程を備えている。
3. Manufacturing method of the exterior material for a power storage device The manufacturing method of the exterior material for a power storage device is not particularly limited as long as a laminate in which each layer included in the exterior material for a power storage device of the present invention is laminated can be obtained. That is, the manufacturing method of the exterior material for a power storage device of the first aspect of the present disclosure includes a step of obtaining a laminate in which at least a base layer, a metal foil layer, and a heat-sealable resin layer are laminated in order from the outside, and the maximum reflected light intensity A in the range of a light receiving angle of 0.0° to 90.0° is 50 or less for at least one surface of the metal foil layer, measured at every 0.1° of the light receiving angle under the condition of an incident light angle of 60° using a variable angle photometer. Further, the manufacturing method of the exterior material for an electric storage device of the second aspect of the present disclosure includes a step of obtaining a laminate in which, from the outside, at least a base layer, a metal foil layer, and a heat-sealable resin layer are laminated, and the maximum reflected light intensity B in the range of a light receiving angle of 45.0° to 75.0°, measured at every 0.1° of the light receiving angle under the condition of an incident light angle of 60° using a variable angle photometer, for at least one surface of the metal foil layer, is 300 or more. As described above, when the laminate constituting the exterior material for an electric storage device of the present disclosure does not include a base layer, the manufacturing method of the exterior material for an electric storage device of the present disclosure includes a step of obtaining a laminate in which, from the outside, at least a metal foil layer and a heat-sealable resin layer are laminated.
 本開示の蓄電デバイス用外装材の製造方法の一例としては、以下の通りである。まず、基材層1、接着剤層2、金属箔層3が順に積層された積層体(以下、「積層体A」と表記することもある)を形成する。積層体Aの形成は、具体的には、基材層1上又は必要に応じて表面が化成処理された金属箔層3に接着剤層2の形成に使用される接着剤を、グラビアコート法、ロールコート法などの塗布方法で塗布、乾燥した後に、当該金属箔層3又は基材層1を積層させて接着剤層2を硬化させるドライラミネート法によって行うことができる。 An example of a manufacturing method for the exterior material for a power storage device according to the present disclosure is as follows. First, a laminate (hereinafter sometimes referred to as "laminate A") is formed in which a base layer 1, an adhesive layer 2, and a metal foil layer 3 are laminated in this order. Specifically, laminate A can be formed by a dry lamination method in which the adhesive used to form the adhesive layer 2 is applied to the base layer 1 or to the metal foil layer 3, the surface of which has been chemically treated as necessary, by a coating method such as gravure coating or roll coating, and then dried, and the metal foil layer 3 or base layer 1 is laminated thereon, and the adhesive layer 2 is cured.
 次いで、積層体Aの金属箔層3上に、熱融着性樹脂層4を積層させる。金属箔層3上に熱融着性樹脂層4を直接積層させる場合には、積層体Aの金属箔層3上に、熱融着性樹脂層4をサーマルラミネート法、押出ラミネート法などの方法により積層すればよい。また、金属箔層3と熱融着性樹脂層4の間に接着層5を設ける場合には、接着層5と熱融着性樹脂層4は、例えば、(1)押出ラミネート法、(2)サーマルラミネート法、(3)サンドイッチラミネート法、(4)ドライラミネート法などにより積層することができる。(1)押出ラミネート法としては、例えば、積層体Aの金属箔層3上に、接着層5及び熱融着性樹脂層4を押出しすることにより積層する方法(共押出ラミネート法、タンデムラミネート法)などが挙げられる。また、(2)サーマルラミネート法としては、例えば、別途、接着層5と熱融着性樹脂層4が積層した積層体を形成し、これを積層体Aの金属箔層3上に積層する方法や、積層体Aの金属箔層3上に接着層5が積層した積層体を形成し、これを熱融着性樹脂層4と積層する方法などが挙げられる。また、(3)サンドイッチラミネート法としては、例えば、積層体Aの金属箔層3と、予めシート状に製膜した熱融着性樹脂層4との間に、溶融させた接着層5を流し込みながら、接着層5を介して積層体Aと熱融着性樹脂層4を貼り合せる方法などが挙げられる。また、(4)ドライラミネート法としては、例えば、積層体Aの金属箔層3上に、接着層5を形成させるための接着剤を溶液コーティングし、乾燥させる方法や、さらには焼き付ける方法などにより積層させ、この接着層5上に予めシート状に製膜した熱融着性樹脂層4を積層する方法などが挙げられる。 Next, the heat-sealable resin layer 4 is laminated on the metal foil layer 3 of the laminate A. When the heat-sealable resin layer 4 is directly laminated on the metal foil layer 3, the heat-sealable resin layer 4 may be laminated on the metal foil layer 3 of the laminate A by a method such as thermal lamination or extrusion lamination. When an adhesive layer 5 is provided between the metal foil layer 3 and the heat-sealable resin layer 4, the adhesive layer 5 and the heat-sealable resin layer 4 may be laminated, for example, by (1) extrusion lamination, (2) thermal lamination, (3) sandwich lamination, or (4) dry lamination. (1) Extrusion lamination includes, for example, a method of laminating the adhesive layer 5 and the heat-sealable resin layer 4 by extruding them onto the metal foil layer 3 of the laminate A (co-extrusion lamination, tandem lamination). Examples of the (2) thermal lamination method include a method of forming a laminate in which an adhesive layer 5 and a heat-sealable resin layer 4 are laminated separately, and laminating this on the metal foil layer 3 of the laminate A, or a method of forming a laminate in which an adhesive layer 5 is laminated on the metal foil layer 3 of the laminate A, and laminating this on the heat-sealable resin layer 4. Examples of the (3) sandwich lamination method include a method of laminating the laminate A and the heat-sealable resin layer 4 through the adhesive layer 5 while pouring a molten adhesive layer 5 between the metal foil layer 3 of the laminate A and the heat-sealable resin layer 4 previously formed into a sheet. Examples of the (4) dry lamination method include a method of coating the metal foil layer 3 of the laminate A with an adhesive for forming the adhesive layer 5, drying the adhesive, or baking the adhesive, and laminating the heat-sealable resin layer 4 previously formed into a sheet on the adhesive layer 5.
 表面被覆層6を設ける場合には、基材層1の金属箔層3とは反対側の表面に、表面被覆層6を積層する。表面被覆層6は、例えば表面被覆層6を形成する上記の樹脂を基材層1の表面に塗布することにより形成することができる。なお、基材層1の表面に金属箔層3を積層する工程と、基材層1の表面に表面被覆層6を積層する工程の順番は、特に制限されない。例えば、基材層1の表面に表面被覆層6を形成した後、基材層1の表面被覆層6とは反対側の表面に金属箔層3を形成してもよい。 When the surface coating layer 6 is provided, the surface coating layer 6 is laminated on the surface of the base layer 1 opposite the metal foil layer 3. The surface coating layer 6 can be formed, for example, by applying the above-mentioned resin that forms the surface coating layer 6 to the surface of the base layer 1. The order of the step of laminating the metal foil layer 3 on the surface of the base layer 1 and the step of laminating the surface coating layer 6 on the surface of the base layer 1 is not particularly limited. For example, after the surface coating layer 6 is formed on the surface of the base layer 1, the metal foil layer 3 may be formed on the surface of the base layer 1 opposite the surface coating layer 6.
 上記のようにして、必要に応じて設けられる表面被覆層6/基材層1/必要に応じて設けられる接着剤層2/金属箔層3/必要に応じて設けられる接着層5/熱融着性樹脂層4をこの順に備える積層体が形成されるが、必要に応じて設けられる接着剤層2及び接着層5の接着性を強固にするために、さらに、加熱処理に供してもよい。 As described above, a laminate is formed which includes, in this order, the optional surface coating layer 6, the base layer 1, the optional adhesive layer 2, the metal foil layer 3, the optional adhesive layer 5, and the heat-sealable resin layer 4. In order to strengthen the adhesion of the optional adhesive layer 2 and adhesive layer 5, the laminate may be subjected to a heat treatment.
 蓄電デバイス用外装材において、積層体を構成する各層には、必要に応じて、コロナ処理、ブラスト処理、酸化処理、オゾン処理などの表面活性化処理を施すことにより加工適性を向上させてもよい。例えば、基材層1の金属箔層3とは反対側の表面にコロナ処理を施すことにより、基材層1表面へのインクの印刷適性を向上させることができる。 In the exterior material for power storage devices, each layer constituting the laminate may be subjected to a surface activation treatment such as corona treatment, blast treatment, oxidation treatment, or ozone treatment, as necessary, to improve its suitability for processing. For example, by subjecting the surface of the base layer 1 opposite the metal foil layer 3 to corona treatment, the suitability for printing ink on the surface of the base layer 1 can be improved.
4.蓄電デバイス用外装材の用途
 本開示の蓄電デバイス用外装材は、正極、負極、電解質等の蓄電デバイス素子を密封して収容するための包装体に使用される。すなわち、本開示の蓄電デバイス用外装材によって形成された包装体中に、少なくとも正極、負極、及び電解質を備えた蓄電デバイス素子を収容して、蓄電デバイスとすることができる。
The exterior material for an electricity storage device according to the present disclosure is used in a package for hermetically housing an electricity storage device element such as a positive electrode, a negative electrode, an electrolyte, etc. In other words, an electricity storage device element including at least a positive electrode, a negative electrode, and an electrolyte can be housed in a package formed from the exterior material for an electricity storage device according to the present disclosure to form an electricity storage device.
 具体的には、少なくとも正極、負極、及び電解質を備えた蓄電デバイス素子を、本開示の蓄電デバイス用外装材で、前記正極及び負極の各々に接続された金属端子を外側に突出させた状態で、蓄電デバイス素子の周縁にフランジ部(熱融着性樹脂層同士が接触する領域)が形成できるようにして被覆し、前記フランジ部の熱融着性樹脂層同士をヒートシールして密封させることによって、蓄電デバイス用外装材を使用した蓄電デバイスが提供される。なお、本開示の蓄電デバイス用外装材により形成された包装体中に蓄電デバイス素子を収容する場合、本開示の蓄電デバイス用外装材の熱融着性樹脂部分が内側(蓄電デバイス素子と接する面)になるようにして、包装体を形成する。2つの蓄電デバイス用外装材の熱融着性樹脂層同士を対向させて重ね合わせ、重ねられた蓄電デバイス用外装材の周縁部を熱融着して包装体を形成してもよく、また、図5に示す例のように、1つの蓄電デバイス用外装材を折り返して重ね合わせ、周縁部を熱融着して包装体を形成してもよい。折り返して重ね合わせる場合は、図5に示す例のように、折り返した辺以外の辺を熱融着して三方シールにより包装体を形成してもよいし、フランジ部が形成できるように折り返して四方シールしてもよい。なお、蓄電デバイス用外装材の最内層および最外層が熱融着性樹脂層である場合、最内層の熱融着性樹脂層と、最外層の熱融着性樹脂層とを熱融着することによって、包装体を形成してもよい。 Specifically, an electricity storage device element having at least a positive electrode, a negative electrode, and an electrolyte is covered with the exterior material for an electricity storage device of the present disclosure in such a manner that a flange portion (a region where the heat-sealable resin layers contact each other) can be formed around the periphery of the electricity storage device element with metal terminals connected to each of the positive electrode and negative electrode protruding outward, and the heat-sealable resin layers of the flange portion are heat-sealed to provide an electricity storage device using the exterior material for an electricity storage device. When an electricity storage device element is housed in a package formed from the exterior material for an electricity storage device of the present disclosure, the package is formed so that the heat-sealable resin portion of the exterior material for an electricity storage device of the present disclosure faces inside (the surface in contact with the electricity storage device element). The heat-sealable resin layers of two electrical storage device exterior materials may be stacked facing each other, and the peripheral portions of the stacked electrical storage device exterior materials may be heat-sealed to form a package. Alternatively, as shown in the example of FIG. 5, one electrical storage device exterior material may be folded back and stacked, and the peripheral portions may be heat-sealed to form a package. When the materials are folded back and stacked, as shown in the example of FIG. 5, the sides other than the folded side may be heat-sealed to form a package by sealing on three sides, or the materials may be folded back and sealed on all four sides so that a flange portion can be formed. When the innermost and outermost layers of the electrical storage device exterior material are heat-sealable resin layers, the package may be formed by heat-sealing the innermost heat-sealable resin layer and the outermost heat-sealable resin layer.
 蓄電デバイス素子は、蓄電デバイス用外装材に加えて、蓋体によって封止されてもよい。すなわち、蓄電デバイス用外装材および蓋体は、蓄電デバイス素子を密封する外装体(蓄電デバイス用の外装体)を構成する。例えば、筒状に構成された蓄電デバイス用外装材の内部に蓄電デバイス素子を収容し、開口部を蓋体によって閉じてもよい。別の例では、開口部が形成されるように筒状に構成された蓄電デバイス用外装材の内部に蓋体と接続された状態の蓄電デバイス素子を収容し、開口部を蓋体によって閉じてもよい。蓋体と、蓄電デバイス用外装材とは、任意の手段で接合されることが好ましい。蓄電デバイスの体積エネルギー密度を向上させるべく蓄電デバイス素子と蓄電デバイス用外装材との間のデッドスペースを削減する観点から、蓄電デバイス用外装材は、蓄電デバイス素子および蓋体に巻き付けられることが好ましい。 The power storage device element may be sealed by a lid in addition to the exterior material for the power storage device. That is, the exterior material for the power storage device and the lid constitute an exterior body (exterior body for the power storage device) that seals the power storage device element. For example, the power storage device element may be housed inside the exterior material for the power storage device that is configured in a cylindrical shape, and the opening may be closed by the lid. In another example, the power storage device element connected to the lid may be housed inside the exterior material for the power storage device that is configured in a cylindrical shape so that an opening is formed, and the opening may be closed by the lid. The lid and the exterior material for the power storage device are preferably joined by any means. From the viewpoint of reducing the dead space between the power storage device element and the exterior material for the power storage device in order to improve the volumetric energy density of the power storage device, the exterior material for the power storage device is preferably wrapped around the power storage device element and the lid.
 蓋体は、例えば、樹脂成形品、金属成形品、蓄電デバイス用外装材、およびこれらの組み合わせなどで形成できる。本開示において、蓋体が樹脂成形品と表現される場合、蓋体は、JIS K6900-1994[プラスチック―用語]によって規定されるフィルムのみによって構成される態様は含まれない。蓋体が金属成形品である場合、蓋体が金属端子としての機能を兼ねるため、金属端子を省略することもできる。蓋体は、樹脂材料および導電性材料を含んで構成されてもよい。 The lid body can be formed, for example, from a resin molded product, a metal molded product, an exterior material for an electricity storage device, or a combination of these. In this disclosure, when the lid body is expressed as a resin molded product, this does not include an embodiment in which the lid body is composed only of a film as defined by JIS K6900-1994 [Plastics terminology]. When the lid body is a metal molded product, the lid body also functions as a metal terminal, so the metal terminal can be omitted. The lid body may be composed of a resin material and a conductive material.
 また、蓄電デバイス用外装材には、蓄電デバイス素子を収容するための凹部が、深絞り成形または張出成形によって形成されてもよい。図5に示す例のように、一方の蓄電デバイス用外装材には凹部を設けて他方の蓄電デバイス用外装材には凹部を設けなくてもよいし、他方の蓄電デバイス用外装材にも凹部を設けてもよい。 In addition, a recess for accommodating an electricity storage device element may be formed in the exterior material for the electricity storage device by deep drawing or stretch molding. As in the example shown in FIG. 5, a recess may be provided in one exterior material for the electricity storage device and no recess may be provided in the other exterior material for the electricity storage device, or a recess may be provided in the other exterior material for the electricity storage device.
 本開示の蓄電デバイス用外装材は、電池(コンデンサー、キャパシター等を含む)などの蓄電デバイスに好適に使用することができる。また、本開示の蓄電デバイス用外装材は、一次電池、二次電池のいずれに使用してもよいが、好ましくは二次電池に使用される。本開示の蓄電デバイス用外装材が適用される二次電池の種類については、特に制限されず、例えば、リチウムイオン電池、リチウムイオンポリマー電池、全固体電池、半固体電池、擬固体電池、ポリマー電池、全樹脂電池、鉛蓄電池、ニッケル・水素蓄電池、ニッケル・カドミウム蓄電池、ニッケル・鉄蓄電池、ニッケル・亜鉛蓄電池、酸化銀・亜鉛蓄電池、金属空気電池、多価カチオン電池、コンデンサー、キャパシター等が挙げられる。これらの二次電池の中でも、本開示の蓄電デバイス用外装材の好適な適用対象として、リチウムイオン電池及びリチウムイオンポリマー電池が挙げられる。 The exterior material for an electricity storage device of the present disclosure can be suitably used for electricity storage devices such as batteries (including condensers, capacitors, etc.). The exterior material for an electricity storage device of the present disclosure may be used for either a primary battery or a secondary battery, but is preferably used for a secondary battery. The type of secondary battery to which the exterior material for an electricity storage device of the present disclosure is applied is not particularly limited, and examples thereof include lithium ion batteries, lithium ion polymer batteries, all-solid batteries, semi-solid batteries, quasi-solid batteries, polymer batteries, all-resin batteries, lead-acid batteries, nickel-hydrogen batteries, nickel-cadmium batteries, nickel-iron batteries, nickel-zinc batteries, silver oxide-zinc batteries, metal-air batteries, polyvalent cation batteries, condensers, capacitors, etc. Among these secondary batteries, the exterior material for an electricity storage device of the present disclosure is suitably applied to lithium ion batteries and lithium ion polymer batteries.
 以下に実施例及び比較例を示して本開示を詳細に説明する。但し本開示は実施例に限定されるものではない。 The present disclosure will be explained in detail below with examples and comparative examples. However, the present disclosure is not limited to the examples.
<蓄電デバイス用外装材の製造>
実施例1
 基材層として、延伸ナイロンフィルム(厚み25μm)を用意した。また、金属箔層として、表1に記載の表面物性及び組成を備える各アルミニウム合金箔A(厚さは40μm)を用意した。なお、アルミニウム合金箔の艶消し面側が基材層側、艶面側が熱融着性樹脂層側となるようにした。実施例及び比較例で使用した各アルミニウム合金箔の詳細は後述する。2液型ウレタン接着剤(ポリオール化合物と芳香族イソシアネート系化合物)を用い、接着剤層の硬化後の厚みが3μmとなるようにして、アルミニウム合金箔と基材層の延伸ナイロンフィルム側をドライラミネート法で積層した後、エージング処理を実施することにより、基材層/接着剤層/金属箔層の積層体を作製した。アルミニウム合金箔の両面には、化成処理が施してある。アルミニウム合金箔の化成処理は、フェノール樹脂、フッ化クロム化合物、及びリン酸からなる処理液をクロムの塗布量が10mg/m2(乾燥質量)となるように、ロールコート法によりアルミニウム合金箔の両面に塗布し、焼付けすることにより行った。
<Production of exterior materials for power storage devices>
Example 1
A stretched nylon film (thickness 25 μm) was prepared as the substrate layer. In addition, each aluminum alloy foil A (thickness 40 μm) having the surface properties and composition described in Table 1 was prepared as the metal foil layer. The matte side of the aluminum alloy foil was the substrate layer side, and the glossy side was the heat-fusible resin layer side. Details of each aluminum alloy foil used in the examples and comparative examples will be described later. Using a two-liquid urethane adhesive (polyol compound and aromatic isocyanate compound), the stretched nylon film side of the aluminum alloy foil and the substrate layer were laminated by dry lamination so that the thickness of the adhesive layer after curing was 3 μm, and then aging treatment was performed to produce a substrate layer/adhesive layer/metal foil layer laminate. Both sides of the aluminum alloy foil were subjected to chemical conversion treatment. The chemical conversion treatment of the aluminum alloy foil was performed by applying a treatment solution consisting of a phenolic resin, a chromium fluoride compound, and phosphoric acid to both sides of the aluminum alloy foil by roll coating so that the amount of chromium applied was 10 mg/ m2 (dry mass), and baking the solution.
 次に、上記で得られた各積層体の金属箔層の上に、接着層(厚さ22.5μm)としての無水マレイン酸変性ポリプロピレンと、熱融着性樹脂層(厚さ22.5μm)としてのランダムポリプロピレンとを共押出しすることにより、金属箔層の上に接着層/熱融着性樹脂層とを積層させ、基材層/接着剤層/金属箔層/接着層/熱融着性樹脂層が順に積層された蓄電デバイス用外装材を得た。 Next, maleic anhydride modified polypropylene as an adhesive layer (thickness 22.5 μm) and random polypropylene as a heat-sealable resin layer (thickness 22.5 μm) were co-extruded onto the metal foil layer of each laminate obtained above, thereby laminating the adhesive layer/heat-sealable resin layer on top of the metal foil layer, thereby obtaining an exterior material for an electricity storage device in which the substrate layer/adhesive layer/metal foil layer/adhesive layer/heat-sealable resin layer were laminated in this order.
実施例2
 アルミニウム合金箔Aの代わりに後述のアルミニウム合金箔B(厚さは40μm)を用いたこと以外は、実施例1と同様にして蓄電デバイス用外装材を得た。
Example 2
An exterior material for an electricity storage device was obtained in the same manner as in Example 1, except that aluminum alloy foil B (having a thickness of 40 μm) described below was used instead of aluminum alloy foil A.
実施例3
 アルミニウム合金箔Aの代わりに後述のアルミニウム合金箔C(厚さは40μm)を用いたこと以外は、実施例1と同様にして蓄電デバイス用外装材を得た。
Example 3
An exterior material for an electricity storage device was obtained in the same manner as in Example 1, except that aluminum alloy foil C (having a thickness of 40 μm) described below was used instead of aluminum alloy foil A.
比較例1
 アルミニウム合金箔Aの代わりに後述のアルミニウム合金箔E(厚さは40μm)を用いたこと以外は、実施例1と同様にして蓄電デバイス用外装材を得た。
Comparative Example 1
An exterior material for an electricity storage device was obtained in the same manner as in Example 1, except that aluminum alloy foil E (having a thickness of 40 μm) described below was used instead of aluminum alloy foil A.
<アルミニウム合金箔>
 実施例及び比較例で金属箔層として使用したアルミニウム合金箔の詳細は以下の通りである。
アルミニウム合金箔A(実施例1で使用):JIS規格のA8021の組成であって、表1の組成のアルミニウム合金箔を、圧延速度、圧延時の引張張力を所定の条件に設定することで表1の表面物性となるように調整したもの
アルミニウム合金箔B(実施例2で使用):JIS規格のA8021の組成であって、表1の組成(Si含有率をアルミニウム合金箔Aよりも増加)のアルミニウム合金箔を、圧延速度、圧延時の引張張力を所定の条件に設定することで表1の表面物性となるように調整したもの
アルミニウム合金箔C(実施例3で使用):JIS規格のA8021の組成であって、表1の組成(Si含有率をアルミニウム合金箔Bよりもさらに増加)のアルミニウム合金箔を、圧延速度、圧延時の引張張力を所定の条件に設定することで表1の表面物性となるように調整したもの
アルミニウム合金箔E(比較例1で使用):JIS規格のA8006の組成であって、表1の組成のアルミニウム合金箔を、圧延速度、圧延時の引張張力を所定の条件に設定することで表1の表面物性となるように調整したもの
<Aluminum alloy foil>
Details of the aluminum alloy foils used as the metal foil layers in the examples and comparative examples are as follows.
Aluminum alloy foil A (used in Example 1): Aluminum alloy foil having the composition of JIS A8021 and the composition in Table 1 was adjusted to have the surface properties in Table 1 by setting the rolling speed and the tensile tension during rolling under predetermined conditions. Aluminum alloy foil B (used in Example 2): Aluminum alloy foil having the composition of JIS A8021 and the composition in Table 1 (Si content is increased compared to Aluminum Alloy Foil A) was adjusted to have the surface properties in Table 1 by setting the rolling speed and the tensile tension during rolling under predetermined conditions. A Aluminum alloy foil C (used in Example 3): Aluminum alloy foil having the composition of JIS A8021 and the composition in Table 1 (Si content is further increased compared to Aluminum Alloy Foil B) was adjusted to have the surface properties in Table 1 by setting the rolling speed and tensile tension during rolling under predetermined conditions. Aluminum alloy foil E (used in Comparative Example 1): Aluminum alloy foil having the composition of JIS A8006 and the composition in Table 1 was adjusted to have the surface properties in Table 1 by setting the rolling speed and tensile tension during rolling under predetermined conditions.
<金属箔層の表面物性(変角光度計)>
 実施例及び比較例の蓄電デバイス用外装材の各アルミニウム合金箔の艶消し面及び艶面について、それぞれ、変角光度計を用いて、最大反射光強度及び傾き最大値を測定した。
<Surface properties of metal foil layer (goniophotometer)>
The maximum reflected light intensity and maximum tilt were measured using a goniophotometer for the matte surface and the glossy surface of each of the aluminum alloy foils of the packaging materials for an electricity storage device of the Examples and Comparative Examples.
 各アルミニウム合金箔は、以下の手順にて各蓄電デバイス用外装材から取り出して測定対象とした。蓄電デバイス用外装材の基材層を手作業で剥離してアルミニウム合金箔、接着層及び熱融着性樹脂層の積層体とした。さらに、この積層体を以下の条件でオルトジクロロベンゼンに浸漬することでアルミニウム合金箔から接着層及び熱融着性樹脂層を除去し、アルミニウム合金箔の表面をエタノールにて複数回洗浄し、乾燥するまで放置して得られたアルミニウム合金箔を測定対象とした。 Each aluminum alloy foil was removed from each exterior material for power storage devices using the following procedure and used as the measurement subject. The base layer of the exterior material for power storage devices was manually peeled off to leave a laminate of aluminum alloy foil, adhesive layer, and heat-sealable resin layer. This laminate was then immersed in orthodichlorobenzene under the following conditions to remove the adhesive layer and heat-sealable resin layer from the aluminum alloy foil, and the surface of the aluminum alloy foil was washed multiple times with ethanol and left to dry, and the resulting aluminum alloy foil was used as the measurement subject.
 次に、以下の測定条件にて、各アルミニウム合金箔の艶消し面及び艶面について、それぞれ、変角光度計を用いて、最大反射光強度及び傾き最大値を測定した。結果を表1に示す。 Next, the maximum reflected light intensity and maximum tilt were measured for the matte and glossy sides of each aluminum alloy foil using a goniophotometer under the following measurement conditions. The results are shown in Table 1.
(標準板黒ガラスについての変角光度計の測定条件)
測定対象:株式会社 村上色彩技術研究所製の黒ガラス基準板BK-7(黒ガラス基準板 屈折率1.518)
装置:株式会社村上色彩技術研究所製の変角光度計GP-200
入射角(IA):60°
受光角:+50°~+70°で0.1°ずつ測定
あおり角(FA):0°
入射光絞り(VS1):3(10.5mm)
受光絞り(VS3):4(9.1mm)
SENSITIVITY(感度):950
HIGH VOLT.:539(黒ガラス(黒ガラス基準板)の反射強度が85になるように調整)
減光フィルター:1%フィルター、50%フィルター
(Measurement conditions for standard black glass using a variable angle photometer)
Measurement target: Black glass reference plate BK-7 (black glass reference plate, refractive index 1.518) manufactured by Murakami Color Research Laboratory Co., Ltd.
Equipment: Variable angle photometer GP-200 manufactured by Murakami Color Research Laboratory Co., Ltd.
Incident angle (IA): 60°
Receiving angle: +50° to +70°, measured in 0.1° increments. Facing angle (FA): 0°
Incident light aperture (VS1): 3 (10.5 mm)
Aperture (VS3): 4 (9.1 mm)
SENSITIVITY: 950
HIGH VOLT.: 539 (adjusted so that the reflection intensity of black glass (black glass reference plate) is 85)
Neutral density filters: 1% filter, 50% filter
(変角光度計の測定条件(艶消し面))
装置:株式会社村上色彩技術研究所製の変角光度計GP-200
試料固定:吸引試料台で試料を固定した。入射角(IA):60°
受光角:0~+90°で0.1°ずつ測定
あおり角(FA):0°
入射光絞り(VS1):3(10.5mm)
受光絞り(VS3):4(9.1mm)
SENSITIVITY(感度):950
HIGH VOLT.:539(標準黒板ガラス(黒ガラス基準板 BK-7 屈折率1.518)の反射強度が85になるように調整した値を使用する)
減光フィルター:1%フィルター
入射方向:アルミニウム合金箔の圧延方向と平行
(Measurement conditions for the variable angle photometer (matte surface))
Equipment: Variable angle photometer GP-200 manufactured by Murakami Color Research Laboratory Co., Ltd.
Sample fixation: The sample was fixed on a suction sample stage. Incident angle (IA): 60°
Receiving angle: 0 to +90°, measured in 0.1° increments. Facing angle (FA): 0°
Incident light aperture (VS1): 3 (10.5 mm)
Aperture (VS3): 4 (9.1 mm)
SENSITIVITY: 950
HIGH VOLT.: 539 (Use a value adjusted so that the reflection intensity of standard black plate glass (black glass reference plate BK-7 refractive index 1.518) is 85)
Neutral density filter: 1% filter Incident direction: Parallel to the rolling direction of the aluminum alloy foil
(変角光度計の測定条件(艶面))
装置:株式会社村上色彩技術研究所製の変角光度計GP-200
試料固定:吸引試料台で試料を固定した。
入射角(IA):60°
受光角:+45°~+75°で0.1°ずつ測定
あおり角(FA):0°
入射光絞り(VS1):3(10.5mm)
受光絞り(VS3):4(9.1mm)
SENSITIVITY(感度):950
HIGH VOLT.:539(標準黒板ガラス(黒ガラス基準板 BK-7 屈折率1.518)の反射強度が85になるように調整した値を使用した)
減光フィルター:1%フィルター、10%フィルター、50%フィルター
入射方向:アルミニウム合金箔の圧延方向と平行
(Measurement conditions for the variable angle photometer (glossy surface))
Equipment: Variable angle photometer GP-200 manufactured by Murakami Color Research Laboratory Co., Ltd.
Sample fixation: The sample was fixed on a suction sample stage.
Incident angle (IA): 60°
Receiving angle: +45° to +75°, measured in 0.1° increments. Facing angle (FA): 0°
Incident light aperture (VS1): 3 (10.5 mm)
Aperture (VS3): 4 (9.1 mm)
SENSITIVITY: 950
HIGH VOLT.: 539 (Used a value adjusted so that the reflection intensity of standard black plate glass (black glass reference plate BK-7 refractive index 1.518) is 85)
Neutral density filters: 1% filter, 10% filter, 50% filter Incident direction: Parallel to the rolling direction of the aluminum alloy foil
<成形性の評価>
 各蓄電デバイス用外装材を長さ(MD方向)170mm×幅(TD方向)170mmの正方形に裁断して試験サンプルとした。蓄電デバイス用外装材のMDが、アルミニウム合金箔の圧延方向(RD)に対応し、蓄電デバイス用外装材のTDが、アルミニウム合金箔のTDに対応する。このサンプルを25℃の環境下にて、100mm(MD方向)×110mm(TD方向)の口径を有する矩形状の成形金型(雌型、表面は、JIS B 0659-1:2002附属書1(参考) 比較用表面粗さ標準片の表2に規定される、最大高さ粗さ(Rzの呼び値)が3.2μmである。コーナーR2.0mm、稜線R1.0mm)と、これに対応した成形金型(雄型、稜線部の表面は、JIS B 0659-1:2002附属書1(参考) 比較用表面粗さ標準片の表2に規定される、最大高さ粗さ(Rzの呼び値)が1.6μmであり、稜線部以外の表面は、JIS B 0659-1:2002附属書1(参考) 比較用表面粗さ標準片の表2に規定される、最大高さ粗さ(Rzの呼び値)が3.2μmである。コーナーR2.0mm、稜線R1.0mm)を用いて、押さえ圧(面圧)0.5MPaで0.5mmの成形深さから0.5mm単位で成形深さを変えて、それぞれ10個のサンプルについて冷間成形(引き込み1段成形)を行った。このとき、雄型側に熱融着性樹脂層側が位置するよう、雌型上に上記試験サンプルを載置して成形をおこなった。また、雄型及び雌型のクリアランスは、0.3mmとした。冷間成形後のサンプルについて、暗室の中にてペンライトで光を当てて、光の透過によって、アルミニウム合金箔にピンホールやクラックが生じているか否かを確認した。冷間成形後のサンプルについて、蓄電デバイス用外装材にピンホール、クラックが10個のサンプル全てにおいて発生しない最も深い成形深さを、そのサンプルの限界成形深さとした。蓄電デバイス用外装材の成形性の評価基準は以下の通りであり、結果を表1に示す。
<Evaluation of moldability>
Each electrical storage device exterior material was cut into a square with a length (MD) of 170 mm and a width (TD) of 170 mm to prepare a test sample. The MD of the electrical storage device exterior material corresponds to the rolling direction (RD) of the aluminum alloy foil, and the TD of the electrical storage device exterior material corresponds to the TD of the aluminum alloy foil. This sample was placed in a 25°C environment in a rectangular molding die (female die, the surface has a maximum height roughness (nominal value of Rz) of 3.2 μm as specified in Table 2 of the surface roughness standard piece for comparison in JIS B 0659-1:2002 Annex 1 (Reference), corner R2.0 mm, ridgeline R1.0 mm) with an aperture of 100 mm (MD) x 110 mm (TD) and a corresponding molding die (male die, the surface of the ridgeline portion has a maximum height roughness (nominal value of Rz) of 1.6 μm as specified in Table 2 of the surface roughness standard piece for comparison in JIS B 0659-1:2002 Annex 1 (Reference), corner R2.0 mm, ridgeline R1.0 mm). The maximum height roughness (nominal value of Rz) specified in Table 2 of the comparative surface roughness standard piece is 3.2 μm. Using a corner R2.0 mm, ridge R1.0 mm), the molding depth was changed in 0.5 mm increments from the molding depth of 0.5 mm at a pressing pressure (surface pressure) of 0.5 MPa, and cold molding (one-stage drawing molding) was performed on 10 samples each. At this time, the above test sample was placed on the female mold so that the heat-fusible resin layer side was located on the male mold side and molding was performed. In addition, the clearance between the male mold and the female mold was set to 0.3 mm. The sample after cold molding was irradiated with light from a penlight in a dark room to confirm whether pinholes or cracks were generated in the aluminum alloy foil due to light transmission. For the sample after cold molding, the deepest molding depth at which pinholes and cracks did not occur in the exterior material for power storage devices in all 10 samples was determined as the limit molding depth of the sample. The evaluation criteria for the formability of the exterior material for an electricity storage device were as follows, and the results are shown in Table 1.
(成形性評価基準)
A+:限界成形深さが13.5mm以上である。
A:限界成形深さが11.0mm以上13.0mm以下である。
B:限界成形深さが8.5mm以上10.5mm以下である。
C:限界成形深さが6.0mm以上8.0mm以下である。
D:限界成形深さが5.5mm以下である。
(Moldability Evaluation Criteria)
A+: The limit forming depth is 13.5 mm or more.
A: The limit forming depth is 11.0 mm or more and 13.0 mm or less.
B: The limit forming depth is 8.5 mm or more and 10.5 mm or less.
C: The limit forming depth is 6.0 mm or more and 8.0 mm or less.
D: The limit forming depth is 5.5 mm or less.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
実施例4
 基材層(延伸ナイロンフィルム(厚み25μm))の代わりに基材層(延伸ナイロンフィルム(厚み20μm))、接着層(無水マレイン酸変性ポリプロピレン(厚さ22.5μm))の代わりに接着層(無水マレイン酸変性ポリプロピレン(厚さ20μm))、熱融着性樹脂層(ランダムポリプロピレン(厚さ22.5μm))の代わりに熱融着性樹脂層(ランダムポリプロピレン(厚さ15μm))を用いたこと以外は、実施例2と同様にして、基材層(延伸ナイロンフィルム(厚み20m))/接着剤層(厚み3μm)/金属箔層(アルミニウム合金箔B(厚さは40μm))/接着層(無水マレイン酸変性ポリプロピレン(厚さは20μm))/熱融着性樹脂層(ランダムポリプロピレン(厚さ15μm))が順に積層された蓄電デバイス用外装材を得た。また、実施例4では、熱融着性樹脂層に含まれる滑剤として、飽和脂肪酸アミド(ベヘン酸アミド)及び不飽和脂肪酸アミド(エルカ酸アミド)の2種を併用した。実施例4の蓄電デバイス用外装材については、実施例2と同程度の成形性評価であった。
Example 4
The substrate layer (stretched nylon film (thickness 25 μm)) was replaced with a substrate layer (stretched nylon film (thickness 20 μm)), the adhesive layer (maleic anhydride-modified polypropylene (thickness 22.5 μm)) was replaced with an adhesive layer (maleic anhydride-modified polypropylene (thickness 20 μm)), and the heat-sealable resin layer (random polypropylene (thickness 22.5 μm)) was replaced with a heat-sealable resin layer (random polypropylene (thickness 15 μm)). Except for this, a substrate layer (stretched nylon film (thickness 20 m)) / adhesive layer (thickness 3 μm) / metal foil layer (aluminum alloy foil B (thickness is 40 μm)) / adhesive layer (maleic anhydride-modified polypropylene (thickness is 20 μm)) / heat-sealable resin layer (random polypropylene (thickness 15 μm)) was laminated in the same manner as in Example 2 to obtain an exterior material for a storage device. In Example 4, two types of lubricants, a saturated fatty acid amide (behenic acid amide) and an unsaturated fatty acid amide (erucic acid amide), were used in combination as the lubricant contained in the heat-sealable resin layer. The exterior material for an electricity storage device of Example 4 was evaluated as having the same moldability as Example 2.
実施例5
 基材層(延伸ナイロンフィルム(厚み25μm))の代わりに基材層(ポリエチレンテレフタレートフィルム(厚み12μm)と延伸ナイロンフィルム(厚み15μm)とが接着剤層(厚み3μm)で積層された積層フィルム)、接着層(無水マレイン酸変性ポリプロピレン(厚さ22.5μm))の代わりに接着層(無水マレイン酸変性ポリプロピレン(厚さは40μm))、熱融着性樹脂層(ランダムポリプロピレン(厚さ22.5μm))の代わりに熱融着性樹脂層(ランダムポリプロピレン(厚さ40μm))を用いたこと以外は、実施例2と同様にして、基材層(ポリエチレンテレフタレートフィルム(厚み12μm)と延伸ナイロンフィルム(厚み15μm)とが接着剤層(厚み3μm)で積層された積層フィルム)/接着剤層(厚み3μm)/金属箔層(アルミニウム合金箔B(厚さは40μm))/接着層(無水マレイン酸変性ポリプロピレン(厚さは40μm))/熱融着性樹脂層(ランダムポリプロピレン(厚さ40μm))が順に積層された蓄電デバイス用外装材を得た。なお、蓄電デバイス用外装材の製造において、基材層の延伸ナイロンフィルム側を接着剤層を介して金属箔層と接着させた。また、実施例5では、熱融着性樹脂層に含まれる滑剤として、飽和脂肪酸アミド(ベヘン酸アミド)及び不飽和脂肪酸アミド(エルカ酸アミド)の2種を併用した。実施例5の蓄電デバイス用外装材については、実施例1と同程度の成形性評価であった。
Example 5
Instead of the base layer (stretched nylon film (thickness 25 μm)), a base layer (a laminated film in which a polyethylene terephthalate film (thickness 12 μm) and a stretched nylon film (thickness 15 μm) are laminated with an adhesive layer (thickness 3 μm)), instead of the adhesive layer (maleic anhydride modified polypropylene (thickness 22.5 μm)), an adhesive layer (maleic anhydride modified polypropylene (thickness 40 μm)), instead of the heat-sealing resin layer (random polypropylene (thickness 22.5 μm)), Except for using the laminated film (thickness 40 μm) of the laminated film, the laminated film was a laminated film of a polyethylene terephthalate film (thickness 12 μm) and a stretched nylon film (thickness 15 μm) with an adhesive layer (thickness 3 μm))/adhesive layer (thickness 3 μm)/metal foil layer (aluminum alloy foil B (thickness 40 μm))/adhesive layer (maleic anhydride modified polypropylene (thickness 40 μm))/thermal adhesive resin layer (random polypropylene (thickness 40 μm)). In the production of the electrical storage device exterior material, the stretched nylon film side of the base material layer was bonded to the metal foil layer via the adhesive layer. In addition, in Example 5, two types of lubricants, saturated fatty acid amide (behenic acid amide) and unsaturated fatty acid amide (erucic acid amide), were used in combination as the lubricant contained in the thermal adhesive resin layer. The electrical storage device exterior material of Example 5 had the same moldability evaluation as Example 1.
 以上の通り、本開示は、以下に示す態様の発明を提供する。
項1. 外側から順に、少なくとも、任意の基材層、金属箔層、及び熱融着性樹脂層を備える積層体から構成されており、
 前記金属箔層の少なくとも一方側の表面について、変角光度計を用い、入射光角度60°の条件で受光角度0.1°ごとに測定される、受光角度0.0°以上90.0°以下の範囲における最大反射光強度Aが、50以下である、蓄電デバイス用外装材。
項2. 前記金属箔層の前記表面は、艶消し面である、項1に記載の蓄電デバイス用外装材。
項3. 外側から順に、少なくとも、任意の基材層、金属箔層、及び熱融着性樹脂層を備える積層体から構成されており、
 前記金属箔層の少なくとも一方側の表面について、変角光度計を用い、入射光角度60°の条件で受光角度0.1°ごとに測定される、受光角度45.0°以上75.0°以下の範囲における最大反射光強度Bが、300以上である、蓄電デバイス用外装材。
項4. 前記金属箔層の前記表面は、艶面である、項3に記載の蓄電デバイス用外装材。
項5. 前記金属箔層の少なくとも一方側の表面について、変角光度計を用い、入射光角度60°の条件で受光角度0.1°ごとに測定される、受光角度0.0°以上90.0°以下の範囲における傾き最大値Cが、10.0以下である、項1または2のいずれかに記載の蓄電デバイス用外装材。
項6. 前記金属箔層の少なくとも一方側の表面について、変角光度計を用い、入射光角度60°の条件で受光角度0.1°ごとに測定される、受光角度45.0°以上75.0°以下の範囲における傾き最大値Dが、200以上である、項3または4のいずれかに記載の蓄電デバイス用外装材。
項7. 前記金属箔層は、アルミニウム合金箔及びステンレス鋼箔の少なくとも一方を含む、項1~6のいずれか1項に記載の蓄電デバイス用外装材。
項8. 前記基材層と前記金属箔層との間に接着剤層をさらに備える、項1~7のいずれか1項に記載の蓄電デバイス用外装材。
項9. 前記金属箔層と前記熱融着性樹脂層との間に接着層をさらに備える、項1~8のいずれか1項に記載の蓄電デバイス用外装材。
項10. 前記基材層は、ポリエステルフィルム及びポリアミドフィルムの積層体、ポリエステルフィルム及びポリエステルフィルムの積層体、又は、ポリアミドフィルム及びポリアミドフィルムの積層体を含む、項1~9のいずれか1項に記載の蓄電デバイス用外装材。
項11. 前記積層体の厚みが、155μm以下である、項1~10のいずれか1項に記載の蓄電デバイス用外装材。
項12. 前記積層体の厚みが、155μm以上190μm以下である、項1~11のいずれか1項に記載の蓄電デバイス用外装材。
項13. 又は、前記積層体の厚みが、190μm以上300μm以下である、項1~12のいずれか1項に記載の蓄電デバイス用外装材。
項14. 前記基材層の表面及び内部の少なくとも一方には、2種類以上の滑剤が存在する、項1~13のいずれか1項に記載の蓄電デバイス用外装材。
項15. 前記基材層の表面及び内部の少なくとも一方には、飽和脂肪酸アミド、不飽和脂肪酸アミド、置換アミド、メチロールアミド、飽和脂肪酸ビスアミド、不飽和脂肪酸ビスアミド、脂肪酸エステルアミド及び芳香族ビスアミドからなる群より選択される少なくとも2種が存在している、項1~14のいずれか1項に記載の蓄電デバイス用外装材。
項16. 前記基材層の厚みが、35μm以下である、項1~15のいずれか1項に記載の蓄電デバイス用外装材。
項17. 前記基材層の厚みが、35μm以上100μm以下である、項1~16のいずれか1項に記載の蓄電デバイス用外装材。
項18. 前記金属箔層の厚みが、50μm以下である、項1~17のいずれか1項に記載の蓄電デバイス用外装材。
項19. 前記金属箔層の厚みが、50μm以上200μm以下である、項1~18のいずれか1項に記載の蓄電デバイス用外装材。
項20. 前記熱融着性樹脂層は、ポリオレフィン骨格を含む樹脂により構成されている、項1~19のいずれか1項に記載の蓄電デバイス用外装材。
項21. 前記熱融着性樹脂層は、ポリオレフィン、環状ポリオレフィン、酸変性ポリオレフィン及び酸変性環状ポリオレフィンからなる群より選択される少なくとも1種を含む、項1~20のいずれか1項に記載の蓄電デバイス用外装材。
項22. 前記熱融着性樹脂層は、2種以上の樹脂を組み合わせたブレンドポリマーにより形成されている、項1~21のいずれか1項に記載の蓄電デバイス用外装材。
項23. 前記熱融着性樹脂層は、同一又は異なる樹脂によって2層以上で形成されている、項1~22のいずれか1項に記載の蓄電デバイス用外装材。
項24. 前記熱融着性樹脂層の表面及び内部の少なくとも一方には、2種類以上の滑剤が存在する、項1~23のいずれか1項に記載の蓄電デバイス用外装材。
項25. 前記熱融着性樹脂層の表面及び内部の少なくとも一方には、飽和脂肪酸アミド、不飽和脂肪酸アミド、置換アミド、メチロールアミド、飽和脂肪酸ビスアミド、不飽和脂肪酸ビスアミド、脂肪酸エステルアミド及び芳香族ビスアミドからなる群より選択される少なくとも2種が存在している、項1~24のいずれか1項に記載の蓄電デバイス用外装材。
項26. 前記蓄電デバイス用外装材は、着色されている、項1~25のいずれか1項に記載の蓄電デバイス用外装材。
項27. 前記基材層と前記金属箔層との間に接着剤層をさらに備え、
 前記接着剤層が、着色剤を含む、項1~26のいずれか1項に記載の蓄電デバイス用外装材。
項28. 前記基材層と前記金属箔層との間に、着色層をさらに備える、項1~27のいずれか1項に記載の蓄電デバイス用外装材。
項29. 前記基材層の前記金属箔層側とは反対側に、表面被覆層をさらに備える、項1~28のいずれか1項に記載の蓄電デバイス用外装材。
項30. 前記表面被覆層は、着色剤を含む、項29に記載の蓄電デバイス用外装材。
項31. 前記表面被覆層は、酸化チタンを含む、項29に記載の蓄電デバイス用外装材。
項32. 前記表面被覆層は、シリカを含む、項29に記載の蓄電デバイス用外装材。
項33. 前記表面被覆層は、タルク、シリカ、グラファイト、カオリン、モンモリロナイト、マイカ、ハイドロタルサイト、シリカゲル、ゼオライト、水酸化アルミニウム、水酸化マグネシウム、酸化亜鉛、酸化マグネシウム、酸化アルミニウム、酸化ネオジウム、酸化アンチモン、酸化チタン、酸化セリウム、硫酸カルシウム、硫酸バリウム、炭酸カルシウム、ケイ酸カルシウム、炭酸リチウム、安息香酸カルシウム、シュウ酸カルシウム、ステアリン酸マグネシウム、アルミナ、カーボンブラック、カーボンナノチューブ、高融点ナイロン、アクリレート樹脂、架橋アクリル、架橋スチレン、架橋ポリエチレン、ベンゾグアナミン、金、アルミニウム、銅、及びニッケルからなる群より選択される少なくとも1種を含む、項29に記載の蓄電デバイス用外装材。
項34. 外側から順に、少なくとも、任意の基材層と、金属箔層と、熱融着性樹脂層とが積層された積層体を得る工程を備えており、
 前記金属箔層の少なくとも一方側の表面について、変角光度計を用い、入射光角度60°の条件で受光角度0.1°ごとに測定される、受光角度0.0°以上90.0°以下の範囲における最大反射光強度Aが、50以下である、蓄電デバイス用外装材の製造方法。
項35. 外側から順に、少なくとも、任意の基材層と、金属箔層と、熱融着性樹脂層とが積層された積層体を得る工程を備えており、
 前記金属箔層の少なくとも一方側の表面について、変角光度計を用い、入射光角度60°の条件で受光角度0.1°ごとに測定される、受光角度45.0°以上75.0°以下の範囲における最大反射光強度Bが、300以上である、蓄電デバイス用外装材の製造方法。
項36. 前記金属箔層と前記熱融着性樹脂層との間に接着層をさらに備えており、
 前記接着層と前記熱融着性樹脂層とは、(1)押出ラミネート法、(2)サーマルラミネート法、(3)サンドイッチラミネート法、又は(4)ドライラミネート法により積層する、項34又は35に記載の蓄電デバイス用外装材の製造方法。
項37. 前記熱融着性樹脂層は、同一又は異なる樹脂によって2層以上で形成されている、項36に記載の蓄電デバイス用外装材の製造方法。
項38. 少なくとも正極、負極、及び電解質を備えた蓄電デバイス素子が、項1~33のいずれか1項に記載の蓄電デバイス用外装材により形成された包装体中に収容されている、蓄電デバイス。
As described above, the present disclosure provides the following aspects of the invention.
Item 1. The laminate includes, in order from the outside, at least an optional base material layer, a metal foil layer, and a heat-sealable resin layer;
The exterior material for an electricity storage device has a maximum reflected light intensity A of 50 or less in a light receiving angle range of 0.0° or more and 90.0° or less, measured for at least one surface of the metal foil layer at every 0.1° of light receiving angle using a goniophotometer under a condition of an incident light angle of 60°.
Item 2. The exterior material for an electricity storage device according to Item 1, wherein the surface of the metal foil layer is a matte surface.
Item 3. The laminate includes, in order from the outside, at least an optional base material layer, a metal foil layer, and a heat-sealable resin layer;
The exterior material for an electricity storage device has a maximum reflected light intensity B of 300 or more in a light receiving angle range of 45.0° or more and 75.0° or less, measured for at least one surface of the metal foil layer at every 0.1° of light receiving angle using a variable angle photometer under a condition of an incident light angle of 60°.
Item 4. The exterior material for an electricity storage device according to Item 3, wherein the surface of the metal foil layer is a glossy surface.
Item 5. The exterior material for an electricity storage device according to any one of Items 1 and 2, wherein a maximum slope C of at least one surface of the metal foil layer is 10.0 or less in a light-receiving angle range of 0.0° to 90.0°, as measured at every 0.1° of light-receiving angle using a goniophotometer under a condition of an incident light angle of 60°.
Item 6. The exterior material for an electricity storage device according to any one of Items 3 and 4, wherein a maximum slope D of at least one surface of the metal foil layer is 200 or more within a light-receiving angle range of 45.0° to 75.0°, as measured at every 0.1° of the light-receiving angle using a goniophotometer under a condition of an incident light angle of 60°.
Item 7. The exterior material for an electricity storage device according to any one of Items 1 to 6, wherein the metal foil layer includes at least one of an aluminum alloy foil and a stainless steel foil.
Item 8. The exterior material for an electricity storage device according to any one of Items 1 to 7, further comprising an adhesive layer between the base material layer and the metal foil layer.
Item 9. The packaging material for an electricity storage device according to any one of Items 1 to 8, further comprising an adhesive layer between the metal foil layer and the heat-fusible resin layer.
Item 10. The exterior material for a storage battery device according to any one of Items 1 to 9, wherein the base material layer includes a laminate of a polyester film and a polyamide film, a laminate of a polyester film and a polyester film, or a laminate of a polyamide film and a polyamide film.
Item 11. The exterior material for an electricity storage device according to any one of Items 1 to 10, wherein the laminate has a thickness of 155 μm or less.
Item 12. The exterior material for an electricity storage device according to any one of Items 1 to 11, wherein the laminate has a thickness of 155 μm or more and 190 μm or less.
Item 13. Or, the exterior material for an electricity storage device according to any one of Items 1 to 12, wherein the laminate has a thickness of 190 μm or more and 300 μm or less.
Item 14. The exterior material for an electricity storage device according to any one of Items 1 to 13, wherein two or more types of lubricants are present on at least one of a surface and an interior of the base layer.
Item 15. The exterior material for a storage battery device according to any one of Items 1 to 14, wherein at least two selected from the group consisting of saturated fatty acid amides, unsaturated fatty acid amides, substituted amides, methylol amides, saturated fatty acid bisamides, unsaturated fatty acid bisamides, fatty acid ester amides, and aromatic bisamides are present on at least one of the surface and the interior of the base layer.
Item 16. The exterior material for an electricity storage device according to any one of Items 1 to 15, wherein the base material layer has a thickness of 35 μm or less.
Item 17. The exterior material for an electricity storage device according to any one of Items 1 to 16, wherein the base material layer has a thickness of 35 μm or more and 100 μm or less.
Item 18. The exterior material for an electricity storage device according to any one of Items 1 to 17, wherein the metal foil layer has a thickness of 50 μm or less.
Item 19. The exterior material for an electricity storage device according to any one of Items 1 to 18, wherein the metal foil layer has a thickness of 50 μm or more and 200 μm or less.
Item 20. The exterior packaging material for an electricity storage device according to any one of Items 1 to 19, wherein the heat-sealable resin layer is composed of a resin containing a polyolefin skeleton.
Item 21. The exterior material for a storage battery device according to any one of Items 1 to 20, wherein the heat-sealable resin layer contains at least one selected from the group consisting of polyolefins, cyclic polyolefins, acid-modified polyolefins, and acid-modified cyclic polyolefins.
Item 22. The exterior packaging material for an electricity storage device according to any one of Items 1 to 21, wherein the heat-fusible resin layer is formed of a blend polymer in which two or more types of resins are combined.
Item 23. The exterior packaging material for an electricity storage device according to any one of Items 1 to 22, wherein the heat-sealable resin layer is formed of two or more layers of the same or different resins.
Item 24. The exterior packaging material for an electricity storage device according to any one of Items 1 to 23, wherein two or more types of lubricants are present on at least one of a surface and an interior of the heat-sealable resin layer.
Item 25. The exterior material for a storage battery device according to any one of Items 1 to 24, wherein at least two selected from the group consisting of saturated fatty acid amides, unsaturated fatty acid amides, substituted amides, methylol amides, saturated fatty acid bisamides, unsaturated fatty acid bisamides, fatty acid ester amides, and aromatic bisamides are present on at least one of the surface and the interior of the heat-sealable resin layer.
Item 26. The electrical storage device packaging material according to any one of Items 1 to 25, wherein the electrical storage device packaging material is colored.
Item 27. An adhesive layer is further provided between the base layer and the metal foil layer,
Item 27. The exterior material for a storage battery device according to any one of items 1 to 26, wherein the adhesive layer contains a colorant.
Item 28. The exterior material for an electricity storage device according to any one of Items 1 to 27, further comprising a colored layer between the base layer and the metal foil layer.
Item 29. The exterior material for an electricity storage device according to any one of Items 1 to 28, further comprising a surface coating layer on the opposite side of the base material layer to the metal foil layer side.
Item 30. The exterior material for a storage battery device according to Item 29, wherein the surface coating layer contains a colorant.
Item 31. The exterior material for an electricity storage device according to Item 29, wherein the surface coating layer contains titanium oxide.
Item 32. The exterior material for an electricity storage device according to Item 29, wherein the surface coating layer contains silica.
Item 33. The exterior material for a power storage device according to Item 29, wherein the surface coating layer contains at least one selected from the group consisting of talc, silica, graphite, kaolin, montmorillonite, mica, hydrotalcite, silica gel, zeolite, aluminum hydroxide, magnesium hydroxide, zinc oxide, magnesium oxide, aluminum oxide, neodymium oxide, antimony oxide, titanium oxide, cerium oxide, calcium sulfate, barium sulfate, calcium carbonate, calcium silicate, lithium carbonate, calcium benzoate, calcium oxalate, magnesium stearate, alumina, carbon black, carbon nanotubes, high melting point nylon, acrylate resin, crosslinked acrylic, crosslinked styrene, crosslinked polyethylene, benzoguanamine, gold, aluminum, copper, and nickel.
Item 34. The method includes a step of obtaining a laminate in which at least an arbitrary base material layer, a metal foil layer, and a heat-sealable resin layer are laminated in this order from the outside,
a maximum reflected light intensity A of 50 or less in a light-receiving angle range of 0.0° or more and 90.0° or less, measured for at least one surface of the metal foil layer at every 0.1° light-receiving angle using a goniophotometer under a condition of an incident light angle of 60°.
Item 35. The method includes a step of obtaining a laminate in which at least an arbitrary base material layer, a metal foil layer, and a heat-sealable resin layer are laminated in this order from the outside,
a maximum reflected light intensity B of 300 or more at a light-receiving angle range of 45.0° or more and 75.0° or less, measured at every 0.1° of a light-receiving angle using a goniophotometer under a condition of an incident light angle of 60°, for at least one surface of the metal foil layer.
Item 36. An adhesive layer is further provided between the metal foil layer and the heat-sealable resin layer,
Item 36. The method for producing an exterior material for a storage battery device according to item 34 or 35, wherein the adhesive layer and the heat-fusible resin layer are laminated by (1) an extrusion lamination method, (2) a thermal lamination method, (3) a sandwich lamination method, or (4) a dry lamination method.
Item 37. The method for producing an exterior material for an electricity storage device according to Item 36, wherein the heat-sealable resin layer is formed of two or more layers of the same or different resins.
Item 38. An electricity storage device, comprising an electricity storage device element including at least a positive electrode, a negative electrode, and an electrolyte, housed in a package formed from the exterior material for an electricity storage device according to any one of Items 1 to 33.
1 基材層
2 接着剤層
3 金属箔層
4 熱融着性樹脂層
5 接着層
6 表面被覆層
10 蓄電デバイス用外装材
1 Base material layer 2 Adhesive layer 3 Metal foil layer 4 Heat-fusible resin layer 5 Adhesive layer 6 Surface coating layer 10 Exterior material for power storage device

Claims (38)

  1.  外側から順に、少なくとも、基材層、金属箔層、及び熱融着性樹脂層を備える積層体から構成されており、
     前記金属箔層の少なくとも一方側の表面について、変角光度計を用い、入射光角度60°の条件で受光角度0.1°ごとに測定される、受光角度0.0°以上90.0°以下の範囲における最大反射光強度Aが、50以下である、蓄電デバイス用外装材。
    The laminate includes, in order from the outside, at least a base layer, a metal foil layer, and a heat-sealable resin layer.
    The exterior material for an electricity storage device has a maximum reflected light intensity A of 50 or less in a light receiving angle range of 0.0° or more and 90.0° or less, measured for at least one surface of the metal foil layer at every 0.1° of light receiving angle using a goniophotometer under a condition of an incident light angle of 60°.
  2.  前記金属箔層の前記表面は、艶消し面である、請求項1に記載の蓄電デバイス用外装材。 The exterior material for an electricity storage device according to claim 1, wherein the surface of the metal foil layer is a matte surface.
  3.  外側から順に、少なくとも、基材層、金属箔層、及び熱融着性樹脂層を備える積層体から構成されており、
     前記金属箔層の少なくとも一方側の表面について、変角光度計を用い、入射光角度60°の条件で受光角度0.1°ごとに測定される、受光角度45.0°以上75.0°以下の範囲における最大反射光強度Bが、300以上である、蓄電デバイス用外装材。
    The laminate includes, in order from the outside, at least a base layer, a metal foil layer, and a heat-sealable resin layer.
    The exterior material for an electricity storage device has a maximum reflected light intensity B of 300 or more in a light receiving angle range of 45.0° or more and 75.0° or less, measured for at least one surface of the metal foil layer at every 0.1° of light receiving angle using a variable angle photometer under a condition of an incident light angle of 60°.
  4.  前記金属箔層の前記表面は、艶面である、請求項3に記載の蓄電デバイス用外装材。 The exterior material for an electricity storage device according to claim 3, wherein the surface of the metal foil layer is glossy.
  5.  前記金属箔層の少なくとも一方側の表面について、変角光度計を用い、入射光角度60°の条件で受光角度0.1°ごとに測定される、受光角度0.0°以上90.0°以下の範囲における傾き最大値Cが、10.0以下である、請求項1または2のいずれかに記載の蓄電デバイス用外装材。 The exterior material for a storage battery device according to claim 1 or 2, wherein the maximum slope C of at least one surface of the metal foil layer is 10.0 or less in the light receiving angle range of 0.0° to 90.0°, measured at every 0.1° of light receiving angle using a goniophotometer under the condition of an incident light angle of 60°.
  6.  前記金属箔層の少なくとも一方側の表面について、変角光度計を用い、入射光角度60°の条件で受光角度0.1°ごとに測定される、受光角度45.0°以上75.0°以下の範囲における傾き最大値Dが、200以上である、請求項3または4のいずれかに記載の蓄電デバイス用外装材。 The exterior material for a storage battery device according to claim 3 or 4, wherein the maximum slope D measured for at least one surface of the metal foil layer at a light receiving angle of 45.0° to 75.0° at intervals of 0.1° using a goniophotometer under the condition of an incident light angle of 60° is 200 or more.
  7.  前記金属箔層は、アルミニウム合金箔及びステンレス鋼箔の少なくとも一方を含む、請求項1~4のいずれか1項に記載の蓄電デバイス用外装材。 The exterior material for an electricity storage device according to any one of claims 1 to 4, wherein the metal foil layer includes at least one of an aluminum alloy foil and a stainless steel foil.
  8.  前記基材層と前記金属箔層との間に接着剤層をさらに備える、請求項1~4のいずれか1項に記載の蓄電デバイス用外装材。 The exterior material for an electricity storage device according to any one of claims 1 to 4, further comprising an adhesive layer between the base layer and the metal foil layer.
  9.  前記金属箔層と前記熱融着性樹脂層との間に接着層をさらに備える、請求項1~4のいずれか1項に記載の蓄電デバイス用外装材。 The exterior material for an electricity storage device according to any one of claims 1 to 4, further comprising an adhesive layer between the metal foil layer and the heat-sealable resin layer.
  10.  前記基材層は、ポリエステルフィルム及びポリアミドフィルムの積層体、ポリエステルフィルム及びポリエステルフィルムの積層体、又は、ポリアミドフィルム及びポリアミドフィルムの積層体を含む、請求項1~4のいずれか1項に記載の蓄電デバイス用外装材。 The exterior material for an electricity storage device according to any one of claims 1 to 4, wherein the base layer includes a laminate of a polyester film and a polyamide film, a laminate of a polyester film and a polyester film, or a laminate of a polyamide film and a polyamide film.
  11.  前記積層体の厚みが、155μm以下である、請求項1~4のいずれか1項に記載の蓄電デバイス用外装材。 The exterior material for an electricity storage device according to any one of claims 1 to 4, wherein the thickness of the laminate is 155 μm or less.
  12.  前記積層体の厚みが、155μm以上190μm以下である、請求項1~4のいずれか1項に記載の蓄電デバイス用外装材。 The exterior material for an electricity storage device according to any one of claims 1 to 4, wherein the thickness of the laminate is 155 μm or more and 190 μm or less.
  13.  又は、前記積層体の厚みが、190μm以上300μm以下である、請求項1~4のいずれか1項に記載の蓄電デバイス用外装材。 Or, the exterior material for an electricity storage device according to any one of claims 1 to 4, wherein the thickness of the laminate is 190 μm or more and 300 μm or less.
  14.  前記基材層の表面及び内部の少なくとも一方には、2種類以上の滑剤が存在する、請求項1~4のいずれか1項に記載の蓄電デバイス用外装材。 The exterior material for an electricity storage device according to any one of claims 1 to 4, wherein two or more types of lubricants are present on at least one of the surface and the interior of the base layer.
  15.  前記基材層の表面及び内部の少なくとも一方には、飽和脂肪酸アミド、不飽和脂肪酸アミド、置換アミド、メチロールアミド、飽和脂肪酸ビスアミド、不飽和脂肪酸ビスアミド、脂肪酸エステルアミド及び芳香族ビスアミドからなる群より選択される少なくとも2種が存在している、請求項1~4のいずれか1項に記載の蓄電デバイス用外装材。 The exterior material for a storage battery device according to any one of claims 1 to 4, wherein at least two selected from the group consisting of saturated fatty acid amides, unsaturated fatty acid amides, substituted amides, methylol amides, saturated fatty acid bisamides, unsaturated fatty acid bisamides, fatty acid ester amides, and aromatic bisamides are present on at least one of the surface and interior of the base layer.
  16.  前記基材層の厚みが、35μm以下である、請求項1~4のいずれか1項に記載の蓄電デバイス用外装材。 The exterior material for an electricity storage device according to any one of claims 1 to 4, wherein the thickness of the substrate layer is 35 μm or less.
  17.  前記基材層の厚みが、35μm以上100μm以下である、請求項1~4のいずれか1項に記載の蓄電デバイス用外装材。 The exterior material for an electricity storage device according to any one of claims 1 to 4, wherein the thickness of the substrate layer is 35 μm or more and 100 μm or less.
  18.  前記金属箔層の厚みが、50μm以下である、請求項1~4のいずれか1項に記載の蓄電デバイス用外装材。 The exterior material for an electricity storage device according to any one of claims 1 to 4, wherein the thickness of the metal foil layer is 50 μm or less.
  19.  前記金属箔層の厚みが、50μm以上200μm以下である、請求項1~4のいずれか1項に記載の蓄電デバイス用外装材。 The exterior material for an electricity storage device according to any one of claims 1 to 4, wherein the thickness of the metal foil layer is 50 μm or more and 200 μm or less.
  20.  前記熱融着性樹脂層は、ポリオレフィン骨格を含む樹脂により構成されている、請求項1~4のいずれか1項に記載の蓄電デバイス用外装材。 The exterior material for an electricity storage device according to any one of claims 1 to 4, wherein the heat-sealable resin layer is composed of a resin containing a polyolefin skeleton.
  21.  前記熱融着性樹脂層は、ポリオレフィン、環状ポリオレフィン、酸変性ポリオレフィン及び酸変性環状ポリオレフィンからなる群より選択される少なくとも1種を含む、請求項1~4のいずれか1項に記載の蓄電デバイス用外装材。 The exterior material for an electricity storage device according to any one of claims 1 to 4, wherein the heat-sealable resin layer contains at least one selected from the group consisting of polyolefins, cyclic polyolefins, acid-modified polyolefins, and acid-modified cyclic polyolefins.
  22.  前記熱融着性樹脂層は、2種以上の樹脂を組み合わせたブレンドポリマーにより形成されている、請求項1~4のいずれか1項に記載の蓄電デバイス用外装材。 The exterior material for an electricity storage device according to any one of claims 1 to 4, wherein the heat-sealable resin layer is formed from a blend polymer that combines two or more types of resin.
  23.  前記熱融着性樹脂層は、同一又は異なる樹脂によって2層以上で形成されている、請求項1~4のいずれか1項に記載の蓄電デバイス用外装材。 The exterior material for an electricity storage device according to any one of claims 1 to 4, wherein the heat-sealable resin layer is formed of two or more layers of the same or different resins.
  24.  前記熱融着性樹脂層の表面及び内部の少なくとも一方には、2種類以上の滑剤が存在する、請求項1~4のいずれか1項に記載の蓄電デバイス用外装材。 The exterior material for an electricity storage device according to any one of claims 1 to 4, wherein at least two types of lubricant are present on at least one of the surface and the interior of the heat-sealable resin layer.
  25.  前記熱融着性樹脂層の表面及び内部の少なくとも一方には、飽和脂肪酸アミド、不飽和脂肪酸アミド、置換アミド、メチロールアミド、飽和脂肪酸ビスアミド、不飽和脂肪酸ビスアミド、脂肪酸エステルアミド及び芳香族ビスアミドからなる群より選択される少なくとも2種が存在している、請求項1~4のいずれか1項に記載の蓄電デバイス用外装材。 The exterior material for a storage battery device according to any one of claims 1 to 4, wherein at least two selected from the group consisting of saturated fatty acid amides, unsaturated fatty acid amides, substituted amides, methylol amides, saturated fatty acid bisamides, unsaturated fatty acid bisamides, fatty acid ester amides, and aromatic bisamides are present on at least one of the surface and interior of the heat-sealable resin layer.
  26.  前記蓄電デバイス用外装材は、着色されている、請求項1~4のいずれか1項に記載の蓄電デバイス用外装材。 The electrical storage device exterior material according to any one of claims 1 to 4, wherein the electrical storage device exterior material is colored.
  27.  前記基材層と前記金属箔層との間に接着剤層をさらに備え、
     前記接着剤層が、着色剤を含む、請求項1~4のいずれか1項に記載の蓄電デバイス用外装材。
    An adhesive layer is further provided between the base layer and the metal foil layer,
    The exterior material for an electricity storage device according to any one of claims 1 to 4, wherein the adhesive layer contains a colorant.
  28.  前記基材層と前記金属箔層との間に、着色層をさらに備える、請求項1~4のいずれか1項に記載の蓄電デバイス用外装材。 The exterior material for an electricity storage device according to any one of claims 1 to 4, further comprising a colored layer between the base layer and the metal foil layer.
  29.  前記基材層の前記金属箔層側とは反対側に、表面被覆層をさらに備える、請求項1~4のいずれか1項に記載の蓄電デバイス用外装材。 The exterior material for an electricity storage device according to any one of claims 1 to 4, further comprising a surface coating layer on the side of the base layer opposite the metal foil layer.
  30.  前記表面被覆層は、着色剤を含む、請求項29に記載の蓄電デバイス用外装材。 The exterior material for a storage battery device according to claim 29, wherein the surface coating layer contains a colorant.
  31.  前記表面被覆層は、酸化チタンを含む、請求項29に記載の蓄電デバイス用外装材。 The exterior material for an electricity storage device according to claim 29, wherein the surface coating layer contains titanium oxide.
  32.  前記表面被覆層は、シリカを含む、請求項29に記載の蓄電デバイス用外装材。 The exterior material for an electricity storage device according to claim 29, wherein the surface coating layer contains silica.
  33.  前記表面被覆層は、タルク、シリカ、グラファイト、カオリン、モンモリロナイト、マイカ、ハイドロタルサイト、シリカゲル、ゼオライト、水酸化アルミニウム、水酸化マグネシウム、酸化亜鉛、酸化マグネシウム、酸化アルミニウム、酸化ネオジウム、酸化アンチモン、酸化チタン、酸化セリウム、硫酸カルシウム、硫酸バリウム、炭酸カルシウム、ケイ酸カルシウム、炭酸リチウム、安息香酸カルシウム、シュウ酸カルシウム、ステアリン酸マグネシウム、アルミナ、カーボンブラック、カーボンナノチューブ、高融点ナイロン、アクリレート樹脂、架橋アクリル、架橋スチレン、架橋ポリエチレン、ベンゾグアナミン、金、アルミニウム、銅、及びニッケルからなる群より選択される少なくとも1種を含む、請求項29に記載の蓄電デバイス用外装材。 The exterior material for an electricity storage device according to claim 29, wherein the surface coating layer contains at least one selected from the group consisting of talc, silica, graphite, kaolin, montmorillonite, mica, hydrotalcite, silica gel, zeolite, aluminum hydroxide, magnesium hydroxide, zinc oxide, magnesium oxide, aluminum oxide, neodymium oxide, antimony oxide, titanium oxide, cerium oxide, calcium sulfate, barium sulfate, calcium carbonate, calcium silicate, lithium carbonate, calcium benzoate, calcium oxalate, magnesium stearate, alumina, carbon black, carbon nanotubes, high melting point nylon, acrylate resin, cross-linked acrylic, cross-linked styrene, cross-linked polyethylene, benzoguanamine, gold, aluminum, copper, and nickel.
  34.  外側から順に、少なくとも、基材層と、金属箔層と、熱融着性樹脂層とが積層された積層体を得る工程を備えており、
     前記金属箔層の少なくとも一方側の表面について、変角光度計を用い、入射光角度60°の条件で受光角度0.1°ごとに測定される、受光角度0.0°以上90.0°以下の範囲における最大反射光強度Aが、50以下である、蓄電デバイス用外装材の製造方法。
    The method includes a step of obtaining a laminate in which at least a base layer, a metal foil layer, and a heat-fusible resin layer are laminated in this order from the outside,
    a maximum reflected light intensity A of 50 or less in a light-receiving angle range of 0.0° or more and 90.0° or less, measured for at least one surface of the metal foil layer at every 0.1° light-receiving angle using a goniophotometer under a condition of an incident light angle of 60°.
  35.  外側から順に、少なくとも、基材層と、金属箔層と、熱融着性樹脂層とが積層された積層体を得る工程を備えており、
     前記金属箔層の少なくとも一方側の表面について、変角光度計を用い、入射光角度60°の条件で受光角度0.1°ごとに測定される、受光角度45.0°以上75.0°以下の範囲における最大反射光強度Bが、300以上である、蓄電デバイス用外装材の製造方法。
    The method includes a step of obtaining a laminate in which at least a base layer, a metal foil layer, and a heat-fusible resin layer are laminated in this order from the outside,
    a maximum reflected light intensity B of 300 or more at a light-receiving angle range of 45.0° or more and 75.0° or less, measured at every 0.1° of a light-receiving angle using a goniophotometer under a condition of an incident light angle of 60°, for at least one surface of the metal foil layer.
  36.  前記金属箔層と前記熱融着性樹脂層との間に接着層をさらに備えており、
     前記接着層と前記熱融着性樹脂層とは、(1)押出ラミネート法、(2)サーマルラミネート法、(3)サンドイッチラミネート法、又は(4)ドライラミネート法により積層する、請求項34又は35に記載の蓄電デバイス用外装材の製造方法。
    An adhesive layer is further provided between the metal foil layer and the heat-sealable resin layer,
    The method for producing an exterior material for an electricity storage device according to claim 34 or 35, wherein the adhesive layer and the heat-sealable resin layer are laminated by (1) an extrusion lamination method, (2) a thermal lamination method, (3) a sandwich lamination method, or (4) a dry lamination method.
  37.  前記熱融着性樹脂層は、同一又は異なる樹脂によって2層以上で形成されている、請求項36に記載の蓄電デバイス用外装材の製造方法。 The method for producing an exterior material for an electrical storage device according to claim 36, wherein the heat-sealable resin layer is formed of two or more layers of the same or different resins.
  38.  少なくとも正極、負極、及び電解質を備えた蓄電デバイス素子が、請求項1~4のいずれか1項に記載の蓄電デバイス用外装材により形成された包装体中に収容されている、蓄電デバイス。 An electricity storage device in which an electricity storage device element having at least a positive electrode, a negative electrode, and an electrolyte is housed in a package formed from the exterior material for an electricity storage device according to any one of claims 1 to 4.
PCT/JP2024/014602 2023-04-10 2024-04-10 Exterior material for power storage device, method for manufacturing same, and power storage device WO2024214754A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2023063668 2023-04-10
JP2023-063668 2023-04-10

Publications (1)

Publication Number Publication Date
WO2024214754A1 true WO2024214754A1 (en) 2024-10-17

Family

ID=93059370

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2024/014602 WO2024214754A1 (en) 2023-04-10 2024-04-10 Exterior material for power storage device, method for manufacturing same, and power storage device

Country Status (1)

Country Link
WO (1) WO2024214754A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016081856A (en) * 2014-10-22 2016-05-16 昭和電工パッケージング株式会社 Exterior material for power storage device and power storage device
KR20170014246A (en) * 2015-07-29 2017-02-08 율촌화학 주식회사 Cell pouch with excellent flexibility and secondary battery comprising the same
WO2020138060A1 (en) * 2018-12-28 2020-07-02 大日本印刷株式会社 Exterior material for power storage device, manufacturing method thereof, and power storage device
JP2022126645A (en) * 2016-12-28 2022-08-30 大日本印刷株式会社 Battery packaging material and battery

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016081856A (en) * 2014-10-22 2016-05-16 昭和電工パッケージング株式会社 Exterior material for power storage device and power storage device
KR20170014246A (en) * 2015-07-29 2017-02-08 율촌화학 주식회사 Cell pouch with excellent flexibility and secondary battery comprising the same
JP2022126645A (en) * 2016-12-28 2022-08-30 大日本印刷株式会社 Battery packaging material and battery
WO2020138060A1 (en) * 2018-12-28 2020-07-02 大日本印刷株式会社 Exterior material for power storage device, manufacturing method thereof, and power storage device

Similar Documents

Publication Publication Date Title
JP7294495B2 (en) BATTERY PACKAGING MATERIAL, MANUFACTURING METHOD THEREOF, AND BATTERY
EP3121863A1 (en) Packaging material for batteries, battery, and production methods therefor
JP7567417B2 (en) Exterior material for power storage device, manufacturing method thereof, power storage device, and polyamide film
JP7136108B2 (en) Battery packaging materials and batteries
JP7414004B2 (en) Exterior material for power storage device, manufacturing method thereof, and power storage device
WO2019070078A1 (en) Battery packaging material and battery
WO2019078284A1 (en) Battery packaging material and battery
JP7160217B2 (en) Exterior material for power storage device, manufacturing method thereof, and power storage device
JPWO2017188396A1 (en) Packaging material for battery, method for manufacturing the same, battery and method for manufacturing the same
WO2020027333A1 (en) Packaging material for power storage device, method for manufacturing same, and power storage device
JP6686279B2 (en) Battery packaging materials and batteries
JP7234794B2 (en) Exterior material for power storage device, method for producing the same, power storage device, and polyamide film
JP2024056802A (en) Exterior material for power storage device, manufacturing method thereof, and power storage device
WO2024214754A1 (en) Exterior material for power storage device, method for manufacturing same, and power storage device
CN117613473A (en) Packaging material for battery, method for producing same, polyester film, and battery
JP7347455B2 (en) Exterior material for power storage device, power storage device, and manufacturing method thereof
WO2024214753A1 (en) Covering material for power storage device, production method for covering material and power storage device
WO2024111604A1 (en) Power storage device exterior material, production method for same, and power storage device
WO2024150713A1 (en) Multilayer film for bipolar lithium ion batteries
WO2024195875A1 (en) Exterior material for power storage device, production method for same, and power storage device
WO2023243696A1 (en) Exterior material for power storage device, production method for same, and power storage device
WO2023136360A1 (en) Exterior material for electricity storage device, method for manufacturing same, resin composition, and electricity storage device
WO2023058453A1 (en) Outer package material for power storage devices, method for producing same, and power storage device
WO2023171807A1 (en) Outer package material for power storage devices, method for producing same, appearance inspection method, and power storage device
JP7332072B1 (en) Exterior material for power storage device, manufacturing method thereof, and power storage device