WO2024210682A1 - Orientation device - Google Patents
Orientation device Download PDFInfo
- Publication number
- WO2024210682A1 WO2024210682A1 PCT/KR2024/004649 KR2024004649W WO2024210682A1 WO 2024210682 A1 WO2024210682 A1 WO 2024210682A1 KR 2024004649 W KR2024004649 W KR 2024004649W WO 2024210682 A1 WO2024210682 A1 WO 2024210682A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- orientation device
- foil
- magnet lines
- present
- magnets
- Prior art date
Links
- 239000011888 foil Substances 0.000 claims abstract description 82
- 239000007773 negative electrode material Substances 0.000 claims description 15
- 239000002356 single layer Substances 0.000 claims description 3
- 239000007787 solid Substances 0.000 claims description 3
- 239000002245 particle Substances 0.000 abstract description 5
- 239000000758 substrate Substances 0.000 abstract description 5
- 238000000034 method Methods 0.000 abstract description 2
- 238000012545 processing Methods 0.000 abstract description 2
- 239000006183 anode active material Substances 0.000 abstract 3
- 239000010405 anode material Substances 0.000 abstract 1
- 238000010586 diagram Methods 0.000 description 18
- 230000000712 assembly Effects 0.000 description 9
- 238000000429 assembly Methods 0.000 description 9
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 4
- 229910052744 lithium Inorganic materials 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 230000001174 ascending effect Effects 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- -1 LiCoO2 Chemical compound 0.000 description 1
- 229910032387 LiCoO2 Inorganic materials 0.000 description 1
- 229910014063 LiNi1-xCoxO2 Inorganic materials 0.000 description 1
- 229910014402 LiNi1—xCoxO2 Inorganic materials 0.000 description 1
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 1
- 229910002097 Lithium manganese(III,IV) oxide Inorganic materials 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 230000001154 acute effect Effects 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- 229910021383 artificial graphite Inorganic materials 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000003575 carbonaceous material Substances 0.000 description 1
- 239000006182 cathode active material Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 229910021385 hard carbon Inorganic materials 0.000 description 1
- 230000002687 intercalation Effects 0.000 description 1
- 238000009830 intercalation Methods 0.000 description 1
- 229910001416 lithium ion Inorganic materials 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229910021382 natural graphite Inorganic materials 0.000 description 1
- 239000005486 organic electrolyte Substances 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 229910052723 transition metal Inorganic materials 0.000 description 1
- 150000003624 transition metals Chemical class 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F7/00—Magnets
- H01F7/02—Permanent magnets [PM]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/04—Processes of manufacture in general
Definitions
- the present invention relates to an orientation device, and more specifically, to a device for improving the charge and discharge efficiency of a secondary battery, which is a finished product, by magnetically processing particles of a negative electrode active material (negative electrode material) applied to a foil (substrate) to have a directionality by the magnetic field of a patterned magnetic body in a process in which a foil (substrate) having a negative electrode active material (negative electrode material) applied to one or both sides passes through magnets arranged in a certain pattern by a conveying roller.
- a negative electrode active material negative electrode material
- Lithium secondary batteries recently being used in electric vehicles use organic electrolytes, and thus exhibit a discharge voltage that is more than twice as high as batteries using conventional alkaline aqueous solutions, resulting in high energy density.
- oxides composed of lithium and transition metals with a structure that allows intercalation of lithium ions such as LiCoO2, LiMn2O4, and LiNi1-xCoxO2 (0 ⁇ x ⁇ 1), are mainly used.
- negative active materials various types of carbon-based materials including artificial and natural graphite and hard carbon that can insert and extract lithium have been applied, and recently, research on non-carbon-based negative active materials based on silicon or tin is being conducted to obtain higher capacity.
- the charge/discharge efficiency of the secondary battery varies depending on the particle uniformity of the graphite contained in the negative active material after application.
- a negative active material is applied to a substrate, usually made of a metal plate, for example, a copper plate, and then a magnetic field is used to orient the substrate by passing it through a magnet before drying after application of the negative active material.
- the present invention is to solve the above problems, and an object of the present invention is to provide an orientation device capable of orienting a foil in a state where eddy current is reduced by controlling the arrangement of magnetic body assemblies arranged at a position through which the foil passes in various ways.
- an orientation device including a plate-shaped magnetic body assembly for orienting a negative active material applied to a foil arranged in a pair and passing therebetween, wherein the magnetic body assembly comprises a plurality of magnet lines formed by arranging pixel magnets in a single row along a width direction, which is a direction in which the foil advances on a plane, and extending in a plurality of adjacent magnet lines in a length direction, the plurality of magnet lines being arranged in a repeating order of a Halbach array line, a S pole array line, a Halbach array line, and a N pole array line, and the plurality of magnet lines are arranged to have an inclination with respect to the width direction.
- the plurality of magnet lines can be formed by tilting in different directions at least twice.
- the plurality of magnet lines may have first and second inclinations that are opposite to each other.
- the inclination may have an angular range of 12 degrees to 32 degrees or an angular range of 17 degrees to 37 degrees with respect to the direction of foil travel.
- the inclination of the plurality of magnet lines in the width direction can be determined by moving and arranging half the width of adjacent pixel magnets along the width direction.
- the magnetic assembly may be formed by arranging the pixel magnets in a single layer.
- the pixel magnets may be formed in a rectangular solid shape.
- an orientation device including a plate-shaped magnetic body assembly for orienting a negative active material applied to a foil arranged in a pair and passing therebetween, wherein the magnetic body assembly is formed by a plurality of magnet lines in which pixel magnets are arranged in a single row along a width direction, which is a direction in which the foil advances on a plane, and which are extended adjacently along a length direction, and the plurality of magnet lines are repeatedly arranged in the order of a Halbach array line, a S pole array line, a Halbach array line, and a N pole array line, and the plurality of magnet lines are arranged so that at least one stage is formed with respect to the width direction and the vertical direction.
- the magnetic assembly can form a spaced line in which magnets are not arranged along the longitudinal direction.
- the orientation device can provide a product that arranges the magnetic array of the Halbach array magnetic assembly to have an incline or step with respect to the foil transport direction, thereby lowering the eddy current intensity and making the magnetic field B-field value appear evenly, and improving the charge/discharge efficiency of the secondary battery by orienting the negative active material particles applied to the foil.
- FIG. 1 is a schematic diagram and an enlarged perspective view of an orientation device according to one embodiment of the present invention.
- FIG. 2 is a plan view of a rib-type magnetic assembly in an orientation device according to the first embodiment of the present invention.
- FIG. 3 is a magnetic field density distribution diagram of a rib-type magnetic body assembly in an orientation device according to the first embodiment of the present invention.
- FIG. 4 is a magnetic field graph along the A direction of a rib-type magnetic body assembly in an orientation device according to the first embodiment of the present invention.
- FIG. 5 is a magnetic field graph along the B direction of a rib-type magnetic body assembly in an orientation device according to the first embodiment of the present invention.
- FIG. 6 is a graph of the average magnetic field of a rib-type magnetic body assembly in an orientation device according to the first embodiment of the present invention.
- Figure 7 is a current density distribution diagram of a foil oriented in a rib type in an orientation device according to the first embodiment of the present invention.
- FIG. 8 is a current vector distribution diagram of a foil oriented in a rib type in an orientation device according to the first embodiment of the present invention.
- FIG. 9 is a graph of the force intensity due to the eddy current of a foil oriented in a rib type in an orientation device according to the first embodiment of the present invention.
- FIG. 10 is a plan view of a V-array type magnetic assembly in an orientation device according to a second embodiment of the present invention.
- FIG. 11 is a magnetic field density distribution diagram of a V-array type magnetic body assembly in an orientation device according to a second embodiment of the present invention.
- FIG. 12 is a magnetic field graph along the A direction of a V-array type magnetic body assembly in an orientation device according to a second embodiment of the present invention.
- FIG. 13 is a magnetic field graph along the B direction of a V-array type magnetic body assembly in an orientation device according to a second embodiment of the present invention.
- FIG. 14 is a graph of the average magnetic field of a V-array type magnetic body assembly in an orientation device according to a second embodiment of the present invention.
- FIG. 15 is a current density distribution diagram of a foil oriented in a V-array type in an orientation device according to a second embodiment of the present invention.
- FIG. 16 is a current vector distribution diagram of a foil oriented in a V array type in an orientation device according to a second embodiment of the present invention.
- Fig. 17 is a graph of the force intensity due to the eddy current of a foil oriented in a V-array type in an orientation device according to the second embodiment of the present invention.
- FIG. 19 is a magnetic field density distribution diagram of a double zigzag type magnetic body assembly in an orientation device according to a third embodiment of the present invention.
- FIG. 20 is a magnetic field graph along the A direction of a double zigzag array type magnetic body assembly in an orientation device according to a third embodiment of the present invention.
- FIG. 22 is a graph of the average magnetic field of a double zigzag array type magnetic body assembly in an orientation device according to a third embodiment of the present invention.
- FIG. 24 is a current vector distribution diagram of a foil oriented in a double zigzag arrangement type in an orientation device according to a third embodiment of the present invention.
- FIG. 25 is a graph of the force intensity due to the eddy current of a foil oriented in a double zigzag arrangement type in an orientation device according to a third embodiment of the present invention.
- Figure 27 is a magnetic field density distribution diagram of a magnetic body assembly of the QS array type in an orientation device according to the fourth embodiment of the present invention.
- Fig. 28 is a magnetic field graph along the A direction of a magnetic body assembly of the QS array type in an orientation device according to the fourth embodiment of the present invention.
- Fig. 30 is a graph of the average magnetic field of a magnetic body assembly of the QS array type in an orientation device according to the fourth embodiment of the present invention.
- Figure 31 is a current density distribution diagram of a foil oriented in a QS array type in an orientation device according to a fourth embodiment of the present invention.
- Figure 32 is a current vector distribution diagram of a foil oriented in a QS array type in an orientation device according to a fourth embodiment of the present invention.
- Figure 33 is a graph of the force intensity due to the eddy current of the foil oriented in the QS array type in the orientation device according to the fourth embodiment of the present invention.
- Figure 34 is a graph showing the average magnetic fields of each embodiment according to the present invention.
- An orientation device (100) is an orientation device including plate-shaped magnetic body assemblies (110, 120, 130, 140) arranged in pairs to orient a foil (1) passing therebetween.
- a foil transport unit may include a pair of magnetic assemblies (110, 120, 130, 140) for orienting a foil transported by a magnetic field.
- the above foil transport unit can transport foil (1), which is usually provided in a roll form, by unrolling it and passing it between a pair of magnetic body assemblies (110, 120, 130, 140).
- such a foil conveyor may include a conveying roller (2).
- the above magnetic assembly (110, 120, 130, 140) may be formed by arranging a plurality of magnet lines in a row along the width direction, which is the direction in which the foil (1) advances on a plane, and extending a plurality of magnet lines adjacent to each other along the length direction.
- the plurality of magnetic lines can be repeatedly arranged in the order of Halbach array lines (111, 121, 131, 141), S pole array lines (112, 122, 132, 142), Halbach array lines (111, 121, 131, 141), N pole array lines (113, 123, 133, 143). That is, the S pole array lines (112, 122, 132, 142) and N pole array lines (113, 123, 133, 143) are alternately arranged between each Halbach array line (111, 121, 131, 141), thereby forming a magnetic body assembly.
- the plurality of magnet lines can be arranged to have an inclination with respect to the width direction. That is, the pixel magnets of the magnetic body assembly can be arranged so that the magnet lines have a constant inclination with respect to the transport direction of the foil.
- the magnetic body assembly (110) is formed in a plate shape and is arranged so that the longitudinal direction of the magnetic body assembly (110) is perpendicular to the foil progress direction. Accordingly, the foil progress direction and the width direction can be arranged parallel to each other.
- the plurality of magnet lines may have a wave shape along the width direction.
- the plurality of magnet lines can be formed by tilting in different directions at least twice.
- the plurality of magnet lines may have first and second inclinations that are opposite to each other.
- the inclination of the plurality of magnet lines in the width direction can be determined by moving and arranging half the width of adjacent pixel magnets along the width direction.
- the magnetic assembly may be formed by arranging the pixel magnets in a single layer.
- the pixel magnets may be formed in a rectangular solid shape.
- the magnetic assembly of the orientation device according to the present invention can be formed in various arrangements as described above, and the electrical and magnetic characteristics of the foil after each orientation are different from each other. Accordingly, a magnetic assembly having suitable characteristics can be selected depending on the purpose and product for which the foil is provided.
- the magnetic field exposure is the average magnetic field the foil is exposed to while being scanned (in Wb/m 2 sec).
- the average magnetic field is the average value (Wb/m 2 ) of the accumulated magnetic field in the direction of foil travel.
- the scan time is the time it takes for the foil to pass through the width of the magnetic assembly.
- the scan time can be obtained by dividing the width of the magnetic assembly of the foil by the moving speed of the foil.
- the moving speed of the foil (1) can be controlled through the rotation speed of the transport roller (2).
- the magnetic field exposure amount can be calculated as follows.
- the Halbach vertical array and the Halbach horizontal array can be manufactured.
- the Halbach vertical array a plurality of magnet lines are arranged as described above, but the Halbach magnet lines are arranged in a direction parallel to the width direction, which is the direction of foil movement, and the magnetic body assembly is manufactured.
- the Halbach horizontal array the Halbach magnet lines are arranged in parallel in the length direction, which is perpendicular to the direction of foil movement.
- the magnetic field unevenness is the magnetic field unevenness accumulated on the scanned foil.
- it means the unevenness of the average value of the magnetic field values measured in 10 mm units in the foil width direction, and can be calculated as shown in the equation below.
- the embodiment of the QS array which is the fourth embodiment, is shown to have the best orientation characteristics. That is, although the eddy current is the smallest, the magnetic field non-uniformity value is also small, showing the best performance.
- the eddy current must be small, which causes resistance when transporting the foil due to the eddy current, which makes the transport of the foil unstable, making it difficult to control the speed, and reducing productivity due to the decrease in speed.
- FIG. 2 a plan view of a rib type magnetic assembly (110) in an orientation device according to a first embodiment of the present invention is illustrated, and referring to FIG. 3, a magnetic field density distribution of a rib type magnetic assembly in an orientation device according to a first embodiment of the present invention is illustrated, and referring to FIG. 4, a magnetic field graph along the A direction of a rib type magnetic assembly in an orientation device according to a first embodiment of the present invention is illustrated, and referring to FIG. 5, a magnetic field graph along the B direction of a rib type magnetic assembly in an orientation device according to a first embodiment of the present invention is illustrated, and referring to FIG.
- FIG. 6 an average magnetic field graph of a rib type magnetic assembly in an orientation device according to a first embodiment of the present invention is illustrated, and referring to FIG. 7, a current density distribution of a foil oriented in the rib type in an orientation device according to a first embodiment of the present invention is illustrated.
- FIG. 8 a current vector distribution diagram of a foil oriented in a rib type in an orientation device according to a first embodiment of the present invention is illustrated, and referring to FIG. 9, a force intensity graph due to an eddy current of a foil oriented in a rib type in an orientation device according to the first embodiment of the present invention is illustrated.
- a plurality of magnet lines are formed in a V-shape centered around the center in the width direction.
- the plurality of magnet lines are formed with an incline that goes down to the center at a first incline based on the drawing of Fig. 2 and then goes up again at a second incline facing from the center in order to have a rib shape.
- this incline can be formed by arranging each pixel magnet (111, 112, 113) forming the magnet line.
- one pixel magnet is formed with the same length and width, but is not limited to this.
- ⁇ 1 is formed in an angle range of 12 degrees to 32 degrees. That is, the first slope is - ⁇ 1, and the second slope is ⁇ 1, and they are arranged in a symmetrical form centered on the center of the width.
- This angular range allows for testing by increasing and decreasing the angle by about 1 degree, and it was found that if the pixel magnets are arranged at an angle outside this angular range, unfavorable results in the orientation characteristics are produced.
- the magnetic field density distribution of the magnetic body assembly is formed along the first slope and the second slope. That is, it can be seen that the magnetic field density distribution is formed along the arrangement of the pixel magnets.
- the intensity of the magnetic field was measured along the A and B directions shown in FIG. 3, and it also changed depending on the arrangement of the magnets.
- the maximum value was 0.69
- the minimum value was 0.54
- the magnetic field unevenness was 12.3%.
- the current density distribution of the scanned foil is illustrated, which has a similar shape along multiple magnet lines, and referring to FIG. 9, the resulting force value due to the eddy current is 25.5 N, which is good.
- FIG. 10 a plan view of a V-array type magnetic assembly (120) in an alignment device according to a second embodiment of the present invention is illustrated, and referring to FIG. 11, a magnetic field density distribution diagram of a V-array type magnetic assembly in an alignment device according to a second embodiment of the present invention is illustrated, and referring to FIG. 12, a magnetic field graph along the A direction of a V-array type magnetic assembly in an alignment device according to a second embodiment of the present invention is illustrated, and referring to FIG. 13, a magnetic field graph along the B direction of a V-array type magnetic assembly in an alignment device according to a second embodiment of the present invention is illustrated, and referring to FIG.
- FIG. 14 an average magnetic field graph of a V-array type magnetic assembly in an alignment device according to a second embodiment of the present invention is illustrated, and referring to FIG. 15, a current density distribution diagram of a foil oriented in the V-array type in an alignment device according to a second embodiment of the present invention is illustrated, and referring to FIG. 16, a V-array type magnetic assembly in an alignment device according to a second embodiment of the present invention is illustrated.
- a current vector distribution diagram of a foil oriented in an array type is illustrated, and with reference to FIG. 17, a force intensity graph due to an eddy current of a foil oriented in a V array type in an orientation device according to a second embodiment of the present invention is illustrated.
- a plurality of magnet lines are formed with an upward slope ( ⁇ 2) and a downward slope (- ⁇ 2) with respect to the center of the length direction as a reference point in the drawing, and the slopes are formed identically but in different directions to form symmetry.
- This slope can be made to have this slope by arranging each pixel magnet forming the magnet line.
- ⁇ 2 is formed at approximately 17 to 37 degrees. That is, it is arranged in a symmetrical form with a slope that rises to ⁇ 2 from the left along the foil progression direction and descends to - ⁇ 2, centered on the center of the longitudinal direction, which is the foil progression direction.
- a magnetic field density distribution is similarly formed along the magnet line.
- the intensity of the magnetic field was measured along the A and B directions shown in FIG. 11, and it also changed depending on the arrangement of the magnets.
- the maximum value was 0.76
- the minimum value was 0.60
- the magnetic field unevenness was 12%.
- the current density distribution of the scanned foil (1) is illustrated, which has a similar shape along a plurality of magnet lines, and referring to FIG. 17, the resulting force value due to the eddy current is 42 N, which is not good.
- FIG. 18 a plan view of a magnetic body assembly (130) of a double zigzag array type in an orientation device according to a third embodiment of the present invention is illustrated, and referring to FIG. 19, a magnetic field density distribution of a magnetic body assembly of a double zigzag array type in an orientation device according to a third embodiment of the present invention is illustrated, and referring to FIG. 20, a magnetic field graph along the A direction of a magnetic body assembly of a double zigzag array type in an orientation device according to a third embodiment of the present invention is illustrated, and referring to FIG.
- FIG. 21 a magnetic field graph along the B direction of a magnetic body assembly of a double zigzag array type in an orientation device according to a third embodiment of the present invention is illustrated, and referring to FIG. 22, a magnetic field graph of a magnetic body assembly of a double zigzag array type in an orientation device according to a third embodiment of the present invention is illustrated.
- An average magnetic field graph is illustrated, and with reference to FIG. 23, a current density distribution of a foil oriented in a double zigzag array type in an orientation device according to a third embodiment of the present invention is illustrated, and with reference to FIG. 24, a current vector distribution of a foil oriented in a double zigzag array type in an orientation device according to a third embodiment of the present invention is illustrated, and with reference to FIG. 25, a force intensity graph due to an eddy current of a foil oriented in a double zigzag array type in an orientation device according to a third embodiment of the present invention is illustrated.
- the width direction based on the drawing can be divided into a left magnet line and a right magnet line based on the center, and a space (134) is formed between them.
- the magnets are arranged so that each of the left and right magnet lines forms a stage. That is, the pixel magnets are arranged so that half are N poles or S poles, and half are H poles (N, S poles lie horizontally).
- the left magnet line and the right magnet line are arranged at different heights, and for this reason, they are described as a double zigzag.
- the width of the left magnet assembly and the width of the right magnet assembly are set to be the same, and the spacing between the left and right magnet assemblies may be appropriately set within a range of 3 to 10% of the width of the left or right magnet assembly.
- a central separation space (134) is formed, and if there is no separation space, the characteristic may be a very high eddy current.
- a magnetic field density distribution is similarly formed along the magnet line.
- the intensity of the magnetic field was measured along the A and B directions shown in FIG. 19, and it also changed depending on the arrangement of the magnets.
- the maximum value was 0.62
- the minimum value was 0.55
- the magnetic field unevenness was 5.6%.
- the current density distribution of the scanned foil (1) is illustrated, which has a similar shape along a plurality of magnet lines, and referring to FIG. 25, the resulting force value due to the eddy current is 25 N, which is good.
- FIG. 26 a plan view of a magnetic body assembly (140) of a QS array type in an orientation device according to a fourth embodiment of the present invention is illustrated.
- FIG. 27 a magnetic field density distribution of a magnetic body assembly of a QS array type in an orientation device according to a fourth embodiment of the present invention is illustrated.
- FIG. 28 a magnetic field graph along the A direction of a magnetic body assembly of a QS array type in an orientation device according to a fourth embodiment of the present invention is illustrated.
- FIG. 29 a magnetic field graph along the B direction of a magnetic body assembly of a QS array type in an orientation device according to a fourth embodiment of the present invention is illustrated. Referring to FIG.
- an average magnetic field graph of a magnetic body assembly of a QS array type in an orientation device according to a fourth embodiment of the present invention is illustrated.
- a current density distribution of a foil oriented in a QS array type in an orientation device according to a fourth embodiment of the present invention is illustrated.
- a current vector distribution diagram of a foil oriented in a QS array type in an orientation device according to a fourth embodiment of the present invention is illustrated.
- a force intensity graph due to an eddy current of a foil oriented in a QS array type in an orientation device according to a fourth embodiment of the present invention is illustrated.
- the magnet lines are arranged in a W-shaped wave shape along the width direction based on the drawing.
- This shape can be viewed as the rib shape of the first embodiment extended along the foil progression direction. In other words, it is an arrangement shape in which the V-shaped shape is extended not once but multiple times, and accordingly, it can be guessed in advance that the uniformity can be improved.
- the QS array type illustrated in Fig. 26 is formed with ⁇ 3 of 17 degrees to 37 degrees. That is, pixel magnets are arranged with a descending slope, an ascending slope, a descending slope again, and an ascending slope along the foil travel direction to form a W-shaped wave shape.
- a magnetic field density distribution is similarly formed along the magnet line.
- the intensity of the magnetic field was measured along the A and B directions shown in FIG. 27, and it also changed depending on the arrangement of the magnets.
- the maximum value was 0.58
- the minimum value was 0.54
- the magnetic field unevenness had the lowest value of 3.7%.
- the current density distribution of the scanned foil (1) is illustrated, which has a similar shape along a plurality of magnet lines, and referring to FIG. 33, the resulting force value due to the eddy current is 24 N, which is good.
- FIG. 34 a graph is shown that displays the average magnetic fields of each embodiment according to the present invention.
- the results show that the Halbach vertical arrangement is significantly worse than other examples, and the remaining examples are within a certain range.
- the rib arrangement of the first embodiment and the V-array of the second embodiment both showed higher eddy current intensity and nonuniformity by more than 10% than the third and fourth embodiments, so it would be reasonable to apply a double zigzag arrangement or a QS arrangement.
- the QS arrangement according to the fourth embodiment shows the best characteristics in both eddy current intensity and uniformity.
- the present invention can be applied to orientate particles of a negative electrode active material applied to a foil in a secondary battery so as to have directionality.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Power Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Magnetic Resonance Imaging Apparatus (AREA)
Abstract
Disclosed is a device, which, during a process in which a foil (substrate), having an anode active material (anode material) applied to one or both sides thereof, passes, by means of a conveying roller, through magnets disposed in a predetermined pattern, performs magnetic processing for orienting, by means of the magnetic field of the magnets arranged in a pattern, particles of the anode active material applied to the foil such that directionality is provided thereto, and thus improves the charge/discharge efficiency of a secondary battery, which is a finished product. An orientation device according to one aspect of the present invention comprises a flat magnetic assembly, which is disposed in pairs so as to orient an anode active material applied onto a foil passing therebetween, wherein the magnetic assembly is formed of a plurality of magnet lines which extend adjacent to each other in the longitudinal direction and in which pixel magnets are arranged in a row in the width direction, which is the direction in which the foil advances on a flat surface, and the plurality of magnet lines are repeated and arranged in the order of Halbach array line, S pole array line, Halbach array line, and N pole array line, and the plurality of magnet lines can be arranged to be inclined with respect to the width direction.
Description
본 발명은 배향장치에 관한 것으로서, 보다 상세하게는 음극활물질(음극재)이 일면 또는 양면에 도포된 포일(기재)이 이송롤러에 의해서 일정패턴으로 배치된 자석을 통과하는 과정에서 패턴 배열된 자성체의 자기장에 의해서 포일에 도포된 음극활물질의 입자를 방향성을 갖도록 배향시키는 자력처리함으로써, 완제품인 이차 전지의 충방전 효율을 향상시키는 장치에 관한 것이다.The present invention relates to an orientation device, and more specifically, to a device for improving the charge and discharge efficiency of a secondary battery, which is a finished product, by magnetically processing particles of a negative electrode active material (negative electrode material) applied to a foil (substrate) to have a directionality by the magnetic field of a patterned magnetic body in a process in which a foil (substrate) having a negative electrode active material (negative electrode material) applied to one or both sides passes through magnets arranged in a certain pattern by a conveying roller.
최근 전기자동차에 적용되고 있는 리튬 이차전지는 유기 전해액을 사용함에 따라, 기존의 알칼리 수용액을 사용한 전지보다 2배 이상의 높은 방전 전압을 나타내며, 그 결과 높은 에너지 밀도를 나타내는 전지이다.Lithium secondary batteries recently being used in electric vehicles use organic electrolytes, and thus exhibit a discharge voltage that is more than twice as high as batteries using conventional alkaline aqueous solutions, resulting in high energy density.
리튬 이차 전지의 양극 활물질로는 LiCoO2, LiMn2O4, LiNi1-xCoxO2(0 < x < 1)등과 같이 리튬 이온의 인터칼레이션이 가능한 구조를 가진 리튬과 전이 금속으로 이루어진 산화물이 주로 사용된다.As a cathode active material for lithium secondary batteries, oxides composed of lithium and transition metals with a structure that allows intercalation of lithium ions, such as LiCoO2, LiMn2O4, and LiNi1-xCoxO2 (0 < x < 1), are mainly used.
음극 활물질로는 리튬의 삽입, 탈리가 가능한 인조, 천연 흑연, 하드 카본을 포함한 다양한 형태의 탄소계 재료가 적용되어 왔으며, 최근 보다 고용량을 얻기 위하여 실리콘이나 주석계를 기반으로 하는 비탄소계 음극 활물질에 관한 연구가 진행되고 있다.As negative active materials, various types of carbon-based materials including artificial and natural graphite and hard carbon that can insert and extract lithium have been applied, and recently, research on non-carbon-based negative active materials based on silicon or tin is being conducted to obtain higher capacity.
한편, 음극 활물질은 도포 후 활물질에 포함된 흑연의 입자 균일도에 따라서 이차전지의 충방전 효율이 달라진다.Meanwhile, the charge/discharge efficiency of the secondary battery varies depending on the particle uniformity of the graphite contained in the negative active material after application.
이때, 통상 금속 박판, 예를 들면 구리 박판으로 이루어진 기재에 음극 활물질을 도포한 다음 자기장을 이용하여 통상 음극 활물질 도포 후 건조되기 전에 자석을 통과시켜 배향하게 된다.At this time, a negative active material is applied to a substrate, usually made of a metal plate, for example, a copper plate, and then a magnetic field is used to orient the substrate by passing it through a magnet before drying after application of the negative active material.
그러나, 종래기술에 의한 배향장치의 경우 단순히 일렬로 영구자석을 배열하기 때문에 와전류에 의한 저항 값이 높게 나타나 양산속도로 (약80m/min) 포일을 이송하는데 문제가 있었다.However, in the case of the orientation device using the conventional technology, since the permanent magnets are simply arranged in a row, the resistance value due to the eddy current is high, so there was a problem in transporting the foil at mass production speed (approximately 80 m/min).
본 발명은 상기와 같은 문제점을 해결하기 위한 것으로, 본 발명의 목적은 포일이 통과하는 위치에 배치되는 자성체 어셈블리의 배열을 여러 가지 방법으로 조절함으로써 와전류가 적게 발생하는 상태로 포일을 배향할 수 있는 배향장치를 제공하는 것이다.The present invention is to solve the above problems, and an object of the present invention is to provide an orientation device capable of orienting a foil in a state where eddy current is reduced by controlling the arrangement of magnetic body assemblies arranged at a position through which the foil passes in various ways.
본 발명의 과제들은 이상에서 언급한 과제들로 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 본 발명이 속하는 기술분야의 통상의 기술자에게 명확하게 이해될 수 있을 것이다. The tasks of the present invention are not limited to the tasks mentioned above, and other tasks not mentioned will be clearly understood by those skilled in the art to which the present invention belongs from the description below.
본 발명의 일 측면에 따르면, 한 쌍으로 배치되어 그 사이를 통과하는 포일에 도포된 음극 활물질을 배향시키는 판상형의 자성체 어셈블리를 포함하는 배향장치로서, 상기 자성체 어셈블리는 평면 상 상기 포일의 진행 방향인 폭 방향을 따라 픽셀 자석들이 일렬로 배열되어 이루어진 복수개의 자석 라인이 길이 방향을 따라 인접하여 복수개가 연장되어 이루어지고, 상기 복수개의 자석 라인이 할바흐 배열 라인, S극 배열 라인, 할바흐 배열 라인, N극 배열 라인의 순서로 반복하여 배열되며, 상기 복수개의 자석 라인은 폭 방향에 대하여 기울기를 갖도록 배열된, 배향장치가 제공된다.According to one aspect of the present invention, there is provided an orientation device including a plate-shaped magnetic body assembly for orienting a negative active material applied to a foil arranged in a pair and passing therebetween, wherein the magnetic body assembly comprises a plurality of magnet lines formed by arranging pixel magnets in a single row along a width direction, which is a direction in which the foil advances on a plane, and extending in a plurality of adjacent magnet lines in a length direction, the plurality of magnet lines being arranged in a repeating order of a Halbach array line, a S pole array line, a Halbach array line, and a N pole array line, and the plurality of magnet lines are arranged to have an inclination with respect to the width direction.
이때, 상기 복수개의 자석 라인은 상기 폭 방향을 따라 웨이브 형태를 가질 수 있다.At this time, the plurality of magnet lines may have a wave shape along the width direction.
이때, 상기 복수개의 자석 라인은 적어도 두 번 이상 서로 다른 방향의 기울기 기울어져 이루어질 수 있다.At this time, the plurality of magnet lines can be formed by tilting in different directions at least twice.
이때, 상기 복수개의 자석 라인은 서로 반대 방향인 제1 기울기와 제2 기울기를 가질 수 있다.At this time, the plurality of magnet lines may have first and second inclinations that are opposite to each other.
이때, 상기 기울기는 포일 진행 방향에 대하여 12도 - 32도의 각도 범위 또는 17도 - 37도의 각도 범위를 가질 수 있다.At this time, the inclination may have an angular range of 12 degrees to 32 degrees or an angular range of 17 degrees to 37 degrees with respect to the direction of foil travel.
이때, 상기 복수개의 자석 라인이 폭 방향에 대하여 갖는 기울기는 폭 방향을 따라 인접하는 픽셀 자석의 폭의 절반을 이동 배치함으로써 정해질 수 있다.At this time, the inclination of the plurality of magnet lines in the width direction can be determined by moving and arranging half the width of adjacent pixel magnets along the width direction.
이때, 상기 자성체 어셈블리는 상기 픽셀 자석들이 한 층으로 배치되어 이루어질 수 있다.At this time, the magnetic assembly may be formed by arranging the pixel magnets in a single layer.
이때, 상기 픽셀 자석들은 직육면체 형태로 이루어질 수 있다.At this time, the pixel magnets may be formed in a rectangular solid shape.
본 발명의 다른 일측면에 따르면, 한 쌍으로 배치되어 그 사이를 통과하는 포일에 도포된 음극 활물질을 배향시키는 판상형의 자성체 어셈블리를 포함하는 배향장치로서, 상기 자성체 어셈블리는 평면 상 상기 포일의 진행 방향인 폭 방향을 따라 픽셀 자석들이 일렬로 배열되어 이루어진 복수개의 자석 라인이 길이 방향을 따라 인접하여 연장되어 이루어지고, 상기 복수개의 자석 라인이 할바흐 배열 라인, S극 배열 라인, 할바흐 배열 라인, N극 배열 라인의 순서로 반복하여 배열되며, 상기 복수개의 자석 라인은 폭 방향과 상하 방향에 대하여 적어도 한 번 이상의 단이 형성되도록 배열된, 배향장치가 제공된다.According to another aspect of the present invention, there is provided an orientation device including a plate-shaped magnetic body assembly for orienting a negative active material applied to a foil arranged in a pair and passing therebetween, wherein the magnetic body assembly is formed by a plurality of magnet lines in which pixel magnets are arranged in a single row along a width direction, which is a direction in which the foil advances on a plane, and which are extended adjacently along a length direction, and the plurality of magnet lines are repeatedly arranged in the order of a Halbach array line, a S pole array line, a Halbach array line, and a N pole array line, and the plurality of magnet lines are arranged so that at least one stage is formed with respect to the width direction and the vertical direction.
이때, 상기 자성체 어셈블리는 길이 방향을 따라 자석이 배치되지 않은 이격 라인이 형성될 수 있다.At this time, the magnetic assembly can form a spaced line in which magnets are not arranged along the longitudinal direction.
상기의 구성에 따라, 본 발명의 일 측면에 따른 배향장치는 할바흐 배열 자성체 어셈블리의 자성체 배열을 포일 이송방향에 대하여 기울기를 가지거나 단을 가지도록 배열함으로써 와전류 세기는 낮추고 자기장 비필드 (B-Field) 값은 모두 고르게 나타나도록 하고 포일에 도포된 음극 활물질 입자를 배향시켜 2차전지의 충방전 효율을 개선하는 제품을 제공할 수 있다According to the above configuration, the orientation device according to one aspect of the present invention can provide a product that arranges the magnetic array of the Halbach array magnetic assembly to have an incline or step with respect to the foil transport direction, thereby lowering the eddy current intensity and making the magnetic field B-field value appear evenly, and improving the charge/discharge efficiency of the secondary battery by orienting the negative active material particles applied to the foil.
본 발명의 효과는 상기한 효과로 한정되는 것은 아니며, 본 발명의 상세한 설명 또는 청구범위에 기재된 발명의 구성으로부터 추론 가능한 모든 효과를 포함하는 것으로 이해되어야 한다.It should be understood that the effects of the present invention are not limited to the effects described above, but include all effects that can be inferred from the composition of the invention described in the detailed description or claims of the present invention.
도 1은 본 발명의 일 실시예에 따른 배향장치의 모식도와 확대 사시도이다.FIG. 1 is a schematic diagram and an enlarged perspective view of an orientation device according to one embodiment of the present invention.
도 2는 본 발명의 제1 실시예에 따른 배향장치에서 리브(Rib) 타입의 자성체 어셈블리의 평면도이다.FIG. 2 is a plan view of a rib-type magnetic assembly in an orientation device according to the first embodiment of the present invention.
도 3은 본 발명의 제1 실시예에 따른 배향장치에서 리브(Rib) 타입의 자성체 어셈블리의 자기장 밀도 분포도이다.FIG. 3 is a magnetic field density distribution diagram of a rib-type magnetic body assembly in an orientation device according to the first embodiment of the present invention.
도 4는 본 발명의 제1 실시예에 따른 배향장치에서 리브(Rib) 타입의 자성체 어셈블리의 A 방향에 따른 자기장 그래프이다.FIG. 4 is a magnetic field graph along the A direction of a rib-type magnetic body assembly in an orientation device according to the first embodiment of the present invention.
도 5는 본 발명의 제1 실시예에 따른 배향장치에서 리브(Rib) 타입의 자성체 어셈블리의 B 방향에 따른 자기장 그래프이다.FIG. 5 is a magnetic field graph along the B direction of a rib-type magnetic body assembly in an orientation device according to the first embodiment of the present invention.
도 6은 본 발명의 제1 실시예에 따른 배향장치에서 리브(Rib) 타입의 자성체 어셈블리의 평균 자기장 그래프이다.FIG. 6 is a graph of the average magnetic field of a rib-type magnetic body assembly in an orientation device according to the first embodiment of the present invention.
도 7은 본 발명의 제1 실시예에 따른 배향장치에서 리브(Rib) 타입에서 배향된 포일의 전류 밀도 분포도이다.Figure 7 is a current density distribution diagram of a foil oriented in a rib type in an orientation device according to the first embodiment of the present invention.
도 8은 본 발명의 제1 실시예에 따른 배향장치에서 리브(Rib) 타입에서 배향된 포일의 전류 벡터 분포도이다.FIG. 8 is a current vector distribution diagram of a foil oriented in a rib type in an orientation device according to the first embodiment of the present invention.
도 9는 본 발명의 제1 실시예에 따른 배향장치에서 리브(Rib) 타입에서 배향된 포일의 와전류에 의한 힘 세기 그래프이다.FIG. 9 is a graph of the force intensity due to the eddy current of a foil oriented in a rib type in an orientation device according to the first embodiment of the present invention.
도 10은 본 발명의 제2 실시예에 따른 배향장치에서 V 배열 타입의 자성체 어셈블리의 평면도이다.FIG. 10 is a plan view of a V-array type magnetic assembly in an orientation device according to a second embodiment of the present invention.
도 11은 본 발명의 제2 실시예에 따른 배향장치에서 V 배열 타입의 자성체 어셈블리의 자기장 밀도 분포도이다.FIG. 11 is a magnetic field density distribution diagram of a V-array type magnetic body assembly in an orientation device according to a second embodiment of the present invention.
도 12는 본 발명의 제2 실시예에 따른 배향장치에서 V 배열 타입의 자성체 어셈블리의 A 방향에 따른 자기장 그래프이다.FIG. 12 is a magnetic field graph along the A direction of a V-array type magnetic body assembly in an orientation device according to a second embodiment of the present invention.
도 13은 본 발명의 제2 실시예에 따른 배향장치에서 V 배열 타입의 자성체 어셈블리의 B 방향에 따른 자기장 그래프이다.FIG. 13 is a magnetic field graph along the B direction of a V-array type magnetic body assembly in an orientation device according to a second embodiment of the present invention.
도 14는 본 발명의 제2 실시예에 따른 배향장치에서 V 배열 타입의 자성체 어셈블리의 평균 자기장 그래프이다.FIG. 14 is a graph of the average magnetic field of a V-array type magnetic body assembly in an orientation device according to a second embodiment of the present invention.
도 15는 본 발명의 제2 실시예에 따른 배향장치에서 V 배열 타입에서 배향된 포일의 전류 밀도 분포도이다.FIG. 15 is a current density distribution diagram of a foil oriented in a V-array type in an orientation device according to a second embodiment of the present invention.
도 16은 본 발명의 제2 실시예에 따른 배향장치에서 V 배열 타입에서 배향된 포일의 전류 벡터 분포도이다.FIG. 16 is a current vector distribution diagram of a foil oriented in a V array type in an orientation device according to a second embodiment of the present invention.
도 17은 본 발명의 제2 실시예에 따른 배향장치에서 V 배열 타입에서 배향된 포일의 와전류에 의한 힘 세기 그래프이다.Fig. 17 is a graph of the force intensity due to the eddy current of a foil oriented in a V-array type in an orientation device according to the second embodiment of the present invention.
도 18은 본 발명의 제3 실시예에 따른 배향장치에서 더블 지그재그(double zigzag) 배열 타입의 자성체 어셈블리의 평면도이다.FIG. 18 is a plan view of a double zigzag array type magnetic body assembly in an orientation device according to a third embodiment of the present invention.
도 19는 본 발명의 제3 실시예에 따른 배향장치에서 더블 지그재그(double zigzag) 타입의 자성체 어셈블리의 자기장 밀도 분포도이다.FIG. 19 is a magnetic field density distribution diagram of a double zigzag type magnetic body assembly in an orientation device according to a third embodiment of the present invention.
도 20은 본 발명의 제3 실시예에 따른 배향장치에서 더블 지그재그(double zigzag) 배열 타입의 자성체 어셈블리의 A 방향에 따른 자기장 그래프이다.FIG. 20 is a magnetic field graph along the A direction of a double zigzag array type magnetic body assembly in an orientation device according to a third embodiment of the present invention.
도 21은 본 발명의 제3 실시예에 따른 배향장치에서 더블 지그재그(double zigzag) 배열 타입의 자성체 어셈블리의 B 방향에 따른 자기장 그래프이다.FIG. 21 is a magnetic field graph along the B direction of a double zigzag array type magnetic body assembly in an orientation device according to a third embodiment of the present invention.
도 22는 본 발명의 제3 실시예에 따른 배향장치에서 더블 지그재그(double zigzag) 배열 타입의 자성체 어셈블리의 평균 자기장 그래프이다.FIG. 22 is a graph of the average magnetic field of a double zigzag array type magnetic body assembly in an orientation device according to a third embodiment of the present invention.
도 23은 본 발명의 제3 실시예에 따른 배향장치에서 더블 지그재그(double zigzag) 배열 타입에서 배향된 포일의 전류 밀도 분포도이다.FIG. 23 is a current density distribution diagram of a foil oriented in a double zigzag arrangement type in an orientation device according to a third embodiment of the present invention.
도 24는 본 발명의 제3 실시예에 따른 배향장치에서 더블 지그재그(double zigzag) 배열 타입에서 배향된 포일의 전류 벡터 분포도이다.FIG. 24 is a current vector distribution diagram of a foil oriented in a double zigzag arrangement type in an orientation device according to a third embodiment of the present invention.
도 25는 본 발명의 제3 실시예에 따른 배향장치에서 더블 지그재그(double zigzag) 배열 타입에서 배향된 포일의 와전류에 의한 힘 세기 그래프이다.FIG. 25 is a graph of the force intensity due to the eddy current of a foil oriented in a double zigzag arrangement type in an orientation device according to a third embodiment of the present invention.
도 26은 본 발명의 제4 실시예에 따른 배향장치에서 QS 배열 타입의 자성체 어셈블리의 평면도이다.FIG. 26 is a plan view of a magnetic body assembly of the QS array type in an orientation device according to the fourth embodiment of the present invention.
도 27은 본 발명의 제4 실시예에 따른 배향장치에서 QS 배열 타입의 자성체 어셈블리의 자기장 밀도 분포도이다.Figure 27 is a magnetic field density distribution diagram of a magnetic body assembly of the QS array type in an orientation device according to the fourth embodiment of the present invention.
도 28은 본 발명의 제4 실시예에 따른 배향장치에서 QS 배열 타입의 자성체 어셈블리의 A 방향에 따른 자기장 그래프이다.Fig. 28 is a magnetic field graph along the A direction of a magnetic body assembly of the QS array type in an orientation device according to the fourth embodiment of the present invention.
도 29는 본 발명의 제4 실시예에 따른 배향장치에서 QS 배열 타입의 자성체 어셈블리의 B 방향에 따른 자기장 그래프이다.FIG. 29 is a magnetic field graph along the B direction of a magnetic body assembly of the QS array type in an orientation device according to the fourth embodiment of the present invention.
도 30은 본 발명의 제4 실시예에 따른 배향장치에서 QS 배열 타입의 자성체 어셈블리의 평균 자기장 그래프이다.Fig. 30 is a graph of the average magnetic field of a magnetic body assembly of the QS array type in an orientation device according to the fourth embodiment of the present invention.
도 31은 본 발명의 제4 실시예에 따른 배향장치에서 QS 배열 타입에서 배향된 포일의 전류 밀도 분포도이다.Figure 31 is a current density distribution diagram of a foil oriented in a QS array type in an orientation device according to a fourth embodiment of the present invention.
도 32는 본 발명의 제4 실시예에 따른 배향장치에서 QS 배열 타입에서 배향된 포일의 전류 벡터 분포도이다.Figure 32 is a current vector distribution diagram of a foil oriented in a QS array type in an orientation device according to a fourth embodiment of the present invention.
도 33은 본 발명의 제4 실시예에 따른 배향장치에서 QS 배열 타입에서 배향된 포일의 와전류에 의한 힘 세기 그래프이다.Figure 33 is a graph of the force intensity due to the eddy current of the foil oriented in the QS array type in the orientation device according to the fourth embodiment of the present invention.
도 34는 본 발명에 의한 실시예들에서 각 실시예들의 평균 자기장을 모두 함께 표시한 그래프이다.Figure 34 is a graph showing the average magnetic fields of each embodiment according to the present invention.
이하, 첨부한 도면을 참고로 하여 본 발명의 실시예에 대하여 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다. 본 발명을 명확하게 설명하기 위해서 도면에서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 동일 또는 유사한 구성요소에 대해서는 동일한 참조부호를 붙였다.Hereinafter, with reference to the attached drawings, embodiments of the present invention will be described in detail so that those skilled in the art can easily practice the present invention. The present invention may be implemented in various different forms and is not limited to the embodiments described herein. In order to clearly describe the present invention, parts that are not related to the description are omitted in the drawings, and the same reference numerals are assigned to the same or similar components throughout the specification.
본 명세서 및 청구범위에 사용된 단어와 용어는 통상적이거나 사전적인 의미로 한정 해석되지 않고, 자신의 발명을 최선의 방법으로 설명하기 위해 발명자가 용어와 개념을 정의할 수 있는 원칙에 따라 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야 한다.The words and terms used in this specification and claims should not be construed as limited to their usual or dictionary meanings, but should be interpreted as having meanings and concepts consistent with the technical idea of the present invention, in accordance with the principles by which the inventor can define terms and concepts in order to best describe his or her invention.
그러므로 본 명세서에 기재된 실시예와 도면에 도시된 구성은 본 발명의 바람직한 일 실시예에 해당하고, 본 발명의 기술적 사상을 모두 대변하는 것이 아니므로 해당 구성은 본 발명의 출원시점에서 이를 대체할 다양한 균등물과 변형예가 있을 수 있다.Therefore, the embodiments described in this specification and the configurations illustrated in the drawings correspond to a preferred embodiment of the present invention and do not represent all of the technical ideas of the present invention, so the corresponding configuration may have various equivalents and modified examples that can replace it at the time of filing of the present invention.
본 명세서에서, "포함하다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성 요소, 부품 또는 이들을 조합한 것이 존재함을 설명하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성 요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.In this specification, the terms “include” or “have” are intended to describe the presence of a feature, number, step, operation, component, part or combination thereof described in the specification, but should be understood to not exclude in advance the possibility of the presence or addition of one or more other features, numbers, steps, operations, components, parts or combinations thereof.
어떤 구성 요소가 다른 구성 요소의 "전방", "후방", "상부" 또는 "하부"에 있다는 것은 특별한 사정이 없는 한 다른 구성 요소와 바로 접하여 "전방", "후방", "상부" 또는 "하부"에 배치되는 것뿐만 아니라 그 중간에 또 다른 구성 요소가 배치되는 경우도 포함한다. 또한, 어떤 구성 요소가 다른 구성 요소와 "연결"되어 있다는 것은 특별한 사정이 없는 한 서로 직접 연결되는 것뿐만 아니라 간접적으로 서로 연결되는 경우도 포함한다.When a component is said to be "in front of," "behind," "above," or "below" another component, unless there are special circumstances, it includes not only being positioned "in front of," "behind," "above," or "below" the other component in direct contact with it, but also cases where there are other components intervening therebetween. Furthermore, when a component is said to be "connected" to another component, unless there are special circumstances, it includes not only being directly connected to one another, but also indirectly connected to one another.
이하에서는 도면을 참조하여 본 발명의 실시예에 따른 배향장치(100)를 설명한다.Below, an orientation device (100) according to an embodiment of the present invention will be described with reference to the drawings.
본 발명의 일 실시예에 따른 배향장치(100)는 한 쌍으로 배치되어 그 사이를 통과하는 포일(1)을 배향시키는 판상형의 자성체 어셈블리(110, 120, 130, 140)를 포함하는 배향장치이다.An orientation device (100) according to one embodiment of the present invention is an orientation device including plate-shaped magnetic body assemblies (110, 120, 130, 140) arranged in pairs to orient a foil (1) passing therebetween.
본 발명일 일 실시예에 포일 이송부, 자기장에 의해 이송되는 포일을 배향시키는 한 쌍의 자성체 어셈블리(110, 120, 130, 140)를 포함할 수 있다.In one embodiment of the present invention, a foil transport unit may include a pair of magnetic assemblies (110, 120, 130, 140) for orienting a foil transported by a magnetic field.
상기 포일 이송부는, 도 1을 참고하면, 통상 롤 형태 제공되는 포일(1)을 풀어 한 쌍의 자성체 어셈블리(110, 120, 130, 140) 사이를 통과하도록 이송시킬 수 있다. Referring to Fig. 1, the above foil transport unit can transport foil (1), which is usually provided in a roll form, by unrolling it and passing it between a pair of magnetic body assemblies (110, 120, 130, 140).
통상적으로 이러한 포일 이송부는 이송 롤러(2)를 포함할 수 있다.Typically, such a foil conveyor may include a conveying roller (2).
상기 자성체 어셈블리(110, 120, 130, 140)는 도 1 및 도 33을 참고하면, 평면 상 상기 포일(1)의 진행 방향인 폭 방향을 따라 픽셀 자석들이 일렬로 배열되어 이루어진 복수개의 자석 라인이 길이 방향을 따라 인접하여 복수개가 연장되어 이루어질 수 있다.Referring to FIG. 1 and FIG. 33, the above magnetic assembly (110, 120, 130, 140) may be formed by arranging a plurality of magnet lines in a row along the width direction, which is the direction in which the foil (1) advances on a plane, and extending a plurality of magnet lines adjacent to each other along the length direction.
이때, 상기 복수개의 자석 라인이 할바흐 배열 라인(111, 121, 131, 141), S극 배열 라인(112, 122, 132, 142), 할바흐 배열 라인(111, 121, 131, 141), N극 배열 라인(113, 123, 133, 143)의 순서로 반복하여 배열될 수 있다. 즉 할바흐 배열 라인(111, 121, 131, 141) 사이마다 S극 배열 라인(112, 122, 132, 142)과 N극 배열 라인(113, 123, 133, 143)이 교번하여 배열된 형태를 반복하여 자성체 어셈블리를 형성하게 된다.At this time, the plurality of magnetic lines can be repeatedly arranged in the order of Halbach array lines (111, 121, 131, 141), S pole array lines (112, 122, 132, 142), Halbach array lines (111, 121, 131, 141), N pole array lines (113, 123, 133, 143). That is, the S pole array lines (112, 122, 132, 142) and N pole array lines (113, 123, 133, 143) are alternately arranged between each Halbach array line (111, 121, 131, 141), thereby forming a magnetic body assembly.
여기서, 상기 복수개의 자석 라인은 폭 방향에 대하여 기울기를 갖도록 배열될 수 있다. 즉 포일의 이송방향에 대하여 자석 라인들이 일정한 기울기를 갖도록 자성체 어셈블리의 픽셀 자석들을 배열할 수 있다.Here, the plurality of magnet lines can be arranged to have an inclination with respect to the width direction. That is, the pixel magnets of the magnetic body assembly can be arranged so that the magnet lines have a constant inclination with respect to the transport direction of the foil.
이때, 예들 들어, 도 2를 참고하면, 자성체 어셈블리(110)는 판상형으로 이루어지고, 포일 진행 방향에 대하여 수직인 방향으로 자성체 어셈블리(110)의 길이 방향이 되도록 배치되어 있다. 따라서 포일 진행 방향과 폭방향은 서로 평행하게 배치될 수 있다.At this time, for example, referring to FIG. 2, the magnetic body assembly (110) is formed in a plate shape and is arranged so that the longitudinal direction of the magnetic body assembly (110) is perpendicular to the foil progress direction. Accordingly, the foil progress direction and the width direction can be arranged parallel to each other.
이때, 상기 복수개의 자석 라인은 상기 폭 방향을 따라 웨이브 형태를 가질 수 있다.At this time, the plurality of magnet lines may have a wave shape along the width direction.
이때, 상기 복수개의 자석 라인은 적어도 두 번 이상 서로 다른 방향의 기울기 기울어져 이루어질 수 있다.At this time, the plurality of magnet lines can be formed by tilting in different directions at least twice.
이때, 상기 복수개의 자석 라인은 서로 반대 방향인 제1 기울기와 제2 기울기를 가질 수 있다.At this time, the plurality of magnet lines may have first and second inclinations that are opposite to each other.
이때, 상기 복수개의 자석 라인이 폭 방향에 대하여 갖는 기울기는 폭 방향을 따라 인접하는 픽셀 자석의 폭의 절반을 이동 배치함으로써 정해질 수 있다.At this time, the inclination of the plurality of magnet lines in the width direction can be determined by moving and arranging half the width of adjacent pixel magnets along the width direction.
이때, 상기 자성체 어셈블리는 상기 픽셀 자석들이 한 층으로 배치되어 이루어질 수 있다.At this time, the magnetic assembly may be formed by arranging the pixel magnets in a single layer.
이때, 상기 픽셀 자석들은 직육면체 형태로 이루어질 수 있다.At this time, the pixel magnets may be formed in a rectangular solid shape.
이렇게 본 발명에 따른 배향장치의 자성체 어셈블리는 전술한 다양한 배열로 이루어질 수 있고, 각각 배향 후 포일의 전기적, 자기장 특징이 서로 상이하다. 따라서 포일이 제공되는 목적과 제품에 따라 이에 적합한 특성을 갖는 자성체 어셈블리를 선택할 수 있다.In this way, the magnetic assembly of the orientation device according to the present invention can be formed in various arrangements as described above, and the electrical and magnetic characteristics of the foil after each orientation are different from each other. Accordingly, a magnetic assembly having suitable characteristics can be selected depending on the purpose and product for which the foil is provided.
한편 이러한 자성체 어셈블리에서 픽셀 자석의 배열에 따라 다양한 배열을 고려할 수 있고, 서로 다른 배열을 가지는 자성체 어셈블리에 대한 자기장 노출량과 스캔된 포일의 자기장 불균일도를 측정함으로써 적합한 배향을 제공하는 자성체 어셈블리를 선택할 수 있다.Meanwhile, in these magnetic assemblies, various arrangements can be considered according to the arrangement of pixel magnets, and by measuring the magnetic field exposure amount and the magnetic field non-uniformity of the scanned foil for magnetic assemblies having different arrangements, a magnetic assemblies providing a suitable orientation can be selected.
여기서, 자성체 어셈블리의 자기장(B-Field) 노출량 관련 값들은 아래의 식들과 계산을 통하여 알 수 있다.Here, the values related to the magnetic field (B-Field) exposure of the magnetic body assembly can be found through the equations and calculations below.
먼저, 자기장 노출량은 포일이 스캔되는 동안 평균 자기장이 노출되는 양(Wb/m2sec)이다.First, the magnetic field exposure is the average magnetic field the foil is exposed to while being scanned (in Wb/m 2 sec).
이때, 평균 자기장은 포일 진행 방향의 누적 자기장의 평균 값(Wb/m2)이다.At this time, the average magnetic field is the average value (Wb/m 2 ) of the accumulated magnetic field in the direction of foil travel.
이때, 스캔 시간은 포일이 자성체 어셈블리의 폭을 지나가는 시간이다. 스캔 시간은 포일의 이동속도로 포일의 자성체 어셈블리의 폭을 나눠 구할 수 있다.Here, the scan time is the time it takes for the foil to pass through the width of the magnetic assembly. The scan time can be obtained by dividing the width of the magnetic assembly of the foil by the moving speed of the foil.
이때, 포일(1)의 이동 속도는 이송롤러(2)의 회전 속도를 통해 제어 가능하다. At this time, the moving speed of the foil (1) can be controlled through the rotation speed of the transport roller (2).
따라서 예를 들어, 포일(1)의 폭이 600mm이고, 이송롤러(2)에 의해 구현되는 포일의 이동속도가 80m/min(1.33m/sec)이며, 측정되는 평균 자기장이 0.66T인 경우 지기장 노출량은 아래와 같이 계산될 수 있다.Therefore, for example, if the width of the foil (1) is 600 mm, the moving speed of the foil implemented by the conveying roller (2) is 80 m/min (1.33 m/sec), and the average magnetic field measured is 0.66 T, the magnetic field exposure amount can be calculated as follows.
자기장 노출량 = 0.66 × 0.45 = 0.296 Wb/m2·secMagnetic field exposure = 0.66 × 0.45 = 0.296 Wb/m2·sec
이러한 경우는 할바흐 가로 배열을 예를 들어 설명한 것이다.This case is explained using the Halbach transverse arrangement as an example.
여기서, 할바흐 세로 배열과 할바흐 가로 배열을 제작할 수 있다. 이때, 할바흐 세로 배열의 경우에는 복수개의 자석 라인을 전술한 바와 같이 배열하되 할바흐 자석 라인을 포일 이동 방향인 폭 방향과 평행한 방향으로 배열하여 제작한 자성체 어셈블리이다. 이와 반대로, 할바흐 가로 배열의 경우에는 할바흐 자석 라인을 포일 이동 방향에 수직인 길이 방향으로 평행하게 배열한 자성체 어셈블리이다.Here, the Halbach vertical array and the Halbach horizontal array can be manufactured. At this time, in the case of the Halbach vertical array, a plurality of magnet lines are arranged as described above, but the Halbach magnet lines are arranged in a direction parallel to the width direction, which is the direction of foil movement, and the magnetic body assembly is manufactured. In contrast, in the case of the Halbach horizontal array, the Halbach magnet lines are arranged in parallel in the length direction, which is perpendicular to the direction of foil movement.
이러한 할바흐 가로 배열과 할바흐 세로 배열의 자성체 어셈블리는 기본적인 배열 형태로 상정할 수 있으나, 후술하는 바와 같이 배향 후 포일의 배향 특성이 좋지 못하다.These magnetic body assemblies of Halbach transverse and Halbach longitudinal arrays can be assumed as basic array forms, but as described later, the orientation characteristics of the foil after orientation are poor.
자기장 불균일도는 스캔하고 나온 포일에 적산되는 자기장 불균일도로서, 여기서는 포일 폭 방향으로 10mm 단위로 측정한 자기장 값을 적산한 평균 값의 불균일도를 의미하는 바, 아래의 식과 같이 계산될 수 있다.The magnetic field unevenness is the magnetic field unevenness accumulated on the scanned foil. Here, it means the unevenness of the average value of the magnetic field values measured in 10 mm units in the foil width direction, and can be calculated as shown in the equation below.
[표 1][Table 1]
위 표 1을 참고하면, 후술하는 배열이 다양한 여러 실시예의 측정 결과물이 기재되어 있다.Referring to Table 1 above, the measurement results of various embodiments with various arrangements are described.
여기서, 제4 실시예인 QS 배열의 실시예가 가장 배향 특성이 우수한 것으로 나타나 있다. 즉 와전류가 가장 작음에도 자기장 불균일도 값 또한 작아 가장 우수한 것으로 나타나 있다.Here, the embodiment of the QS array, which is the fourth embodiment, is shown to have the best orientation characteristics. That is, although the eddy current is the smallest, the magnetic field non-uniformity value is also small, showing the best performance.
이때, 우수한 배향 특성을 판단함에 있어서, 2가지 정도의 인자가 중요할 수 있다. 첫 번째로 와전류가 작아야 하는 것으로 와전류에 의해 포일 이송 시 저항을 일으키게 되고 이는 포일 이송을 불안정하게 하여 속도 제어가 어렵고 속도 저하에 따라 생산성을 저하시킨다. 두 번째로 자기장의 값이 모두 고르게 나타나는 것이 중요하다.At this time, two factors may be important in judging excellent orientation characteristics. First, the eddy current must be small, which causes resistance when transporting the foil due to the eddy current, which makes the transport of the foil unstable, making it difficult to control the speed, and reducing productivity due to the decrease in speed. Second, it is important that the values of the magnetic field are all evenly displayed.
더불어, 자석 라인의 길이 방향 또는 폭 방향에 대한 기울기 관련하여 둔각의 경우에는 와전류가 호전되나 균일도가 악화되고, 반대로 예각의 경우에는 완전류가 악화되나 균일도가 호전되는 상반된 결과가 도출되므로 이를 절충해야 한다.In addition, in the case of an obtuse angle with respect to the longitudinal or transverse direction of the magnet line, the eddy current improves but the uniformity worsens, and conversely, in the case of an acute angle, the perfect current worsens but the uniformity improves, so a compromise must be made.
이때, 표 1을 참고하면, 할바흐 가로 배열의 경우에는 와전류에 의한 힘 세기가 225N으로 너무 크기 때문에 적용에서 제외되었고, 할바흐 세로 배열의 경우에는 불균일도가 96.4%로 이 또한 다른 배열에 비해 너무 큰 값을 가져 적용에서 제외한다.At this time, referring to Table 1, in the case of the Halbach horizontal arrangement, the force intensity due to the eddy current was too large at 225 N, so it was excluded from application, and in the case of the Halbach vertical arrangement, the non-uniformity was 96.4%, which was also too large a value compared to other arrangements, so it was excluded from application.
이하, 각 실시예 별로 도면과 표 1을 참고하여 토출된 결과 값을 알아본다.Below, the output result values are examined by referring to the drawings and Table 1 for each example.
도 2를 참고하면, 본 발명의 제1 실시예에 따른 배향장치에서 리브(Rib) 타입의 자성체 어셈블리(110)의 평면도가 도시되어 있고, 도 3을 참고하면, 본 발명의 제1 실시예에 따른 배향장치에서 리브(Rib) 타입의 자성체 어셈블리의 자기장 밀도 분포도가 도시되어 있으며, 도 4를 참고하면, 본 발명의 제1 실시예에 따른 배향장치에서 리브(Rib) 타입의 자성체 어셈블리의 A 방향에 따른 자기장 그래프가 도시되어 있고, 도 5를 참고하면, 본 발명의 제1 실시예에 따른 배향장치에서 리브(Rib) 타입의 자성체 어셈블리의 B 방향에 따른 자기장 그래프가 도시되어 있으며, 도 6을 참고하면, 본 발명의 제1 실시예에 따른 배향장치에서 리브(Rib) 타입의 자성체 어셈블리의 평균 자기장 그래프가 도시되어 있고, 도 7을 참고하면, 본 발명의 제1 실시예에 따른 배향장치에서 리브(Rib) 타입에서 배향된 포일의 전류 밀도 분포도가 도시되어 있다. 도 8을 참고하면, 본 발명의 제1 실시예에 따른 배향장치에서 리브(Rib) 타입에서 배향된 포일의 전류 벡터 분포도가 도시되어 있고, 도 9를 참고하면, 본 발명의 제1 실시예에 따른 배향장치에서 리브(Rib) 타입에서 배향된 포일의 와전류에 의한 힘 세기 그래프가 도시되어 있다.Referring to FIG. 2, a plan view of a rib type magnetic assembly (110) in an orientation device according to a first embodiment of the present invention is illustrated, and referring to FIG. 3, a magnetic field density distribution of a rib type magnetic assembly in an orientation device according to a first embodiment of the present invention is illustrated, and referring to FIG. 4, a magnetic field graph along the A direction of a rib type magnetic assembly in an orientation device according to a first embodiment of the present invention is illustrated, and referring to FIG. 5, a magnetic field graph along the B direction of a rib type magnetic assembly in an orientation device according to a first embodiment of the present invention is illustrated, and referring to FIG. 6, an average magnetic field graph of a rib type magnetic assembly in an orientation device according to a first embodiment of the present invention is illustrated, and referring to FIG. 7, a current density distribution of a foil oriented in the rib type in an orientation device according to a first embodiment of the present invention is illustrated. Referring to FIG. 8, a current vector distribution diagram of a foil oriented in a rib type in an orientation device according to a first embodiment of the present invention is illustrated, and referring to FIG. 9, a force intensity graph due to an eddy current of a foil oriented in a rib type in an orientation device according to the first embodiment of the present invention is illustrated.
도시된 실시예에서, 도 2를 참고하면, 복수개의 자석 라인이 폭 방향의 중앙을 중심으로 마치 V자 형태로 이루어져 있다.In the illustrated embodiment, referring to FIG. 2, a plurality of magnet lines are formed in a V-shape centered around the center in the width direction.
이때, 상기 복수개의 자석 라인은 리브 형태를 가지기 위하여, 도 2의 도면을 기준으로 제1 기울기로 중앙까지 내려가다가 중앙에서부터 대향하는 제2 기울기로 다시 올라가는 형태로 기울기가 형성되어 있다. 물론 이러한 기울기는 자석 라인을 이루는 각 픽셀 자석(111, 112, 113)을 배열함으로써 이러한 기울기를 가지도록 할 수 있다.At this time, the plurality of magnet lines are formed with an incline that goes down to the center at a first incline based on the drawing of Fig. 2 and then goes up again at a second incline facing from the center in order to have a rib shape. Of course, this incline can be formed by arranging each pixel magnet (111, 112, 113) forming the magnet line.
이때, 하나의 픽셀 자석은 가로 세로가 모두 동일한 길이로 형성되어 있으나, 이에 한정되는 것은 아니다.At this time, one pixel magnet is formed with the same length and width, but is not limited to this.
이때, θ1은 12도 - 32도 각도 범위로 형성되어 있다. 즉 제1 기울기는 -θ1 이고, 제2 기울기는 θ1으로 폭 중앙을 중심으로 대칭 형태로 배열되어 있다.At this time, θ1 is formed in an angle range of 12 degrees to 32 degrees. That is, the first slope is -θ1, and the second slope is θ1, and they are arranged in a symmetrical form centered on the center of the width.
이러한 각도 범위는 1도 정도 각도를 증감시키며 테스트를 진행할 수 있고, 이러한 각도 범위를 벗어난 각도로 픽셀 자석이 배열되면 배향 특성에서 불리한 결과가 도출되는 것을 알 수 있었다.This angular range allows for testing by increasing and decreasing the angle by about 1 degree, and it was found that if the pixel magnets are arranged at an angle outside this angular range, unfavorable results in the orientation characteristics are produced.
도시된 실시예에서, 도 3을 참고하면, 자성체 어셈블리의 자기장 밀도 분포도가 제1 기울기와 제2 기울기를 따라 형성되어 있음을 알 수 있다. 즉 픽셀 자석의 배열을 따라 자기장 밀도 분포도가 형성됨을 알 수 있다.In the illustrated embodiment, referring to FIG. 3, it can be seen that the magnetic field density distribution of the magnetic body assembly is formed along the first slope and the second slope. That is, it can be seen that the magnetic field density distribution is formed along the arrangement of the pixel magnets.
도 4 내지 도 6을 참고하면, 도 3에 도시된 A,B 방향을 따라 자기장의 세기를 측정한 것으로 역시 자석의 배열에 따라 변화되는 바, 최대값은 0.69, 최소값은 0.54로 나타났고, 그 결과 자기장 불균일도는 12.3%이다.Referring to FIGS. 4 to 6, the intensity of the magnetic field was measured along the A and B directions shown in FIG. 3, and it also changed depending on the arrangement of the magnets. The maximum value was 0.69, the minimum value was 0.54, and as a result, the magnetic field unevenness was 12.3%.
도시된 실시예에서, 도 7 내지 도 9를 참고하면, 스캔된 포일의 전류 밀도 분포가 도시되어 있는 바, 이는 복수개의 자석 라인을 따라 유사한 형태를 가지게 되고, 도 9를 참고하면, 그 결과 와전류에 의한 힘 값은 25.5N으로 양호한 편이다.In the illustrated embodiment, referring to FIGS. 7 to 9, the current density distribution of the scanned foil is illustrated, which has a similar shape along multiple magnet lines, and referring to FIG. 9, the resulting force value due to the eddy current is 25.5 N, which is good.
도 10을 참고하면, 본 발명의 제2 실시예에 따른 배향장치에서 V 배열 타입의 자성체 어셈블리(120)의 평면도가 도시되어 있고, 도 11을 참고하면, 본 발명의 제2 실시예에 따른 배향장치에서 V 배열 타입의 자성체 어셈블리의 자기장 밀도 분포도가 도시되어 있으며, 도 12를 참고하면, 본 발명의 제2 실시예에 따른 배향장치에서 V 배열 타입의 자성체 어셈블리의 A 방향에 따른 자기장 그래프가 도시되어 있고, 도 13을 참고하면, 본 발명의 제2 실시예에 따른 배향장치에서 V 배열 타입의 자성체 어셈블리의 B 방향에 따른 자기장 그래프가 도시되어 있으며, 도 14를 참고하면, 본 발명의 제2 실시예에 따른 배향장치에서 V 배열 타입의 자성체 어셈블리의 평균 자기장 그래프가 도시되어 있고, 도 15를 참고하면, 본 발명의 제2 실시예에 따른 배향장치에서 V 배열 타입에서 배향된 포일의 전류 밀도 분포도가 도시되어 있고, 도 16을 참고하면, 본 발명의 제2 실시예에 따른 배향장치에서 V 배열 타입에서 배향된 포일의 전류 벡터 분포도가 도시되어 있으며, 도 17을 참고하면, 본 발명의 제2 실시예에 따른 배향장치에서 V 배열 타입에서 배향된 포일의 와전류에 의한 힘 세기 그래프가 도시되어 있다.Referring to FIG. 10, a plan view of a V-array type magnetic assembly (120) in an alignment device according to a second embodiment of the present invention is illustrated, and referring to FIG. 11, a magnetic field density distribution diagram of a V-array type magnetic assembly in an alignment device according to a second embodiment of the present invention is illustrated, and referring to FIG. 12, a magnetic field graph along the A direction of a V-array type magnetic assembly in an alignment device according to a second embodiment of the present invention is illustrated, and referring to FIG. 13, a magnetic field graph along the B direction of a V-array type magnetic assembly in an alignment device according to a second embodiment of the present invention is illustrated, and referring to FIG. 14, an average magnetic field graph of a V-array type magnetic assembly in an alignment device according to a second embodiment of the present invention is illustrated, and referring to FIG. 15, a current density distribution diagram of a foil oriented in the V-array type in an alignment device according to a second embodiment of the present invention is illustrated, and referring to FIG. 16, a V-array type magnetic assembly in an alignment device according to a second embodiment of the present invention is illustrated. A current vector distribution diagram of a foil oriented in an array type is illustrated, and with reference to FIG. 17, a force intensity graph due to an eddy current of a foil oriented in a V array type in an orientation device according to a second embodiment of the present invention is illustrated.
도시된 실시예에서, 도 10을 참고하면, 도면을 기준으로 복수개의 자석 라인이 길이 방향의 중앙을 경계로 상측은 올라가는 기울기(θ2)로 하측은 내려가는 기울기(-θ2)로 형성되어 있고, 그 기울기는 방향만 다르고 동일하게 형성되어 대칭을 이루고 있다. 이러한 기울기는 자석 라인을 이루는 각 픽셀 자석을 배열함으로써 이러한 기울기를 가지도록 할 수 있다.In the illustrated embodiment, referring to FIG. 10, a plurality of magnet lines are formed with an upward slope (θ2) and a downward slope (-θ2) with respect to the center of the length direction as a reference point in the drawing, and the slopes are formed identically but in different directions to form symmetry. This slope can be made to have this slope by arranging each pixel magnet forming the magnet line.
이때, θ2는 17도 - 37도 정도로 형성되어 있다. 즉 포일 진행 방향인 길이 방향의 중앙을 중심으로 좌측으로부터 포일 진행방향을 따라 상측으로는 θ2로 상승하고, 하측으로는 -θ2로 하강하는 기울기를 가져 대칭 형태로 배열되어 있다.At this time, θ2 is formed at approximately 17 to 37 degrees. That is, it is arranged in a symmetrical form with a slope that rises to θ2 from the left along the foil progression direction and descends to -θ2, centered on the center of the longitudinal direction, which is the foil progression direction.
물론, 전술한 바와 같이 이러한 기울기의 각도 범위를 벗어나면 배향 특성에서 불리한 결과가 도출될 수 있다.Of course, as mentioned above, if the angle of inclination goes beyond this range, unfavorable results in the orientation characteristics may be derived.
도시된 실시예에서, 도 11을 참고하면, 자석 라인을 따라 마찬가지로 자기장 밀도 분포도가 형성되어 있다.In the illustrated embodiment, referring to FIG. 11, a magnetic field density distribution is similarly formed along the magnet line.
도 12 내지 도 14를 참고하면, 도 11에 도시된 A,B 방향을 따라 자기장의 세기를 측정한 것으로 역시 자석의 배열에 따라 변화되는 바, 최대값은 0.76, 최소값은 0.60으로 나타났고, 그 결과 자기장 불균일도는 12%이다.Referring to FIGS. 12 to 14, the intensity of the magnetic field was measured along the A and B directions shown in FIG. 11, and it also changed depending on the arrangement of the magnets. The maximum value was 0.76, the minimum value was 0.60, and as a result, the magnetic field unevenness was 12%.
도시된 실시예에서, 도 15 내지 도 17을 참고하면, 스캔된 포일(1)의 전류 밀도 분포가 도시되어 있는 바, 이는 복수개의 자석 라인을 따라 유사한 형태를 가지게 되고, 도 17을 참고하면, 그 결과 와전류에 의한 힘 값은 42N으로 양호하지 못한 편이다.In the illustrated embodiment, referring to FIGS. 15 to 17, the current density distribution of the scanned foil (1) is illustrated, which has a similar shape along a plurality of magnet lines, and referring to FIG. 17, the resulting force value due to the eddy current is 42 N, which is not good.
도 18를 참고하면, 본 발명의 제3 실시예에 따른 배향장치에서 더블 지그재그(double zigzag) 배열 타입의 자성체 어셈블리(130)의 평면도가 도시되어 있고, 도 19를 참고하면, 본 발명의 제3 실시예에 따른 배향장치에서 더블 지그재그(double zigzag) 타입의 자성체 어셈블리의 자기장 밀도 분포도가 도시되어 있으며, 도 20을 참고하면, 본 발명의 제3 실시예에 따른 배향장치에서 더블 지그재그(double zigzag) 배열 타입의 자성체 어셈블리의 A 방향에 따른 자기장 그래프가 도시되어 있고, 도 21을 참고하면, 본 발명의 제3 실시예에 따른 배향장치에서 더블 지그재그(double zigzag) 배열 타입의 자성체 어셈블리의 B 방향에 따른 자기장 그래프가 도시되어 있으며, 도 22를 참고하면, 본 발명의 제3 실시예에 따른 배향장치에서 더블 지그재그(double zigzag) 배열 타입의 자성체 어셈블리의 평균 자기장 그래프가 도시되어 있고, 도 23을 참고하면, 본 발명의 제3 실시예에 따른 배향장치에서 더블 지그재그(double zigzag) 배열 타입에서 배향된 포일의 전류 밀도 분포도가 도시되어 있으며, 도 24를 참고하면, 본 발명의 제3 실시예에 따른 배향장치에서 더블 지그재그(double zigzag) 배열 타입에서 배향된 포일의 전류 벡터 분포도가 도시되어 있고, 도 25를 참고하면, 본 발명의 제3 실시예에 따른 배향장치에서 더블 지그재그(double zigzag) 배열 타입에서 배향된 포일의 와전류에 의한 힘 세기 그래프가 도시되어 있다.Referring to FIG. 18, a plan view of a magnetic body assembly (130) of a double zigzag array type in an orientation device according to a third embodiment of the present invention is illustrated, and referring to FIG. 19, a magnetic field density distribution of a magnetic body assembly of a double zigzag array type in an orientation device according to a third embodiment of the present invention is illustrated, and referring to FIG. 20, a magnetic field graph along the A direction of a magnetic body assembly of a double zigzag array type in an orientation device according to a third embodiment of the present invention is illustrated, and referring to FIG. 21, a magnetic field graph along the B direction of a magnetic body assembly of a double zigzag array type in an orientation device according to a third embodiment of the present invention is illustrated, and referring to FIG. 22, a magnetic field graph of a magnetic body assembly of a double zigzag array type in an orientation device according to a third embodiment of the present invention is illustrated. An average magnetic field graph is illustrated, and with reference to FIG. 23, a current density distribution of a foil oriented in a double zigzag array type in an orientation device according to a third embodiment of the present invention is illustrated, and with reference to FIG. 24, a current vector distribution of a foil oriented in a double zigzag array type in an orientation device according to a third embodiment of the present invention is illustrated, and with reference to FIG. 25, a force intensity graph due to an eddy current of a foil oriented in a double zigzag array type in an orientation device according to a third embodiment of the present invention is illustrated.
도시된 실시예에서, 도 18을 참고하면, 도면을 기준으로 폭 방향을 중앙을 기준으로 좌측 자석 라인과 우측 자석 라인으로 나눌 수 있고, 그 사이에는 이격 공간(134)이 형성되어 있다. 또한 좌측, 우측 자석 라인은 각각 단이 형성되도록 자석이 배열되어 있다. 즉 절반은 N극 또는 S극이고, 절반은 H극(N,S극이 수평으로 누워있는 형상)으로 픽셀 자석이 배열되어 있다. 또한 좌측 자석 라인과 우측 자석 라인은 서로 높이가 다르게 배치되어 있으며, 이러한 이유로 더블 지그재그로 설명한 것이다.In the illustrated embodiment, referring to FIG. 18, the width direction based on the drawing can be divided into a left magnet line and a right magnet line based on the center, and a space (134) is formed between them. In addition, the magnets are arranged so that each of the left and right magnet lines forms a stage. That is, the pixel magnets are arranged so that half are N poles or S poles, and half are H poles (N, S poles lie horizontally). In addition, the left magnet line and the right magnet line are arranged at different heights, and for this reason, they are described as a double zigzag.
이때, 도 18도에서, 좌측의 자석 어셈블리의 폭과 우측의 자석 어셈블리의 폭은 동일하게 설정되고, 좌우측 자석 어셈블리의 이격 공간은 좌측 또는 우측 자석 어셈블리의 폭의 3 - 10% 범위 내에 설정되는 것이 적정할 수 있다.At this time, in FIG. 18, the width of the left magnet assembly and the width of the right magnet assembly are set to be the same, and the spacing between the left and right magnet assemblies may be appropriately set within a range of 3 to 10% of the width of the left or right magnet assembly.
또한, 중앙의 이격 공간(134)이 형성되어 있는 바, 이격 공간이 없는 경우에는 특성이 매우 와전류가 높게 나올 수 있다.In addition, a central separation space (134) is formed, and if there is no separation space, the characteristic may be a very high eddy current.
도시된 실시예에서, 도 19를 참고하면, 자석 라인을 따라 마찬가지로 자기장 밀도 분포도가 형성되어 있다.In the illustrated embodiment, referring to FIG. 19, a magnetic field density distribution is similarly formed along the magnet line.
도 20 내지 도 22를 참고하면, 도 19에 도시된 A,B 방향을 따라 자기장의 세기를 측정한 것으로 역시 자석의 배열에 따라 변화되는 바, 최대값은 0.62, 최소값은 0.55로 나타났고, 그 결과 자기장 불균일도는 5.6%이다.Referring to FIGS. 20 to 22, the intensity of the magnetic field was measured along the A and B directions shown in FIG. 19, and it also changed depending on the arrangement of the magnets. The maximum value was 0.62, the minimum value was 0.55, and as a result, the magnetic field unevenness was 5.6%.
도시된 실시예에서, 도 23 내지 도 25를 참고하면, 스캔된 포일(1)의 전류 밀도 분포가 도시되어 있는 바, 이는 복수개의 자석 라인을 따라 유사한 형태를 가지게 되고, 도 25를 참고하면, 그 결과 와전류에 의한 힘 값은 25N으로 양호한 편이다.In the illustrated embodiment, referring to FIGS. 23 to 25, the current density distribution of the scanned foil (1) is illustrated, which has a similar shape along a plurality of magnet lines, and referring to FIG. 25, the resulting force value due to the eddy current is 25 N, which is good.
도 26를 참고하면, 본 발명의 제4 실시예에 따른 배향장치에서 QS 배열 타입의 자성체 어셈블리(140)의 평면도가 도시되어 있다. 도 27을 참고하면, 본 발명의 제4 실시예에 따른 배향장치에서 QS 배열 타입의 자성체 어셈블리의 자기장 밀도 분포도가 도시되어 있다. 도 28을 참고하면, 본 발명의 제4 실시예에 따른 배향장치에서 QS 배열 타입의 자성체 어셈블리의 A 방향에 따른 자기장 그래프가 도시되어 있다. 도 29를 참고하면, 본 발명의 제4 실시예에 따른 배향장치에서 QS 배열 타입의 자성체 어셈블리의 B 방향에 따른 자기장 그래프가 도시되어 있다. 도 30을 참고하면, 본 발명의 제4 실시예에 따른 배향장치에서 QS 배열 타입의 자성체 어셈블리의 평균 자기장 그래프가 도시되어 있다. 도 31을 참고하면, 본 발명의 제4 실시예에 따른 배향장치에서 QS 배열 타입에서 배향된 포일의 전류 밀도 분포도가 도시되어 있다. 도 32를 참고하면, 본 발명의 제4 실시예에 따른 배향장치에서 QS 배열 타입에서 배향된 포일의 전류 벡터 분포도가 도시되어 있다. 도 33을 참고하면, 본 발명의 제4 실시예에 따른 배향장치에서 QS 배열 타입에서 배향된 포일의 와전류에 의한 힘 세기 그래프가 도시되어 있다.Referring to FIG. 26, a plan view of a magnetic body assembly (140) of a QS array type in an orientation device according to a fourth embodiment of the present invention is illustrated. Referring to FIG. 27, a magnetic field density distribution of a magnetic body assembly of a QS array type in an orientation device according to a fourth embodiment of the present invention is illustrated. Referring to FIG. 28, a magnetic field graph along the A direction of a magnetic body assembly of a QS array type in an orientation device according to a fourth embodiment of the present invention is illustrated. Referring to FIG. 29, a magnetic field graph along the B direction of a magnetic body assembly of a QS array type in an orientation device according to a fourth embodiment of the present invention is illustrated. Referring to FIG. 30, an average magnetic field graph of a magnetic body assembly of a QS array type in an orientation device according to a fourth embodiment of the present invention is illustrated. Referring to FIG. 31, a current density distribution of a foil oriented in a QS array type in an orientation device according to a fourth embodiment of the present invention is illustrated. Referring to FIG. 32, a current vector distribution diagram of a foil oriented in a QS array type in an orientation device according to a fourth embodiment of the present invention is illustrated. Referring to FIG. 33, a force intensity graph due to an eddy current of a foil oriented in a QS array type in an orientation device according to a fourth embodiment of the present invention is illustrated.
도시된 실시예에서, 도 26을 참고하면, 도면을 기준으로 폭 방향을 따라 자석 라인들이 W자 웨이브 형태로 배열되어 있다. 이러한 형태를 제1 실시예의 리브 형태를 포일 진행 방향을 따라 늘린 것으로 볼 수 있다. 즉 V자형태가 한 번이 아니라 여러 번으로 늘린 배열 형태를 가진 것이고, 그에 따라 균일도가 향상될 수 있음을 미리 짐작할 수 있다.In the illustrated embodiment, referring to Fig. 26, the magnet lines are arranged in a W-shaped wave shape along the width direction based on the drawing. This shape can be viewed as the rib shape of the first embodiment extended along the foil progression direction. In other words, it is an arrangement shape in which the V-shaped shape is extended not once but multiple times, and accordingly, it can be guessed in advance that the uniformity can be improved.
이때, 도 26에 도시된 QS 배열 타입은 θ3는 17도 - 37도로 형성되어 있다. 즉 포일 진행방향을 따라 하강 기울기, 상승 기울기, 다시 하강 기울기, 상승 기울기로 픽셀 자석들이 배열되어 W자 웨이브 형태를 가지도록 형성되어 있다.At this time, the QS array type illustrated in Fig. 26 is formed with θ3 of 17 degrees to 37 degrees. That is, pixel magnets are arranged with a descending slope, an ascending slope, a descending slope again, and an ascending slope along the foil travel direction to form a W-shaped wave shape.
도시된 실시예에서, 도 27을 참고하면, 자석 라인을 따라 마찬가지로 자기장 밀도 분포도가 형성되어 있다.In the illustrated embodiment, referring to FIG. 27, a magnetic field density distribution is similarly formed along the magnet line.
도 28 내지 도 30을 참고하면, 도 27에 도시된 A,B 방향을 따라 자기장의 세기를 측정한 것으로 역시 자석의 배열에 따라 변화되는 바, 최대값은 0.58, 최소값은 0.54로 나타났고, 그 결과 자기장 불균일도는 3.7%로 가장 낮은 값을 가진다.Referring to FIGS. 28 to 30, the intensity of the magnetic field was measured along the A and B directions shown in FIG. 27, and it also changed depending on the arrangement of the magnets. The maximum value was 0.58, the minimum value was 0.54, and as a result, the magnetic field unevenness had the lowest value of 3.7%.
도시된 실시예에서, 도 31 내지 도 33을 참고하면, 스캔된 포일(1)의 전류 밀도 분포가 도시되어 있는 바, 이는 복수개의 자석 라인을 따라 유사한 형태를 가지게 되고, 도 33을 참고하면, 그 결과 와전류에 의한 힘 값은 24N으로 양호한 편이다.In the illustrated embodiment, referring to FIGS. 31 to 33, the current density distribution of the scanned foil (1) is illustrated, which has a similar shape along a plurality of magnet lines, and referring to FIG. 33, the resulting force value due to the eddy current is 24 N, which is good.
도 34를 참고하면, 본 발명에 의한 실시예들에서 각 실시예들의 평균 자기장을 모두 함께 표시한 그래프가 도시되어 있다.Referring to FIG. 34, a graph is shown that displays the average magnetic fields of each embodiment according to the present invention.
도시된 바와 같이, 할바흐 세로 배열이 다른 실시예보다 월등이 좋지 않은 것으로 결과 값이 나왔고, 나머지 실시예들은 일정 범위 내에 있는 것을 알 수 있다.As shown, the results show that the Halbach vertical arrangement is significantly worse than other examples, and the remaining examples are within a certain range.
다시 표 1을 참고하면, 제1 실시예의 리브 배열과 제2 실시예의 V자 배열은 와전류 세기와 불균일도가 모두 10% 이상으로 제3 실시예와 제4 실시예보다 높게 나왔기 때문에 더블 지그재그 배열이나 QS 배열을 적용하는 것이 타당할 것이다. 특히 제4 실시예에 따른 QS 배열의 경우에는 와전류 세기와 균일도에서 모두 가장 좋은 특성을 보이는 것을 알 수 있다.Referring again to Table 1, the rib arrangement of the first embodiment and the V-array of the second embodiment both showed higher eddy current intensity and nonuniformity by more than 10% than the third and fourth embodiments, so it would be reasonable to apply a double zigzag arrangement or a QS arrangement. In particular, it can be seen that the QS arrangement according to the fourth embodiment shows the best characteristics in both eddy current intensity and uniformity.
본 발명의 실시예에 대하여 설명하였으나, 본 발명의 사상은 본 명세서에 제시되는 실시예에 의해 제한되지 아니하며, 본 발명의 사상을 이해하는 당업자는 동일한 사상의 범위 내에서, 구성요소의 부가, 변경, 삭제, 추가 등에 의해서 다른 실시예를 용이하게 제안할 수 있을 것이나, 이 또한 본 발명의 사상범위 내에 든다고 할 것이다.Although the embodiments of the present invention have been described, the spirit of the present invention is not limited to the embodiments presented in this specification, and those skilled in the art who understand the spirit of the present invention will be able to easily propose other embodiments by adding, changing, deleting, or adding components within the scope of the same spirit, but this will also be considered to fall within the spirit of the present invention.
본 발명은 이차 전기에서 포일에 도포된 음극활물질의 입자를 방향성을 갖도록 배향시키데 적용할 수 있다.The present invention can be applied to orientate particles of a negative electrode active material applied to a foil in a secondary battery so as to have directionality.
Claims (10)
- 한 쌍으로 배치되어 그 사이를 통과하는 포일에 도포된 음극 활물질을 배향시키는 판상형의 자성체 어셈블리를 포함하는 배향장치로서,An alignment device comprising a plate-shaped magnetic assembly arranged in a pair and orienting a negative active material applied to a foil passing therebetween,상기 자성체 어셈블리는 평면 상 상기 포일의 진행 방향인 폭 방향을 따라 픽셀 자석들이 일렬로 배열되어 이루어진 복수개의 자석 라인이 길이 방향을 따라 인접하여 복수개가 연장되어 이루어지고,The above magnetic assembly is formed by arranging a plurality of magnet lines in a row along the width direction, which is the direction in which the foil advances on a plane, and extending a plurality of magnet lines adjacent to each other along the length direction.상기 복수개의 자석 라인이 할바흐 배열 라인, S극 배열 라인, 할바흐 배열 라인, N극 배열 라인의 순서로 반복하여 배열되며,The above multiple magnet lines are arranged repeatedly in the order of Halbach array line, S pole array line, Halbach array line, and N pole array line,상기 복수개의 자석 라인은 폭 방향에 대하여 기울기를 갖도록 배열된,The above multiple magnet lines are arranged so as to have an inclination with respect to the width direction.배향장치.Orientation device.
- 제1 항에 있어서,In the first paragraph,상기 복수개의 자석 라인은 상기 폭 방향을 따라 웨이브 형태를 가지는,The above plurality of magnet lines have a wave shape along the width direction,배향장치.Orientation device.
- 제2 항에 있어서,In the second paragraph,상기 복수개의 자석 라인은 적어도 두 번 이상 서로 다른 방향의 기울기로 기울어져 이루어지는,The above multiple magnet lines are formed by being inclined in different directions at least twice.배향장치.Orientation device.
- 제1 항에 있어서,In the first paragraph,상기 복수개의 자석 라인은 서로 반대 방향인 제1 기울기와 제2 기울기를 가지는,The above plurality of magnet lines have first and second inclinations which are in opposite directions,배향장치.Orientation device.
- 제1 항에 있어서,In the first paragraph,상기 기울기는 포일 진행 방향에 대하여 12도 - 32도의 각도 범위 또는 17도 - 37도의 각도 범위를 가지는,The above inclination has an angle range of 12 degrees to 32 degrees or an angle range of 17 degrees to 37 degrees with respect to the direction of foil travel.배향장치.Orientation device.
- 제1 항에 있어서,In the first paragraph,상기 복수개의 자석 라인이 폭 방향에 대하여 갖는 기울기는 폭 방향을 따라 인접하는 픽셀 자석의 폭의 절반을 이동 배치함으로써 정해지는,The inclination of the above plurality of magnet lines in the width direction is determined by moving half the width of the adjacent pixel magnets along the width direction.배향장치.Orientation device.
- 제1 항에 있어서,In the first paragraph,상기 자성체 어셈블리는 상기 픽셀 자석들이 한 층으로 배치되어 이루어진,The above magnetic assembly is formed by arranging the pixel magnets in a single layer.배향장치.Orientation device.
- 제1 항에 있어서,In the first paragraph,상기 픽셀 자석들은 직육면체 형태로 이루어진,The above pixel magnets are in the shape of a rectangular solid.배향장치.Orientation device.
- 한 쌍으로 배치되어 그 사이를 통과하는 포일에 도포된 음극 활물질을 배향시키는 판상형의 자성체 어셈블리를 포함하는 배향장치로서,An alignment device comprising a plate-shaped magnetic assembly arranged in a pair and orienting a negative active material applied to a foil passing therebetween,상기 자성체 어셈블리는 평면 상 상기 포일의 진행 방향인 폭 방향을 따라 픽셀 자석들이 일렬로 배열되어 이루어진 복수개의 자석 라인이 길이 방향을 따라 인접하여 연장되어 이루어지고,The above magnetic assembly is formed by a plurality of magnet lines in which pixel magnets are arranged in a single row along the width direction, which is the direction in which the foil advances on a plane, and extending adjacently along the length direction.상기 복수개의 자석 라인이 할바흐 배열 라인, S극 배열 라인, 할바흐 배열 라인, N극 배열 라인의 순서로 반복하여 배열되며,The above multiple magnet lines are arranged repeatedly in the order of Halbach array line, S pole array line, Halbach array line, and N pole array line,상기 복수개의 자석 라인은 폭 방향과 상하 방향에 대하여 적어도 한 번 이상의 단이 형성되도록 배열된,The above multiple magnet lines are arranged so that at least one step is formed in the width direction and the up-down direction.배향장치.Orientation device.
- 제9 항에 있어서,In Article 9,상기 자성체 어셈블리는 길이 방향을 따라 자석이 배치되지 않은 이격 라인이 형성된,The above magnetic assembly has a spaced line formed along the length direction in which no magnets are arranged.배향장치.Orientation device.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR20230045966 | 2023-04-07 | ||
KR10-2023-0045966 | 2023-04-07 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024210682A1 true WO2024210682A1 (en) | 2024-10-10 |
Family
ID=92972426
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2024/004649 WO2024210682A1 (en) | 2023-04-07 | 2024-04-08 | Orientation device |
Country Status (2)
Country | Link |
---|---|
KR (1) | KR20240150385A (en) |
WO (1) | WO2024210682A1 (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20130143644A (en) * | 2011-03-11 | 2013-12-31 | 도요타지도샤가부시키가이샤 | Non-aqueous electrolyte secondary battery and manufacturing method thereof |
JP2017185675A (en) * | 2016-04-05 | 2017-10-12 | 株式会社日本マイクロニクス | Sheet laminate fixture, manufacturing method of laminate product and manufacturing method of sheet-like secondary battery |
KR20190049803A (en) * | 2016-09-06 | 2019-05-09 | 바트리온 아게 | Method and apparatus for applying a magnetic field to an article |
KR20230011694A (en) * | 2021-07-14 | 2023-01-25 | (주)씨엔씨엔지니어링 | Anode material magnetic alignment device |
US20230093923A1 (en) * | 2021-04-07 | 2023-03-30 | Battrion Ag | Dry coating and self-standing layers with aligned particles |
-
2024
- 2024-04-08 KR KR1020240047524A patent/KR20240150385A/en unknown
- 2024-04-08 WO PCT/KR2024/004649 patent/WO2024210682A1/en unknown
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20130143644A (en) * | 2011-03-11 | 2013-12-31 | 도요타지도샤가부시키가이샤 | Non-aqueous electrolyte secondary battery and manufacturing method thereof |
JP2017185675A (en) * | 2016-04-05 | 2017-10-12 | 株式会社日本マイクロニクス | Sheet laminate fixture, manufacturing method of laminate product and manufacturing method of sheet-like secondary battery |
KR20190049803A (en) * | 2016-09-06 | 2019-05-09 | 바트리온 아게 | Method and apparatus for applying a magnetic field to an article |
US20230093923A1 (en) * | 2021-04-07 | 2023-03-30 | Battrion Ag | Dry coating and self-standing layers with aligned particles |
KR20230011694A (en) * | 2021-07-14 | 2023-01-25 | (주)씨엔씨엔지니어링 | Anode material magnetic alignment device |
Also Published As
Publication number | Publication date |
---|---|
KR20240150385A (en) | 2024-10-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2019172567A1 (en) | Unit cell alignment device and electrode assembly manufacturing method using same | |
WO2020159081A1 (en) | Press jig comprising magnet and battery module comprising same | |
WO2015065082A1 (en) | Battery cell stacking jig | |
WO2020159082A1 (en) | Battery assembly including battery cells capable of being simultaneously pressed mechanically and magnetically | |
WO2021075773A1 (en) | Secondary battery electrode plate including electrode mixture regions having different binder content, and method for manufacturing secondary battery electrode using same | |
WO2018008806A1 (en) | Separation film processing method for secondary battery using atmospheric pressure dielectric barrier discharge plasma | |
WO2024210682A1 (en) | Orientation device | |
WO2018097559A1 (en) | Mother plate, method for manufacturing mother plate, and method for manufacturing mask | |
WO2014189178A1 (en) | Method for manufacturing solar cell having selective emitter and solar cell manufactured thereby | |
WO2014175702A1 (en) | Ion beam source | |
WO2018212446A1 (en) | Lithium secondary battery | |
WO2019216646A1 (en) | Recycling method for cathode material | |
WO2019231277A1 (en) | Method for manufacturing lithium secondary battery | |
WO2024147510A1 (en) | Boat apparatus | |
WO2023128374A1 (en) | Device and method for laser processing | |
KR100919161B1 (en) | A buffer zone for the prevention of metal migration | |
WO2022065958A1 (en) | Electrode | |
WO2021261753A1 (en) | Electrode with binder layer formed therein and method for manufacturing same | |
WO2017104903A1 (en) | Electrode assembly for dielectric barrier discharge and plasma processing device using the same | |
WO2022014964A1 (en) | Electrode rolling device and method for performing multi-stage induction heating | |
WO2023128215A1 (en) | Electrode assembly and secondary battery | |
WO2023191275A1 (en) | Negative electrode material for zinc-ion capacitor, manufacturing method therefor, and zinc-ion capacitor | |
WO2023101212A1 (en) | Calendering roll press for manufacturing dry electrodes | |
WO2019135490A1 (en) | Method for preparing cathode active material | |
WO2023244092A2 (en) | Method for manufacturing fine metal mask for manufacturing high-resolution oled panel using charged body |