WO2024204557A1 - Composition, reactive diluent, curable composition, and method for producing composition - Google Patents
Composition, reactive diluent, curable composition, and method for producing composition Download PDFInfo
- Publication number
- WO2024204557A1 WO2024204557A1 PCT/JP2024/012686 JP2024012686W WO2024204557A1 WO 2024204557 A1 WO2024204557 A1 WO 2024204557A1 JP 2024012686 W JP2024012686 W JP 2024012686W WO 2024204557 A1 WO2024204557 A1 WO 2024204557A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- composition
- diglycidyl ether
- reactive diluent
- formula
- mol
- Prior art date
Links
- 239000000203 mixture Substances 0.000 title claims abstract description 127
- 239000003085 diluting agent Substances 0.000 title claims description 37
- 238000004519 manufacturing process Methods 0.000 title claims description 24
- GYZLOYUZLJXAJU-UHFFFAOYSA-N diglycidyl ether Chemical compound C1OC1COCC1CO1 GYZLOYUZLJXAJU-UHFFFAOYSA-N 0.000 claims abstract description 67
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 claims abstract description 51
- 239000000460 chlorine Substances 0.000 claims abstract description 51
- 229910052801 chlorine Inorganic materials 0.000 claims abstract description 51
- 125000002947 alkylene group Chemical group 0.000 claims abstract description 24
- 125000004432 carbon atom Chemical group C* 0.000 claims abstract description 23
- 150000001875 compounds Chemical class 0.000 claims abstract description 13
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 claims description 84
- 238000006243 chemical reaction Methods 0.000 claims description 34
- 239000003822 epoxy resin Substances 0.000 claims description 32
- 229920000647 polyepoxide Polymers 0.000 claims description 32
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 32
- 239000007787 solid Substances 0.000 claims description 23
- BRLQWZUYTZBJKN-UHFFFAOYSA-N Epichlorohydrin Chemical compound ClCC1CO1 BRLQWZUYTZBJKN-UHFFFAOYSA-N 0.000 claims description 13
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 claims description 13
- 238000000746 purification Methods 0.000 claims description 4
- 238000009413 insulation Methods 0.000 abstract description 10
- 238000007792 addition Methods 0.000 description 20
- 230000000052 comparative effect Effects 0.000 description 16
- 238000002290 gas chromatography-mass spectrometry Methods 0.000 description 11
- 238000001514 detection method Methods 0.000 description 10
- 125000003055 glycidyl group Chemical group C(C1CO1)* 0.000 description 10
- 239000012776 electronic material Substances 0.000 description 9
- 239000007788 liquid Substances 0.000 description 9
- 230000014759 maintenance of location Effects 0.000 description 9
- 238000000034 method Methods 0.000 description 9
- 239000007789 gas Substances 0.000 description 8
- 238000005259 measurement Methods 0.000 description 8
- 239000000047 product Substances 0.000 description 8
- 238000003756 stirring Methods 0.000 description 8
- 238000004458 analytical method Methods 0.000 description 7
- 239000012295 chemical reaction liquid Substances 0.000 description 7
- 238000005516 engineering process Methods 0.000 description 7
- 238000004817 gas chromatography Methods 0.000 description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 7
- 239000000463 material Substances 0.000 description 7
- 239000004065 semiconductor Substances 0.000 description 7
- 239000000243 solution Substances 0.000 description 7
- 239000000126 substance Substances 0.000 description 7
- GVNVAWHJIKLAGL-UHFFFAOYSA-N 2-(cyclohexen-1-yl)cyclohexan-1-one Chemical compound O=C1CCCCC1C1=CCCCC1 GVNVAWHJIKLAGL-UHFFFAOYSA-N 0.000 description 6
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 6
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 6
- 101150065749 Churc1 gene Proteins 0.000 description 6
- 239000004593 Epoxy Substances 0.000 description 6
- 102100038239 Protein Churchill Human genes 0.000 description 6
- HEDRZPFGACZZDS-MICDWDOJSA-N Trichloro(2H)methane Chemical compound [2H]C(Cl)(Cl)Cl HEDRZPFGACZZDS-MICDWDOJSA-N 0.000 description 6
- 238000012360 testing method Methods 0.000 description 6
- 239000008393 encapsulating agent Substances 0.000 description 5
- 229920005989 resin Polymers 0.000 description 5
- 239000011347 resin Substances 0.000 description 5
- 238000001644 13C nuclear magnetic resonance spectroscopy Methods 0.000 description 4
- DSKYSDCYIODJPC-UHFFFAOYSA-N 2-butyl-2-ethylpropane-1,3-diol Chemical compound CCCCC(CC)(CO)CO DSKYSDCYIODJPC-UHFFFAOYSA-N 0.000 description 4
- 238000004821 distillation Methods 0.000 description 4
- 238000005538 encapsulation Methods 0.000 description 4
- 239000011521 glass Substances 0.000 description 4
- 230000009477 glass transition Effects 0.000 description 4
- -1 glycidyloxymethyl group Chemical group 0.000 description 4
- 239000008241 heterogeneous mixture Substances 0.000 description 4
- 239000003444 phase transfer catalyst Substances 0.000 description 4
- 230000000704 physical effect Effects 0.000 description 4
- 238000002360 preparation method Methods 0.000 description 4
- 239000000758 substrate Substances 0.000 description 4
- OJRJDENLRJHEJO-UHFFFAOYSA-N 2,4-diethylpentane-1,5-diol Chemical compound CCC(CO)CC(CC)CO OJRJDENLRJHEJO-UHFFFAOYSA-N 0.000 description 3
- IISBACLAFKSPIT-UHFFFAOYSA-N bisphenol A Chemical compound C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 IISBACLAFKSPIT-UHFFFAOYSA-N 0.000 description 3
- 238000009835 boiling Methods 0.000 description 3
- 239000006227 byproduct Substances 0.000 description 3
- 238000004364 calculation method Methods 0.000 description 3
- 239000012159 carrier gas Substances 0.000 description 3
- 239000000706 filtrate Substances 0.000 description 3
- 239000012535 impurity Substances 0.000 description 3
- 238000002347 injection Methods 0.000 description 3
- 239000007924 injection Substances 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- 238000012856 packing Methods 0.000 description 3
- 238000007086 side reaction Methods 0.000 description 3
- 238000010998 test method Methods 0.000 description 3
- JRMUNVKIHCOMHV-UHFFFAOYSA-M tetrabutylammonium bromide Chemical compound [Br-].CCCC[N+](CCCC)(CCCC)CCCC JRMUNVKIHCOMHV-UHFFFAOYSA-M 0.000 description 3
- CZDYPVPMEAXLPK-UHFFFAOYSA-N tetramethylsilane Chemical compound C[Si](C)(C)C CZDYPVPMEAXLPK-UHFFFAOYSA-N 0.000 description 3
- YPFDHNVEDLHUCE-UHFFFAOYSA-N 1,3-propanediol Substances OCCCO YPFDHNVEDLHUCE-UHFFFAOYSA-N 0.000 description 2
- 238000005160 1H NMR spectroscopy Methods 0.000 description 2
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- 238000005481 NMR spectroscopy Methods 0.000 description 2
- 239000000853 adhesive Substances 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 2
- 150000001335 aliphatic alkanes Chemical class 0.000 description 2
- 150000008044 alkali metal hydroxides Chemical class 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 238000004587 chromatography analysis Methods 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- NNPPMTNAJDCUHE-UHFFFAOYSA-N isobutane Chemical compound CC(C)C NNPPMTNAJDCUHE-UHFFFAOYSA-N 0.000 description 2
- 239000004850 liquid epoxy resins (LERs) Substances 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- 229920000166 polytrimethylene carbonate Polymers 0.000 description 2
- 238000005476 soldering Methods 0.000 description 2
- 230000000930 thermomechanical effect Effects 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- MUTGBJKUEZFXGO-OLQVQODUSA-N (3as,7ar)-3a,4,5,6,7,7a-hexahydro-2-benzofuran-1,3-dione Chemical compound C1CCC[C@@H]2C(=O)OC(=O)[C@@H]21 MUTGBJKUEZFXGO-OLQVQODUSA-N 0.000 description 1
- OJMJOSRCBAXSAQ-UHFFFAOYSA-N 2,2-dibutylpropane-1,3-diol Chemical compound CCCCC(CO)(CO)CCCC OJMJOSRCBAXSAQ-UHFFFAOYSA-N 0.000 description 1
- VDSSCEGRDWUQAP-UHFFFAOYSA-N 2,2-dipropylpropane-1,3-diol Chemical compound CCCC(CO)(CO)CCC VDSSCEGRDWUQAP-UHFFFAOYSA-N 0.000 description 1
- HYQIPEBBTROHDG-UHFFFAOYSA-N 2,4-di(propan-2-yl)pentane-1,5-diol Chemical compound CC(C)C(CO)CC(CO)C(C)C HYQIPEBBTROHDG-UHFFFAOYSA-N 0.000 description 1
- OMMFUUKPSANWIL-UHFFFAOYSA-N 2,4-dipropylpentane-1,5-diol Chemical compound CCCC(CO)CC(CO)CCC OMMFUUKPSANWIL-UHFFFAOYSA-N 0.000 description 1
- ZGHOZASFRNLRAS-UHFFFAOYSA-N 2-(3-methylbutyl)-2-propan-2-ylpropane-1,3-diol Chemical compound CC(C)CCC(CO)(CO)C(C)C ZGHOZASFRNLRAS-UHFFFAOYSA-N 0.000 description 1
- WTYYGFLRBWMFRY-UHFFFAOYSA-N 2-[6-(oxiran-2-ylmethoxy)hexoxymethyl]oxirane Chemical compound C1OC1COCCCCCCOCC1CO1 WTYYGFLRBWMFRY-UHFFFAOYSA-N 0.000 description 1
- XKLGZQIUTOYSBB-UHFFFAOYSA-N 2-[[2-ethyl-2-(oxiran-2-ylmethoxymethyl)hexoxy]methyl]oxirane Chemical compound C1OC1COCC(CC)(CCCC)COCC1CO1 XKLGZQIUTOYSBB-UHFFFAOYSA-N 0.000 description 1
- FHEOVRBGAQMVHH-UHFFFAOYSA-N 2-[[2-ethyl-4-(oxiran-2-ylmethoxymethyl)hexoxy]methyl]oxirane Chemical compound C1OC1COCC(CC)CC(CC)COCC1CO1 FHEOVRBGAQMVHH-UHFFFAOYSA-N 0.000 description 1
- AQHPICNWFNXTGE-UHFFFAOYSA-N 2-butyl-2-propan-2-ylpropane-1,3-diol Chemical compound CCCCC(CO)(CO)C(C)C AQHPICNWFNXTGE-UHFFFAOYSA-N 0.000 description 1
- FNQJNAWBIIJHCV-UHFFFAOYSA-N 2-butyl-2-propylpropane-1,3-diol Chemical compound CCCCC(CO)(CO)CCC FNQJNAWBIIJHCV-UHFFFAOYSA-N 0.000 description 1
- QNKRHLZUPSSIPN-UHFFFAOYSA-N 2-ethyl-2-(2-methylpropyl)propane-1,3-diol Chemical compound CCC(CO)(CO)CC(C)C QNKRHLZUPSSIPN-UHFFFAOYSA-N 0.000 description 1
- KEUDFEHZLMMIHD-UHFFFAOYSA-N 2-ethyl-2-hexylpropane-1,3-diol Chemical compound CCCCCCC(CC)(CO)CO KEUDFEHZLMMIHD-UHFFFAOYSA-N 0.000 description 1
- FKXLOGLAYTUOFK-UHFFFAOYSA-N 2-ethyl-2-pentylpropane-1,3-diol Chemical compound CCCCCC(CC)(CO)CO FKXLOGLAYTUOFK-UHFFFAOYSA-N 0.000 description 1
- XTPRQBATIUTKMZ-UHFFFAOYSA-N 2-ethyl-4-propan-2-ylpentane-1,5-diol Chemical compound CCC(CO)CC(CO)C(C)C XTPRQBATIUTKMZ-UHFFFAOYSA-N 0.000 description 1
- QMUHKDYJFFYPNU-UHFFFAOYSA-N 2-ethyl-4-propylpentane-1,5-diol Chemical compound CCCC(CO)CC(CC)CO QMUHKDYJFFYPNU-UHFFFAOYSA-N 0.000 description 1
- XMFVGVQSSGPIHQ-UHFFFAOYSA-N 2-heptyl-2-methylpropane-1,3-diol Chemical compound CCCCCCCC(C)(CO)CO XMFVGVQSSGPIHQ-UHFFFAOYSA-N 0.000 description 1
- WIVDTFSOBMXIMK-UHFFFAOYSA-N 2-hexyl-2-methylpropane-1,3-diol Chemical compound CCCCCCC(C)(CO)CO WIVDTFSOBMXIMK-UHFFFAOYSA-N 0.000 description 1
- PHWNWYMCWKIFAK-UHFFFAOYSA-N 2-methyl-2-pentylpropane-1,3-diol Chemical compound CCCCCC(C)(CO)CO PHWNWYMCWKIFAK-UHFFFAOYSA-N 0.000 description 1
- UCVOCQOLKXXBRN-UHFFFAOYSA-N 2-methyl-4-propan-2-ylpentane-1,5-diol Chemical compound CC(C)C(CO)CC(C)CO UCVOCQOLKXXBRN-UHFFFAOYSA-N 0.000 description 1
- BNMHDPZDANSITP-UHFFFAOYSA-N 2-methyl-4-propylpentane-1,5-diol Chemical compound CCCC(CO)CC(C)CO BNMHDPZDANSITP-UHFFFAOYSA-N 0.000 description 1
- JPFNKCYHAFWXPA-UHFFFAOYSA-N 2-pentyl-2-propylpropane-1,3-diol Chemical compound CCCCCC(CO)(CO)CCC JPFNKCYHAFWXPA-UHFFFAOYSA-N 0.000 description 1
- KZEKCWYLGPCTCW-UHFFFAOYSA-N 2-propan-2-yl-4-propylpentane-1,5-diol Chemical compound CCCC(CO)CC(CO)C(C)C KZEKCWYLGPCTCW-UHFFFAOYSA-N 0.000 description 1
- FKBMTBAXDISZGN-UHFFFAOYSA-N 5-methyl-3a,4,5,6,7,7a-hexahydro-2-benzofuran-1,3-dione Chemical compound C1C(C)CCC2C(=O)OC(=O)C12 FKBMTBAXDISZGN-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 1
- 239000002313 adhesive film Substances 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 150000007824 aliphatic compounds Chemical class 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- 239000004841 bisphenol A epoxy resin Substances 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 238000001460 carbon-13 nuclear magnetic resonance spectrum Methods 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 239000007859 condensation product Substances 0.000 description 1
- 238000006482 condensation reaction Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 235000014113 dietary fatty acids Nutrition 0.000 description 1
- LYMYULOYDUWMOP-UHFFFAOYSA-M diethoxy-sulfanylidene-sulfido-$l^{5}-phosphane;tetrabutylphosphanium Chemical compound CCOP([S-])(=S)OCC.CCCC[P+](CCCC)(CCCC)CCCC LYMYULOYDUWMOP-UHFFFAOYSA-M 0.000 description 1
- 229910001882 dioxygen Inorganic materials 0.000 description 1
- 238000010292 electrical insulation Methods 0.000 description 1
- 125000003700 epoxy group Chemical group 0.000 description 1
- JHYNXXDQQHTCHJ-UHFFFAOYSA-M ethyl(triphenyl)phosphanium;bromide Chemical compound [Br-].C=1C=CC=CC=1[P+](C=1C=CC=CC=1)(CC)C1=CC=CC=C1 JHYNXXDQQHTCHJ-UHFFFAOYSA-M 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 239000000194 fatty acid Substances 0.000 description 1
- 229930195729 fatty acid Natural products 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000012847 fine chemical Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 239000000976 ink Substances 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 239000001282 iso-butane Substances 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 238000001819 mass spectrum Methods 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000003973 paint Substances 0.000 description 1
- AHJULMMBQYWTGR-UHFFFAOYSA-M perchloric acid;tetraethylazanium;bromide Chemical compound [Br-].OCl(=O)(=O)=O.CC[N+](CC)(CC)CC AHJULMMBQYWTGR-UHFFFAOYSA-M 0.000 description 1
- 150000004714 phosphonium salts Chemical group 0.000 description 1
- 229920002120 photoresistant polymer Polymers 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 238000003918 potentiometric titration Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000000425 proton nuclear magnetic resonance spectrum Methods 0.000 description 1
- 150000003242 quaternary ammonium salts Chemical class 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 239000011541 reaction mixture Substances 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 239000000565 sealant Substances 0.000 description 1
- 229920002379 silicone rubber Polymers 0.000 description 1
- 239000004945 silicone rubber Substances 0.000 description 1
- 125000006850 spacer group Chemical group 0.000 description 1
- ZXUCBXRTRRIBSO-UHFFFAOYSA-L tetrabutylazanium;sulfate Chemical compound [O-]S([O-])(=O)=O.CCCC[N+](CCCC)(CCCC)CCCC.CCCC[N+](CCCC)(CCCC)CCCC ZXUCBXRTRRIBSO-UHFFFAOYSA-L 0.000 description 1
- YMBCJWGVCUEGHA-UHFFFAOYSA-M tetraethylammonium chloride Chemical compound [Cl-].CC[N+](CC)(CC)CC YMBCJWGVCUEGHA-UHFFFAOYSA-M 0.000 description 1
- 229920005992 thermoplastic resin Polymers 0.000 description 1
- 229920001187 thermosetting polymer Polymers 0.000 description 1
- 238000004448 titration Methods 0.000 description 1
- 238000005292 vacuum distillation Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D301/00—Preparation of oxiranes
- C07D301/27—Condensation of epihalohydrins or halohydrins with compounds containing active hydrogen atoms
- C07D301/28—Condensation of epihalohydrins or halohydrins with compounds containing active hydrogen atoms by reaction with hydroxyl radicals
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D303/00—Compounds containing three-membered rings having one oxygen atom as the only ring hetero atom
- C07D303/02—Compounds containing oxirane rings
- C07D303/12—Compounds containing oxirane rings with hydrocarbon radicals, substituted by singly or doubly bound oxygen atoms
- C07D303/18—Compounds containing oxirane rings with hydrocarbon radicals, substituted by singly or doubly bound oxygen atoms by etherified hydroxyl radicals
- C07D303/20—Ethers with hydroxy compounds containing no oxirane rings
- C07D303/24—Ethers with hydroxy compounds containing no oxirane rings with polyhydroxy compounds
- C07D303/27—Ethers with hydroxy compounds containing no oxirane rings with polyhydroxy compounds having all hydroxyl radicals etherified with oxirane containing compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G59/00—Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
- C08G59/02—Polycondensates containing more than one epoxy group per molecule
- C08G59/04—Polycondensates containing more than one epoxy group per molecule of polyhydroxy compounds with epihalohydrins or precursors thereof
Definitions
- the present invention relates to a composition, a reactive diluent, a curable composition, and a method for producing the composition.
- Curing compositions containing epoxy resins have excellent physical properties such as electrical insulation, heat resistance, moisture resistance, and dimensional stability, making them suitable for a wide range of applications.
- liquid epoxy resins such as bisphenol A type epoxy resins can be used.
- a reactive diluent for epoxy resins may be used for the purpose of adjusting the viscosity of the curable composition and imparting physical properties to the curable composition.
- diglycidyl ether is one of the most commonly used reactive diluents.
- Patent Document 1 discloses a short-chain aliphatic compound having a glycidyloxymethyl group at a geminal position.
- Patent Document 2 discloses a diglycidyl ether represented by a specific general formula.
- Patent Document 3 discloses a method for producing high-purity fatty acid glycidyl ethers with low chlorine content, characterized in that when producing glycidyl ethers by reacting alcohols with epichlorohydrin in the presence of solid alkali metal hydroxide, the reaction is carried out in the presence of solid alkali metal hydroxide ground in the reaction mixture.
- Curable compositions containing epoxy resins are widely used in semiconductor encapsulants, LED encapsulants, printed circuit boards, build-up boards, electronic components such as resist inks, conductive adhesives such as conductive pastes and other adhesives, liquid encapsulants such as underfills, liquid crystal sealants, coverlays for flexible boards, adhesive films for build-up, die bonding films, non-conductive films, matrices for composite materials, paints, photopolymerization resins, photoresist materials, developer materials, etc.
- electronic material applications such as semiconductors and printed wiring boards, there is an increasing demand for high performance encapsulants, board materials, etc., in line with technological innovations in these applications.
- the problem that the present invention aims to solve is to provide a composition that contains a specific diglycidyl ether, has a reduced total chlorine content, and has excellent insulation reliability.
- a composition comprising a chlorine-containing compound and a diglycidyl ether represented by the following formula (1): A composition having a total chlorine content of 900 ppm or less.
- X represents an alkylene group having 9 to 11 carbon atoms.
- X represents an alkylene group having 9 to 11 carbon atoms.
- the alkylene group is a branched alkylene group.
- the diglycidyl ether is at least one of diglycidyl ethers represented by the following formula (1-1) and the following formula (1-2):
- a reactive diluent for epoxy resins comprising the composition according to any one of [1] to [3].
- a curable composition comprising the reactive diluent according to [4].
- a method for producing a composition containing a chlorine-containing compound and a diglycidyl ether represented by the following formula (1) The total chlorine content of the composition is 900 ppm or less, a crude diglycidyl ether production step of reacting an alkanediol having 9 to 11 carbon atoms with epichlorohydrin to obtain a crude diglycidyl ether containing a diglycidyl ether represented by the following formula (1); a purification step of purifying the obtained crude diglycidyl ether; Including, In the crude diglycidyl ether producing step, solid sodium hydroxide and water are added in portions to adjust the reaction temperature and the total chlorine content.
- X represents an alkylene group having 9 to 11 carbon atoms.
- the present invention provides a composition that contains a specific diglycidyl ether, has a reduced total chlorine content, and has excellent insulation reliability.
- ppm means ppm by mass.
- composition of the present embodiment is a composition containing a chlorine-containing compound and a diglycidyl ether represented by the following formula (1), and has a total chlorine content of 900 ppm or less.
- X represents an alkylene group having 9 to 11 carbon atoms.
- the composition of the present embodiment has the above-mentioned configuration and thus has excellent insulation reliability.
- the composition of the present embodiment also tends to have an excellent balance of dielectric properties, coefficient of linear thermal expansion, and heat resistance. The above properties are required when the composition of the present embodiment is used for electronic material applications. Examples of electronic material applications include semiconductor encapsulation materials.
- the total amount of chlorine refers to the amount of chlorine relative to the total amount of the composition.
- the total amount of chlorine is measured by a combustion type microcoulometric titration method (JIS K2170-2013 Appendix A).
- the composition of the present embodiment contains a chlorine-containing compound and has a total chlorine content of 900 ppm or less.
- a total chlorine content of 900 ppm or less provides excellent insulation reliability.
- the total chlorine content is preferably 600 ppm or less, more preferably 500 ppm or less, and even more preferably 400 ppm or less.
- the total chlorine content may be more than 0 ppm, may be 1 ppm or more, or may be 10 ppm or more.
- composition of the present embodiment contains a chlorine-containing compound is presumed to be as follows.
- diglycidyl ether is produced by the condensation reaction of alkanediol and epichlorohydrin, a compound having a terminal group containing a carbon-chlorine bond in the molecule is produced as a by-product.
- the composition of the present embodiment contains a diglycidyl ether represented by formula (1).
- a diglycidyl ether represented by formula (1) When the diglycidyl ether represented by formula (1) is contained in a reactive diluent used in electronic material applications, it can reduce the viscosity of the epoxy resin without impairing the performance of the epoxy resin.
- the alkylene group may be linear or branched. From the viewpoint of reducing the viscosity of the epoxy resin without impairing its performance, the alkylene group is preferably a branched alkylene group.
- thermoplastic resins such as polyesters having branched alkylene groups tend to have low glass transition temperatures (Tg), and therefore have poor heat resistance. For this reason, it has been thought that reactive diluents having branched alkylene groups are difficult to use for applications such as semiconductor encapsulation materials.
- the diglycidyl ether represented by formula (1) in which X is a branched alkylene group having 9 to 11 carbon atoms has a high Tg in thermosetting resins such as epoxy resins. Therefore, the diglycidyl ether has excellent heat resistance and can be suitably used for applications such as semiconductor encapsulation materials that can withstand soldering when mounting electronic components on electronic boards.
- X represents an alkylene group having 9 to 11 carbon atoms, preferably an alkylene group having 9 to 10 carbon atoms, and more preferably an alkylene group having 9 carbon atoms.
- the diglycidyl ether is at least one of the diglycidyl ethers represented by the following formula (1-1) and the following formula (1-2).
- the concentration of the diglycidyl ether represented by formula (A), calculated by the following calculation method using values measured under the following gas chromatographic analysis conditions is preferably 94.5% or more, and more preferably 95.0% or more.
- the concentration of the diglycidyl ether represented by formula (A) calculated by the following calculation method using values measured under the following gas chromatographic analysis conditions may be less than 100.0%.
- the diglycidyl ether concentration (DGE concentration) was calculated using the following formula (A) from the total area value of the diglycidyl ether peaks detected at retention times of 25.5 to 26.9 minutes (DGE detection peak area value) and the total area value of all peaks detected at retention times of 0.0 to 60.0 minutes (total detection peak area value) under the above measurement conditions.
- DGE concentration (%) (DGE detection peak area value / total detection peak area value) x 100 (A)
- the reactive diluent for the epoxy resin of this embodiment includes the composition of this embodiment.
- the composition of the present embodiment can be suitably used as a reactive diluent for epoxy resins.
- a resin having excellent insulation reliability suitable for electronic components and the like can be obtained.
- the diglycidyl ether contained in the composition of the present embodiment can reduce the viscosity of the epoxy resin without impairing the performance of the epoxy resin.
- the composition of the present embodiment as a reactive diluent for epoxy resins, the obtained resin has excellent dielectric properties, thermal expansion coefficient, heat resistance, and the like.
- the reactive diluent for the epoxy resin of the present embodiment may contain a known reactive diluent in addition to the composition of the present embodiment.
- the curable composition of the present embodiment includes a reactive diluent for the epoxy resin of the present embodiment.
- the curable composition of the present embodiment can be prepared, for example, by mixing a curing agent, a curing accelerator, and the like with an epoxy resin composition containing an epoxy resin and a reactive diluent for the epoxy resin of the present embodiment.
- the curable composition of the present embodiment contains a reactive diluent for the epoxy resin containing the composition of the present embodiment, and thereby a resin having excellent insulation reliability, dielectric properties, coefficient of linear thermal expansion, heat resistance, and the like, which is suitable for electronic components and the like, can be obtained.
- the method for producing the composition of the present embodiment is a method for producing the composition of the present embodiment.
- the method for producing a composition according to the present embodiment is a method for producing a composition containing a chlorine-containing compound and a diglycidyl ether represented by the following formula (1), in which the total chlorine content of the composition is 900 ppm or less, and the method includes a crude diglycidyl ether production step of reacting an alkanediol having 9 to 11 carbon atoms with epichlorohydrin to obtain a crude diglycidyl ether containing the diglycidyl ether represented by the following formula (1), and a purification step of purifying the obtained crude diglycidyl ether, in which solid sodium hydroxide and water are added in portions in the crude diglycidyl ether production step to adjust the reaction temperature and the total chlorine content.
- X represents an alkylene group having 9 to 11 carbon atoms.
- the alkylene group is preferably a branched alkylene group.
- the crude diglycidyl ether production step is a step in which an alkanediol having 9 to 11 carbon atoms is reacted with epichlorohydrin to obtain a crude diglycidyl ether containing the diglycidyl ether represented by formula (1).
- the reaction temperature and the total amount of chlorine are adjusted by adding solid sodium hydroxide and water in portions.
- an alkanediol having 9 to 11 carbon atoms may be reacted with epichlorohydrin in the presence of solid sodium hydroxide, water, and a phase transfer catalyst to obtain a crude diglycidyl ether containing the diglycidyl ether represented by formula (1).
- the phase transfer catalyst includes quaternary ammonium salts, quaternary phosphonium salts, etc.
- quaternary ammonium salts quaternary phosphonium salts, etc.
- tetraethylammonium chloride, tetra-n-butylammonium bromide, tetrabutylammonium sulfate, ethyltriphenylphosphonium bromide, etc., and tetra-n-butylammonium bromide is preferred.
- the amount of the phase transfer catalyst used is preferably 0.5 mmol to 10.0 mmol, and more preferably 3.0 mmol to 7.0 mmol, per 1.0 mol of epichlorohydrin.
- the amount of solid sodium hydroxide used is not particularly limited, but is preferably 1.0 mol to 12.0 mol in total, more preferably 1.5 mol to 10.0 mol, even more preferably 2.0 mol to 8.0 mol, and particularly preferably 3.0 mol to 6.0 mol per 1.0 mol of alkanediol having 9 to 11 carbon atoms.
- the amount of water used is not particularly limited, but is preferably 0.5 mol to 1.0 mol in total, more preferably 0.6 mol to 0.95 mol, and even more preferably 0.7 mol to 0.90 mol per 1.0 mol of alkanediol having 9 to 11 carbon atoms.
- the reaction temperature, the hydroxide ion concentration in the reaction liquid, and the total chlorine content are adjusted by adding solid sodium hydroxide and water in portions. This makes it possible to effectively suppress the total chlorine content in the resulting composition. Therefore, the total chlorine content in the resulting composition can be easily controlled to 900 ppm or less.
- an aqueous sodium hydroxide solution is added instead of solid sodium hydroxide and water, it tends to be difficult to adjust the reaction temperature, the hydroxide ion concentration in the reaction liquid, and the total chlorine content.
- the number of divided additions for both the number of additions of solid sodium hydroxide and the number of additions of water, is preferably 3 to 10, and more preferably 4 to 8.
- the time required for all divided additions to be completed (hereinafter referred to as "time of divided addition") is preferably 1 to 5 hours, and more preferably 2 to 4 hours.
- the hydroxide ion concentration in the reaction solution can be appropriately controlled, and the progress of side reactions can be suppressed. By limiting the time for divided addition to 5 hours or less, excessive addition can be prevented.
- the solid sodium hydroxide and water may be added simultaneously or separately, preferably separately.
- the order may be that solid sodium hydroxide is added first and then water is added, or the reverse order may be used.
- the order of adding solid sodium hydroxide and then water is preferred. More preferably, divided addition of solid sodium hydroxide and then water is added as one cycle, and this cycle is repeated. When the cycle is repeated, it is preferable to repeat it 3 to 10 times, and more preferably 4 to 8 times.
- the reaction temperature is preferably 35°C to 49°C.
- the reaction temperature is more preferably 38°C to 48°C, and further preferably 40°C to 47°C.
- the stirring time is preferably from 1 to 12 hours, more preferably from 2 to 10 hours, and further preferably from 4 to 8 hours.
- the preferred temperature, more preferred temperature, and even more preferred temperature of the reaction liquid during stirring are the same as the reaction temperature described above.
- the alkane is preferably a branched alkane.
- the alkanediol having 9 to 11 carbon atoms include 2,4-dialkyl-1,5-pentanediol and 2,2-dialkyl-1,3-propanediol.
- 2,4-dialkyl-1,5-pentanediol examples include 2-methyl-4-propyl-1,5-pentanediol, 2-isopropyl-4-methyl-1,5-pentanediol, 2,4-diethyl-1,5-pentanediol, 2-ethyl-4-propyl-1,5-pentanediol, 2-ethyl-4-isopropyl-1,5-pentanediol, 2,4-dipropyl-1,5-pentanediol, 2-isopropyl-4-propyl-1,5-pentanediol, 2,4-diisopropyl-1,5-pentanediol, etc.
- 2,4-diethyl-1,5-pentanediol is preferred.
- 2,2-dialkyl-1,3-propanediol examples include 2-methyl-2-pentyl-1,3-propanediol, 2-butyl-2-ethyl-1,3-propanediol, 2-ethyl-2-(2-methylpropyl)-1,3-propanediol, 2,2-dipropyl-1,3-propanediol, 2-methyl-2-hexyl-1,3-propanediol, 2-ethyl-2-pentyl-1,3-propanediol, and 2-ethyl-2-(3-methylbutyl) 2-propyl-2-butyl-1,3-propanediol, 2-isopropyl-2-butyl-1,3-propanediol, 2-methyl-2-heptyl-1,3-propanediol, 2-ethyl-2-hexyl-1,3-propanediol, 2-propy
- the alkanediol having 9 to 11 carbon atoms may be a commercially available product or may be produced according to a known method.
- Examples of commercially available products include Kyowadiol PD-9 (manufactured by KH Neochem Co., Ltd.) and Butyl Ethyl Propanediol (manufactured by KH Neochem Co., Ltd.).
- An example of the known method is the method described in International Publication No. WO 98/39314.
- the amount of epichlorohydrin used is preferably 1.0 mol to 12.0 mol, more preferably 1.5 mol to 10.0 mol, even more preferably 2.0 mol to 8.0 mol, and particularly preferably 3.0 mol to 6.0 mol per 1.0 mol of alkanediol having 9 to 11 carbon atoms.
- the order of these steps is preferably such that the divided addition step of (2) comes after the divided addition step of (3) from the viewpoint of adjusting the reaction temperature, the hydroxide ion concentration in the reaction liquid, and the total amount of chlorine.
- the order of the divided addition step of (2) and the divided addition step of (3) is also preferably the same when these steps are repeated.
- the purification step is a step of purifying the obtained crude diglycidyl ether.
- the crude diglycidyl ether may be purified by extracting the resulting crude diglycidyl ether and then distilling it.
- the extraction may be carried out, for example, by filtering the crude diglycidyl ether and then adding chloroform to the filtrate.
- the distillation may be carried out, for example, by vacuum distillation. The distillation conditions can be appropriately adjusted.
- DGE concentration [Calculation of diglycidyl ether concentration (DGE concentration)]
- the following formula (A) was used to calculate the total area value of the peaks of diglycidyl ethers such as BEPG-DGE (DGE represented by formula (1-2)), an isomer of BEPG-DGE, and PD9-DGE (DGE represented by formula (1-1)) detected at a retention time of 25.5 to 26.9 minutes under the above measurement conditions (DGE detection peak area value) and the total area value of all peaks detected at a retention time of 0.0 to 60.0 minutes (total detection peak area value).
- DGE concentration (%) (DGE detection peak area value / total detection peak area value) x 100 (A)
- GC-MS Gas Chromatography Mass Spectrometry
- GC analyzer Agilent Technologies 6890N
- MS analysis device JEOL Corporation Jms-K9 ultraQuad GC/MS
- GC analytical column Agilent Technologies HP-5 (length 30 m ⁇ inner diameter 0.32 mm ⁇ film thickness 0.25 ⁇ m, packing: (5%-phenyl)-methylpolysiloxane)
- Temperature increase conditions After holding at 50° C. for 5 minutes, the temperature was increased from 50° C. to 320° C. at a rate of 10° C./min, and then held at 320° C. for 28 minutes. Sample introduction temperature: 320° C.
- Carrier gas Helium Column gas flow rate: 0.5 mL/min Control mode: Constant flow Split ratio: 50 Sample injection conditions: 1.0 ⁇ L MS measurement mode: CI Interface temperature: 250°C Ion source temperature: 150° C. Ionization gas: isobutane The mass spectra of the peaks of BEPG-DGE and PD9-DGE detected at a retention time of 22.0 to 24.0 minutes under the above measurement conditions were confirmed.
- composition A a composition containing PD9-DGE (Composition A)
- alkanediol Kyowadiol PD-9 manufactured by KH Neochem Co., Ltd. (a mixture of PD-9 and BEPG, with a GC area ratio of PD-9/BEPG of 95/5) was used.
- 305g (1.90mol) of alkanediol, 705g (7.62mol) of EPH, and 8.60g (26.7mmol) of TBNB were charged.
- composition A The boiling point of composition A was 145 to 150° C./0.9 kPa, and the isolated yield was 49% (based on alkanediol).
- the DGE concentration, total chlorine content, epoxy equivalent, and crosslink density of the obtained composition A are shown in Table 1.
- GC-MS (CI) m/z: 273 (GC-MS retention time; 22.5-22.7 minutes, BEPG-DGE, MH + ), 273 (GC-MS retention time; 23.0-23.5 minutes, PD9-DGE, MH + ).
- composition B Preparation of composition containing BEPG-DGE (composition B)> Composition B was obtained in the same manner as in Example 1, except that the alkanediol was changed to BEPG manufactured by KH Neochem Co., Ltd. The boiling point of composition B was 146 to 152° C./0.8 kPa, and the isolated yield was 29% (based on alkanediol).
- the DGE concentration, total chlorine content, epoxy equivalent, and crosslink density of the obtained composition B are shown in Table 1.
- GC-MS (CI) m/z: 273 (GC-MS retention time; 22.5-22.7 minutes, BEPG-DGE, MH + ), 273 (GC-MS retention time; 23.0-23.5 minutes, BEPG-DGE isomer MH + ).
- composition C a composition containing PD9-DGE (Composition C)> The same alkanediol as in Example 1 was used. The reaction flask was charged with 305 g (1.90 mol) of alkanediol, 705 g (7.62 mol) of EPH, and 8.60 g (26.7 mmol) of TBNB. Next, the liquid temperature in the reaction flask was maintained at 45 ° C.
- composition C had a boiling point of 145 to 150° C./0.9 kPa and an isolated yield of 49% (based on alkanediol).
- the DGE concentration, total chlorine content, epoxy equivalent, and crosslink density of the obtained composition C are shown in Table 1.
- composition D 16HD-DGE (composition D)> Composition D, Epogosei (registered trademark) HD (D) manufactured by Yokkaichi Synthetic Co., Ltd., was analyzed.
- the DGE concentration, total chlorine content, epoxy equivalent, and crosslink density of composition D are shown in Table 1.
- each curable composition was sandwiched between two glass substrates that had been previously treated with a fine heat-resistant TFE coat (manufactured by Fine Chemical Japan Co., Ltd.) for release, together with a 3 mm thick U-shaped silicone rubber spacer. Then, each curable composition sandwiched between the two glass substrates was heated in an oven at 100° C. for 2 hours (pre-curing), and then heated to 150° C. for 5 hours (main curing). After gradual cooling, the glass substrates were removed to obtain each cured product with a thickness of 3 mm. The obtained cured products were evaluated for dielectric constant, dielectric loss tangent, glass transition temperature (Tg), and coefficient of linear thermal expansion (CTE). Each physical property was measured by the following procedure. The results are shown in Table 2.
- Tg Glass transition temperature
- CTE Coefficient of linear thermal expansion
- Composition A and Composition B which are compositions containing a chlorine-containing compound and a diglycidyl ether represented by formula (1) and have a total chlorine content of 900 ppm or less, have a total chlorine content sufficiently lower than the threshold value (900 ppm or less) of the halogen-free grade desired in the electronic materials field, and are therefore excellent in insulation reliability.
- the composition C of Comparative Example 1 which was produced by a conventionally known production method (WO98/39314) and in which the total chlorine content was not 900 ppm or less, has a total chlorine content higher than the threshold value (900 ppm or less), and is considered to have a significantly low insulation reliability. Therefore, it is considered difficult to use it for, for example, semiconductor encapsulation applications.
- curable composition 1 (Example 3) to which composition A obtained in Example 1 was added as a reactive diluent had a lower relative dielectric constant and CTE than curable composition 3 (Comparative Example 3) to which composition C obtained in Comparative Example 1, which was made by the conventionally known manufacturing method (WO98/39314), was added as a reactive diluent.
- curable composition 1 (Example 3) to which composition A obtained in Example 1 was added as a reactive diluent had a lower relative dielectric constant, dielectric loss tangent, and CTE than curable composition 4 (Comparative Example 4) to which composition D of the conventionally known Comparative Example 2 was added as a reactive diluent.
- curable composition 2 (Example 4) to which composition B obtained in Example 2 was added as a reactive diluent had a lower relative dielectric constant, dielectric loss tangent, and CTE than curable composition 4 (Comparative Example 4) to which composition D of the conventionally known Comparative Example 2 was added as a reactive diluent.
- the crosslink density of the reactive diluent (Example 1: composition A) was 0.86 times that of the conventionally known reactive diluent (Comparative Example 2: composition D), and the crosslink density was low in Example 1.
- the difference in Tg between the curable composition 4 (Comparative Example 4) to which the conventionally known reactive diluent (Comparative Example 2: composition D) was added and the curable composition 1 (Example 3) to which the reactive diluent (Example 1: composition A) was added was 2° C., and they were equivalent.
- the crosslink density of the reactive diluent (Example 2: composition B) was 0.86 times that of the conventionally known reactive diluent (Comparative Example 2: composition D), and the crosslink density was low in Example 2.
- the Tg of curable composition 2 (Example 4) to which a reactive diluent (Example 2: composition B) was added was improved by 6° C. compared to the Tg of curable composition 4 (Comparative Example 4) to which a conventionally known reactive diluent (Comparative Example 2: composition D) was added.
- the composition of the present invention has industrial applicability as a reactive diluent for epoxy resins, a curable composition, a method for producing a composition, etc.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Epoxy Compounds (AREA)
Abstract
The present invention provides a composition which contains a specific diglycidyl ether, has a reduced total amount of chlorine, and has excellent insulation reliability. The present invention pertains to a composition which contains a chlorine-containing compound and a diglycidyl ether represented by formula (1), wherein the total amount of chlorine is 900 ppm or less. In formula (1), X represents an alkylene group having 9 to 11 carbon atoms.
Description
本発明は、組成物、反応性希釈剤、硬化性組成物及び組成物の製造方法に関する。
The present invention relates to a composition, a reactive diluent, a curable composition, and a method for producing the composition.
エポキシ樹脂を含む硬化性組成物は、電気絶縁性、耐熱性、耐湿性、寸法安定性などの諸物性に優れるため、さまざまな用途に使用され得る。
Curing compositions containing epoxy resins have excellent physical properties such as electrical insulation, heat resistance, moisture resistance, and dimensional stability, making them suitable for a wide range of applications.
キャスティング成形などの液状成形においては、ビスフェノールA型エポキシ樹脂に代表される液状のエポキシ樹脂が、採用され得る。しかし、こうした液状エポキシ樹脂は、粘度が高い場合も多いことから、硬化性組成物に対する粘度の調整及び物性付与を目的として、エポキシ樹脂用の反応性希釈剤が使用される場合がある。
例えば、ジグリシジルエーテルは広く一般に使用される反応性希釈剤の1つである。 In liquid molding such as casting molding, liquid epoxy resins such as bisphenol A type epoxy resins can be used. However, since such liquid epoxy resins often have high viscosity, a reactive diluent for epoxy resins may be used for the purpose of adjusting the viscosity of the curable composition and imparting physical properties to the curable composition.
For example, diglycidyl ether is one of the most commonly used reactive diluents.
例えば、ジグリシジルエーテルは広く一般に使用される反応性希釈剤の1つである。 In liquid molding such as casting molding, liquid epoxy resins such as bisphenol A type epoxy resins can be used. However, since such liquid epoxy resins often have high viscosity, a reactive diluent for epoxy resins may be used for the purpose of adjusting the viscosity of the curable composition and imparting physical properties to the curable composition.
For example, diglycidyl ether is one of the most commonly used reactive diluents.
例えば、特許文献1には、ジェミナル位にグリシジルオキシメチル基を有する短鎖脂肪族化合物が開示されている。
For example, Patent Document 1 discloses a short-chain aliphatic compound having a glycidyloxymethyl group at a geminal position.
特許文献2には、特定の一般式で表されるジグリシジルエーテルが開示されている。
Patent Document 2 discloses a diglycidyl ether represented by a specific general formula.
特許文献3には、アルコール類とエピクロルヒドリンを固型アルカリ金属水酸化物の存在下に反応させ、グリシジルエーテル類を製造する際に、反応混合物中で粉砕した固型アルカリ金属水酸化物の存在下に反応させることを特徴とする塩素含有量の少ない高純度脂肪酸グリシジルエーテル類の製造法が開示されている。
Patent Document 3 discloses a method for producing high-purity fatty acid glycidyl ethers with low chlorine content, characterized in that when producing glycidyl ethers by reacting alcohols with epichlorohydrin in the presence of solid alkali metal hydroxide, the reaction is carried out in the presence of solid alkali metal hydroxide ground in the reaction mixture.
エポキシ樹脂を含む硬化性組成物は、半導体封止材、LED封止材、プリント回路基板、ビルドアップ基板、レジストインキなどの電子部品、導電ペーストなどの導電性接着剤及びその他接着剤、アンダーフィルなどの液状封止材、液晶シール材、フレキシブル基板用カバーレイ、ビルドアップ用接着フィルム、ダイボンディングフィルム、ノンコンダクトフィルム、複合材料用マトリックス、塗料、光造形樹脂、フォトレジスト材料、顕色材料などで広く用いられている。これらの中でも、半導体及びプリント配線基板などの電子材料用途においては、これらの用途における技術革新に伴って封止材、基板材料などへの高性能化の要求が高まっている。
Curable compositions containing epoxy resins are widely used in semiconductor encapsulants, LED encapsulants, printed circuit boards, build-up boards, electronic components such as resist inks, conductive adhesives such as conductive pastes and other adhesives, liquid encapsulants such as underfills, liquid crystal sealants, coverlays for flexible boards, adhesive films for build-up, die bonding films, non-conductive films, matrices for composite materials, paints, photopolymerization resins, photoresist materials, developer materials, etc. Among these, in electronic material applications such as semiconductors and printed wiring boards, there is an increasing demand for high performance encapsulants, board materials, etc., in line with technological innovations in these applications.
エポキシ樹脂を電子材料用途に用いる場合は、不純物含有量の低減が求められる。例えば、電子材料用途に用いられるエポキシ樹脂の反応性希釈剤についても、不純物含有量の低減が求められる。不純物の含有量を低減することで、電子部品の電気の短絡、電子回路配線間のマイグレーションなどの不具合を回避できるため、絶縁信頼性に優れると考えられる。
また、電子材料用途に用いられる反応性希釈剤に含まれるジグリシジルエーテルについても、エポキシ樹脂の性能を損なわずにエポキシ樹脂を低粘度化させる観点から、好適なジグリシジルエーテルを用いることが求められる。 When epoxy resins are used for electronic materials, it is necessary to reduce the impurity content. For example, it is necessary to reduce the impurity content of reactive diluents for epoxy resins used for electronic materials. By reducing the impurity content, defects such as electrical short circuits in electronic components and migration between electronic circuit wiring can be avoided, and it is considered that the insulation reliability is excellent.
Furthermore, with regard to the diglycidyl ether contained in a reactive diluent used for electronic material applications, it is required to use a suitable diglycidyl ether from the viewpoint of reducing the viscosity of the epoxy resin without impairing the performance of the epoxy resin.
また、電子材料用途に用いられる反応性希釈剤に含まれるジグリシジルエーテルについても、エポキシ樹脂の性能を損なわずにエポキシ樹脂を低粘度化させる観点から、好適なジグリシジルエーテルを用いることが求められる。 When epoxy resins are used for electronic materials, it is necessary to reduce the impurity content. For example, it is necessary to reduce the impurity content of reactive diluents for epoxy resins used for electronic materials. By reducing the impurity content, defects such as electrical short circuits in electronic components and migration between electronic circuit wiring can be avoided, and it is considered that the insulation reliability is excellent.
Furthermore, with regard to the diglycidyl ether contained in a reactive diluent used for electronic material applications, it is required to use a suitable diglycidyl ether from the viewpoint of reducing the viscosity of the epoxy resin without impairing the performance of the epoxy resin.
本発明が解決しようとする課題は、特定のジグリシジルエーテルを含み、全塩素量が抑制され、絶縁信頼性に優れる組成物を提供することである。
The problem that the present invention aims to solve is to provide a composition that contains a specific diglycidyl ether, has a reduced total chlorine content, and has excellent insulation reliability.
本発明は以下の態様を含む。
[1]塩素含有化合物と、下記式(1)で表されるジグリシジルエーテルと、を含む組成物であって、
全塩素量が900ppm以下である、組成物。 The present invention includes the following aspects.
[1] A composition comprising a chlorine-containing compound and a diglycidyl ether represented by the following formula (1):
A composition having a total chlorine content of 900 ppm or less.
[1]塩素含有化合物と、下記式(1)で表されるジグリシジルエーテルと、を含む組成物であって、
全塩素量が900ppm以下である、組成物。 The present invention includes the following aspects.
[1] A composition comprising a chlorine-containing compound and a diglycidyl ether represented by the following formula (1):
A composition having a total chlorine content of 900 ppm or less.
(式(1)中、Xは炭素数9~11のアルキレン基を表す。)
[2]前記式(1)の前記Xにおいて、前記アルキレン基は分岐鎖状のアルキレン基である、[1]に記載の組成物。
[3] 前記ジグリシジルエーテルが、下記式(1-1)及び下記式(1-2)で表されるジグリシジルエーテルの少なくとも一方である、[1]又は[2]に記載の組成物。 (In formula (1), X represents an alkylene group having 9 to 11 carbon atoms.)
[2] The composition according to [1], wherein in the formula (1), the alkylene group is a branched alkylene group.
[3] The composition according to [1] or [2], wherein the diglycidyl ether is at least one of diglycidyl ethers represented by the following formula (1-1) and the following formula (1-2):
[2]前記式(1)の前記Xにおいて、前記アルキレン基は分岐鎖状のアルキレン基である、[1]に記載の組成物。
[3] 前記ジグリシジルエーテルが、下記式(1-1)及び下記式(1-2)で表されるジグリシジルエーテルの少なくとも一方である、[1]又は[2]に記載の組成物。 (In formula (1), X represents an alkylene group having 9 to 11 carbon atoms.)
[2] The composition according to [1], wherein in the formula (1), the alkylene group is a branched alkylene group.
[3] The composition according to [1] or [2], wherein the diglycidyl ether is at least one of diglycidyl ethers represented by the following formula (1-1) and the following formula (1-2):
[4][1]~[3]のいずれか1つに記載の組成物を含む、エポキシ樹脂の反応性希釈剤。
[5][4]に記載の反応性希釈剤を含む、硬化性組成物。
[6]塩素含有化合物と、下記式(1)で表されるジグリシジルエーテルと、を含む組成物の製造方法であって、
前記組成物の全塩素量が900ppm以下であり、
炭素数9~11のアルカンジオールとエピクロロヒドリンとを反応させて、下記式(1)で表されるジグリシジルエーテルを含む粗ジグリシジルエーテルを得る粗ジグリシジルエーテル生成工程と、
得られた粗ジグリシジルエーテルを精製する精製工程と、
を含み、
前記粗ジグリシジルエーテル生成工程において、固体の水酸化ナトリウムと水とを分割して添加することで、反応温度及び全塩素量を調整する、組成物の製造方法。 [4] A reactive diluent for epoxy resins, comprising the composition according to any one of [1] to [3].
[5] A curable composition comprising the reactive diluent according to [4].
[6] A method for producing a composition containing a chlorine-containing compound and a diglycidyl ether represented by the following formula (1),
The total chlorine content of the composition is 900 ppm or less,
a crude diglycidyl ether production step of reacting an alkanediol having 9 to 11 carbon atoms with epichlorohydrin to obtain a crude diglycidyl ether containing a diglycidyl ether represented by the following formula (1);
a purification step of purifying the obtained crude diglycidyl ether;
Including,
In the crude diglycidyl ether producing step, solid sodium hydroxide and water are added in portions to adjust the reaction temperature and the total chlorine content.
[5][4]に記載の反応性希釈剤を含む、硬化性組成物。
[6]塩素含有化合物と、下記式(1)で表されるジグリシジルエーテルと、を含む組成物の製造方法であって、
前記組成物の全塩素量が900ppm以下であり、
炭素数9~11のアルカンジオールとエピクロロヒドリンとを反応させて、下記式(1)で表されるジグリシジルエーテルを含む粗ジグリシジルエーテルを得る粗ジグリシジルエーテル生成工程と、
得られた粗ジグリシジルエーテルを精製する精製工程と、
を含み、
前記粗ジグリシジルエーテル生成工程において、固体の水酸化ナトリウムと水とを分割して添加することで、反応温度及び全塩素量を調整する、組成物の製造方法。 [4] A reactive diluent for epoxy resins, comprising the composition according to any one of [1] to [3].
[5] A curable composition comprising the reactive diluent according to [4].
[6] A method for producing a composition containing a chlorine-containing compound and a diglycidyl ether represented by the following formula (1),
The total chlorine content of the composition is 900 ppm or less,
a crude diglycidyl ether production step of reacting an alkanediol having 9 to 11 carbon atoms with epichlorohydrin to obtain a crude diglycidyl ether containing a diglycidyl ether represented by the following formula (1);
a purification step of purifying the obtained crude diglycidyl ether;
Including,
In the crude diglycidyl ether producing step, solid sodium hydroxide and water are added in portions to adjust the reaction temperature and the total chlorine content.
(式(1)中、Xは炭素数9~11のアルキレン基を表す。)
(In formula (1), X represents an alkylene group having 9 to 11 carbon atoms.)
本発明により、特定のジグリシジルエーテルを含み、全塩素量が抑制され、絶縁信頼性に優れる組成物を提供できる。
The present invention provides a composition that contains a specific diglycidyl ether, has a reduced total chlorine content, and has excellent insulation reliability.
以下、本発明の実施形態(以下、「本実施形態」という。)について詳細に説明する。本発明は、以下の記載に限定されるものではなく、その要旨の範囲内で種々変形して実施できる。
本明細書において、ppmは質量ppmを意味する。 Hereinafter, an embodiment of the present invention (hereinafter, referred to as "the present embodiment") will be described in detail. The present invention is not limited to the following description, and can be practiced in various modifications within the scope of the gist thereof.
In this specification, ppm means ppm by mass.
本明細書において、ppmは質量ppmを意味する。 Hereinafter, an embodiment of the present invention (hereinafter, referred to as "the present embodiment") will be described in detail. The present invention is not limited to the following description, and can be practiced in various modifications within the scope of the gist thereof.
In this specification, ppm means ppm by mass.
<組成物>
本実施形態の組成物は、塩素含有化合物と、下記式(1)で表されるジグリシジルエーテルと、を含む組成物であって、全塩素量が900ppm以下である。 <Composition>
The composition of the present embodiment is a composition containing a chlorine-containing compound and a diglycidyl ether represented by the following formula (1), and has a total chlorine content of 900 ppm or less.
本実施形態の組成物は、塩素含有化合物と、下記式(1)で表されるジグリシジルエーテルと、を含む組成物であって、全塩素量が900ppm以下である。 <Composition>
The composition of the present embodiment is a composition containing a chlorine-containing compound and a diglycidyl ether represented by the following formula (1), and has a total chlorine content of 900 ppm or less.
(式(1)中、Xは炭素数9~11のアルキレン基を表す。)
本実施形態の組成物は、上述の構成を含むことで、絶縁信頼性に優れる。
また、本実施形態の組成物は、誘電特性、熱線膨張係数及び耐熱性のバランスにも優れる傾向にある。上記の性質は、本実施形態の組成物を電子材料用途に用いる際に求められる。電子材料用途としては半導体封止材等の用途が挙げられる。 (In formula (1), X represents an alkylene group having 9 to 11 carbon atoms.)
The composition of the present embodiment has the above-mentioned configuration and thus has excellent insulation reliability.
The composition of the present embodiment also tends to have an excellent balance of dielectric properties, coefficient of linear thermal expansion, and heat resistance. The above properties are required when the composition of the present embodiment is used for electronic material applications. Examples of electronic material applications include semiconductor encapsulation materials.
本実施形態の組成物は、上述の構成を含むことで、絶縁信頼性に優れる。
また、本実施形態の組成物は、誘電特性、熱線膨張係数及び耐熱性のバランスにも優れる傾向にある。上記の性質は、本実施形態の組成物を電子材料用途に用いる際に求められる。電子材料用途としては半導体封止材等の用途が挙げられる。 (In formula (1), X represents an alkylene group having 9 to 11 carbon atoms.)
The composition of the present embodiment has the above-mentioned configuration and thus has excellent insulation reliability.
The composition of the present embodiment also tends to have an excellent balance of dielectric properties, coefficient of linear thermal expansion, and heat resistance. The above properties are required when the composition of the present embodiment is used for electronic material applications. Examples of electronic material applications include semiconductor encapsulation materials.
<全塩素量>
全塩素量は、組成物の全量に対する塩素分を指す。全塩素量は、燃焼式微量電量滴定法(JIS K2170-2013 付属書A)により測定される。
本実施形態の組成物は、塩素含有化合物を含み、全塩素量が900ppm以下である。
全塩素量が900ppm以下であることで、絶縁信頼性に優れる。上記の観点から、全塩素量が600ppm以下であることが好ましく、500ppm以下であることがより好ましく、400ppm以下であることがさらに好ましい。
また、安定的かつ低コストで製造するために、全塩素量が0ppm超であってもよく、1ppm以上であってもよく、10ppm以上であってもよい。 <Total chlorine content>
The total amount of chlorine refers to the amount of chlorine relative to the total amount of the composition. The total amount of chlorine is measured by a combustion type microcoulometric titration method (JIS K2170-2013 Appendix A).
The composition of the present embodiment contains a chlorine-containing compound and has a total chlorine content of 900 ppm or less.
A total chlorine content of 900 ppm or less provides excellent insulation reliability. From the above viewpoints, the total chlorine content is preferably 600 ppm or less, more preferably 500 ppm or less, and even more preferably 400 ppm or less.
For stable and low-cost production, the total chlorine content may be more than 0 ppm, may be 1 ppm or more, or may be 10 ppm or more.
全塩素量は、組成物の全量に対する塩素分を指す。全塩素量は、燃焼式微量電量滴定法(JIS K2170-2013 付属書A)により測定される。
本実施形態の組成物は、塩素含有化合物を含み、全塩素量が900ppm以下である。
全塩素量が900ppm以下であることで、絶縁信頼性に優れる。上記の観点から、全塩素量が600ppm以下であることが好ましく、500ppm以下であることがより好ましく、400ppm以下であることがさらに好ましい。
また、安定的かつ低コストで製造するために、全塩素量が0ppm超であってもよく、1ppm以上であってもよく、10ppm以上であってもよい。 <Total chlorine content>
The total amount of chlorine refers to the amount of chlorine relative to the total amount of the composition. The total amount of chlorine is measured by a combustion type microcoulometric titration method (JIS K2170-2013 Appendix A).
The composition of the present embodiment contains a chlorine-containing compound and has a total chlorine content of 900 ppm or less.
A total chlorine content of 900 ppm or less provides excellent insulation reliability. From the above viewpoints, the total chlorine content is preferably 600 ppm or less, more preferably 500 ppm or less, and even more preferably 400 ppm or less.
For stable and low-cost production, the total chlorine content may be more than 0 ppm, may be 1 ppm or more, or may be 10 ppm or more.
本実施形態の組成物が塩素含有化合物を含む理由として、以下のことが推定される。
ジグリシジルエーテルをアルカンジオールとエピクロロヒドリンとの縮合反応により製造する際に、分子内に炭素-塩素結合を含む末端基を有する化合物が副生する。特に、炭素数の多い分岐鎖状のアルキレン基を有するジグリシジルエーテルの場合、反応点周辺が立体的に嵩高くなる、あるいは電子供与性の影響により、直鎖状の化合物と比べて反応性及び選択性が低下し、炭素-塩素結合を含む末端基を有する化合物やエピクロロヒドリンの多量体縮合物などの副生物が生成しやすくなる傾向にある。塩素を含むこれらの副生物が本実施形態の組成物に混入するものと推定される。 The reason why the composition of the present embodiment contains a chlorine-containing compound is presumed to be as follows.
When diglycidyl ether is produced by the condensation reaction of alkanediol and epichlorohydrin, a compound having a terminal group containing a carbon-chlorine bond in the molecule is produced as a by-product. In particular, in the case of a diglycidyl ether having a branched alkylene group with a large number of carbon atoms, the reactivity and selectivity are lowered compared to linear compounds due to the steric bulkiness around the reaction point or the influence of electron donor, and by-products such as a compound having a terminal group containing a carbon-chlorine bond or a polymer condensation product of epichlorohydrin tend to be easily produced. It is presumed that these by-products containing chlorine are mixed into the composition of the present embodiment.
ジグリシジルエーテルをアルカンジオールとエピクロロヒドリンとの縮合反応により製造する際に、分子内に炭素-塩素結合を含む末端基を有する化合物が副生する。特に、炭素数の多い分岐鎖状のアルキレン基を有するジグリシジルエーテルの場合、反応点周辺が立体的に嵩高くなる、あるいは電子供与性の影響により、直鎖状の化合物と比べて反応性及び選択性が低下し、炭素-塩素結合を含む末端基を有する化合物やエピクロロヒドリンの多量体縮合物などの副生物が生成しやすくなる傾向にある。塩素を含むこれらの副生物が本実施形態の組成物に混入するものと推定される。 The reason why the composition of the present embodiment contains a chlorine-containing compound is presumed to be as follows.
When diglycidyl ether is produced by the condensation reaction of alkanediol and epichlorohydrin, a compound having a terminal group containing a carbon-chlorine bond in the molecule is produced as a by-product. In particular, in the case of a diglycidyl ether having a branched alkylene group with a large number of carbon atoms, the reactivity and selectivity are lowered compared to linear compounds due to the steric bulkiness around the reaction point or the influence of electron donor, and by-products such as a compound having a terminal group containing a carbon-chlorine bond or a polymer condensation product of epichlorohydrin tend to be easily produced. It is presumed that these by-products containing chlorine are mixed into the composition of the present embodiment.
(式(1)で表されるジグリシジルエーテル)
本実施形態の組成物は、式(1)で表されるジグリシジルエーテルを含む。
式(1)で表されるジグリシジルエーテルは、電子材料用途に用いられる反応性希釈剤に含まれる場合に、エポキシ樹脂の性能を損なわずにエポキシ樹脂を低粘度化させることができる。 (Diglycidyl ether represented by formula (1))
The composition of the present embodiment contains a diglycidyl ether represented by formula (1).
When the diglycidyl ether represented by formula (1) is contained in a reactive diluent used in electronic material applications, it can reduce the viscosity of the epoxy resin without impairing the performance of the epoxy resin.
本実施形態の組成物は、式(1)で表されるジグリシジルエーテルを含む。
式(1)で表されるジグリシジルエーテルは、電子材料用途に用いられる反応性希釈剤に含まれる場合に、エポキシ樹脂の性能を損なわずにエポキシ樹脂を低粘度化させることができる。 (Diglycidyl ether represented by formula (1))
The composition of the present embodiment contains a diglycidyl ether represented by formula (1).
When the diglycidyl ether represented by formula (1) is contained in a reactive diluent used in electronic material applications, it can reduce the viscosity of the epoxy resin without impairing the performance of the epoxy resin.
式(1)のXにおいて、アルキレン基は直鎖状であっても分岐鎖状であってもよいが、エポキシ樹脂の性能を損なわずに低粘度化する観点から、分岐鎖状のアルキレン基であることが好ましい。
一般に、分岐鎖状のアルキレン基を有するポリエステルなどの熱可塑性樹脂は、ガラス転移温度(Tg)が低い傾向にあるため、耐熱性に劣る。そのため、例えば、半導体封止材等の用途には分岐鎖状のアルキレン基を有する反応性希釈剤は用い難いと考えられてきた。これに対して、本実施形態において、Xが炭素数9~11の分岐鎖状のアルキレン基である式(1)で表されるジグリシジルエーテルは、エポキシ樹脂などの熱硬化性樹脂においてTgが高い。そのため、上記ジグリシジルエーテルは、耐熱性に優れており、例えば、電子基板への電子部品実装時のハンダ付けなどに耐える半導体封止材等の用途にも好適に用いることができる。 In the formula (1), the alkylene group may be linear or branched. From the viewpoint of reducing the viscosity of the epoxy resin without impairing its performance, the alkylene group is preferably a branched alkylene group.
In general, thermoplastic resins such as polyesters having branched alkylene groups tend to have low glass transition temperatures (Tg), and therefore have poor heat resistance. For this reason, it has been thought that reactive diluents having branched alkylene groups are difficult to use for applications such as semiconductor encapsulation materials. In contrast, in this embodiment, the diglycidyl ether represented by formula (1) in which X is a branched alkylene group having 9 to 11 carbon atoms has a high Tg in thermosetting resins such as epoxy resins. Therefore, the diglycidyl ether has excellent heat resistance and can be suitably used for applications such as semiconductor encapsulation materials that can withstand soldering when mounting electronic components on electronic boards.
一般に、分岐鎖状のアルキレン基を有するポリエステルなどの熱可塑性樹脂は、ガラス転移温度(Tg)が低い傾向にあるため、耐熱性に劣る。そのため、例えば、半導体封止材等の用途には分岐鎖状のアルキレン基を有する反応性希釈剤は用い難いと考えられてきた。これに対して、本実施形態において、Xが炭素数9~11の分岐鎖状のアルキレン基である式(1)で表されるジグリシジルエーテルは、エポキシ樹脂などの熱硬化性樹脂においてTgが高い。そのため、上記ジグリシジルエーテルは、耐熱性に優れており、例えば、電子基板への電子部品実装時のハンダ付けなどに耐える半導体封止材等の用途にも好適に用いることができる。 In the formula (1), the alkylene group may be linear or branched. From the viewpoint of reducing the viscosity of the epoxy resin without impairing its performance, the alkylene group is preferably a branched alkylene group.
In general, thermoplastic resins such as polyesters having branched alkylene groups tend to have low glass transition temperatures (Tg), and therefore have poor heat resistance. For this reason, it has been thought that reactive diluents having branched alkylene groups are difficult to use for applications such as semiconductor encapsulation materials. In contrast, in this embodiment, the diglycidyl ether represented by formula (1) in which X is a branched alkylene group having 9 to 11 carbon atoms has a high Tg in thermosetting resins such as epoxy resins. Therefore, the diglycidyl ether has excellent heat resistance and can be suitably used for applications such as semiconductor encapsulation materials that can withstand soldering when mounting electronic components on electronic boards.
式(1)中、Xは炭素数9~11のアルキレン基を表し、好ましくは炭素数9~10のアルキレン基を表し、より好ましくは炭素数9のアルキレン基を表す。
In formula (1), X represents an alkylene group having 9 to 11 carbon atoms, preferably an alkylene group having 9 to 10 carbon atoms, and more preferably an alkylene group having 9 carbon atoms.
ジグリシジルエーテルが、エポキシ樹脂の性能を損なわずにエポキシ樹脂を低粘度化させる観点から、下記式(1-1)及び下記式(1-2)で表されるジグリシジルエーテルの少なくとも一方であることが好ましい。
From the viewpoint of reducing the viscosity of the epoxy resin without impairing the performance of the epoxy resin, it is preferable that the diglycidyl ether is at least one of the diglycidyl ethers represented by the following formula (1-1) and the following formula (1-2).
本実施形態の組成物は、下記のガスクロマトグラフ分析条件で測定される値を用い、下記の算出方法にて算出される式(A)で表されるジグリシジルエーテルの濃度が、好ましくは94.5%以上であり、より好ましくは95.0%以上である。
本実施形態の組成物は、下記のガスクロマトグラフ分析条件で測定される値を用い、下記の算出方法にて算出される式(A)で表されるジグリシジルエーテルの濃度が、100.0%未満であってもよい。 In the composition of the present embodiment, the concentration of the diglycidyl ether represented by formula (A), calculated by the following calculation method using values measured under the following gas chromatographic analysis conditions, is preferably 94.5% or more, and more preferably 95.0% or more.
In the composition of the present embodiment, the concentration of the diglycidyl ether represented by formula (A) calculated by the following calculation method using values measured under the following gas chromatographic analysis conditions may be less than 100.0%.
本実施形態の組成物は、下記のガスクロマトグラフ分析条件で測定される値を用い、下記の算出方法にて算出される式(A)で表されるジグリシジルエーテルの濃度が、100.0%未満であってもよい。 In the composition of the present embodiment, the concentration of the diglycidyl ether represented by formula (A), calculated by the following calculation method using values measured under the following gas chromatographic analysis conditions, is preferably 94.5% or more, and more preferably 95.0% or more.
In the composition of the present embodiment, the concentration of the diglycidyl ether represented by formula (A) calculated by the following calculation method using values measured under the following gas chromatographic analysis conditions may be less than 100.0%.
[ガスクロマトグラフ分析条件]
分析装置:Agilent Technologies社製 7890A ガスクロマトグラフィーSystem
分析カラム:Agilent Technologies社製 HP-5 (長さ30m×内径0.32mm×膜厚0.25μm、充填物:(5%-フェニル)-メチルポリシロキサン)
昇温条件:50℃で5分間保持した後、10℃/分で50℃から320℃まで昇温し、320℃で28分間保持
試料導入温度:320℃
キャリアガス:窒素
カラムのガス流量:0.5mL/分
検出器及び検出温度:水素炎イオン化検出器(FID)、320℃
コントロールモード:コンスタントフロー
スプリット比:50
試料注入条件:1.0μL [Gas chromatograph analysis conditions]
Analytical equipment: Agilent Technologies 7890A Gas Chromatography System
Analytical column: Agilent Technologies HP-5 (length 30 m × inner diameter 0.32 mm × film thickness 0.25 μm, packing: (5%-phenyl)-methylpolysiloxane)
Temperature increase conditions: After holding at 50° C. for 5 minutes, the temperature was increased from 50° C. to 320° C. at a rate of 10° C./min, and then held at 320° C. for 28 minutes. Sample introduction temperature: 320° C.
Carrier gas: nitrogen Column gas flow rate: 0.5 mL/min Detector and detection temperature: flame ionization detector (FID), 320° C.
Control mode: constant flow Split ratio: 50
Sample injection conditions: 1.0 μL
分析装置:Agilent Technologies社製 7890A ガスクロマトグラフィーSystem
分析カラム:Agilent Technologies社製 HP-5 (長さ30m×内径0.32mm×膜厚0.25μm、充填物:(5%-フェニル)-メチルポリシロキサン)
昇温条件:50℃で5分間保持した後、10℃/分で50℃から320℃まで昇温し、320℃で28分間保持
試料導入温度:320℃
キャリアガス:窒素
カラムのガス流量:0.5mL/分
検出器及び検出温度:水素炎イオン化検出器(FID)、320℃
コントロールモード:コンスタントフロー
スプリット比:50
試料注入条件:1.0μL [Gas chromatograph analysis conditions]
Analytical equipment: Agilent Technologies 7890A Gas Chromatography System
Analytical column: Agilent Technologies HP-5 (length 30 m × inner diameter 0.32 mm × film thickness 0.25 μm, packing: (5%-phenyl)-methylpolysiloxane)
Temperature increase conditions: After holding at 50° C. for 5 minutes, the temperature was increased from 50° C. to 320° C. at a rate of 10° C./min, and then held at 320° C. for 28 minutes. Sample introduction temperature: 320° C.
Carrier gas: nitrogen Column gas flow rate: 0.5 mL/min Detector and detection temperature: flame ionization detector (FID), 320° C.
Control mode: constant flow Split ratio: 50
Sample injection conditions: 1.0 μL
[ジグリシジルエーテル濃度(DGE濃度)の算出方法]
ジグリシジルエーテル濃度(DGE濃度)は、上記測定条件で保持時間25.5~26.9分に検出される、ジグリシジルエーテルのピークの合計面積値(DGE検出ピーク面積値)と保持時間0.0~60.0分に検出される全ピークの合計面積値(全検出ピーク面積値)より下記式(A)を用いて算出した。
DGE濃度(%)=(DGE検出ピーク面積値/全検出ピーク面積値)×100 (A) [Method of calculating diglycidyl ether concentration (DGE concentration)]
The diglycidyl ether concentration (DGE concentration) was calculated using the following formula (A) from the total area value of the diglycidyl ether peaks detected at retention times of 25.5 to 26.9 minutes (DGE detection peak area value) and the total area value of all peaks detected at retention times of 0.0 to 60.0 minutes (total detection peak area value) under the above measurement conditions.
DGE concentration (%) = (DGE detection peak area value / total detection peak area value) x 100 (A)
ジグリシジルエーテル濃度(DGE濃度)は、上記測定条件で保持時間25.5~26.9分に検出される、ジグリシジルエーテルのピークの合計面積値(DGE検出ピーク面積値)と保持時間0.0~60.0分に検出される全ピークの合計面積値(全検出ピーク面積値)より下記式(A)を用いて算出した。
DGE濃度(%)=(DGE検出ピーク面積値/全検出ピーク面積値)×100 (A) [Method of calculating diglycidyl ether concentration (DGE concentration)]
The diglycidyl ether concentration (DGE concentration) was calculated using the following formula (A) from the total area value of the diglycidyl ether peaks detected at retention times of 25.5 to 26.9 minutes (DGE detection peak area value) and the total area value of all peaks detected at retention times of 0.0 to 60.0 minutes (total detection peak area value) under the above measurement conditions.
DGE concentration (%) = (DGE detection peak area value / total detection peak area value) x 100 (A)
<エポキシ樹脂の反応性希釈剤>
本実施形態のエポキシ樹脂の反応性希釈剤は、本実施形態の組成物を含む。
本実施形態の組成物は、エポキシ樹脂の反応性希釈剤として好適に用いることができる。本実施形態の組成物を、エポキシ樹脂の反応性希釈剤として用いることで、電子部品等に好適な、絶縁信頼性に優れる樹脂が得られる。本実施形態の組成物に含まれるジグリシジルエーテルは、エポキシ樹脂の性能を損なわずにエポキシ樹脂を低粘度化させることができる。また、本実施形態の組成物を、エポキシ樹脂の反応性希釈剤として用いることで、得られる樹脂は、誘電特性、熱線膨張係数、耐熱性などに優れる。
本実施形態のエポキシ樹脂の反応性希釈剤は、本実施形態の組成物以外に、公知の反応性希釈剤を含んでいてもよい。 <Reactive diluent for epoxy resin>
The reactive diluent for the epoxy resin of this embodiment includes the composition of this embodiment.
The composition of the present embodiment can be suitably used as a reactive diluent for epoxy resins. By using the composition of the present embodiment as a reactive diluent for epoxy resins, a resin having excellent insulation reliability suitable for electronic components and the like can be obtained. The diglycidyl ether contained in the composition of the present embodiment can reduce the viscosity of the epoxy resin without impairing the performance of the epoxy resin. In addition, by using the composition of the present embodiment as a reactive diluent for epoxy resins, the obtained resin has excellent dielectric properties, thermal expansion coefficient, heat resistance, and the like.
The reactive diluent for the epoxy resin of the present embodiment may contain a known reactive diluent in addition to the composition of the present embodiment.
本実施形態のエポキシ樹脂の反応性希釈剤は、本実施形態の組成物を含む。
本実施形態の組成物は、エポキシ樹脂の反応性希釈剤として好適に用いることができる。本実施形態の組成物を、エポキシ樹脂の反応性希釈剤として用いることで、電子部品等に好適な、絶縁信頼性に優れる樹脂が得られる。本実施形態の組成物に含まれるジグリシジルエーテルは、エポキシ樹脂の性能を損なわずにエポキシ樹脂を低粘度化させることができる。また、本実施形態の組成物を、エポキシ樹脂の反応性希釈剤として用いることで、得られる樹脂は、誘電特性、熱線膨張係数、耐熱性などに優れる。
本実施形態のエポキシ樹脂の反応性希釈剤は、本実施形態の組成物以外に、公知の反応性希釈剤を含んでいてもよい。 <Reactive diluent for epoxy resin>
The reactive diluent for the epoxy resin of this embodiment includes the composition of this embodiment.
The composition of the present embodiment can be suitably used as a reactive diluent for epoxy resins. By using the composition of the present embodiment as a reactive diluent for epoxy resins, a resin having excellent insulation reliability suitable for electronic components and the like can be obtained. The diglycidyl ether contained in the composition of the present embodiment can reduce the viscosity of the epoxy resin without impairing the performance of the epoxy resin. In addition, by using the composition of the present embodiment as a reactive diluent for epoxy resins, the obtained resin has excellent dielectric properties, thermal expansion coefficient, heat resistance, and the like.
The reactive diluent for the epoxy resin of the present embodiment may contain a known reactive diluent in addition to the composition of the present embodiment.
<硬化性組成物>
本実施形態の硬化性組成物は、本実施形態のエポキシ樹脂の反応性希釈剤を含む。
本実施形態の硬化性組成物は、例えば、エポキシ樹脂及び本実施形態のエポキシ樹脂の反応性希釈剤を含むエポキシ樹脂組成物に硬化剤、硬化促進剤等を混合して調製することができる。
本実施形態の硬化性組成物は、本実施形態の組成物を含むエポキシ樹脂の反応性希釈剤を含むことで、電子部品等に好適な、絶縁信頼性、誘電特性、熱線膨張係数、耐熱性などに優れる樹脂が得られる。 <Curable Composition>
The curable composition of the present embodiment includes a reactive diluent for the epoxy resin of the present embodiment.
The curable composition of the present embodiment can be prepared, for example, by mixing a curing agent, a curing accelerator, and the like with an epoxy resin composition containing an epoxy resin and a reactive diluent for the epoxy resin of the present embodiment.
The curable composition of the present embodiment contains a reactive diluent for the epoxy resin containing the composition of the present embodiment, and thereby a resin having excellent insulation reliability, dielectric properties, coefficient of linear thermal expansion, heat resistance, and the like, which is suitable for electronic components and the like, can be obtained.
本実施形態の硬化性組成物は、本実施形態のエポキシ樹脂の反応性希釈剤を含む。
本実施形態の硬化性組成物は、例えば、エポキシ樹脂及び本実施形態のエポキシ樹脂の反応性希釈剤を含むエポキシ樹脂組成物に硬化剤、硬化促進剤等を混合して調製することができる。
本実施形態の硬化性組成物は、本実施形態の組成物を含むエポキシ樹脂の反応性希釈剤を含むことで、電子部品等に好適な、絶縁信頼性、誘電特性、熱線膨張係数、耐熱性などに優れる樹脂が得られる。 <Curable Composition>
The curable composition of the present embodiment includes a reactive diluent for the epoxy resin of the present embodiment.
The curable composition of the present embodiment can be prepared, for example, by mixing a curing agent, a curing accelerator, and the like with an epoxy resin composition containing an epoxy resin and a reactive diluent for the epoxy resin of the present embodiment.
The curable composition of the present embodiment contains a reactive diluent for the epoxy resin containing the composition of the present embodiment, and thereby a resin having excellent insulation reliability, dielectric properties, coefficient of linear thermal expansion, heat resistance, and the like, which is suitable for electronic components and the like, can be obtained.
<組成物の製造方法>
本実施形態の組成物の製造方法は、本実施形態の組成物を製造する方法である。
本実施形態の組成物の製造方法は、塩素含有化合物と、下記式(1)で表されるジグリシジルエーテルと、を含む組成物の製造方法であって、上記組成物の全塩素量が900ppm以下であり、炭素数9~11のアルカンジオールとエピクロロヒドリンとを反応させて、下記式(1)で表されるジグリシジルエーテルを含む粗ジグリシジルエーテルを得る粗ジグリシジルエーテル生成工程と、得られた粗ジグリシジルエーテルを精製する精製工程と、を含み、粗ジグリシジルエーテル生成工程において、固体の水酸化ナトリウムと水とを分割して添加することで、反応温度及び全塩素量を調整する。 <Production method of composition>
The method for producing the composition of the present embodiment is a method for producing the composition of the present embodiment.
The method for producing a composition according to the present embodiment is a method for producing a composition containing a chlorine-containing compound and a diglycidyl ether represented by the following formula (1), in which the total chlorine content of the composition is 900 ppm or less, and the method includes a crude diglycidyl ether production step of reacting an alkanediol having 9 to 11 carbon atoms with epichlorohydrin to obtain a crude diglycidyl ether containing the diglycidyl ether represented by the following formula (1), and a purification step of purifying the obtained crude diglycidyl ether, in which solid sodium hydroxide and water are added in portions in the crude diglycidyl ether production step to adjust the reaction temperature and the total chlorine content.
本実施形態の組成物の製造方法は、本実施形態の組成物を製造する方法である。
本実施形態の組成物の製造方法は、塩素含有化合物と、下記式(1)で表されるジグリシジルエーテルと、を含む組成物の製造方法であって、上記組成物の全塩素量が900ppm以下であり、炭素数9~11のアルカンジオールとエピクロロヒドリンとを反応させて、下記式(1)で表されるジグリシジルエーテルを含む粗ジグリシジルエーテルを得る粗ジグリシジルエーテル生成工程と、得られた粗ジグリシジルエーテルを精製する精製工程と、を含み、粗ジグリシジルエーテル生成工程において、固体の水酸化ナトリウムと水とを分割して添加することで、反応温度及び全塩素量を調整する。 <Production method of composition>
The method for producing the composition of the present embodiment is a method for producing the composition of the present embodiment.
The method for producing a composition according to the present embodiment is a method for producing a composition containing a chlorine-containing compound and a diglycidyl ether represented by the following formula (1), in which the total chlorine content of the composition is 900 ppm or less, and the method includes a crude diglycidyl ether production step of reacting an alkanediol having 9 to 11 carbon atoms with epichlorohydrin to obtain a crude diglycidyl ether containing the diglycidyl ether represented by the following formula (1), and a purification step of purifying the obtained crude diglycidyl ether, in which solid sodium hydroxide and water are added in portions in the crude diglycidyl ether production step to adjust the reaction temperature and the total chlorine content.
(式(1)中、Xは炭素数9~11のアルキレン基を表す。)
式(1)のXにおいて、アルキレン基は分岐鎖状のアルキレン基であることが好ましい。 (In formula (1), X represents an alkylene group having 9 to 11 carbon atoms.)
In the formula (1), the alkylene group is preferably a branched alkylene group.
式(1)のXにおいて、アルキレン基は分岐鎖状のアルキレン基であることが好ましい。 (In formula (1), X represents an alkylene group having 9 to 11 carbon atoms.)
In the formula (1), the alkylene group is preferably a branched alkylene group.
(粗ジグリシジルエーテル生成工程)
粗ジグリシジルエーテル生成工程は、炭素数9~11のアルカンジオールとエピクロロヒドリンとを反応させて、式(1)で表されるジグリシジルエーテルを含む粗ジグリシジルエーテルを得る工程である。
また、粗ジグリシジルエーテル生成工程において、固体の水酸化ナトリウムと水とを分割して添加することで、反応温度及び全塩素量を調整する。 (Crude diglycidyl ether production process)
The crude diglycidyl ether production step is a step in which an alkanediol having 9 to 11 carbon atoms is reacted with epichlorohydrin to obtain a crude diglycidyl ether containing the diglycidyl ether represented by formula (1).
In the crude diglycidyl ether production step, the reaction temperature and the total amount of chlorine are adjusted by adding solid sodium hydroxide and water in portions.
粗ジグリシジルエーテル生成工程は、炭素数9~11のアルカンジオールとエピクロロヒドリンとを反応させて、式(1)で表されるジグリシジルエーテルを含む粗ジグリシジルエーテルを得る工程である。
また、粗ジグリシジルエーテル生成工程において、固体の水酸化ナトリウムと水とを分割して添加することで、反応温度及び全塩素量を調整する。 (Crude diglycidyl ether production process)
The crude diglycidyl ether production step is a step in which an alkanediol having 9 to 11 carbon atoms is reacted with epichlorohydrin to obtain a crude diglycidyl ether containing the diglycidyl ether represented by formula (1).
In the crude diglycidyl ether production step, the reaction temperature and the total amount of chlorine are adjusted by adding solid sodium hydroxide and water in portions.
粗ジグリシジルエーテル生成工程において、炭素数9~11のアルカンジオールとエピクロロヒドリンとを、固体の水酸化ナトリウム、水、及び相間移動触媒の存在下で反応させて、式(1)で表されるジグリシジルエーテルを含む粗ジグリシジルエーテルを得てもよい。
In the crude diglycidyl ether production step, an alkanediol having 9 to 11 carbon atoms may be reacted with epichlorohydrin in the presence of solid sodium hydroxide, water, and a phase transfer catalyst to obtain a crude diglycidyl ether containing the diglycidyl ether represented by formula (1).
相間移動触媒としては、第四級アンモニウム塩、第四級ホスホニウム塩等が挙げられる。例えば、テトラエチルアンモニウムクロライド、テトラ-n-ブチルアンモニウムブロマイド、硫酸テトラブチルアンモニウム塩、エチルトリフェニルホスホニウムブロマイド等が挙げられ、テトラ-n-ブチルアンモニウムブロマイドが好ましい。
相間移動触媒の使用量は、エピクロロヒドリン1.0molに対して、好ましくは0.5mmol~10.0mmolであり、より好ましくは3.0mmol~7.0mmolである。 The phase transfer catalyst includes quaternary ammonium salts, quaternary phosphonium salts, etc. For example, tetraethylammonium chloride, tetra-n-butylammonium bromide, tetrabutylammonium sulfate, ethyltriphenylphosphonium bromide, etc., and tetra-n-butylammonium bromide is preferred.
The amount of the phase transfer catalyst used is preferably 0.5 mmol to 10.0 mmol, and more preferably 3.0 mmol to 7.0 mmol, per 1.0 mol of epichlorohydrin.
相間移動触媒の使用量は、エピクロロヒドリン1.0molに対して、好ましくは0.5mmol~10.0mmolであり、より好ましくは3.0mmol~7.0mmolである。 The phase transfer catalyst includes quaternary ammonium salts, quaternary phosphonium salts, etc. For example, tetraethylammonium chloride, tetra-n-butylammonium bromide, tetrabutylammonium sulfate, ethyltriphenylphosphonium bromide, etc., and tetra-n-butylammonium bromide is preferred.
The amount of the phase transfer catalyst used is preferably 0.5 mmol to 10.0 mmol, and more preferably 3.0 mmol to 7.0 mmol, per 1.0 mol of epichlorohydrin.
固体の水酸化ナトリウムの使用量は、特に限定されないが、炭素数9~11のアルカンジオール1.0molに対して、合計で、好ましくは1.0mol~12.0molであり、より好ましくは1.5mol~10.0molであり、さらに好ましくは2.0mol~8.0molであり、特に好ましくは3.0mol~6.0molである。
The amount of solid sodium hydroxide used is not particularly limited, but is preferably 1.0 mol to 12.0 mol in total, more preferably 1.5 mol to 10.0 mol, even more preferably 2.0 mol to 8.0 mol, and particularly preferably 3.0 mol to 6.0 mol per 1.0 mol of alkanediol having 9 to 11 carbon atoms.
水の使用量は、特に限定されないが、炭素数9~11のアルカンジオール1.0molに対して、合計で、好ましくは0.5mol~1.0molであり、より好ましくは0.6mol~0.95molであり、さらに好ましくは0.7mol~0.90molである。
The amount of water used is not particularly limited, but is preferably 0.5 mol to 1.0 mol in total, more preferably 0.6 mol to 0.95 mol, and even more preferably 0.7 mol to 0.90 mol per 1.0 mol of alkanediol having 9 to 11 carbon atoms.
粗ジグリシジルエーテル生成工程において、固体の水酸化ナトリウムと水とを分割して添加することで、反応温度、反応液中の水酸化物イオン濃度、及び全塩素量を調整する。
これによって、得られる組成物における全塩素量を良好に抑制することができる。
そのため、得られる組成物における全塩素量を900ppm以下とすることが容易となる。
固体の水酸化ナトリウムと水とに代えて、水酸化ナトリウム水溶液を添加した場合、反応温度、反応液中の水酸化物イオン濃度、及び全塩素量を調整することが難しい傾向にある。 In the crude diglycidyl ether production step, the reaction temperature, the hydroxide ion concentration in the reaction liquid, and the total chlorine content are adjusted by adding solid sodium hydroxide and water in portions.
This makes it possible to effectively suppress the total chlorine content in the resulting composition.
Therefore, the total chlorine content in the resulting composition can be easily controlled to 900 ppm or less.
When an aqueous sodium hydroxide solution is added instead of solid sodium hydroxide and water, it tends to be difficult to adjust the reaction temperature, the hydroxide ion concentration in the reaction liquid, and the total chlorine content.
これによって、得られる組成物における全塩素量を良好に抑制することができる。
そのため、得られる組成物における全塩素量を900ppm以下とすることが容易となる。
固体の水酸化ナトリウムと水とに代えて、水酸化ナトリウム水溶液を添加した場合、反応温度、反応液中の水酸化物イオン濃度、及び全塩素量を調整することが難しい傾向にある。 In the crude diglycidyl ether production step, the reaction temperature, the hydroxide ion concentration in the reaction liquid, and the total chlorine content are adjusted by adding solid sodium hydroxide and water in portions.
This makes it possible to effectively suppress the total chlorine content in the resulting composition.
Therefore, the total chlorine content in the resulting composition can be easily controlled to 900 ppm or less.
When an aqueous sodium hydroxide solution is added instead of solid sodium hydroxide and water, it tends to be difficult to adjust the reaction temperature, the hydroxide ion concentration in the reaction liquid, and the total chlorine content.
分割添加の回数としては、固体の水酸化ナトリウムを添加する回数と水を添加する回数のそれぞれで、3回~10回が好ましく、4回~8回がより好ましい。全ての分割添加が完了するまでの時間(以下、「分割添加の時間」という)としては、1時間~5時間が好ましく、2時間~4時間がより好ましい。
固体の水酸化ナトリウムを添加する回数と水を添加する回数のそれぞれが、3回以上であることで、反応液中の水酸化物イオン濃度を適度に抑制し副反応の進行を抑制することができる。
固体の水酸化ナトリウムを添加する回数と水を添加する回数のそれぞれが、10回以下であることで、過剰な添加作業を防止することができる。
分割添加の時間が1時間以上であることで、反応液中の水酸化物イオン濃度を適度に抑制し副反応の進行を抑制することができる。
分割添加の時間が5時間以下であることで、過剰な添加作業を防止することができる。
粗ジグリシジルエーテル生成工程において、固体の水酸化ナトリウムと水とを、例えば、上述の好ましい範囲の使用量で、複数回に分割して添加することが好ましい。
分割添加において、固体の水酸化ナトリウム及び水を、同時に添加してもよく、別々に添加してもよい。好ましくは、別々に添加することである。
分割添加において、固体の水酸化ナトリウム及び水を別々に添加する場合の順序として、固体の水酸化ナトリウムを添加した後に、水を添加してもよく、その逆の順序でもよい。反応温度、反応液中の水酸化物イオン濃度、及び全塩素量を調整する観点から、固体の水酸化ナトリウムを添加した後に、水を添加する順序が好ましい。さらに好ましくは固体の水酸化ナトリウムを添加した後に水を添加する分割添加を1サイクルとし、このサイクルを繰り返すことである。そのサイクルを繰り返す場合、3回~10回繰り返すことが好ましく、4回~8回繰り返すことがより好ましい。 The number of divided additions, for both the number of additions of solid sodium hydroxide and the number of additions of water, is preferably 3 to 10, and more preferably 4 to 8. The time required for all divided additions to be completed (hereinafter referred to as "time of divided addition") is preferably 1 to 5 hours, and more preferably 2 to 4 hours.
By adding solid sodium hydroxide three or more times and adding water three or more times, the hydroxide ion concentration in the reaction solution can be appropriately controlled, and the progress of side reactions can be suppressed.
By limiting the number of times that solid sodium hydroxide is added and the number of times that water is added to 10 or less, respectively, excessive addition work can be prevented.
By setting the time for divided addition to one hour or longer, the hydroxide ion concentration in the reaction solution can be appropriately controlled, and the progress of side reactions can be suppressed.
By limiting the time for divided addition to 5 hours or less, excessive addition can be prevented.
In the crude diglycidyl ether production step, it is preferable to add solid sodium hydroxide and water in amounts within the above-mentioned preferred ranges in multiple divided portions.
In the divided addition, the solid sodium hydroxide and water may be added simultaneously or separately, preferably separately.
In the divided addition, when solid sodium hydroxide and water are added separately, the order may be that solid sodium hydroxide is added first and then water is added, or the reverse order may be used. From the viewpoint of adjusting the reaction temperature, the hydroxide ion concentration in the reaction liquid, and the total amount of chlorine, the order of adding solid sodium hydroxide and then water is preferred. More preferably, divided addition of solid sodium hydroxide and then water is added as one cycle, and this cycle is repeated. When the cycle is repeated, it is preferable to repeat it 3 to 10 times, and more preferably 4 to 8 times.
固体の水酸化ナトリウムを添加する回数と水を添加する回数のそれぞれが、3回以上であることで、反応液中の水酸化物イオン濃度を適度に抑制し副反応の進行を抑制することができる。
固体の水酸化ナトリウムを添加する回数と水を添加する回数のそれぞれが、10回以下であることで、過剰な添加作業を防止することができる。
分割添加の時間が1時間以上であることで、反応液中の水酸化物イオン濃度を適度に抑制し副反応の進行を抑制することができる。
分割添加の時間が5時間以下であることで、過剰な添加作業を防止することができる。
粗ジグリシジルエーテル生成工程において、固体の水酸化ナトリウムと水とを、例えば、上述の好ましい範囲の使用量で、複数回に分割して添加することが好ましい。
分割添加において、固体の水酸化ナトリウム及び水を、同時に添加してもよく、別々に添加してもよい。好ましくは、別々に添加することである。
分割添加において、固体の水酸化ナトリウム及び水を別々に添加する場合の順序として、固体の水酸化ナトリウムを添加した後に、水を添加してもよく、その逆の順序でもよい。反応温度、反応液中の水酸化物イオン濃度、及び全塩素量を調整する観点から、固体の水酸化ナトリウムを添加した後に、水を添加する順序が好ましい。さらに好ましくは固体の水酸化ナトリウムを添加した後に水を添加する分割添加を1サイクルとし、このサイクルを繰り返すことである。そのサイクルを繰り返す場合、3回~10回繰り返すことが好ましく、4回~8回繰り返すことがより好ましい。 The number of divided additions, for both the number of additions of solid sodium hydroxide and the number of additions of water, is preferably 3 to 10, and more preferably 4 to 8. The time required for all divided additions to be completed (hereinafter referred to as "time of divided addition") is preferably 1 to 5 hours, and more preferably 2 to 4 hours.
By adding solid sodium hydroxide three or more times and adding water three or more times, the hydroxide ion concentration in the reaction solution can be appropriately controlled, and the progress of side reactions can be suppressed.
By limiting the number of times that solid sodium hydroxide is added and the number of times that water is added to 10 or less, respectively, excessive addition work can be prevented.
By setting the time for divided addition to one hour or longer, the hydroxide ion concentration in the reaction solution can be appropriately controlled, and the progress of side reactions can be suppressed.
By limiting the time for divided addition to 5 hours or less, excessive addition can be prevented.
In the crude diglycidyl ether production step, it is preferable to add solid sodium hydroxide and water in amounts within the above-mentioned preferred ranges in multiple divided portions.
In the divided addition, the solid sodium hydroxide and water may be added simultaneously or separately, preferably separately.
In the divided addition, when solid sodium hydroxide and water are added separately, the order may be that solid sodium hydroxide is added first and then water is added, or the reverse order may be used. From the viewpoint of adjusting the reaction temperature, the hydroxide ion concentration in the reaction liquid, and the total amount of chlorine, the order of adding solid sodium hydroxide and then water is preferred. More preferably, divided addition of solid sodium hydroxide and then water is added as one cycle, and this cycle is repeated. When the cycle is repeated, it is preferable to repeat it 3 to 10 times, and more preferably 4 to 8 times.
反応温度としては、好ましくは35℃~49℃である。
反応温度が35℃以上であることで、炭素数の多い分岐鎖状のアルキレン基を有するアルカンジオールでも選択性良く反応を促進できる。反応温度が49℃以下であることで、副反応の進行を抑制することができる。
上記の観点から、反応温度としては、より好ましくは38℃~48℃であり、さらに好ましくは40℃~47℃である。
反応温度を上記範囲に保つことで、得られる組成物における全塩素量を良好に抑制することができる。また、分割添加を行うことは、反応温度を上記範囲に保つことを容易にする。 The reaction temperature is preferably 35°C to 49°C.
By setting the reaction temperature at 35° C. or higher, the reaction can be promoted with good selectivity even in the case of an alkanediol having a branched alkylene group with a large carbon number. By setting the reaction temperature at 49° C. or lower, the progress of side reactions can be suppressed.
From the above viewpoints, the reaction temperature is more preferably 38°C to 48°C, and further preferably 40°C to 47°C.
By keeping the reaction temperature within the above range, the total chlorine content in the resulting composition can be effectively controlled. Furthermore, by carrying out the divided addition, it becomes easier to keep the reaction temperature within the above range.
反応温度が35℃以上であることで、炭素数の多い分岐鎖状のアルキレン基を有するアルカンジオールでも選択性良く反応を促進できる。反応温度が49℃以下であることで、副反応の進行を抑制することができる。
上記の観点から、反応温度としては、より好ましくは38℃~48℃であり、さらに好ましくは40℃~47℃である。
反応温度を上記範囲に保つことで、得られる組成物における全塩素量を良好に抑制することができる。また、分割添加を行うことは、反応温度を上記範囲に保つことを容易にする。 The reaction temperature is preferably 35°C to 49°C.
By setting the reaction temperature at 35° C. or higher, the reaction can be promoted with good selectivity even in the case of an alkanediol having a branched alkylene group with a large carbon number. By setting the reaction temperature at 49° C. or lower, the progress of side reactions can be suppressed.
From the above viewpoints, the reaction temperature is more preferably 38°C to 48°C, and further preferably 40°C to 47°C.
By keeping the reaction temperature within the above range, the total chlorine content in the resulting composition can be effectively controlled. Furthermore, by carrying out the divided addition, it becomes easier to keep the reaction temperature within the above range.
固体の水酸化ナトリウムと水とを分割して添加することで、反応液中の水酸化物イオン濃度の超過を抑制でき、結果として反応温度を一定以下に制御することができると推定される。
By adding solid sodium hydroxide and water in separate portions, it is believed that it is possible to prevent the hydroxide ion concentration in the reaction solution from exceeding a certain level, and as a result, the reaction temperature can be controlled below a certain level.
固体の水酸化ナトリウムと水との分割添加後に反応液をさらに撹拌することが好ましい。これにより、反応をさらに進行させることができる。
撹拌する時間としては、好ましくは1時間~12時間であり、より好ましくは2時間~10時間であり、さらに好ましくは4時間~8時間である。
撹拌中の反応液の好ましい温度、より好ましい温度、及びさらに好ましい温度は、上述の反応温度と同じである。 It is preferable to further stir the reaction solution after the divided addition of the solid sodium hydroxide and water, which allows the reaction to proceed further.
The stirring time is preferably from 1 to 12 hours, more preferably from 2 to 10 hours, and further preferably from 4 to 8 hours.
The preferred temperature, more preferred temperature, and even more preferred temperature of the reaction liquid during stirring are the same as the reaction temperature described above.
撹拌する時間としては、好ましくは1時間~12時間であり、より好ましくは2時間~10時間であり、さらに好ましくは4時間~8時間である。
撹拌中の反応液の好ましい温度、より好ましい温度、及びさらに好ましい温度は、上述の反応温度と同じである。 It is preferable to further stir the reaction solution after the divided addition of the solid sodium hydroxide and water, which allows the reaction to proceed further.
The stirring time is preferably from 1 to 12 hours, more preferably from 2 to 10 hours, and further preferably from 4 to 8 hours.
The preferred temperature, more preferred temperature, and even more preferred temperature of the reaction liquid during stirring are the same as the reaction temperature described above.
原料である炭素数9~11のアルカンジオールにおいて、アルカンは分岐鎖状のアルカンであることが好ましい。
炭素数9~11のアルカンジオールとしては、例えば、2,4-ジアルキル-1,5-ペンタンジオール、2,2-ジアルキル-1,3-プロパンジオール等が挙げられる。
2,4-ジアルキル-1,5-ペンタンジオールとしては、例えば、2-メチル-4-プロピル-1,5-ペンタンジオール、2-イソプロピル-4-メチル-1,5-ペンタンジオール、2,4-ジエチル-1,5-ペンタンジオール、2-エチル-4-プロピル-1,5-ペンタンジオール、2-エチル-4-イソプロピル-1,5-ペンタンジオール、2,4-ジプロピル-1,5-ペンタンジオール、2-イソプロピル-4-プロピル-1,5-ペンタンジオール、2,4-ジイソプロピル-1,5-ペンタンジオール等が挙げられる。上記の中でも、2,4-ジエチル-1,5-ペンタンジオールが好ましい。 In the raw material alkanediol having 9 to 11 carbon atoms, the alkane is preferably a branched alkane.
Examples of the alkanediol having 9 to 11 carbon atoms include 2,4-dialkyl-1,5-pentanediol and 2,2-dialkyl-1,3-propanediol.
Examples of 2,4-dialkyl-1,5-pentanediol include 2-methyl-4-propyl-1,5-pentanediol, 2-isopropyl-4-methyl-1,5-pentanediol, 2,4-diethyl-1,5-pentanediol, 2-ethyl-4-propyl-1,5-pentanediol, 2-ethyl-4-isopropyl-1,5-pentanediol, 2,4-dipropyl-1,5-pentanediol, 2-isopropyl-4-propyl-1,5-pentanediol, 2,4-diisopropyl-1,5-pentanediol, etc. Among the above, 2,4-diethyl-1,5-pentanediol is preferred.
炭素数9~11のアルカンジオールとしては、例えば、2,4-ジアルキル-1,5-ペンタンジオール、2,2-ジアルキル-1,3-プロパンジオール等が挙げられる。
2,4-ジアルキル-1,5-ペンタンジオールとしては、例えば、2-メチル-4-プロピル-1,5-ペンタンジオール、2-イソプロピル-4-メチル-1,5-ペンタンジオール、2,4-ジエチル-1,5-ペンタンジオール、2-エチル-4-プロピル-1,5-ペンタンジオール、2-エチル-4-イソプロピル-1,5-ペンタンジオール、2,4-ジプロピル-1,5-ペンタンジオール、2-イソプロピル-4-プロピル-1,5-ペンタンジオール、2,4-ジイソプロピル-1,5-ペンタンジオール等が挙げられる。上記の中でも、2,4-ジエチル-1,5-ペンタンジオールが好ましい。 In the raw material alkanediol having 9 to 11 carbon atoms, the alkane is preferably a branched alkane.
Examples of the alkanediol having 9 to 11 carbon atoms include 2,4-dialkyl-1,5-pentanediol and 2,2-dialkyl-1,3-propanediol.
Examples of 2,4-dialkyl-1,5-pentanediol include 2-methyl-4-propyl-1,5-pentanediol, 2-isopropyl-4-methyl-1,5-pentanediol, 2,4-diethyl-1,5-pentanediol, 2-ethyl-4-propyl-1,5-pentanediol, 2-ethyl-4-isopropyl-1,5-pentanediol, 2,4-dipropyl-1,5-pentanediol, 2-isopropyl-4-propyl-1,5-pentanediol, 2,4-diisopropyl-1,5-pentanediol, etc. Among the above, 2,4-diethyl-1,5-pentanediol is preferred.
2,2-ジアルキル-1,3-プロパンジオールとしては、例えば、2-メチル-2-ペンチル-1,3-プロパンジオール、2-ブチル-2-エチル-1,3-プロパンジオール、2-エチル-2-(2―メチルプロピル)-1,3-プロパンジオール、2,2-ジプロピル-1,3-プロパンジオール、2-メチル-2-ヘキシル-1,3-プロパンジオール、2-エチル-2-ペンチル-1,3-プロパンジオール、2-エチル-2-(3―メチルブチル)-1,3-プロパンジオール、2-プロピル-2-ブチル-1,3-プロパンジオール、2-イソプロピル-2-ブチル-1,3-プロパンジオール、2-メチル-2-ヘプチル-1,3-プロパンジオール、2-エチル-2-ヘキシル-1,3-プロパンジオール、2-プロピル-2-ペンチル-1,3-プロパンジオール、2-イソプロピル-2-(3―メチルブチル)-1,3-プロパンジオール、2,2-ジブチル-1,3-プロパンジオール等が挙げられる。上記の中でも2-ブチル-2-エチル-1,3-プロパンジオールが好ましい。
Examples of 2,2-dialkyl-1,3-propanediol include 2-methyl-2-pentyl-1,3-propanediol, 2-butyl-2-ethyl-1,3-propanediol, 2-ethyl-2-(2-methylpropyl)-1,3-propanediol, 2,2-dipropyl-1,3-propanediol, 2-methyl-2-hexyl-1,3-propanediol, 2-ethyl-2-pentyl-1,3-propanediol, and 2-ethyl-2-(3-methylbutyl) 2-propyl-2-butyl-1,3-propanediol, 2-isopropyl-2-butyl-1,3-propanediol, 2-methyl-2-heptyl-1,3-propanediol, 2-ethyl-2-hexyl-1,3-propanediol, 2-propyl-2-pentyl-1,3-propanediol, 2-isopropyl-2-(3-methylbutyl)-1,3-propanediol, 2,2-dibutyl-1,3-propanediol, etc. Among the above, 2-butyl-2-ethyl-1,3-propanediol is preferred.
炭素数9~11のアルカンジオールは市販品を用いてもよく、公知の方法に従って製造してもよい。
市販品としては、例えば、キョーワジオールPD-9(KHネオケム株式会社製)、ブチルエチルプロパンジオール(KHネオケム株式会社製)等が挙げられる。
公知の方法としては、例えば、国際公開第98/39314号に記載の方法が挙げられる。 The alkanediol having 9 to 11 carbon atoms may be a commercially available product or may be produced according to a known method.
Examples of commercially available products include Kyowadiol PD-9 (manufactured by KH Neochem Co., Ltd.) and Butyl Ethyl Propanediol (manufactured by KH Neochem Co., Ltd.).
An example of the known method is the method described in International Publication No. WO 98/39314.
市販品としては、例えば、キョーワジオールPD-9(KHネオケム株式会社製)、ブチルエチルプロパンジオール(KHネオケム株式会社製)等が挙げられる。
公知の方法としては、例えば、国際公開第98/39314号に記載の方法が挙げられる。 The alkanediol having 9 to 11 carbon atoms may be a commercially available product or may be produced according to a known method.
Examples of commercially available products include Kyowadiol PD-9 (manufactured by KH Neochem Co., Ltd.) and Butyl Ethyl Propanediol (manufactured by KH Neochem Co., Ltd.).
An example of the known method is the method described in International Publication No. WO 98/39314.
エピクロロヒドリンの使用量は、炭素数9~11のアルカンジオール1.0molに対して、好ましくは1.0mol~12.0molであり、より好ましくは1.5mol~10.0molであり、さらに好ましくは2.0mol~8.0molであり、特に好ましくは3.0mol~6.0molである。
The amount of epichlorohydrin used is preferably 1.0 mol to 12.0 mol, more preferably 1.5 mol to 10.0 mol, even more preferably 2.0 mol to 8.0 mol, and particularly preferably 3.0 mol to 6.0 mol per 1.0 mol of alkanediol having 9 to 11 carbon atoms.
粗グリシジルエーテル生成工程の一実施態様として、下記(1)~(5)を示す。
(1)アルカンジオール、アルカンジオール1.0molに対して1.0mol~12.0molのエピクロロヒドリン、およびエピクロロヒドリン1.0molに対して0.5mmol~10.0mmolの相間移動触媒を反応器に仕込む。
(2)アルカンジオール1.0molに対して1.0mol~12.0molの固体の水酸化ナトリウムを1時間~5時間かけて3回~10回に等しく分割して、反応器に添加する。それと同時に、又は別々に
(3)アルカンジオール1molに対して0.5mol~1.0molの水を1時間~5時間かけて3回~10回に等しく分割して反応器に添加する。
(4)水酸化ナトリウムと水の分割添加が終了した後、さらに反応液を1時間~12時間撹拌する。
(5)上記(2)~(4)の間、反応液の温度を35℃~49℃に保つ。
上記(2)と(3)の分割添加のそれぞれを一つの工程とした場合、それらの工程の順序は、反応温度、反応液中の水酸化物イオン濃度、及び全塩素量を調整する観点から、(2)の分割添加の工程の後が(3)の分割添加の工程であることが好ましい。(2)の分割添加の工程と(3)の分割添加の工程との順序は、これらの工程を繰り返す場合にも、この順序であることが好ましい。 As an embodiment of the crude glycidyl ether producing step, the following (1) to (5) are shown.
(1) An alkanediol, 1.0 mol to 12.0 mol of epichlorohydrin per 1.0 mol of alkanediol, and 0.5 mmol to 10.0 mmol of a phase transfer catalyst per 1.0 mol of epichlorohydrin are charged into a reactor.
(2) 1.0 mol to 12.0 mol of solid sodium hydroxide per 1.0 mol of alkanediol is added to the reactor in 3 to 10 equal portions over a period of 1 to 5 hours, and simultaneously or separately, (3) 0.5 mol to 1.0 mol of water per 1 mol of alkanediol is added to the reactor in 3 to 10 equal portions over a period of 1 to 5 hours.
(4) After the addition of sodium hydroxide and water in portions is completed, the reaction solution is further stirred for 1 to 12 hours.
(5) During the steps (2) to (4) above, the temperature of the reaction solution is maintained at 35° C. to 49° C.
When each of the divided additions of (2) and (3) is considered as one step, the order of these steps is preferably such that the divided addition step of (2) comes after the divided addition step of (3) from the viewpoint of adjusting the reaction temperature, the hydroxide ion concentration in the reaction liquid, and the total amount of chlorine. The order of the divided addition step of (2) and the divided addition step of (3) is also preferably the same when these steps are repeated.
(1)アルカンジオール、アルカンジオール1.0molに対して1.0mol~12.0molのエピクロロヒドリン、およびエピクロロヒドリン1.0molに対して0.5mmol~10.0mmolの相間移動触媒を反応器に仕込む。
(2)アルカンジオール1.0molに対して1.0mol~12.0molの固体の水酸化ナトリウムを1時間~5時間かけて3回~10回に等しく分割して、反応器に添加する。それと同時に、又は別々に
(3)アルカンジオール1molに対して0.5mol~1.0molの水を1時間~5時間かけて3回~10回に等しく分割して反応器に添加する。
(4)水酸化ナトリウムと水の分割添加が終了した後、さらに反応液を1時間~12時間撹拌する。
(5)上記(2)~(4)の間、反応液の温度を35℃~49℃に保つ。
上記(2)と(3)の分割添加のそれぞれを一つの工程とした場合、それらの工程の順序は、反応温度、反応液中の水酸化物イオン濃度、及び全塩素量を調整する観点から、(2)の分割添加の工程の後が(3)の分割添加の工程であることが好ましい。(2)の分割添加の工程と(3)の分割添加の工程との順序は、これらの工程を繰り返す場合にも、この順序であることが好ましい。 As an embodiment of the crude glycidyl ether producing step, the following (1) to (5) are shown.
(1) An alkanediol, 1.0 mol to 12.0 mol of epichlorohydrin per 1.0 mol of alkanediol, and 0.5 mmol to 10.0 mmol of a phase transfer catalyst per 1.0 mol of epichlorohydrin are charged into a reactor.
(2) 1.0 mol to 12.0 mol of solid sodium hydroxide per 1.0 mol of alkanediol is added to the reactor in 3 to 10 equal portions over a period of 1 to 5 hours, and simultaneously or separately, (3) 0.5 mol to 1.0 mol of water per 1 mol of alkanediol is added to the reactor in 3 to 10 equal portions over a period of 1 to 5 hours.
(4) After the addition of sodium hydroxide and water in portions is completed, the reaction solution is further stirred for 1 to 12 hours.
(5) During the steps (2) to (4) above, the temperature of the reaction solution is maintained at 35° C. to 49° C.
When each of the divided additions of (2) and (3) is considered as one step, the order of these steps is preferably such that the divided addition step of (2) comes after the divided addition step of (3) from the viewpoint of adjusting the reaction temperature, the hydroxide ion concentration in the reaction liquid, and the total amount of chlorine. The order of the divided addition step of (2) and the divided addition step of (3) is also preferably the same when these steps are repeated.
(精製工程)
精製工程は、得られた粗ジグリシジルエーテルを精製する工程である。
粗ジグリシジルエーテルの精製は、得られた粗ジグリシジルエーテルを抽出した後、蒸留することにより行われてもよい。
抽出は、例えば、粗ジグリシジルエーテルをろ過した後、ろ液にクロロホルムを加えることで行ってもよい。
蒸留は、例えば、減圧蒸留にて行ってもよい。蒸留の条件は適宜調整できる。 (Refining process)
The purification step is a step of purifying the obtained crude diglycidyl ether.
The crude diglycidyl ether may be purified by extracting the resulting crude diglycidyl ether and then distilling it.
The extraction may be carried out, for example, by filtering the crude diglycidyl ether and then adding chloroform to the filtrate.
The distillation may be carried out, for example, by vacuum distillation. The distillation conditions can be appropriately adjusted.
精製工程は、得られた粗ジグリシジルエーテルを精製する工程である。
粗ジグリシジルエーテルの精製は、得られた粗ジグリシジルエーテルを抽出した後、蒸留することにより行われてもよい。
抽出は、例えば、粗ジグリシジルエーテルをろ過した後、ろ液にクロロホルムを加えることで行ってもよい。
蒸留は、例えば、減圧蒸留にて行ってもよい。蒸留の条件は適宜調整できる。 (Refining process)
The purification step is a step of purifying the obtained crude diglycidyl ether.
The crude diglycidyl ether may be purified by extracting the resulting crude diglycidyl ether and then distilling it.
The extraction may be carried out, for example, by filtering the crude diglycidyl ether and then adding chloroform to the filtrate.
The distillation may be carried out, for example, by vacuum distillation. The distillation conditions can be appropriately adjusted.
以下、実施例により本発明をさらに具体的に説明するが、本発明は以下の実施例に限定されるものではない。
なお、実施例において、試料の調製及び物性の分析に用いた装置及び条件は、以下のとおりである。 The present invention will be described in more detail below with reference to examples, but the present invention is not limited to the following examples.
In the examples, the apparatus and conditions used for preparing samples and analyzing physical properties are as follows.
なお、実施例において、試料の調製及び物性の分析に用いた装置及び条件は、以下のとおりである。 The present invention will be described in more detail below with reference to examples, but the present invention is not limited to the following examples.
In the examples, the apparatus and conditions used for preparing samples and analyzing physical properties are as follows.
〔GC(ガスクロマトグラフ分析)〕
分析装置:Agilent Technologies社製 7890A ガスクロマトグラフィーSystem
分析カラム:Agilent Technologies社製 HP-5 (長さ30m×内径0.32mm×膜厚0.25μm、充填物:(5%-フェニル)-メチルポリシロキサン)
昇温条件:50℃で5分間保持した後、10℃/分で50℃から320℃まで昇温し、320℃で28分間保持
試料導入温度:320℃
キャリアガス:窒素
カラムのガス流量:0.5mL/分
検出器及び検出温度:水素炎イオン化検出器(FID)、320℃
コントロールモード:コンスタントフロー
スプリット比:50
試料注入条件:1.0μL [GC (Gas Chromatography)]
Analytical equipment: Agilent Technologies 7890A Gas Chromatography System
Analytical column: Agilent Technologies HP-5 (length 30 m × inner diameter 0.32 mm × film thickness 0.25 μm, packing: (5%-phenyl)-methylpolysiloxane)
Temperature increase conditions: After holding at 50° C. for 5 minutes, the temperature was increased from 50° C. to 320° C. at a rate of 10° C./min, and then held at 320° C. for 28 minutes. Sample introduction temperature: 320° C.
Carrier gas: nitrogen Column gas flow rate: 0.5 mL/min Detector and detection temperature: flame ionization detector (FID), 320° C.
Control mode: constant flow Split ratio: 50
Sample injection conditions: 1.0 μL
分析装置:Agilent Technologies社製 7890A ガスクロマトグラフィーSystem
分析カラム:Agilent Technologies社製 HP-5 (長さ30m×内径0.32mm×膜厚0.25μm、充填物:(5%-フェニル)-メチルポリシロキサン)
昇温条件:50℃で5分間保持した後、10℃/分で50℃から320℃まで昇温し、320℃で28分間保持
試料導入温度:320℃
キャリアガス:窒素
カラムのガス流量:0.5mL/分
検出器及び検出温度:水素炎イオン化検出器(FID)、320℃
コントロールモード:コンスタントフロー
スプリット比:50
試料注入条件:1.0μL [GC (Gas Chromatography)]
Analytical equipment: Agilent Technologies 7890A Gas Chromatography System
Analytical column: Agilent Technologies HP-5 (length 30 m × inner diameter 0.32 mm × film thickness 0.25 μm, packing: (5%-phenyl)-methylpolysiloxane)
Temperature increase conditions: After holding at 50° C. for 5 minutes, the temperature was increased from 50° C. to 320° C. at a rate of 10° C./min, and then held at 320° C. for 28 minutes. Sample introduction temperature: 320° C.
Carrier gas: nitrogen Column gas flow rate: 0.5 mL/min Detector and detection temperature: flame ionization detector (FID), 320° C.
Control mode: constant flow Split ratio: 50
Sample injection conditions: 1.0 μL
〔ジグリシジルエーテル濃度(DGE濃度)の算出〕
上記測定条件で保持時間25.5~26.9分に検出される、BEPG-DGE(式(1-2)で表されるDGE)、BEPG-DGEの異性体、PD9-DGE(式(1-1)で表されるDGE)などのジグリシジルエーテルのピークの合計面積値(DGE検出ピーク面積値)と保持時間0.0~60.0分に検出される全ピークの合計面積値(全検出ピーク面積値)より下記式(A)を用いて算出した。
DGE濃度(%)=(DGE検出ピーク面積値/全検出ピーク面積値)×100 (A) [Calculation of diglycidyl ether concentration (DGE concentration)]
The following formula (A) was used to calculate the total area value of the peaks of diglycidyl ethers such as BEPG-DGE (DGE represented by formula (1-2)), an isomer of BEPG-DGE, and PD9-DGE (DGE represented by formula (1-1)) detected at a retention time of 25.5 to 26.9 minutes under the above measurement conditions (DGE detection peak area value) and the total area value of all peaks detected at a retention time of 0.0 to 60.0 minutes (total detection peak area value).
DGE concentration (%) = (DGE detection peak area value / total detection peak area value) x 100 (A)
上記測定条件で保持時間25.5~26.9分に検出される、BEPG-DGE(式(1-2)で表されるDGE)、BEPG-DGEの異性体、PD9-DGE(式(1-1)で表されるDGE)などのジグリシジルエーテルのピークの合計面積値(DGE検出ピーク面積値)と保持時間0.0~60.0分に検出される全ピークの合計面積値(全検出ピーク面積値)より下記式(A)を用いて算出した。
DGE濃度(%)=(DGE検出ピーク面積値/全検出ピーク面積値)×100 (A) [Calculation of diglycidyl ether concentration (DGE concentration)]
The following formula (A) was used to calculate the total area value of the peaks of diglycidyl ethers such as BEPG-DGE (DGE represented by formula (1-2)), an isomer of BEPG-DGE, and PD9-DGE (DGE represented by formula (1-1)) detected at a retention time of 25.5 to 26.9 minutes under the above measurement conditions (DGE detection peak area value) and the total area value of all peaks detected at a retention time of 0.0 to 60.0 minutes (total detection peak area value).
DGE concentration (%) = (DGE detection peak area value / total detection peak area value) x 100 (A)
〔GC-MS(ガスクロマトグラフ質量分析)〕
GC分析装置:Agilent Technologies社製 6890N
MS分析装置:株式会社JEOL社製 Jms-K9 ultraQuad GC/MS
GC分析カラム:Agilent Technologies社製 HP-5 (長さ30m×内径0.32mm×膜厚0.25μm、充填物:(5%-フェニル)-メチルポリシロキサン)
昇温条件:50℃で5分間保持した後、10℃/分で50℃から320℃まで昇温し、320℃で28分間保持
試料導入温度:320℃
キャリアガス:ヘリウム
カラムのガス流量:0.5mL/分
コントロールモード:コンスタントフロー
スプリット比:50
試料注入条件:1.0μL
MS測定モード:CI
インターフェース温度:250℃
イオン源温度:150℃
イオン化ガス:イソブタン
上記測定条件で保持時間22.0~24.0分に検出される、BEPG-DGE及びPD9-DGEのピークのマススペクトルを確認した。 [GC-MS (Gas Chromatography Mass Spectrometry)]
GC analyzer: Agilent Technologies 6890N
MS analysis device: JEOL Corporation Jms-K9 ultraQuad GC/MS
GC analytical column: Agilent Technologies HP-5 (length 30 m × inner diameter 0.32 mm × film thickness 0.25 μm, packing: (5%-phenyl)-methylpolysiloxane)
Temperature increase conditions: After holding at 50° C. for 5 minutes, the temperature was increased from 50° C. to 320° C. at a rate of 10° C./min, and then held at 320° C. for 28 minutes. Sample introduction temperature: 320° C.
Carrier gas: Helium Column gas flow rate: 0.5 mL/min Control mode: Constant flow Split ratio: 50
Sample injection conditions: 1.0 μL
MS measurement mode: CI
Interface temperature: 250°C
Ion source temperature: 150° C.
Ionization gas: isobutane The mass spectra of the peaks of BEPG-DGE and PD9-DGE detected at a retention time of 22.0 to 24.0 minutes under the above measurement conditions were confirmed.
GC分析装置:Agilent Technologies社製 6890N
MS分析装置:株式会社JEOL社製 Jms-K9 ultraQuad GC/MS
GC分析カラム:Agilent Technologies社製 HP-5 (長さ30m×内径0.32mm×膜厚0.25μm、充填物:(5%-フェニル)-メチルポリシロキサン)
昇温条件:50℃で5分間保持した後、10℃/分で50℃から320℃まで昇温し、320℃で28分間保持
試料導入温度:320℃
キャリアガス:ヘリウム
カラムのガス流量:0.5mL/分
コントロールモード:コンスタントフロー
スプリット比:50
試料注入条件:1.0μL
MS測定モード:CI
インターフェース温度:250℃
イオン源温度:150℃
イオン化ガス:イソブタン
上記測定条件で保持時間22.0~24.0分に検出される、BEPG-DGE及びPD9-DGEのピークのマススペクトルを確認した。 [GC-MS (Gas Chromatography Mass Spectrometry)]
GC analyzer: Agilent Technologies 6890N
MS analysis device: JEOL Corporation Jms-K9 ultraQuad GC/MS
GC analytical column: Agilent Technologies HP-5 (length 30 m × inner diameter 0.32 mm × film thickness 0.25 μm, packing: (5%-phenyl)-methylpolysiloxane)
Temperature increase conditions: After holding at 50° C. for 5 minutes, the temperature was increased from 50° C. to 320° C. at a rate of 10° C./min, and then held at 320° C. for 28 minutes. Sample introduction temperature: 320° C.
Carrier gas: Helium Column gas flow rate: 0.5 mL/min Control mode: Constant flow Split ratio: 50
Sample injection conditions: 1.0 μL
MS measurement mode: CI
Interface temperature: 250°C
Ion source temperature: 150° C.
Ionization gas: isobutane The mass spectra of the peaks of BEPG-DGE and PD9-DGE detected at a retention time of 22.0 to 24.0 minutes under the above measurement conditions were confirmed.
〔1H NMRスペクトル(500MHz)]
装置:株式会社JEOL社製 JNM-ECA500
基準:テトラメチルシラン(0.00ppm) [ 1H NMR spectrum (500 MHz)]
Equipment: JEOL JNM-ECA500
Standard: tetramethylsilane (0.00 ppm)
装置:株式会社JEOL社製 JNM-ECA500
基準:テトラメチルシラン(0.00ppm) [ 1H NMR spectrum (500 MHz)]
Equipment: JEOL JNM-ECA500
Standard: tetramethylsilane (0.00 ppm)
〔13C NMRスペクトル(126MHz)〕
装置:株式会社JEOL社製 JNM-ECA500
基準:テトラメチルシラン(0.00ppm) [ 13C NMR spectrum (126MHz)]
Equipment: JEOL JNM-ECA500
Standard: tetramethylsilane (0.00 ppm)
装置:株式会社JEOL社製 JNM-ECA500
基準:テトラメチルシラン(0.00ppm) [ 13C NMR spectrum (126MHz)]
Equipment: JEOL JNM-ECA500
Standard: tetramethylsilane (0.00 ppm)
〔全塩素量の測定〕
装置:三菱化学アナリティック社製 NSX-2100
アルゴンガス流量:100ml/分
酸素ガス流量:300ml/分
ヒーター温度 入口:900℃
ヒーター温度 出口:1000℃
塩素測定-電位差滴定 終点:290~315mV [Measurement of total chlorine content]
Apparatus: Mitsubishi Chemical Analytical NSX-2100
Argon gas flow rate: 100 ml/min Oxygen gas flow rate: 300 ml/min Heater temperature inlet: 900° C.
Heater temperature outlet: 1000℃
Chlorine measurement - Potentiometric titration End point: 290-315mV
装置:三菱化学アナリティック社製 NSX-2100
アルゴンガス流量:100ml/分
酸素ガス流量:300ml/分
ヒーター温度 入口:900℃
ヒーター温度 出口:1000℃
塩素測定-電位差滴定 終点:290~315mV [Measurement of total chlorine content]
Apparatus: Mitsubishi Chemical Analytical NSX-2100
Argon gas flow rate: 100 ml/min Oxygen gas flow rate: 300 ml/min Heater temperature inlet: 900° C.
Heater temperature outlet: 1000℃
Chlorine measurement - Potentiometric titration End point: 290-315mV
〔エポキシ当量、架橋密度〕
試験方法:ISO3001(テトラエチルアンモニウムブロマイド-過塩素酸法)
架橋密度(計算値):上記方法で測定したエポキシ当量[g/eq]の逆数を架橋密度[eq/g]とした。 [Epoxy equivalent, crosslink density]
Test method: ISO3001 (Tetraethylammonium bromide-perchloric acid method)
Crosslink density (calculated value): The reciprocal of the epoxy equivalent [g/eq] measured by the above method was taken as the crosslink density [eq/g].
試験方法:ISO3001(テトラエチルアンモニウムブロマイド-過塩素酸法)
架橋密度(計算値):上記方法で測定したエポキシ当量[g/eq]の逆数を架橋密度[eq/g]とした。 [Epoxy equivalent, crosslink density]
Test method: ISO3001 (Tetraethylammonium bromide-perchloric acid method)
Crosslink density (calculated value): The reciprocal of the epoxy equivalent [g/eq] measured by the above method was taken as the crosslink density [eq/g].
〔誘電正接、比誘電率〕
装置:Agilent Technologies社製 プレジションLCRメータ E4980A
試験方法:IEC62631-2-1準拠
試験寸法:60×60×t3(mm)
周波数:1MHz
試験温度:23℃ [Dielectric tangent, relative dielectric constant]
Apparatus: Precision LCR meter E4980A manufactured by Agilent Technologies
Test method: Compliant with IEC 62631-2-1 Test dimensions: 60 x 60 x t3 (mm)
Frequency: 1MHz
Test temperature: 23°C
装置:Agilent Technologies社製 プレジションLCRメータ E4980A
試験方法:IEC62631-2-1準拠
試験寸法:60×60×t3(mm)
周波数:1MHz
試験温度:23℃ [Dielectric tangent, relative dielectric constant]
Apparatus: Precision LCR meter E4980A manufactured by Agilent Technologies
Test method: Compliant with IEC 62631-2-1 Test dimensions: 60 x 60 x t3 (mm)
Frequency: 1MHz
Test temperature: 23°C
〔ガラス転移点、熱線膨張係数〕
装置:リガク社製 TMA8311
試験方法:JIS K 7197
試験寸法:10×5×t3(mm)
昇温速度:5℃/分
測定温度範囲:室温~300℃
測定モード:圧縮(荷重 49mN)
雰囲気:窒素気流中(100mL/分) [Glass transition temperature, coefficient of linear thermal expansion]
Equipment: Rigaku TMA8311
Test method: JIS K 7197
Test dimensions: 10 x 5 x t3 (mm)
Heating rate: 5°C/min Measurement temperature range: room temperature to 300°C
Measurement mode: Compression (load 49 mN)
Atmosphere: Nitrogen flow (100 mL/min)
装置:リガク社製 TMA8311
試験方法:JIS K 7197
試験寸法:10×5×t3(mm)
昇温速度:5℃/分
測定温度範囲:室温~300℃
測定モード:圧縮(荷重 49mN)
雰囲気:窒素気流中(100mL/分) [Glass transition temperature, coefficient of linear thermal expansion]
Equipment: Rigaku TMA8311
Test method: JIS K 7197
Test dimensions: 10 x 5 x t3 (mm)
Heating rate: 5°C/min Measurement temperature range: room temperature to 300°C
Measurement mode: Compression (load 49 mN)
Atmosphere: Nitrogen flow (100 mL/min)
〔オーブン〕
装置:ヤマト科学株式会社製 送風定温恒温器DKM600 〔oven〕
Equipment: Yamato Scientific Co., Ltd. constant temperature incubator DKM600
装置:ヤマト科学株式会社製 送風定温恒温器DKM600 〔oven〕
Equipment: Yamato Scientific Co., Ltd. constant temperature incubator DKM600
また、略記号は以下の意味を表す。
PD-9:2,4-ジエチル-1,5-ペンタンジオール
BEPG:2-ブチル-2-エチル-1,3-プロパンジオール
PD9-DGE:2,4-ジエチル-1,5-ペンタンジオール ジグリシジルエーテル
BEPG-DGE:2-ブチル-2-エチル-1,3-プロパンジオール ジグリシジルエーテル
16HD-DGE:1,6-ヘキサンジオール ジグリシジルエーテル[四日市合成株式会社製 エポゴーセ―(登録商標)HD(D)、電子材料グレード]
BPA:ビスフェノールA型エポキシ樹脂[三菱ケミカル株式会社製 jER(登録商標)828]
MH700:4-メチルヘキサヒドロ無水フタル酸/ヘキサヒドロ無水フタル酸混合物(モル比70:30)[新日本理化株式会社製 リカシッド(登録商標)MH-700]
TBP-DEPS:テトラブチルホスホニウムO,O-ジエチルホスホロジチオエート[富士フィルム和光純薬株式会社製]
EPH:エピクロロヒドリン[富士フィルム和光純薬株式会社製、純度99%]
TBNB:テトラ-n-ブチルアンモニウムブロマイド[富士フィルム和光純薬株式会社製]
NaOH:水酸化ナトリウム[富士フィルム和光純薬株式会社製、純度97%、粒状の固体]
CDCl3:重クロロホルム[富士フィルム和光純薬株式会社製、0.03%テトラメチルシラン入り] The abbreviations have the following meanings:
PD-9: 2,4-diethyl-1,5-pentanediol BEPG: 2-butyl-2-ethyl-1,3-propanediol PD9-DGE: 2,4-diethyl-1,5-pentanediol diglycidyl ether BEPG-DGE: 2-butyl-2-ethyl-1,3-propanediol diglycidyl ether 16HD-DGE: 1,6-hexanediol diglycidyl ether [Epogose (registered trademark) HD (D), electronic material grade, manufactured by Yokkaichi Synthetic Co., Ltd.]
BPA: Bisphenol A epoxy resin [jER (registered trademark) 828, manufactured by Mitsubishi Chemical Corporation]
MH700: 4-methylhexahydrophthalic anhydride/hexahydrophthalic anhydride mixture (molar ratio 70:30) [manufactured by New Japan Chemical Co., Ltd., Rikacid (registered trademark) MH-700]
TBP-DEPS: Tetrabutylphosphonium O,O-diethyl phosphorodithioate [manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.]
EPH: epichlorohydrin [manufactured by Fujifilm Wako Pure Chemical Industries, Ltd., purity 99%]
TBNB: Tetra-n-butylammonium bromide [manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.]
NaOH: Sodium hydroxide [manufactured by Fujifilm Wako Pure Chemical Industries, Ltd., purity 97%, granular solid]
CDCl 3 : deuterated chloroform [manufactured by Fujifilm Wako Pure Chemical Industries, Ltd., containing 0.03% tetramethylsilane]
PD-9:2,4-ジエチル-1,5-ペンタンジオール
BEPG:2-ブチル-2-エチル-1,3-プロパンジオール
PD9-DGE:2,4-ジエチル-1,5-ペンタンジオール ジグリシジルエーテル
BEPG-DGE:2-ブチル-2-エチル-1,3-プロパンジオール ジグリシジルエーテル
16HD-DGE:1,6-ヘキサンジオール ジグリシジルエーテル[四日市合成株式会社製 エポゴーセ―(登録商標)HD(D)、電子材料グレード]
BPA:ビスフェノールA型エポキシ樹脂[三菱ケミカル株式会社製 jER(登録商標)828]
MH700:4-メチルヘキサヒドロ無水フタル酸/ヘキサヒドロ無水フタル酸混合物(モル比70:30)[新日本理化株式会社製 リカシッド(登録商標)MH-700]
TBP-DEPS:テトラブチルホスホニウムO,O-ジエチルホスホロジチオエート[富士フィルム和光純薬株式会社製]
EPH:エピクロロヒドリン[富士フィルム和光純薬株式会社製、純度99%]
TBNB:テトラ-n-ブチルアンモニウムブロマイド[富士フィルム和光純薬株式会社製]
NaOH:水酸化ナトリウム[富士フィルム和光純薬株式会社製、純度97%、粒状の固体]
CDCl3:重クロロホルム[富士フィルム和光純薬株式会社製、0.03%テトラメチルシラン入り] The abbreviations have the following meanings:
PD-9: 2,4-diethyl-1,5-pentanediol BEPG: 2-butyl-2-ethyl-1,3-propanediol PD9-DGE: 2,4-diethyl-1,5-pentanediol diglycidyl ether BEPG-DGE: 2-butyl-2-ethyl-1,3-propanediol diglycidyl ether 16HD-DGE: 1,6-hexanediol diglycidyl ether [Epogose (registered trademark) HD (D), electronic material grade, manufactured by Yokkaichi Synthetic Co., Ltd.]
BPA: Bisphenol A epoxy resin [jER (registered trademark) 828, manufactured by Mitsubishi Chemical Corporation]
MH700: 4-methylhexahydrophthalic anhydride/hexahydrophthalic anhydride mixture (molar ratio 70:30) [manufactured by New Japan Chemical Co., Ltd., Rikacid (registered trademark) MH-700]
TBP-DEPS: Tetrabutylphosphonium O,O-diethyl phosphorodithioate [manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.]
EPH: epichlorohydrin [manufactured by Fujifilm Wako Pure Chemical Industries, Ltd., purity 99%]
TBNB: Tetra-n-butylammonium bromide [manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.]
NaOH: Sodium hydroxide [manufactured by Fujifilm Wako Pure Chemical Industries, Ltd., purity 97%, granular solid]
CDCl 3 : deuterated chloroform [manufactured by Fujifilm Wako Pure Chemical Industries, Ltd., containing 0.03% tetramethylsilane]
[実施例1]
<PD9-DGEを含む組成物の製造(組成物A)>
アルカンジオールとして、KHネオケム株式会社製キョ―ワジオールPD-9(PD-9とBEPGの混合物であって、GCの面積値の比でPD-9/BEPGが95/5である。)を使用した。
反応フラスコに、アルカンジオール305g(1.90mol)、EPH 705g(7.62mol)、及びTBNB 8.60g(26.7mmol)を仕込んだ。次いで、撹拌翼付きメカニカルスターラーにより回転数250rpmで、上記仕込み液をかき混ぜながら、ウォーターバスにより反応フラスコ内液温を45±1℃に保持し、NaOH 50.8g(1.25mol)を加えた。その後、水 5.08g(0.282mol)を加え、白濁した不均一混合液を得た。このとき、反応フラスコ内液温の上昇は見られなかった。上記不均一混合液を45±1℃に保持しながら、30分間、250rpmで撹拌し、再度、NaOH 50.8g(1.27mol)を加えた。その後、水 5.08g(0.282mol)を加えた。同じ操作を合計6回繰り返し、反応フラスコに、3時間かけて合計でNaOH 305g(7.63mol)及び水 30.5g(1.69mol)を加えた。これを、45±1℃に保持したまま250rpmで更に6時間撹拌し、不均一反応液を得た。これをろ過し、不溶物を除去した。このろ液にクロロホルム100gを加え生成物を抽出し、水1000gで洗浄した。次いで、水洗浄後の生成物を減圧蒸留にて精製し、組成物Aを得た。組成物Aの沸点は145~150℃/0.9kPaであり、単離収率は49%(アルカンジオール基準)であった。
得られた組成物AのDGE濃度、全塩素量、エポキシ当量、及び架橋密度を表1に示す。 [Example 1]
<Preparation of a composition containing PD9-DGE (Composition A)>
As the alkanediol, Kyowadiol PD-9 manufactured by KH Neochem Co., Ltd. (a mixture of PD-9 and BEPG, with a GC area ratio of PD-9/BEPG of 95/5) was used.
Into the reaction flask, 305g (1.90mol) of alkanediol, 705g (7.62mol) of EPH, and 8.60g (26.7mmol) of TBNB were charged. Next, while stirring the charged liquid with a mechanical stirrer with stirring blades at a rotation speed of 250 rpm, the liquid temperature in the reaction flask was maintained at 45±1°C in a water bath, and 50.8g (1.25mol) of NaOH was added. Then, 5.08g (0.282mol) of water was added, and a cloudy heterogeneous mixture was obtained. At this time, no increase in the liquid temperature in the reaction flask was observed. While maintaining the heterogeneous mixture at 45±1°C, the mixture was stirred at 250 rpm for 30 minutes, and 50.8g (1.27mol) of NaOH was added again. Then, 5.08g (0.282mol) of water was added. The same operation was repeated six times in total, and 305 g (7.63 mol) of NaOH and 30.5 g (1.69 mol) of water were added to the reaction flask over a period of three hours. The mixture was stirred at 250 rpm for an additional six hours while maintaining the temperature at 45±1° C., to obtain a heterogeneous reaction liquid. The mixture was filtered to remove insoluble matter. 100 g of chloroform was added to the filtrate to extract the product, which was then washed with 1000 g of water. The product after washing with water was then purified by distillation under reduced pressure to obtain composition A. The boiling point of composition A was 145 to 150° C./0.9 kPa, and the isolated yield was 49% (based on alkanediol).
The DGE concentration, total chlorine content, epoxy equivalent, and crosslink density of the obtained composition A are shown in Table 1.
<PD9-DGEを含む組成物の製造(組成物A)>
アルカンジオールとして、KHネオケム株式会社製キョ―ワジオールPD-9(PD-9とBEPGの混合物であって、GCの面積値の比でPD-9/BEPGが95/5である。)を使用した。
反応フラスコに、アルカンジオール305g(1.90mol)、EPH 705g(7.62mol)、及びTBNB 8.60g(26.7mmol)を仕込んだ。次いで、撹拌翼付きメカニカルスターラーにより回転数250rpmで、上記仕込み液をかき混ぜながら、ウォーターバスにより反応フラスコ内液温を45±1℃に保持し、NaOH 50.8g(1.25mol)を加えた。その後、水 5.08g(0.282mol)を加え、白濁した不均一混合液を得た。このとき、反応フラスコ内液温の上昇は見られなかった。上記不均一混合液を45±1℃に保持しながら、30分間、250rpmで撹拌し、再度、NaOH 50.8g(1.27mol)を加えた。その後、水 5.08g(0.282mol)を加えた。同じ操作を合計6回繰り返し、反応フラスコに、3時間かけて合計でNaOH 305g(7.63mol)及び水 30.5g(1.69mol)を加えた。これを、45±1℃に保持したまま250rpmで更に6時間撹拌し、不均一反応液を得た。これをろ過し、不溶物を除去した。このろ液にクロロホルム100gを加え生成物を抽出し、水1000gで洗浄した。次いで、水洗浄後の生成物を減圧蒸留にて精製し、組成物Aを得た。組成物Aの沸点は145~150℃/0.9kPaであり、単離収率は49%(アルカンジオール基準)であった。
得られた組成物AのDGE濃度、全塩素量、エポキシ当量、及び架橋密度を表1に示す。 [Example 1]
<Preparation of a composition containing PD9-DGE (Composition A)>
As the alkanediol, Kyowadiol PD-9 manufactured by KH Neochem Co., Ltd. (a mixture of PD-9 and BEPG, with a GC area ratio of PD-9/BEPG of 95/5) was used.
Into the reaction flask, 305g (1.90mol) of alkanediol, 705g (7.62mol) of EPH, and 8.60g (26.7mmol) of TBNB were charged. Next, while stirring the charged liquid with a mechanical stirrer with stirring blades at a rotation speed of 250 rpm, the liquid temperature in the reaction flask was maintained at 45±1°C in a water bath, and 50.8g (1.25mol) of NaOH was added. Then, 5.08g (0.282mol) of water was added, and a cloudy heterogeneous mixture was obtained. At this time, no increase in the liquid temperature in the reaction flask was observed. While maintaining the heterogeneous mixture at 45±1°C, the mixture was stirred at 250 rpm for 30 minutes, and 50.8g (1.27mol) of NaOH was added again. Then, 5.08g (0.282mol) of water was added. The same operation was repeated six times in total, and 305 g (7.63 mol) of NaOH and 30.5 g (1.69 mol) of water were added to the reaction flask over a period of three hours. The mixture was stirred at 250 rpm for an additional six hours while maintaining the temperature at 45±1° C., to obtain a heterogeneous reaction liquid. The mixture was filtered to remove insoluble matter. 100 g of chloroform was added to the filtrate to extract the product, which was then washed with 1000 g of water. The product after washing with water was then purified by distillation under reduced pressure to obtain composition A. The boiling point of composition A was 145 to 150° C./0.9 kPa, and the isolated yield was 49% (based on alkanediol).
The DGE concentration, total chlorine content, epoxy equivalent, and crosslink density of the obtained composition A are shown in Table 1.
次いで、GC-MS(CI)、1H-NMR、及び13C-NMRの分析を行った。分析結果を下記に示す。
GC-MS(CI) m/z: 273 (GC-MS保持時間;22.5~22.7分,BEPG-DGE,MH+),273 (GC-MS保持時間;23.0~23.5分,PD9-DGE,MH+).
1H NMR (CDCl3, 500MHz) δ 3.68 (m, 2H, glycidyl group), 3.40 (m, 2H, glycidyl group), 3.36 (m, 4H, CH2CHCH2O), 3.12(m, 2H, glycidyl group), 2.78 (m, 2H, glycidyl group), 2.60 (m, 2H, glycidyl group), 1.60 (m, 2H, CH2CHCH2O), 1.46-1.28 (m, 4H, CH3CH2), 1.25 (m, 2H, CH2CHCH2O), 0.88 (t, 6H, CH3CH2).
13C NMR (CDCl3, 126MHz) δ74.6, 71.6, 51.0, 44.2, 37.4, 32.8, 24.3, 10.9. Then, GC-MS (CI), 1 H-NMR and 13 C-NMR analyses were carried out, and the analytical results are shown below.
GC-MS (CI) m/z: 273 (GC-MS retention time; 22.5-22.7 minutes, BEPG-DGE, MH + ), 273 (GC-MS retention time; 23.0-23.5 minutes, PD9-DGE, MH + ).
1 H NMR (CDCl 3 , 500 MHz) δ 3.68 (m, 2H, glycidyl group), 3.40 (m, 2H, glycidyl group), 3.36 (m, 4H, CH 2 CHCH 2 O), 3.12 (m, 2H, glycidyl group), 2.78 (m, 2H, glycidyl group), 2.60 (m, 2H, glycidyl group), 1.60 (m, 2H, CH 2 CHCH 2 O), 1.46-1.28 (m, 4H, CH 3 CH 2 ), 1.25 (m, 2H, CH 2 CHCH 2 O), 0.88 (t, 6H, CH 3 CH 2 ).
13C NMR ( CDCl3 , 126MHz) δ74.6, 71.6, 51.0, 44.2, 37.4, 32.8, 24.3, 10.9.
GC-MS(CI) m/z: 273 (GC-MS保持時間;22.5~22.7分,BEPG-DGE,MH+),273 (GC-MS保持時間;23.0~23.5分,PD9-DGE,MH+).
1H NMR (CDCl3, 500MHz) δ 3.68 (m, 2H, glycidyl group), 3.40 (m, 2H, glycidyl group), 3.36 (m, 4H, CH2CHCH2O), 3.12(m, 2H, glycidyl group), 2.78 (m, 2H, glycidyl group), 2.60 (m, 2H, glycidyl group), 1.60 (m, 2H, CH2CHCH2O), 1.46-1.28 (m, 4H, CH3CH2), 1.25 (m, 2H, CH2CHCH2O), 0.88 (t, 6H, CH3CH2).
13C NMR (CDCl3, 126MHz) δ74.6, 71.6, 51.0, 44.2, 37.4, 32.8, 24.3, 10.9. Then, GC-MS (CI), 1 H-NMR and 13 C-NMR analyses were carried out, and the analytical results are shown below.
GC-MS (CI) m/z: 273 (GC-MS retention time; 22.5-22.7 minutes, BEPG-DGE, MH + ), 273 (GC-MS retention time; 23.0-23.5 minutes, PD9-DGE, MH + ).
1 H NMR (CDCl 3 , 500 MHz) δ 3.68 (m, 2H, glycidyl group), 3.40 (m, 2H, glycidyl group), 3.36 (m, 4H, CH 2 CHCH 2 O), 3.12 (m, 2H, glycidyl group), 2.78 (m, 2H, glycidyl group), 2.60 (m, 2H, glycidyl group), 1.60 (m, 2H, CH 2 CHCH 2 O), 1.46-1.28 (m, 4H, CH 3 CH 2 ), 1.25 (m, 2H, CH 2 CHCH 2 O), 0.88 (t, 6H, CH 3 CH 2 ).
13C NMR ( CDCl3 , 126MHz) δ74.6, 71.6, 51.0, 44.2, 37.4, 32.8, 24.3, 10.9.
[実施例2]
<BEPG-DGEを含む組成物の製造(組成物B)>
アルカンジオールをKHネオケム株式会社製BEPGに変更したこと以外は、実施例1と同様に行い、組成物Bを得た。
組成物Bの沸点は146~152℃/0.8kPaであり、単離収率は29%(アルカンジオール基準)であった。
得られた組成物BのDGE濃度、全塩素量、エポキシ当量、及び架橋密度を表1に示す。 [Example 2]
<Preparation of composition containing BEPG-DGE (composition B)>
Composition B was obtained in the same manner as in Example 1, except that the alkanediol was changed to BEPG manufactured by KH Neochem Co., Ltd.
The boiling point of composition B was 146 to 152° C./0.8 kPa, and the isolated yield was 29% (based on alkanediol).
The DGE concentration, total chlorine content, epoxy equivalent, and crosslink density of the obtained composition B are shown in Table 1.
<BEPG-DGEを含む組成物の製造(組成物B)>
アルカンジオールをKHネオケム株式会社製BEPGに変更したこと以外は、実施例1と同様に行い、組成物Bを得た。
組成物Bの沸点は146~152℃/0.8kPaであり、単離収率は29%(アルカンジオール基準)であった。
得られた組成物BのDGE濃度、全塩素量、エポキシ当量、及び架橋密度を表1に示す。 [Example 2]
<Preparation of composition containing BEPG-DGE (composition B)>
Composition B was obtained in the same manner as in Example 1, except that the alkanediol was changed to BEPG manufactured by KH Neochem Co., Ltd.
The boiling point of composition B was 146 to 152° C./0.8 kPa, and the isolated yield was 29% (based on alkanediol).
The DGE concentration, total chlorine content, epoxy equivalent, and crosslink density of the obtained composition B are shown in Table 1.
次いで、GC-MS(CI)、1H-NMR、及び13C-NMRの分析を行った。分析結果を下記に示す。
GC-MS(CI) m/z: 273 (GC-MS保持時間;22.5~22.7分,BEPG-DGE,MH+),273 (GC-MS保持時間;23.0~23.5分,BEPG-DGEの異性体MH+).
1H NMR (CDCl3, 500MHz) δ 3.68 (m, 2H, glycidyl group), 3.40 (m, 2H, glycidyl group), 3.36 (m, 4H, CH2CHCH2O), 3.12(m, 2H, glycidyl group), 2.78 (m, 2H, glycidyl group), 2.60 (m, 2H, glycidyl group), 1.60 (m, 2H, CH2CHCH2O), 1.46-1.28 (m, 4H, CH3CH2), 1.25 (m, 2H, CH2CHCH2O), 0.88 (t, 6H, CH3CH2).
13C NMR (CDCl3, 126MHz) δ74.6, 71.6, 51.0, 44.2, 37.4, 32.8, 24.3, 10.9. Then, GC-MS (CI), 1 H-NMR and 13 C-NMR analyses were carried out, and the analytical results are shown below.
GC-MS (CI) m/z: 273 (GC-MS retention time; 22.5-22.7 minutes, BEPG-DGE, MH + ), 273 (GC-MS retention time; 23.0-23.5 minutes, BEPG-DGE isomer MH + ).
1 H NMR (CDCl 3 , 500 MHz) δ 3.68 (m, 2H, glycidyl group), 3.40 (m, 2H, glycidyl group), 3.36 (m, 4H, CH 2 CHCH 2 O), 3.12 (m, 2H, glycidyl group), 2.78 (m, 2H, glycidyl group), 2.60 (m, 2H, glycidyl group), 1.60 (m, 2H, CH 2 CHCH 2 O), 1.46-1.28 (m, 4H, CH 3 CH 2 ), 1.25 (m, 2H, CH 2 CHCH 2 O), 0.88 (t, 6H, CH 3 CH 2 ).
13C NMR ( CDCl3 , 126MHz) δ74.6, 71.6, 51.0, 44.2, 37.4, 32.8, 24.3, 10.9.
GC-MS(CI) m/z: 273 (GC-MS保持時間;22.5~22.7分,BEPG-DGE,MH+),273 (GC-MS保持時間;23.0~23.5分,BEPG-DGEの異性体MH+).
1H NMR (CDCl3, 500MHz) δ 3.68 (m, 2H, glycidyl group), 3.40 (m, 2H, glycidyl group), 3.36 (m, 4H, CH2CHCH2O), 3.12(m, 2H, glycidyl group), 2.78 (m, 2H, glycidyl group), 2.60 (m, 2H, glycidyl group), 1.60 (m, 2H, CH2CHCH2O), 1.46-1.28 (m, 4H, CH3CH2), 1.25 (m, 2H, CH2CHCH2O), 0.88 (t, 6H, CH3CH2).
13C NMR (CDCl3, 126MHz) δ74.6, 71.6, 51.0, 44.2, 37.4, 32.8, 24.3, 10.9. Then, GC-MS (CI), 1 H-NMR and 13 C-NMR analyses were carried out, and the analytical results are shown below.
GC-MS (CI) m/z: 273 (GC-MS retention time; 22.5-22.7 minutes, BEPG-DGE, MH + ), 273 (GC-MS retention time; 23.0-23.5 minutes, BEPG-DGE isomer MH + ).
1 H NMR (CDCl 3 , 500 MHz) δ 3.68 (m, 2H, glycidyl group), 3.40 (m, 2H, glycidyl group), 3.36 (m, 4H, CH 2 CHCH 2 O), 3.12 (m, 2H, glycidyl group), 2.78 (m, 2H, glycidyl group), 2.60 (m, 2H, glycidyl group), 1.60 (m, 2H, CH 2 CHCH 2 O), 1.46-1.28 (m, 4H, CH 3 CH 2 ), 1.25 (m, 2H, CH 2 CHCH 2 O), 0.88 (t, 6H, CH 3 CH 2 ).
13C NMR ( CDCl3 , 126MHz) δ74.6, 71.6, 51.0, 44.2, 37.4, 32.8, 24.3, 10.9.
[比較例1]
<PD9-DGEを含む組成物の製造(組成物C)>
実施例1と同じアルカンジオールを使用した。
反応フラスコに、アルカンジオール305g(1.90mol)、EPH 705g(7.62mol)、及びTBNB 8.60g(26.7mmol)を仕込んだ。次いで、撹拌翼付きメカニカルスターラーにより回転数250rpmで、上記仕込み液をかき混ぜながら、ウォーターバスにより反応フラスコ内液温を45℃に保持し、NaOH 305g(7.63mol)と水 5.08g(1.69mol)を同時に加えると、反応フラスコ内液温が急速に50℃まで上昇した。ウォーターバスにより1時間15分冷却することで、反応フラスコ内液温が45℃の白濁した不均一混合液を得た。上記不均一混合液を45±1℃に保持したまま250rpmで6時間撹拌し、不均一反応液を得た。これをろ過し、不溶物を除去した。このろ液にクロロホルム100gを加え生成物を抽出し、水1000gで洗浄した。次いで、水洗浄後の生成物を減圧蒸留にて精製し、組成物Cを得た。組成物Cの沸点は145~150℃/0.9kPaであり、単離収率は49%(アルカンジオール基準)であった。
得られた組成物CのDGE濃度、全塩素量、エポキシ当量、及び架橋密度を表1に示す。 [Comparative Example 1]
<Preparation of a composition containing PD9-DGE (Composition C)>
The same alkanediol as in Example 1 was used.
The reaction flask was charged with 305 g (1.90 mol) of alkanediol, 705 g (7.62 mol) of EPH, and 8.60 g (26.7 mmol) of TBNB. Next, the liquid temperature in the reaction flask was maintained at 45 ° C. in a water bath while stirring the charged liquid at a rotation speed of 250 rpm with a mechanical stirrer with a stirring blade, and 305 g (7.63 mol) of NaOH and 5.08 g (1.69 mol) of water were added simultaneously, and the liquid temperature in the reaction flask rapidly rose to 50 ° C. By cooling in a water bath for 1 hour and 15 minutes, a cloudy heterogeneous mixture with a liquid temperature of 45 ° C. in the reaction flask was obtained. The heterogeneous mixture was stirred at 250 rpm for 6 hours while maintaining it at 45 ± 1 ° C., and a heterogeneous reaction liquid was obtained. This was filtered to remove insoluble matter. 100 g of chloroform was added to the filtrate to extract the product, which was then washed with 1000 g of water. The product after washing with water was then purified by reduced pressure distillation to obtain composition C. Composition C had a boiling point of 145 to 150° C./0.9 kPa and an isolated yield of 49% (based on alkanediol).
The DGE concentration, total chlorine content, epoxy equivalent, and crosslink density of the obtained composition C are shown in Table 1.
<PD9-DGEを含む組成物の製造(組成物C)>
実施例1と同じアルカンジオールを使用した。
反応フラスコに、アルカンジオール305g(1.90mol)、EPH 705g(7.62mol)、及びTBNB 8.60g(26.7mmol)を仕込んだ。次いで、撹拌翼付きメカニカルスターラーにより回転数250rpmで、上記仕込み液をかき混ぜながら、ウォーターバスにより反応フラスコ内液温を45℃に保持し、NaOH 305g(7.63mol)と水 5.08g(1.69mol)を同時に加えると、反応フラスコ内液温が急速に50℃まで上昇した。ウォーターバスにより1時間15分冷却することで、反応フラスコ内液温が45℃の白濁した不均一混合液を得た。上記不均一混合液を45±1℃に保持したまま250rpmで6時間撹拌し、不均一反応液を得た。これをろ過し、不溶物を除去した。このろ液にクロロホルム100gを加え生成物を抽出し、水1000gで洗浄した。次いで、水洗浄後の生成物を減圧蒸留にて精製し、組成物Cを得た。組成物Cの沸点は145~150℃/0.9kPaであり、単離収率は49%(アルカンジオール基準)であった。
得られた組成物CのDGE濃度、全塩素量、エポキシ当量、及び架橋密度を表1に示す。 [Comparative Example 1]
<Preparation of a composition containing PD9-DGE (Composition C)>
The same alkanediol as in Example 1 was used.
The reaction flask was charged with 305 g (1.90 mol) of alkanediol, 705 g (7.62 mol) of EPH, and 8.60 g (26.7 mmol) of TBNB. Next, the liquid temperature in the reaction flask was maintained at 45 ° C. in a water bath while stirring the charged liquid at a rotation speed of 250 rpm with a mechanical stirrer with a stirring blade, and 305 g (7.63 mol) of NaOH and 5.08 g (1.69 mol) of water were added simultaneously, and the liquid temperature in the reaction flask rapidly rose to 50 ° C. By cooling in a water bath for 1 hour and 15 minutes, a cloudy heterogeneous mixture with a liquid temperature of 45 ° C. in the reaction flask was obtained. The heterogeneous mixture was stirred at 250 rpm for 6 hours while maintaining it at 45 ± 1 ° C., and a heterogeneous reaction liquid was obtained. This was filtered to remove insoluble matter. 100 g of chloroform was added to the filtrate to extract the product, which was then washed with 1000 g of water. The product after washing with water was then purified by reduced pressure distillation to obtain composition C. Composition C had a boiling point of 145 to 150° C./0.9 kPa and an isolated yield of 49% (based on alkanediol).
The DGE concentration, total chlorine content, epoxy equivalent, and crosslink density of the obtained composition C are shown in Table 1.
[比較例2]
<16HD-DGEを含む組成物の分析(組成物D)>
組成物Dである四日市合成株式会社製 エポゴーセ―(登録商標)HD(D)について、分析した。
組成物DのDGE濃度、全塩素量、エポキシ当量、及び架橋密度を表1に示す。 [Comparative Example 2]
<Analysis of composition containing 16HD-DGE (composition D)>
Composition D, Epogosei (registered trademark) HD (D) manufactured by Yokkaichi Synthetic Co., Ltd., was analyzed.
The DGE concentration, total chlorine content, epoxy equivalent, and crosslink density of composition D are shown in Table 1.
<16HD-DGEを含む組成物の分析(組成物D)>
組成物Dである四日市合成株式会社製 エポゴーセ―(登録商標)HD(D)について、分析した。
組成物DのDGE濃度、全塩素量、エポキシ当量、及び架橋密度を表1に示す。 [Comparative Example 2]
<Analysis of composition containing 16HD-DGE (composition D)>
Composition D, Epogosei (registered trademark) HD (D) manufactured by Yokkaichi Synthetic Co., Ltd., was analyzed.
The DGE concentration, total chlorine content, epoxy equivalent, and crosslink density of composition D are shown in Table 1.
[実施例3~4、比較例3~4]
<硬化性組成物1~4の調製と評価>
表2に記載のエポキシ樹脂組成物100質量部に、硬化剤であるMH700をエポキシ樹脂組成物中のエポキシ基と等モル量で、硬化促進剤であるTBP-DEPSを1質量部で、それぞれ加えて混合物を得た。この混合物を、減圧下、室温(およそ25℃)で30分間撹拌することで脱泡し、硬化性組成物1~4を調製した。
各硬化性組成物を、厚さ3mmのコの字型のシリコーンゴム製スペーサーとともに、予めファイン耐熱TFEコート[ファインケミカルジャパン株式会社社製]で離型処理したガラス基板2枚で挟み込んだ。その後、ガラス基板2枚で挟み込んだ各硬化性組成物を100℃のオーブンで2時間加熱(予備硬化)し、その後150℃まで昇温して5時間加熱(本硬化)した。徐冷した後、ガラス基板を取り去り、厚さ3mmの各硬化物を得た。
得られた硬化物について、比誘電率、誘電正接、ガラス転移点(Tg)、及び熱線膨張係数(CTE)を評価した。なお、各物性値は以下の手順で測定した。結果を表2に示す。 [Examples 3 to 4, Comparative Examples 3 to 4]
<Preparation and Evaluation of Curable Compositions 1 to 4>
A mixture was obtained by adding MH700 as a curing agent in an equimolar amount to the epoxy groups in the epoxy resin composition and 1 part by mass of TBP-DEPS as a curing accelerator to 100 parts by mass of the epoxy resin composition shown in Table 2. This mixture was degassed by stirring under reduced pressure at room temperature (approximately 25° C.) for 30 minutes, to prepare curable compositions 1 to 4.
Each curable composition was sandwiched between two glass substrates that had been previously treated with a fine heat-resistant TFE coat (manufactured by Fine Chemical Japan Co., Ltd.) for release, together with a 3 mm thick U-shaped silicone rubber spacer. Then, each curable composition sandwiched between the two glass substrates was heated in an oven at 100° C. for 2 hours (pre-curing), and then heated to 150° C. for 5 hours (main curing). After gradual cooling, the glass substrates were removed to obtain each cured product with a thickness of 3 mm.
The obtained cured products were evaluated for dielectric constant, dielectric loss tangent, glass transition temperature (Tg), and coefficient of linear thermal expansion (CTE). Each physical property was measured by the following procedure. The results are shown in Table 2.
<硬化性組成物1~4の調製と評価>
表2に記載のエポキシ樹脂組成物100質量部に、硬化剤であるMH700をエポキシ樹脂組成物中のエポキシ基と等モル量で、硬化促進剤であるTBP-DEPSを1質量部で、それぞれ加えて混合物を得た。この混合物を、減圧下、室温(およそ25℃)で30分間撹拌することで脱泡し、硬化性組成物1~4を調製した。
各硬化性組成物を、厚さ3mmのコの字型のシリコーンゴム製スペーサーとともに、予めファイン耐熱TFEコート[ファインケミカルジャパン株式会社社製]で離型処理したガラス基板2枚で挟み込んだ。その後、ガラス基板2枚で挟み込んだ各硬化性組成物を100℃のオーブンで2時間加熱(予備硬化)し、その後150℃まで昇温して5時間加熱(本硬化)した。徐冷した後、ガラス基板を取り去り、厚さ3mmの各硬化物を得た。
得られた硬化物について、比誘電率、誘電正接、ガラス転移点(Tg)、及び熱線膨張係数(CTE)を評価した。なお、各物性値は以下の手順で測定した。結果を表2に示す。 [Examples 3 to 4, Comparative Examples 3 to 4]
<Preparation and Evaluation of Curable Compositions 1 to 4>
A mixture was obtained by adding MH700 as a curing agent in an equimolar amount to the epoxy groups in the epoxy resin composition and 1 part by mass of TBP-DEPS as a curing accelerator to 100 parts by mass of the epoxy resin composition shown in Table 2. This mixture was degassed by stirring under reduced pressure at room temperature (approximately 25° C.) for 30 minutes, to prepare curable compositions 1 to 4.
Each curable composition was sandwiched between two glass substrates that had been previously treated with a fine heat-resistant TFE coat (manufactured by Fine Chemical Japan Co., Ltd.) for release, together with a 3 mm thick U-shaped silicone rubber spacer. Then, each curable composition sandwiched between the two glass substrates was heated in an oven at 100° C. for 2 hours (pre-curing), and then heated to 150° C. for 5 hours (main curing). After gradual cooling, the glass substrates were removed to obtain each cured product with a thickness of 3 mm.
The obtained cured products were evaluated for dielectric constant, dielectric loss tangent, glass transition temperature (Tg), and coefficient of linear thermal expansion (CTE). Each physical property was measured by the following procedure. The results are shown in Table 2.
[比誘電率、誘電正接]
ホルダーの電極間に挟み込んだ試験片に、1V、1MHzの電圧を印加した際の誘電正接tanδ、および静電容量Cpを測定し、同条件で測定した空気の静電容量C0で除して、比誘電率εrを算出した。
誘電正接tanδ、あるいは比誘電率εrが低いほど、誘電特性に優れる。 [Dielectric constant, dielectric loss tangent]
The dielectric loss tangent tan δ and the capacitance Cp were measured when a voltage of 1 V, 1 MHz was applied to the test piece sandwiched between the electrodes of the holder, and the relative dielectric constant εr was calculated by dividing the measured values by the capacitance C0 of air measured under the same conditions.
The lower the dielectric loss tangent tan δ or the relative dielectric constant εr , the more excellent the dielectric properties.
ホルダーの電極間に挟み込んだ試験片に、1V、1MHzの電圧を印加した際の誘電正接tanδ、および静電容量Cpを測定し、同条件で測定した空気の静電容量C0で除して、比誘電率εrを算出した。
誘電正接tanδ、あるいは比誘電率εrが低いほど、誘電特性に優れる。 [Dielectric constant, dielectric loss tangent]
The dielectric loss tangent tan δ and the capacitance Cp were measured when a voltage of 1 V, 1 MHz was applied to the test piece sandwiched between the electrodes of the holder, and the relative dielectric constant εr was calculated by dividing the measured values by the capacitance C0 of air measured under the same conditions.
The lower the dielectric loss tangent tan δ or the relative dielectric constant εr , the more excellent the dielectric properties.
[ガラス転移点(Tg)]
試験片の熱物性を熱機械分析(TMA)で測定し、得られたTMA曲線の前後の曲線に接線を引き、この接線の交点からTgを求めた。
Tgが高い場合には、電子基板のハンダ付け時の高温度においてもガラス状態を保持でき、耐熱性に優れるため、例えば半導体封止材用途に好適である。 [Glass transition temperature (Tg)]
The thermal properties of the test piece were measured by thermomechanical analysis (TMA), and tangents were drawn to the curves before and after the obtained TMA curve, and Tg was determined from the intersection of the tangents.
When the Tg is high, the glass state can be maintained even at high temperatures during soldering of electronic substrates, and the heat resistance is excellent, making the material suitable for use as a semiconductor encapsulant, for example.
試験片の熱物性を熱機械分析(TMA)で測定し、得られたTMA曲線の前後の曲線に接線を引き、この接線の交点からTgを求めた。
Tgが高い場合には、電子基板のハンダ付け時の高温度においてもガラス状態を保持でき、耐熱性に優れるため、例えば半導体封止材用途に好適である。 [Glass transition temperature (Tg)]
The thermal properties of the test piece were measured by thermomechanical analysis (TMA), and tangents were drawn to the curves before and after the obtained TMA curve, and Tg was determined from the intersection of the tangents.
When the Tg is high, the glass state can be maintained even at high temperatures during soldering of electronic substrates, and the heat resistance is excellent, making the material suitable for use as a semiconductor encapsulant, for example.
[熱線膨張係数(CTE)]
試験片の熱機械分析(TMA)を測定し、得られたTMA曲線の50℃から100℃の区間の傾きから、CTEを求めた。
CTEが低いほど、寸法安定性に優れる。 [Coefficient of linear thermal expansion (CTE)]
The test piece was subjected to thermomechanical analysis (TMA), and the CTE was calculated from the slope of the obtained TMA curve in the section from 50° C. to 100° C.
The lower the CTE, the better the dimensional stability.
試験片の熱機械分析(TMA)を測定し、得られたTMA曲線の50℃から100℃の区間の傾きから、CTEを求めた。
CTEが低いほど、寸法安定性に優れる。 [Coefficient of linear thermal expansion (CTE)]
The test piece was subjected to thermomechanical analysis (TMA), and the CTE was calculated from the slope of the obtained TMA curve in the section from 50° C. to 100° C.
The lower the CTE, the better the dimensional stability.
表1に示すように、塩素含有化合物と、式(1)で表されるジグリシジルエーテルと、を含む組成物であって、全塩素量が900ppm以下である、組成物Aおよび組成物Bは、全塩素量が電子材料分野で望まれるハロゲンフリーグレードの閾値(900ppm以下)よりも十分に低く、絶縁信頼性に優れることがわかった。
一方、従来公知の製造方法(WO98/39314)によって作製され、全塩素量が900ppm以下でない比較例1の組成物Cは、全塩素量が当該閾値(900ppm以下)より高く、絶縁信頼性が著しく低いと考えられる。そのため、例えば半導体封止剤用途には使用し難いと考えられる。 As shown in Table 1, Composition A and Composition B, which are compositions containing a chlorine-containing compound and a diglycidyl ether represented by formula (1) and have a total chlorine content of 900 ppm or less, have a total chlorine content sufficiently lower than the threshold value (900 ppm or less) of the halogen-free grade desired in the electronic materials field, and are therefore excellent in insulation reliability.
On the other hand, the composition C of Comparative Example 1, which was produced by a conventionally known production method (WO98/39314) and in which the total chlorine content was not 900 ppm or less, has a total chlorine content higher than the threshold value (900 ppm or less), and is considered to have a significantly low insulation reliability. Therefore, it is considered difficult to use it for, for example, semiconductor encapsulation applications.
一方、従来公知の製造方法(WO98/39314)によって作製され、全塩素量が900ppm以下でない比較例1の組成物Cは、全塩素量が当該閾値(900ppm以下)より高く、絶縁信頼性が著しく低いと考えられる。そのため、例えば半導体封止剤用途には使用し難いと考えられる。 As shown in Table 1, Composition A and Composition B, which are compositions containing a chlorine-containing compound and a diglycidyl ether represented by formula (1) and have a total chlorine content of 900 ppm or less, have a total chlorine content sufficiently lower than the threshold value (900 ppm or less) of the halogen-free grade desired in the electronic materials field, and are therefore excellent in insulation reliability.
On the other hand, the composition C of Comparative Example 1, which was produced by a conventionally known production method (WO98/39314) and in which the total chlorine content was not 900 ppm or less, has a total chlorine content higher than the threshold value (900 ppm or less), and is considered to have a significantly low insulation reliability. Therefore, it is considered difficult to use it for, for example, semiconductor encapsulation applications.
表2に示すように、実施例1で得た組成物Aを反応希釈剤として添加した硬化性組成物1(実施例3)は、従来公知の製造方法(WO98/39314)によって作られた比較例1で得た組成物Cを反応性希釈剤として添加した硬化性組成物3(比較例3)よりも、比誘電率及びCTEが低かった。
As shown in Table 2, curable composition 1 (Example 3) to which composition A obtained in Example 1 was added as a reactive diluent had a lower relative dielectric constant and CTE than curable composition 3 (Comparative Example 3) to which composition C obtained in Comparative Example 1, which was made by the conventionally known manufacturing method (WO98/39314), was added as a reactive diluent.
表2に示すように、実施例1で得た組成物Aを反応希釈剤として添加した硬化性組成物1(実施例3)は、従来公知の比較例2の組成物Dを反応性希釈剤として添加した硬化性組成物4(比較例4)よりも、比誘電率、誘電正接及びCTEが低かった。
As shown in Table 2, curable composition 1 (Example 3) to which composition A obtained in Example 1 was added as a reactive diluent had a lower relative dielectric constant, dielectric loss tangent, and CTE than curable composition 4 (Comparative Example 4) to which composition D of the conventionally known Comparative Example 2 was added as a reactive diluent.
表2に示すように、実施例2で得た組成物Bを反応希釈剤として添加した硬化性組成物2(実施例4)は、従来公知の比較例2の組成物Dを反応性希釈剤として添加した硬化性組成物4(比較例4)よりも、比誘電率、誘電正接及びCTEが低かった。
As shown in Table 2, curable composition 2 (Example 4) to which composition B obtained in Example 2 was added as a reactive diluent had a lower relative dielectric constant, dielectric loss tangent, and CTE than curable composition 4 (Comparative Example 4) to which composition D of the conventionally known Comparative Example 2 was added as a reactive diluent.
また、表1に示すように、従来公知の反応性希釈剤(比較例2:組成物D)の架橋密度に対する反応性希釈剤(実施例1:組成物A)の架橋密度は0.86倍であり、実施例1は架橋密度が小さかった。これに対し、表2に示すように従来公知の反応性希釈剤(比較例2:組成物D)を添加した硬化性組成物4(比較例4)のTgと反応性希釈剤(実施例1:組成物A)を添加した硬化性組成物1(実施例3)のTgとの差は2℃であり、同等であった。
また、表1に示すように、従来公知の反応性希釈剤(比較例2:組成物D)の架橋密度に対する反応性希釈剤(実施例2:組成物B)の架橋密度は0.86倍であり、実施例2は架橋密度が小さかった。これに対し、表2に示すように従来公知の反応性希釈剤(比較例2:組成物D)を添加した硬化性組成物4(比較例4)のTgに対して、反応性希釈剤(実施例2:組成物B)を添加した硬化性組成物2(実施例4)のTgは6℃向上した。 Furthermore, as shown in Table 1, the crosslink density of the reactive diluent (Example 1: composition A) was 0.86 times that of the conventionally known reactive diluent (Comparative Example 2: composition D), and the crosslink density was low in Example 1. In contrast, as shown in Table 2, the difference in Tg between the curable composition 4 (Comparative Example 4) to which the conventionally known reactive diluent (Comparative Example 2: composition D) was added and the curable composition 1 (Example 3) to which the reactive diluent (Example 1: composition A) was added was 2° C., and they were equivalent.
Furthermore, as shown in Table 1, the crosslink density of the reactive diluent (Example 2: composition B) was 0.86 times that of the conventionally known reactive diluent (Comparative Example 2: composition D), and the crosslink density was low in Example 2. In contrast, as shown in Table 2, the Tg of curable composition 2 (Example 4) to which a reactive diluent (Example 2: composition B) was added was improved by 6° C. compared to the Tg of curable composition 4 (Comparative Example 4) to which a conventionally known reactive diluent (Comparative Example 2: composition D) was added.
また、表1に示すように、従来公知の反応性希釈剤(比較例2:組成物D)の架橋密度に対する反応性希釈剤(実施例2:組成物B)の架橋密度は0.86倍であり、実施例2は架橋密度が小さかった。これに対し、表2に示すように従来公知の反応性希釈剤(比較例2:組成物D)を添加した硬化性組成物4(比較例4)のTgに対して、反応性希釈剤(実施例2:組成物B)を添加した硬化性組成物2(実施例4)のTgは6℃向上した。 Furthermore, as shown in Table 1, the crosslink density of the reactive diluent (Example 1: composition A) was 0.86 times that of the conventionally known reactive diluent (Comparative Example 2: composition D), and the crosslink density was low in Example 1. In contrast, as shown in Table 2, the difference in Tg between the curable composition 4 (Comparative Example 4) to which the conventionally known reactive diluent (Comparative Example 2: composition D) was added and the curable composition 1 (Example 3) to which the reactive diluent (Example 1: composition A) was added was 2° C., and they were equivalent.
Furthermore, as shown in Table 1, the crosslink density of the reactive diluent (Example 2: composition B) was 0.86 times that of the conventionally known reactive diluent (Comparative Example 2: composition D), and the crosslink density was low in Example 2. In contrast, as shown in Table 2, the Tg of curable composition 2 (Example 4) to which a reactive diluent (Example 2: composition B) was added was improved by 6° C. compared to the Tg of curable composition 4 (Comparative Example 4) to which a conventionally known reactive diluent (Comparative Example 2: composition D) was added.
本出願は、2023年3月31日に日本国特許庁へ出願された日本特許出願(特願2023-058088)に基づくものであり、その内容はここに参照として取り込まれる。
This application is based on a Japanese patent application (Patent Application No. 2023-058088) filed with the Japan Patent Office on March 31, 2023, the contents of which are incorporated herein by reference.
本発明の組成物は、エポキシ樹脂の反応性希釈剤、硬化性組成物、組成物の製造方法等として産業上利用可能性を有する。
The composition of the present invention has industrial applicability as a reactive diluent for epoxy resins, a curable composition, a method for producing a composition, etc.
Claims (6)
- 塩素含有化合物と、下記式(1)で表されるジグリシジルエーテルと、を含む組成物であって、
全塩素量が900ppm以下である、組成物。
(式(1)中、Xは炭素数9~11のアルキレン基を表す。) A composition comprising a chlorine-containing compound and a diglycidyl ether represented by the following formula (1):
A composition having a total chlorine content of 900 ppm or less.
(In formula (1), X represents an alkylene group having 9 to 11 carbon atoms.) - 前記式(1)の前記Xにおいて、前記アルキレン基は分岐鎖状のアルキレン基である、請求項1に記載の組成物。 The composition according to claim 1, wherein the alkylene group in X of formula (1) is a branched alkylene group.
- 請求項1に記載の組成物を含む、エポキシ樹脂の反応性希釈剤。 A reactive diluent for epoxy resins comprising the composition according to claim 1.
- 請求項4に記載の反応性希釈剤を含む、硬化性組成物。 A curable composition comprising the reactive diluent according to claim 4.
- 塩素含有化合物と、下記式(1)で表されるジグリシジルエーテルと、を含む組成物の製造方法であって、
前記組成物の全塩素量が900ppm以下であり、
炭素数9~11のアルカンジオールとエピクロロヒドリンとを反応させて、下記式(1)で表されるジグリシジルエーテルを含む粗ジグリシジルエーテルを得る粗ジグリシジルエーテル生成工程と、
得られた粗ジグリシジルエーテルを精製する精製工程と、
を含み、
前記粗ジグリシジルエーテル生成工程において、固体の水酸化ナトリウムと水とを分割して添加することで、反応温度及び全塩素量を調整する、組成物の製造方法。
(式(1)中、Xは炭素数9~11のアルキレン基を表す。)
A method for producing a composition containing a chlorine-containing compound and a diglycidyl ether represented by the following formula (1),
The total chlorine content of the composition is 900 ppm or less,
a crude diglycidyl ether production step of reacting an alkanediol having 9 to 11 carbon atoms with epichlorohydrin to obtain a crude diglycidyl ether containing a diglycidyl ether represented by the following formula (1);
a purification step of purifying the obtained crude diglycidyl ether;
Including,
In the crude diglycidyl ether producing step, the reaction temperature and the total chlorine content are adjusted by adding solid sodium hydroxide and water in portions.
(In formula (1), X represents an alkylene group having 9 to 11 carbon atoms.)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2023058088 | 2023-03-31 | ||
JP2023-058088 | 2023-03-31 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024204557A1 true WO2024204557A1 (en) | 2024-10-03 |
Family
ID=92906828
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2024/012686 WO2024204557A1 (en) | 2023-03-31 | 2024-03-28 | Composition, reactive diluent, curable composition, and method for producing composition |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2024204557A1 (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4481348A (en) * | 1981-11-16 | 1984-11-06 | Henkel Corporation | Glycidyl ether of gem-bis(hydroxymethyl) hydrocarbons |
WO1998039314A1 (en) * | 1997-03-04 | 1998-09-11 | Kyowa Yuka Co., Ltd. | Diglycidyl ethers |
JP2005029487A (en) * | 2003-07-09 | 2005-02-03 | Sanyo Chem Ind Ltd | Glycidyl ether and method for producing the same |
JP2016193874A (en) * | 2015-03-31 | 2016-11-17 | 日本乳化剤株式会社 | Production method of glycidyl ethers |
-
2024
- 2024-03-28 WO PCT/JP2024/012686 patent/WO2024204557A1/en unknown
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4481348A (en) * | 1981-11-16 | 1984-11-06 | Henkel Corporation | Glycidyl ether of gem-bis(hydroxymethyl) hydrocarbons |
WO1998039314A1 (en) * | 1997-03-04 | 1998-09-11 | Kyowa Yuka Co., Ltd. | Diglycidyl ethers |
JP2005029487A (en) * | 2003-07-09 | 2005-02-03 | Sanyo Chem Ind Ltd | Glycidyl ether and method for producing the same |
JP2016193874A (en) * | 2015-03-31 | 2016-11-17 | 日本乳化剤株式会社 | Production method of glycidyl ethers |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5754731B2 (en) | Epoxy resin, method for producing epoxy resin, and use thereof | |
JP5000053B2 (en) | Liquid epoxy resin composition and cured epoxy resin | |
KR20150035769A (en) | Phenolic resin composition | |
JP3986445B2 (en) | Method for producing high-purity epoxy resin and epoxy resin composition | |
JP5760794B2 (en) | Polyhydroxy compound, epoxy resin, thermosetting resin composition, cured product thereof and semiconductor sealing material | |
JP2018024856A (en) | (meth) allyl ether resin, epoxy resin, curable resin composition and cured product thereof | |
EP4089131B1 (en) | Curable resin, curable resin composition, cured product, electronic device, laminated board material, electronic component encapsulant, and method for producing curable resin | |
JP2010095727A (en) | Curable epoxy resin composition and cured product | |
JP6963565B2 (en) | Alkenyl group-containing resin, curable resin composition and cured product thereof | |
WO2024204557A1 (en) | Composition, reactive diluent, curable composition, and method for producing composition | |
JP6474050B2 (en) | Aromatic hydrocarbon formaldehyde resin, modified aromatic hydrocarbon formaldehyde resin, epoxy resin, and production method thereof | |
WO2008047613A1 (en) | Epoxy resin, method for producing the epoxy resin, epoxy resin composition using the epoxy resin, and cured product of the epoxy resin composition | |
KR101882720B1 (en) | Epoxy resin, epoxy resin composition, and cured product thereof | |
JP2001329044A (en) | Epoxy resin composition and its cured product | |
JP5716963B2 (en) | Polyhydroxy compound, epoxy resin, thermosetting resin composition, cured product thereof and semiconductor sealing material | |
KR101728577B1 (en) | Process for producing polyglycidyl ether | |
JP6564389B2 (en) | Epoxy resin composition | |
WO2015076229A1 (en) | Phenol resin, epoxy resin, epoxy resin composition, and cured product of same | |
JP4581397B2 (en) | Epoxy resin composition and cured product thereof | |
JP7572226B2 (en) | Polyhydric hydroxyl resin, epoxy resin, their methods of manufacture, epoxy resin composition and cured product using them | |
WO2023149493A1 (en) | Epoxy resin, epoxy resin composition, and epoxy resin cured product | |
JP4004787B2 (en) | Phenol resin, epoxy resin, production method thereof, and resin composition for semiconductor encapsulant | |
JP4186153B2 (en) | Epoxy resin composition, cured product thereof, semiconductor sealing material, and resin composition for electronic circuit board | |
JP6474049B2 (en) | Aromatic hydrocarbon formaldehyde resin, modified aromatic hydrocarbon formaldehyde resin, epoxy resin, and production method thereof | |
JP4605420B2 (en) | Epoxy resin composition and cured product thereof |