WO2024189876A1 - Photosensitive organic insulating material composition, insulating film, gate insulating film, transistor, electronic device, and method for manufacturing transistor - Google Patents

Photosensitive organic insulating material composition, insulating film, gate insulating film, transistor, electronic device, and method for manufacturing transistor Download PDF

Info

Publication number
WO2024189876A1
WO2024189876A1 PCT/JP2023/010262 JP2023010262W WO2024189876A1 WO 2024189876 A1 WO2024189876 A1 WO 2024189876A1 JP 2023010262 W JP2023010262 W JP 2023010262W WO 2024189876 A1 WO2024189876 A1 WO 2024189876A1
Authority
WO
WIPO (PCT)
Prior art keywords
insulating film
organic insulating
material composition
photosensitive organic
insulating material
Prior art date
Application number
PCT/JP2023/010262
Other languages
French (fr)
Japanese (ja)
Inventor
研太郎 山田
雄介 川上
翔平 小泉
Original Assignee
株式会社ニコン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ニコン filed Critical 株式会社ニコン
Priority to PCT/JP2023/010262 priority Critical patent/WO2024189876A1/en
Publication of WO2024189876A1 publication Critical patent/WO2024189876A1/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/038Macromolecular compounds which are rendered insoluble or differentially wettable

Definitions

  • the present invention relates to a photosensitive organic insulating material composition, an insulating film, a gate insulating film, a transistor, an electronic device, and a method for manufacturing a transistor.
  • Non-Patent Document 1 discloses an OTFT that uses polyvinyl cinnamate (also called poly(vinyl cinnamate), hereafter sometimes referred to as PVCi) which is a photosensitive resin material as a gate insulating film.
  • PVCi polyvinyl cinnamate
  • i-line wavelength 365 nm
  • PVCi has problems such as very low absorption of i-line and requiring a very large exposure dose for curing when using a monochromatic i-line light source.
  • a first aspect of the present invention is a photosensitive organic insulating material composition comprising a polymer having a chalcone skeleton.
  • a second aspect of the present invention is an insulating film which is a photocured product of the photosensitive organic insulating material composition of the first aspect.
  • a third aspect of the present invention is a gate insulating film which is a photocured product of the photosensitive organic insulating material composition of the first aspect.
  • a fourth aspect of the present invention is a transistor having the gate insulating film according to the third aspect.
  • a fifth aspect of the present invention is an electronic device comprising the thin film transistor of the fourth aspect.
  • a sixth aspect of the present invention is a method for producing a gate insulating film, comprising the steps of applying the photosensitive organic insulating material composition of the first aspect to a substrate, and curing the photosensitive organic insulating material composition by exposure to light to form a gate insulating film.
  • a seventh aspect of the present invention is a method for producing a transistor, comprising the step of forming a gate insulating film by the method for producing a gate insulating film according to the sixth aspect.
  • FIG. 1 is a diagram showing cross-sectional shapes of organic thin-film transistors: (a) a bottom-gate-top-contact type organic thin-film transistor, (b) a bottom-gate-bottom-contact type organic thin-film transistor, (c) a top-gate-top-contact type organic thin-film transistor, and (d) a top-gate-bottom-contact type organic thin-film transistor.
  • FIG. 1 is a schematic cross-sectional view showing the structure of a bottom-gate-bottom-contact type organic thin-film transistor according to a first embodiment.
  • FIG. 2 is a schematic diagram of a Metal-Insulator-Metal structure produced to examine the electrical properties of the organic insulating film obtained from the composition prepared in Example 1.
  • FIG. 1 is a diagram showing cross-sectional shapes of organic thin-film transistors: (a) a bottom-gate-top-contact type organic thin-film transistor, (b) a bottom-gate-bottom-contact type organic thin-film transistor, (c) a top-gate-top-
  • FIG. 1 is a graph showing the remaining film ratio versus exposure dose for the insulating films obtained in Examples 1 and 6 and Comparative Example 1.
  • 4 is a diagram showing the remaining film ratio versus the exposure dose for the insulating films obtained in Examples 1 and 6 and Comparative Example 1.
  • FIG. 4 is a diagram showing leakage current between the upper electrode and the lower electrode of the MIM structure shown in FIG. 3 in Examples 1 and 6 and Comparative Example 1.
  • 1A and 1B are diagrams illustrating a method for producing an organic thin film transistor in Examples 1 and 16.
  • FIG. 2 is a microscopic image of the OTFT completed in Example 1.
  • 13 is a diagram showing the transfer characteristics of the fabricated OTFT and the results of a bias stress test.
  • FIG. 13 is a diagram showing the results of V TH shift amounts of the fabricated OTFTs.
  • FIG. 13 is a graph showing the remaining film rate versus exposure dose for the insulating film obtained in Example 16.
  • 11 is a graph showing the remaining film ratio versus the exposure dose for the insulating film obtained in Example 16.
  • FIG. FIG. 4 is a diagram showing leakage current between the upper electrode and the lower electrode of the MIM structure shown in FIG. 3 in Example 16 and Comparative Example 1.
  • FIG. 13 is a microscopic image of the OTFT completed in Example 16. The transfer characteristics and bias stress test results of the OTFT fabricated in Example 16 are shown. The transfer characteristics and bias stress test results of the OTFT fabricated in Comparative Example 1 are shown.
  • Photosensitive organic insulating material composition (Photosensitive organic insulating material composition)
  • photosensitive organic insulating material composition of the present invention will be described in detail using a first embodiment and a second embodiment.
  • the photosensitive organic insulating material composition of the first embodiment contains a chalcone compound and polyvinyl cinnamate (PVCi).
  • the chalcone compounds are chalcone derivatives such as (unsubstituted) chalcone and substituted chalcone.
  • substituted chalcones include chalcones having one or more substituents selected from the group consisting of an alkyl group having 1 to 5 carbon atoms, an alkoxy group having 1 to 5 carbon atoms, a polyoxyalkyl group having 1 to 5 carbon atoms, an alkylamino group having 1 to 5 carbon atoms, a thioalkyl group having 1 to 5 carbon atoms, a sulfonyl group having 1 to 5 carbon atoms, a nitro group, and a cyano group.
  • chalcones having one or more substituents selected from the group consisting of an alkyl group having 1 to 5 carbon atoms, an alkoxy group having 1 to 5 carbon atoms, and a polyoxyalkyl group having 1 to 5 carbon atoms are preferred.
  • the number of substituents is preferably 1 to 3, and more preferably 1.
  • the substitution position is preferably in the benzene ring on the alkene side of the unsaturated carbonyl, and more preferably substituted at the ortho or para position.
  • chalcones in which an alkoxy group having 1 to 5 carbon atoms is substituted at the para position of the benzene ring on the alkene side of the unsaturated carbonyl are preferred, and an alkoxy group having 1 to 3 carbon atoms is more preferred.
  • Specific examples of chalcone compounds include chalcone and methoxychalcone. Chalcone, 2-methoxychalcone, and 4-methoxychalcone are more preferred. 4-methoxychalcone (hereinafter sometimes simply referred to as methoxychalcone) is even more preferred.
  • the chalcone compounds according to the present embodiment may be used alone or in combination of two or more.
  • Polyvinyl cinnamate is also known as poly(vinyl cinnamate) and is available from, for example, Sigma-Aldrich Japan LLC.
  • the photosensitive organic insulating material composition of the present embodiment may further contain a solvent.
  • the solvent include alcohol-based solvents, ester-based solvents, hydrocarbon-based aromatic solvents, amide-based solvents, ketone-based solvents, glycol ether-based solvents, and ether-based solvents.
  • the solvent contained is preferably an ester-based or ketone-based solvent, and among these, propylene glycol 1-monomethyl ether 2-acetate (PGMEA) and cyclopentanone are preferable.
  • antioxidants To improve weather resistance and light resistance, known antioxidants, light stabilizers, and ultraviolet absorbers may be added.
  • known adhesion promoters To improve adhesion, known adhesion promoters may be added.
  • leveling properties surface wettability, or hydrophobicity, known surface modifiers may be added.
  • the photosensitive organic insulating material composition of the present embodiment may contain the above chalcone compound and polyvinyl cinnamate in the following mass ratio:
  • the ratio of the total mass of the chalcone compound to the mass of polyvinyl cinnamate is 0.01 to 1, preferably 0.01 to 0.3, more preferably 0.03 to 0.3, and even more preferably 0.05 to 0.1.
  • the total amount of the chalcone compound and the polyvinyl cinnamate is preferably 10% by mass to 30% by mass, and more preferably 10% by mass to 15% by mass, relative to 100% by mass of the total amount of the composition.
  • the total amount of the chalcone compounds is preferably 0.1% by mass to 15% by mass, and more preferably 0.1% by mass to 3% by mass, relative to 100% by mass of the total amount of the composition.
  • the photosensitive organic insulating material composition of this embodiment preferably has an absorption spectrum peak in the wavelength range of 300 to 370 nm, more preferably has an absorption spectrum peak in the wavelength range of 320 to 370 nm, even more preferably has an absorption spectrum peak in the wavelength range of 340 to 370 nm, and most preferably has an absorption spectrum peak at i-line (365 nm).
  • the photosensitive organic insulating material composition of this embodiment contains a chalcone compound in addition to polyvinyl cinnamate, so that the absorption at i-line is greater than when only polyvinyl cinnamate is contained.
  • the light absorption intensity at i-line of the photosensitive organic insulating material composition of this embodiment can be adjusted by the type of chalcone compound, the content of the chalcone compound, etc.
  • the content is preferably 10% by mass to 50% by mass in 100% by mass of the components (solid content) excluding the solvent of the photosensitive organic insulating material composition.
  • the chalcone compound is methoxychalcone
  • the content is preferably 5% by mass to 25% by mass.
  • the photosensitive organic insulating material composition of the second embodiment contains a polymer having a chalcone skeleton.
  • the chalcone skeleton in the polymer according to this embodiment is a structure derived from various chalcone compounds contained in the photosensitive organic insulating material composition according to the first embodiment.
  • the chalcone compounds according to this embodiment have the same meaning as the chalcone compounds according to the first embodiment, and the preferred examples thereof are also the same.
  • the chalcone skeleton in the polymer according to this embodiment is preferably a structure contained in a side chain linked to the main chain of the polymer.
  • the main chain of the polymer according to this embodiment is preferably a vinyl polymer chain produced by a polymerization reaction of a monomer having an ethylenically unsaturated bond.
  • the polymer having a chalcone skeleton according to this embodiment preferably has a vinyl polymer main chain and a side chain containing a chalcone skeleton.
  • the polymer having a chalcone skeleton according to this embodiment includes a vinyl polymer main chain and a side chain that includes a chalcone skeleton, and may also include a side chain that does not include a chalcone skeleton. It is preferable that the polymer having a chalcone skeleton according to this embodiment includes a vinyl polymer main chain and a side chain that includes a chalcone skeleton, and does not include any other side chains.
  • the polymer having a chalcone skeleton according to the present embodiment is preferably a polymer or copolymer of a monomer containing a substituted chalcone compound having an ethylenically unsaturated group.
  • the substituted chalcone compound having an ethylenically unsaturated group is preferably at least one selected from the group consisting of chalcones having an ethylenically unsaturated group and chalcones having an ethylenically unsaturated group and a methoxy group.
  • Specific examples of the polymer having a chalcone skeleton according to this embodiment include polymers represented by the following formulas (1) to (3).
  • n1 is an integer from 1 to 1000.
  • n2 is an integer from 1 to 1000.
  • n3 is an integer from 1 to 1000.
  • the weight average molecular weight of the polymer having a chalcone skeleton according to this embodiment is preferably 5,000 to 100,000, more preferably 10,000 to 80,000, and even more preferably 20,000 to 50,000.
  • the weight average molecular weight can be measured by gel permeation chromatography (GPC).
  • the content of the chalcone skeleton (a structure derived from a chalcone compound, for example, the structure excluding the -OH group of compound 3 in the scheme below) is preferably 20% by mass to 97% by mass, and more preferably 50% by mass to 80% by mass, relative to 100% by mass of the polymer.
  • the method for producing a polymer having a chalcone skeleton according to this embodiment will be described in detail below using the polymer of the above formula (2) as an example.
  • the method for producing a polymer according to this embodiment includes a step of synthesizing an ethylenically unsaturated compound having a chalcone skeleton, and a polymerization step of polymerizing the ethylenically unsaturated compound to form a vinyl polymer main chain.
  • the above ethylenically unsaturated compound having a chalcone skeleton can be produced by a known method in which a compound having a hydroxy group and a chalcone skeleton is reacted with an acid chloride having an ethylenically unsaturated group in a solvent.
  • compound 3 is synthesized by the method described in Non-Patent Document 2.
  • One method is to react the obtained phenol derivative compound 3 (or use 4'-hydroxy-4-methoxychalcone manufactured by Biosynth) with compound 4 to synthesize compound 5.
  • Non-patent document 2 X. Yang et. al. Synthesis of a series of novel dihydroartemisinin derivatives containing a Substituted chalcone with greater cytotoxic effects in leukemia cells, Bioorganic & Medicinal Che mistry Letters, Volume 19, Issue 15, (2009), Pages 4385-4388.
  • the radical copolymerization can be performed using a known method such as solution polymerization, emulsion polymerization, suspension polymerization, or bulk polymerization.
  • the solvent used in the solution polymerization is not limited in any way as long as it dissolves the above-mentioned monomers and the polymer of the present invention.
  • the solvent include toluene, xylene, diethyl ether, tetrahydrofuran, 1,4-dioxane, dimethylformamide, dimethyl sulfoxide, and the like. These solvents can also be used in combination.
  • the polymerization temperature is selected depending on the initiator used, but is not particularly limited.
  • the initiator is not particularly limited, and examples include azo-based initiators such as azoisobutyronitrile; and peroxide-based initiators such as benzoyl peroxide and di(t-butyl) peroxide.
  • azo-based initiators such as azoisobutyronitrile
  • peroxide-based initiators such as benzoyl peroxide and di(t-butyl) peroxide.
  • a specific example is 2,2'-azobis(isobutyronitrile) (AIBN).
  • the reaction time is not limited in any way and is set according to the half-life of the initiator used, but from an economical standpoint, 4 to 30 hours is preferable.
  • compound 6 is synthesized by polymerizing compound 5 obtained above.
  • the synthesis reaction conditions will be described in detail in the Examples, and the evaluation results of Compound 6 will also be described in the Examples.
  • the ethylenically unsaturated monomers that are the raw materials for the polymerization reaction may contain, in addition to ethylenically unsaturated compounds having a chalcone skeleton such as compound 5 in Scheme 2 above, ethylenically unsaturated compounds not having a chalcone skeleton.
  • the side chains of the resulting polymer contain, in addition to side chains having a chalcone skeleton, side chains not having a chalcone skeleton.
  • the total mass of the ethylenically unsaturated compounds not having a chalcone skeleton is preferably 0 to 50 parts by mass, more preferably 0 to 30 parts by mass, and even more preferably 0 parts by mass, relative to 100 parts by mass of the total mass of the ethylenically unsaturated compounds having a chalcone skeleton.
  • the photosensitive organic insulating material composition of this embodiment may further contain a solvent.
  • the solvent include alcohol-based, ester-based, and ketone-based solvents. Among these, propylene glycol 1-monomethyl ether 2-acetate (PGMEA) and cyclopentanone are preferable.
  • the solvent used in the polymerization reaction may be used as it is as a part of the solvent of the composition.
  • antioxidants To improve weather resistance and light resistance, known antioxidants, light stabilizers, and ultraviolet absorbers may be added.
  • known adhesion promoters To improve adhesion, known adhesion promoters may be added.
  • leveling properties surface wettability, or hydrophobicity, known surface modifiers may be added.
  • the polymer having a chalcone skeleton is preferably 50% by mass to 100% by mass, more preferably 75% by mass to 100% by mass, and even more preferably 100% by mass, based on 100% by mass of the components (solid content) excluding the solvent.
  • the chalcone compound and polyvinyl cinnamate may be contained in the following mass ratio.
  • the total amount of the polymer having a chalcone skeleton is preferably 10% by mass to 30% by mass, and more preferably 10% by mass to 15% by mass, relative to 100% by mass of the total amount of the composition.
  • the photosensitive organic insulating material composition of this embodiment preferably has an absorption spectrum peak in the wavelength range of 300 to 370 nm, more preferably has an absorption spectrum peak in the wavelength range of 320 to 370 nm, even more preferably has an absorption spectrum peak in the wavelength range of 340 to 370 nm, and most preferably has an absorption spectrum peak at i-line (365 nm). Since the photosensitive organic insulating material composition of this embodiment contains a polymer having a chalcone skeleton, it has a higher absorption at i-line than the conventional technique containing only polyvinyl cinnamate.
  • the light absorption intensity of the photosensitive organic insulating material composition of this embodiment at i-line can be adjusted by the type of chalcone compound relative to the chalcone skeleton, the content of the chalcone skeleton in the polymer, etc.
  • the chalcone compound is methoxychalcone, that is, when there is a polymer having a methoxychalcone skeleton, it is preferably 50 to 90 parts by mass.
  • the i-line absorption is large, the deep part curing property is reduced, and photocuring in a thick film and edge drawing property are reduced.
  • the content can be adjusted arbitrarily to obtain excellent photocuring property at a desired film thickness.
  • organic insulating film An organic insulating film according to one embodiment of the present invention (hereinafter referred to as the organic insulating film according to this embodiment) is obtained by forming a film of one or more types selected from the group consisting of the photosensitive organic insulating material compositions according to the first and second embodiments described above (hereinafter sometimes referred to as the composition according to this embodiment) on a substrate and photocuring the film (photocured product).
  • the composition according to this embodiment can be printed on various substrates.
  • the organic solvent used can be any solvent that dissolves the compounds contained in the composition and does not dissolve materials such as organic semiconductors used in the manufacture of devices such as organic thin film transistors, without any limitations.
  • organic solvent examples include aromatic hydrocarbon solvents such as cyclohexane, benzene, toluene, xylene, ethylbenzene, isopropylbenzene, N-hexylbenzene, tetralin, decalin, isopropylbenzene, and chlorobenzene; chlorinated aliphatic hydrocarbon compounds such as methylene chloride and 1,1,2-trichloroethylene; aliphatic cyclic ether compounds such as tetrahydrofuran, tetrahydropyran, and dioxane; ketone compounds such as methyl ethyl ketone, cyclopentanone, and cyclohexanone; ester compounds such as ethyl acetate, dimethyl phthalate, methyl salicylate, amyl acetate, and propylene glycol 1-monomethyl ether 2-acetate (PGMEA); alcohols such as n-butanol, ethanol,
  • printing can be performed using, for example, spin coating, drop casting, dip coating, doctor blade coating, pad printing, squeegee coating, roll coating, rod bar coating, air knife coating, wire bar coating, flow coating, gravure printing, flexographic printing, screen printing, inkjet printing, letterpress reverse printing, etc.
  • the composition according to the present embodiment has a photocrosslinking group having photodimerization reactivity, and radiation is preferably used for the photocrosslinking, and examples of the radiation include ultraviolet and visible light having a wavelength of 245 to 450 nm. From the viewpoint of maximizing the effects of the present invention, radiation near i-line is preferable, and i-line monochromatic light source is more preferable.
  • the radiation dose is appropriately changed depending on the composition of the polymer, and examples include 100 to 300 mJ/cm 2 , and in order to prevent a decrease in the degree of crosslinking and improve the economy by shortening the process time, it is preferably 50 to 200 mJ/cm 2.
  • the environment when irradiating ultraviolet and visible light is not particularly limited, and it can be performed in the air, in an inert gas, or under a constant amount of inert gas flow.
  • a photosensitizer can be added to the composition to promote the photocrosslinking reaction.
  • the photosensitizer used, and examples include benzophenone compounds, anthraquinone compounds, thioxanthone compounds, and nitrophenyl compounds.
  • the sensitizer can be used in combination of two or more types as necessary.
  • the composition does not substantially contain a photosensitizer.
  • the photosensitizer is a substance that plays a role in assisting the process of photocrosslinking reaction by transferring the energy obtained by absorbing light to another substance.
  • the photosensitizer include benzophenone compounds, anthraquinone compounds, thioxanthone compounds, and nitrophenyl compounds.
  • the chalcone compounds contained in the photosensitive organic insulating material composition of the first embodiment described above are not photosensitizers because they absorb light and participate in the photocrosslinking reaction.
  • substantially free means that the amount is so small that no photosensitizing effect is observed.
  • the amount is preferably in the range of 0 mass % to 0.05 mass %, more preferably in the range of 0 mass % to 0.01 mass %, even more preferably in the range of 0 mass % to 0.05 mass %, and even more preferably 0 mass %.
  • the photosensitive organic insulating material composition used in the organic insulating film of this embodiment can be photocrosslinked efficiently in a short time.
  • this is suitable for controlling the crosslinking time for example, when using i-rays, it is even more preferable to set the light irradiation time to 1 minute or less.
  • the organic insulating film of this embodiment can be suitably used as an insulating film for various devices such as organic thin-film transistors.
  • the organic insulating film of this embodiment can be suitably used as a gate insulating film for organic thin-film transistors, which will be described later.
  • the organic thin-film transistor of this embodiment may have any of the device structures shown in FIG. 1, namely bottom gate-top contact type (A), bottom gate-bottom contact type (B), top gate-top contact type (C), and top gate-bottom contact type (D).
  • the polymer of this embodiment is particularly applicable to devices of the types (A) and (B).
  • a device of the type (B) was used.
  • 1 is the organic semiconductor layer
  • 2 is the substrate
  • 3 is the gate electrode
  • 4 is the gate insulating layer
  • 5 is the source electrode
  • 6 is the drain electrode.
  • the base material (substrate) that can be used is not particularly limited as long as it can ensure sufficient flatness for fabricating an element, and examples include inorganic material substrates such as glass, quartz, aluminum oxide, highly doped silicon, silicon oxide, tantalum dioxide, tantalum pentoxide, indium tin oxide, etc.; plastics; metals such as gold, copper, chromium, titanium, aluminum, etc.; ceramics; coated paper; surface-coated nonwoven fabric, etc. Composite materials made of these materials or materials made by multilayering these materials may also be used. Furthermore, the surfaces of these materials can be coated to adjust the surface tension.
  • Plastics that can be used as the substrate include polyethylene terephthalate, polyethylene naphthalate, triacetyl cellulose, polycarbonate, polymethyl acrylate, polymethyl methacrylate, polyvinyl chloride, polyethylene, ethylene-vinyl acetate copolymer, polymethylpentene-1, polypropylene, cyclic polyolefins, fluorinated cyclic polyolefins, polystyrene, polyimide, polyvinylphenol, polyvinyl alcohol, poly(diisopropyl fumarate), poly(diethyl fumarate), poly(diisopropyl maleate), polyethersulfone, polyphenylene sulfide, polyphenylene ether, polyester elastomers, polyurethane elastomers, polyolefin elastomers, polyamide elastomers, styrene block copolymers, etc. Two or more of the above plastics can also be
  • Examples of the gate electrode, source electrode, or drain electrode that can be used in this embodiment include conductive materials such as gold, silver, aluminum, copper, titanium, platinum, chromium, polysilicon, silicide, indium tin oxide (ITO), and tin oxide. In addition, multiple layers of these conductive materials can be used.
  • an electrode is formed on the organic semiconductor layer or on the gate insulating film.
  • the method for forming the electrode is not particularly limited, and examples thereof include vapor deposition, high frequency sputtering, and electron beam sputtering. Methods such as solution spin coating, drop casting, dip coating, doctor blade, die coating, pad printing, roll coating, gravure printing, flexographic printing, screen printing, inkjet printing, and letterpress reverse printing can also be used using an ink in which nanoparticles of the conductive material are dissolved in water or an organic solvent.
  • a treatment for adsorbing fluoroalkylthiol, fluoroarylthiol, or the like onto the electrode may be performed as necessary.
  • organic semiconductors that can be used in the organic thin-film transistor of this embodiment, and both N-type and P-type organic semiconductors can be used, and it can also be used as a bipolar transistor combining N-type and P-type.
  • organic semiconductors polypyrroles, polythiophenes, polyanilines, polyallylamines, fluorenes, polycarbazoles, polyindoles, poly(p-phenylenevinylenes), etc. can be used.
  • low molecular weight substances that are soluble in organic solvents such as polycyclic aromatic derivatives such as pentacene, phthalocyanine derivatives, perylene derivatives, tetrathiafulvalene derivatives, tetracyanoquinodimethane derivatives, fullerenes, carbon nanotubes, etc.
  • examples include condensates of 9,9-di-n-octylfluorene-2,7-di(ethyleneboronate) and 5,5'-dibromo-2,2'-bithiophene.
  • the method of forming the organic semiconductor layer is preferably a method of dissolving an organic semiconductor in an organic solvent and coating or printing the solution, but there are no limitations as long as a thin film of the organic semiconductor layer can be formed.
  • the solution concentration when printing the solution in which the organic semiconductor layer is dissolved in an organic solvent varies depending on the structure of the organic semiconductor and the solvent used, but from the viewpoint of forming a more uniform semiconductor layer and reducing the thickness of the layer, it is preferably 0.5 to 5% by weight.
  • the organic solvent used in this case is not limited as long as it dissolves the organic semiconductor at a certain concentration that allows film formation, and examples of the organic solvent include hexane, heptane, octane, decane, dodecane, tetradecane, decalin, indane, 1-methylnaphthalene, 2-ethylnaphthalene, 1,4-dimethylnaphthalene, a mixture of dimethylnaphthalene isomers, toluene, xylene, ethylbenzene, 1,2,4-trimethylbenzene, mesitylene, isopropylbenzene, pentylbenzene, hexylbenzene, tetralin, octylbenzene, cyclohexylbenzene, 1,2-dichlorobenzene, 1,3-dichlorobenzene, 1,4-dichlorobenzene, trichlorobenzene,
  • 1,3-butylene glycol ethylene glycol, benzyl alcohol, glycerin, cyclohexanol acetate, 3-methoxybutyl acetate, ethylene glycol monomethyl ether acetate, ethylene glycol monobutyl ether acetate, propylene glycol monomethyl ether acetate, anisole, cyclohexanone, mesitylene, 3-methoxybutyl acetate, cyclohexanol acetate, dipropylene glycol diacetate, dipropylene glycol methyl ether acetate, diethylene glycol monobutyl ether acetate, diethylene glycol monoethyl ether acetate, 1,6-hexanediol diacetate, 1,3-butylene glycol diacetate, 1,4-butanediol diacetate, ethyl acetate, phenyl acetate, dipropylene glycol dimethyl ether, dipropylene
  • a solvent that has a high dissolving power for organic semiconductors and a boiling point of 100°C or higher is suitable, and xylene, isopropylbenzene, anisole, cyclohexanone, mesitylene, 1,2-dichlorobenzene, 3,4-dimethylanisole, pentylbenzene, tetralin, cyclohexylbenzene, and decahydro-2-naphthol are preferred.
  • Mixed solvents in which two or more of the above-mentioned solvents are mixed in an appropriate ratio can also be used.
  • organic and inorganic polymers or oligomers, or organic and inorganic nanoparticles can be added to the organic semiconductor layer as a solid or as a dispersion liquid in which nanoparticles are dispersed in water or an organic solvent, as required, and a protective film can be formed by applying the polymer solution onto the polymer dielectric layer. Furthermore, various types of moisture-proof coatings, light-resistant coatings, etc. can be applied to this protective film as required.
  • Examples of the gate electrode, source electrode, or drain electrode that can be used in the organic thin-film transistor of this embodiment include inorganic electrodes such as aluminum, gold, silver, copper, highly doped silicon, polysilicon, silicide, tin oxide, indium oxide, indium tin oxide, chromium, platinum, titanium, tantalum, graphene, and carbon nanotubes, and organic electrodes such as doped conductive polymers (e.g., PEDOT-PSS). A plurality of these conductive materials can also be stacked for use.
  • surface treatment can be performed on these electrodes using a surface treatment agent. Examples of such surface treatment agents include benzenethiol and pentafluorobenzenethiol.
  • the method for forming an electrode on the substrate, insulating layer, or organic semiconductor layer examples include vapor deposition, high-frequency sputtering, and electron beam sputtering. It is also possible to employ methods such as solution spin coating, drop casting, dip coating, doctor blade, die coating, pad printing, roll coating, gravure printing, flexographic printing, screen printing, inkjet printing, and letterpress reverse printing using an ink in which nanoparticles of the conductive material are dissolved in water or an organic solvent.
  • the organic thin-film transistor of this embodiment can be, for example, a bottom-gate-bottom-contact type element used in the examples.
  • FIG. 2 is a schematic cross-sectional view showing the structure of a bottom-gate-bottom-contact type organic thin-film transistor, which is an example of this embodiment.
  • This organic thin-film transistor includes a substrate 2, a gate electrode 3 formed on the substrate 2, a gate insulating layer 4 formed on the gate electrode 3, a source electrode 5 and a drain electrode 6 formed on the gate insulating layer 4 with a channel portion therebetween, and an organic semiconductor layer 1 formed on the electrodes.
  • the organic thin film transistor of this embodiment preferably has a mobility of 0.20 cm 2 /Vs or more.
  • the threshold voltage of the organic thin-film transistor of this embodiment is -10.0 V or more and less than 0 V.
  • the organic thin film transistor of this embodiment preferably has a leakage current density of 10 ⁇ 9 A/cm 2 or less.
  • the electronic device of the present embodiment includes the organic thin film transistor of the present embodiment.
  • Examples of the electronic device of the present embodiment include an organic electroluminescence element, an organic photoelectric conversion element, and a display.
  • NBS Negative Bias Stress
  • Triethylamine (FUJIFILM Wako Pure Chemical Industries, Ltd., 15.5 g) was added thereto, and after cooling with ice water, methacryloyl chloride (FUJIFILM Wako Pure Chemical Industries, Ltd., 14.8 g) was added dropwise, and then stirred overnight.
  • Water 600 mL was poured into the reactor, and then transferred to a separatory funnel and extracted with ethyl acetate (FUJIFILM Wako Pure Chemical Industries, Ltd., 1.2 L). Next, the ethyl acetate layer was washed twice with 5% sodium bicarbonate water (600 mL) and three times with water (600 mL), and then dried with anhydrous sodium sulfate.
  • Example 1 [Preparation of Composition] The composition of this example was prepared by dissolving 3% by mass of chalcone and 10% by mass of polyvinyl cinnamate in cyclopentanone.
  • FIG. 3 is a schematic diagram of a Metal-Insulator-Metal structure prepared to examine the electrical properties of the organic insulating film obtained from the composition prepared in this example.
  • a film was formed on a silicon wafer by spin coating at 2000 rpm for 60 seconds.
  • the film thickness before photolithography was 450 nm.
  • Pre-baking was performed at 80°C for 20 minutes, and the organic insulating film was exposed to various i-line exposure doses and developed with PGMEA.
  • FIG. 4 and FIG. 5 (an enlarged view of FIG. 4) show the remaining film ratio versus exposure dose. As shown in FIG.
  • FIG. 6 shows the leakage current between the upper electrode and the lower electrode of the MIM structure shown in FIG. It is apparent from FIG. 6 that the organic insulating film of Example 1 has almost the same insulating properties as the organic insulating film of Comparative Example 1 described below. The dielectric constant of the organic insulating film of Example 1 was also evaluated. The evaluation results of the organic insulating film of Example 1 are shown in Table 1.
  • FIG. 7 shows a method for producing an organic thin film transistor according to this embodiment
  • Fig. 2 is a schematic diagram of a laminated structure of the produced organic thin film transistor.
  • a gate electrode was formed in the process of FIG. 7(1).
  • a 50 nm thick aluminum (Al) film was formed on a soda lime wafer, which is an insulating substrate, by a resistance heating vacuum deposition method.
  • electrode processing was performed.
  • a positive photoresist Sumiresist PFI-34A (manufactured by Sumitomo Chemical) was spin-coated on the surface of the Al layer at 1500 rpm for 45 seconds, and pre-baked at 105°C for 10 minutes to remove the solvent from the resist film.
  • the gate electrode pattern was exposed to light with an i-line dose of 270 mJ/cm2 using a photomask, and post-exposure baking (PEB) was performed at 105°C for 10 minutes. After that, the exposed resist was removed by immersing the substrate in tetramethylammonium hydroxide (TMAH) at room temperature of 25°C for 1 minute.
  • TMAH tetramethylammonium hydroxide
  • N2 gas was sprayed on the substrate to dry it, and post-baked at 105°C for 10 minutes.
  • the Al layer was processed.
  • the resist on the substrate was removed with acetone, washed with pure water, and then dried by blowing N2 gas onto the substrate.
  • a gate insulating film was formed in the process of FIG. 7(2).
  • the composition obtained in this example was spin-coated at 2000 rpm for 60 seconds, and pre-baked at 80° C. for 20 minutes.
  • a photomask was used to harden the film with an i-ray dose of 2400 mJ/cm 2.
  • the film was immersed in PGMEA as a developer at room temperature of 25° C., and only the pad portion of the gate electrode was opened. Then, the film was post-baked at 150° C. for 1 hour.
  • source/drain electrodes were formed in the process of Fig. 7 (3).
  • a gold (Au) film was formed to a thickness of 50 nm on the gate insulating film (layer) by resistance heating vacuum deposition.
  • electrodes were processed. Resist and etching processes were carried out in the same manner as in the process of Fig. 7 (1). Finally, the semiconductor layer was formed in the process of FIG. 7(4).
  • a thiol-based self-assembled monolayer SAM
  • a semiconductor solution in which 0.5% by mass of organic semiconductor and 0.2% by mass of polystyrene were dissolved in xylene was heated to 150° C., and a film was formed by spin-coating at 1000 rpm for 30 seconds, and post-baked at 120° C. for 5 minutes.
  • the semiconductor layer was patterned by wiping each electrode pad.
  • a microscope image of the completed OTFT is shown in FIG. 8. Fig.
  • Fig. 10 shows the shift in threshold voltage versus application time. In the gate insulating film of this example, a threshold voltage shift of 0.5 V was confirmed after 1000 seconds of application.
  • Example 16 [Preparation of Composition]
  • the polymerized methoxychalcone film obtained in Synthesis Example 3 was dissolved in cyclopentanone at 10% by mass to prepare the composition of this example.
  • FIG. 3 is a schematic diagram of a Metal-Insulator-Metal structure prepared to examine the electrical properties of the organic insulating film obtained from the composition prepared in this example.
  • a film was formed on a silicon wafer by spin coating at 2000 rpm for 60 seconds.
  • the film thickness before photolithography was 450 nm.
  • the film was prebaked at 80°C for 20 minutes, exposed to various i-line exposure doses, and the organic insulating film was developed with cyclopentanone.
  • FIG. 11 and FIG. 12 (an enlarged view of FIG. 11) show the remaining film ratio versus exposure dose. As shown in FIG.
  • FIG. 13 shows the leakage current between the upper electrode and the lower electrode of the MIM structure shown in FIG. It is apparent from FIG. 13 that the organic insulating film of Example 1 has almost the same insulating properties as the organic insulating film of Comparative Example 1 described below.
  • the dielectric constant of the organic insulating film of Example 16 was also evaluated. The evaluation results of the organic insulating film of Example 16 are shown in Table 2.
  • FIG. 7 shows a method for producing an organic thin film transistor according to this embodiment
  • Fig. 2 is a schematic diagram of a laminated structure of the produced organic thin film transistor.
  • a gate electrode was formed in the process of FIG. 7(1).
  • a 50 nm thick aluminum (Al) film was formed on a soda lime wafer, which is an insulating substrate, by a resistance heating vacuum deposition method.
  • electrode processing was performed.
  • a positive photoresist Sumiresist PFI-34A (manufactured by Sumitomo Chemical), was spin-coated on the surface of the Al layer at 1500 rpm for 45 seconds, and pre-baked at 105°C for 10 minutes to remove the solvent from the resist film.
  • the gate electrode pattern was exposed to light using a photomask at an i-line dose of 270 mJ/cm2, and post-exposure baked (PEB) was performed at 105°C for 10 minutes. After that, the exposed resist was removed by immersing the substrate in tetramethylammonium hydroxide (TMAH) at room temperature of 25°C for 1 minute.
  • TMAH tetramethylammonium hydroxide
  • the substrate was washed with pure water, dried by blowing N2 gas, and post-baked at 105°C for 10 minutes.
  • the Al layer was processed.
  • the resist on the substrate was removed with acetone, washed with pure water, and then dried by blowing N2 gas onto the substrate.
  • a gate insulating film was formed in the process of FIG. 7(2).
  • the composition obtained in this example was spin-coated at 2000 rpm for 60 seconds, and pre-baked at 80° C. for 20 minutes.
  • a photomask was used to harden the film with an i-ray dose of 2400 mJ/cm 2. After that, the film was immersed in cyclopentanone as a developer at room temperature of 25° C., and only the pad portion of the gate electrode was opened. Then, the film was post-baked at 150° C. for 1 hour. Next, source/drain electrodes were formed in the process of Fig. 7 (3). A gold (Au) film was formed to a thickness of 50 nm on the gate insulating film (layer) by resistance heating vacuum deposition. Next, electrodes were processed. Resist and etching processes were carried out in the same manner as in the process of Fig. 7 (1). Finally, the semiconductor layer was formed in the process of FIG.
  • FIG. 10 shows the shift in threshold voltage versus application time. In the gate insulating film of this example, a threshold voltage shift of 0.67 V was confirmed after 1000 seconds of application.
  • the gate insulating film was PVCi.
  • PVCi was dissolved in cyclopentanone at 10 mass %, and a film was formed by spin coating at 2000 rpm for 60 seconds, and pre-baked at 80°C for 20 minutes.
  • the film was sufficiently cured with a low-pressure mercury lamp using a photomask. After that, the film was immersed in cyclopentanone at room temperature of 25°C, and only the pad portion of the gate electrode was opened. Then, the film was post-baked at 150°C for 1 hour.
  • Figure 9 shows the shift in threshold voltage versus application time. For PVCi, a threshold voltage shift of 0.74V was confirmed after 1000 seconds of application.

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Thin Film Transistor (AREA)

Abstract

An objective of the present invention is to provide a photosensitive organic insulating composition having sufficient absorption, even of i-line rays, as a photosensitive organic insulating composition that has little influence on device reliability and is capable of forming a gate insulating film for transistors. An objective of the present invention is also to provide a gate insulating film and a transistor. A photosensitive organic insulating composition according to one embodiment of the present invention contains a polymer having a chalcone skeleton.

Description

感光性有機絶縁材料組成物、絶縁膜、ゲート絶縁膜、トランジスタ、電子デバイス及びトランジスタの製造方法Photosensitive organic insulating material composition, insulating film, gate insulating film, transistor, electronic device, and method for manufacturing transistor
 本発明は、感光性有機絶縁材料組成物、絶縁膜、ゲート絶縁膜、トランジスタ、電子デバイス及びトランジスタの製造方法に関する。 The present invention relates to a photosensitive organic insulating material composition, an insulating film, a gate insulating film, a transistor, an electronic device, and a method for manufacturing a transistor.
 有機薄膜トランジスタ(OTFT)などの有機エレクトロニクスに用いられる有機絶縁膜材料として、直接パターニングが可能な感光性を持つ材料が用いられる場合がある。例えば、非特許文献1には、感光性樹脂材材料であるポリビニルシンナメート(ポリ(けい皮酸ビニル)とも言い、以後、PVCiを言うことがある。)をゲート絶縁膜として用いたOTFTが開示されている。しかしながら、PVCiは露光に使用する光がi線(波長365nm)である場合、i線の吸収が非常に小さく、i線単色光源を用いると硬化に非常に大きな露光量を要するなどの問題があった。このような背景から、PVCiと同程度の絶縁特性を維持しながら、i線の吸収が大きく、i線単色光源を用いても、硬化に大きな露光量を要らない感光性有機絶縁組成物が求められていた。 Photosensitive materials that can be directly patterned are sometimes used as organic insulating film materials for organic electronics such as organic thin film transistors (OTFTs). For example, Non-Patent Document 1 discloses an OTFT that uses polyvinyl cinnamate (also called poly(vinyl cinnamate), hereafter sometimes referred to as PVCi) which is a photosensitive resin material as a gate insulating film. However, when the light used for exposure is i-line (wavelength 365 nm), PVCi has problems such as very low absorption of i-line and requiring a very large exposure dose for curing when using a monochromatic i-line light source. Against this background, there has been a demand for a photosensitive organic insulating composition that has high i-line absorption while maintaining the same level of insulating properties as PVCi, and does not require a large exposure dose for curing even when using a monochromatic i-line light source.
 本発明の第1の態様は、カルコン骨格を有するポリマーを含む、感光性有機絶縁材料組成物である。
 本発明の第2の態様は、第1の態様の感光性有機絶縁材料組成物の光硬化物である、絶縁膜である。
 本発明の第3の態様は、第1の態様の感光性有機絶縁材料組成物の光硬化物である、ゲート絶縁膜である。
 本発明の第4の態様は、第3の態様のゲート絶縁膜を有する、トランジスタである。
 本発明の第5の態様は、第4の態様の薄膜トランジスタを有する、電子デバイスである。
 本発明の第6の態様は、第1の態様の感光性有機絶縁材料組成物を基板に塗布する工程と、露光により、前記感光性有機絶縁材料組成物を硬化してゲート絶縁膜を形成する工程と、を含むゲート絶縁膜の製造方法である。
 本発明の第7の態様は、第6の態様のゲート絶縁膜の製造方法によりゲート絶縁膜を形成する工程を含む、トランジスタの製造方法である。
A first aspect of the present invention is a photosensitive organic insulating material composition comprising a polymer having a chalcone skeleton.
A second aspect of the present invention is an insulating film which is a photocured product of the photosensitive organic insulating material composition of the first aspect.
A third aspect of the present invention is a gate insulating film which is a photocured product of the photosensitive organic insulating material composition of the first aspect.
A fourth aspect of the present invention is a transistor having the gate insulating film according to the third aspect.
A fifth aspect of the present invention is an electronic device comprising the thin film transistor of the fourth aspect.
A sixth aspect of the present invention is a method for producing a gate insulating film, comprising the steps of applying the photosensitive organic insulating material composition of the first aspect to a substrate, and curing the photosensitive organic insulating material composition by exposure to light to form a gate insulating film.
A seventh aspect of the present invention is a method for producing a transistor, comprising the step of forming a gate insulating film by the method for producing a gate insulating film according to the sixth aspect.
有機薄膜トランジスタの断面形状を示す図である。(a):ボトムゲート-トップコンタクト型有機薄膜トランジスタ;(b):ボトムゲート-ボトムコンタクト型有機薄膜トランジスタ;(c):トップゲート-トップコンタクト型有機薄膜トランジスタ;(d):トップゲート-ボトムコンタクト型有機薄膜トランジスタ。1 is a diagram showing cross-sectional shapes of organic thin-film transistors: (a) a bottom-gate-top-contact type organic thin-film transistor, (b) a bottom-gate-bottom-contact type organic thin-film transistor, (c) a top-gate-top-contact type organic thin-film transistor, and (d) a top-gate-bottom-contact type organic thin-film transistor. 実施例1であるボトムゲート-ボトムコンタクト型有機薄膜トランジスタの構造を示す模式断面図である。FIG. 1 is a schematic cross-sectional view showing the structure of a bottom-gate-bottom-contact type organic thin-film transistor according to a first embodiment. 実施例1で調製した組成物から得られた有機絶縁膜の電気特性を調べるために作製したMetal-Insulator-Metal構造の模式図である。FIG. 2 is a schematic diagram of a Metal-Insulator-Metal structure produced to examine the electrical properties of the organic insulating film obtained from the composition prepared in Example 1. 実施例1、6、比較例1で得られた絶縁膜に対して、露光量に対する残膜率を示す図である。FIG. 1 is a graph showing the remaining film ratio versus exposure dose for the insulating films obtained in Examples 1 and 6 and Comparative Example 1. 実施例1、6、比較例1で得られた絶縁膜に対して、露光量に対する残膜率を示す図である。図4の拡大図である。4 is a diagram showing the remaining film ratio versus the exposure dose for the insulating films obtained in Examples 1 and 6 and Comparative Example 1. FIG. 実施例1、6、比較例1において、図3示すMIM構造の上部電極-下部電極間のリーク電流を示す図である。FIG. 4 is a diagram showing leakage current between the upper electrode and the lower electrode of the MIM structure shown in FIG. 3 in Examples 1 and 6 and Comparative Example 1. 実施例1、16において、有機薄膜トランジスタの作製方法を示す図である。1A and 1B are diagrams illustrating a method for producing an organic thin film transistor in Examples 1 and 16. 実施例1で完成したOTFTの顕微鏡像を示す図である。FIG. 2 is a microscopic image of the OTFT completed in Example 1. 作製したOTFTの伝達特性およびバイアスストレステストの結果を示す図である。13 is a diagram showing the transfer characteristics of the fabricated OTFT and the results of a bias stress test. FIG. 作製したOTFTのVTHシフト量の結果を示す図である。FIG. 13 is a diagram showing the results of V TH shift amounts of the fabricated OTFTs. 実施例16で得られた絶縁膜に対して、露光量に対する残膜率を示す図である。FIG. 13 is a graph showing the remaining film rate versus exposure dose for the insulating film obtained in Example 16. 実施例16で得られた絶縁膜に対して、露光量に対する残膜率を示す図である。図11の拡大図である。11 is a graph showing the remaining film ratio versus the exposure dose for the insulating film obtained in Example 16. FIG. 実施例16、比較例1において、図3示すMIM構造の上部電極-下部電極間のリーク電流を示す図である。FIG. 4 is a diagram showing leakage current between the upper electrode and the lower electrode of the MIM structure shown in FIG. 3 in Example 16 and Comparative Example 1. 実施例16で完成したOTFTの顕微鏡像を示す図である。FIG. 13 is a microscopic image of the OTFT completed in Example 16. 実施例16作製したOTFTの伝達特性およびバイアスストレステストの結果を示す。The transfer characteristics and bias stress test results of the OTFT fabricated in Example 16 are shown. 比較例1作製したOTFTの伝達特性およびバイアスストレステストの結果を示す。The transfer characteristics and bias stress test results of the OTFT fabricated in Comparative Example 1 are shown.
(感光性有機絶縁材料組成物)
 以下、本発明の感光性有機絶縁材料組成物について、第一実施形態及び第二実施形態を用いて、詳細に説明する。
(Photosensitive organic insulating material composition)
Hereinafter, the photosensitive organic insulating material composition of the present invention will be described in detail using a first embodiment and a second embodiment.
〔第一実施形態〕
 第一実施形態の感光性有機絶縁材料組成物は、カルコン類化合物と、ポリビニルシンナメート(PVCi)と、を含む
First Embodiment
The photosensitive organic insulating material composition of the first embodiment contains a chalcone compound and polyvinyl cinnamate (PVCi).
<カルコン類化合物>
 カルコン類化合物は、(無置換)カルコン、置換カルコン等のカルコン誘導体である。置換カルコンとしては、例えば、炭素原子数1~5を有するアルキル基、炭素原子数1~5を有するアルコキシ基、炭素原子数1~5を有するポリオキシアルキル基、炭素原子数1~5を有するアルキルアミノ基、炭素原子数1~5を有するチオアルキル基、炭素原子数1~5を有するスルホニル基、ニトロ基、シアノ基等の置換基からなる群から選択される1種以上を有するカルコンが挙げられる。中でも、炭素原子数1~5を有するアルキル基、炭素原子数1~5を有するアルコキシ基、炭素原子数1~5を有するポリオキシアルキル基等の置換基からなる群から選択される1種以上を有するカルコンが好ましい。置換基の数が1~3が好ましく、1であることがより好ましい。置換位置は、不飽和カルボニルのアルケン側のベンゼン環にあることが好ましく、オルト、パラ位に置換さえたことがより好ましい。光2量化反応を行いやすい観点及びi線吸収を増大する観点から、不飽和カルボニルのアルケン側のベンゼン環のパラ位において、1つの炭素原子数1~5を有するアルコキシ基が置換されたカルコンが好ましく、炭素原子数1~3を有するアルコキシ基がより好ましい。
 カルコン類化合物の具体例としては、例えば、カルコン、メトキシカルコン等が挙げられる。カルコン、2-メトキシカルコン、4-メトキシカルコンがより好ましい。4-メトキシカルコン(今後、単にメトキシカルコンをいうことがある。)が更に好ましい。
 本実施形態に係るカルコン類化合物としては、1種単独で使用してもよく、また2種以上を組み合わせて使用しもよい。
<Chalcone compounds>
The chalcone compounds are chalcone derivatives such as (unsubstituted) chalcone and substituted chalcone. Examples of substituted chalcones include chalcones having one or more substituents selected from the group consisting of an alkyl group having 1 to 5 carbon atoms, an alkoxy group having 1 to 5 carbon atoms, a polyoxyalkyl group having 1 to 5 carbon atoms, an alkylamino group having 1 to 5 carbon atoms, a thioalkyl group having 1 to 5 carbon atoms, a sulfonyl group having 1 to 5 carbon atoms, a nitro group, and a cyano group. Among them, chalcones having one or more substituents selected from the group consisting of an alkyl group having 1 to 5 carbon atoms, an alkoxy group having 1 to 5 carbon atoms, and a polyoxyalkyl group having 1 to 5 carbon atoms are preferred. The number of substituents is preferably 1 to 3, and more preferably 1. The substitution position is preferably in the benzene ring on the alkene side of the unsaturated carbonyl, and more preferably substituted at the ortho or para position. From the viewpoint of facilitating the photodimerization reaction and increasing the i-line absorption, chalcones in which an alkoxy group having 1 to 5 carbon atoms is substituted at the para position of the benzene ring on the alkene side of the unsaturated carbonyl are preferred, and an alkoxy group having 1 to 3 carbon atoms is more preferred.
Specific examples of chalcone compounds include chalcone and methoxychalcone. Chalcone, 2-methoxychalcone, and 4-methoxychalcone are more preferred. 4-methoxychalcone (hereinafter sometimes simply referred to as methoxychalcone) is even more preferred.
The chalcone compounds according to the present embodiment may be used alone or in combination of two or more.
<ポリビニルシンナメート(PVCi)>
 ポリビニルシンナメートは、ポリ(けい皮酸ビニル)とも言う。例えば、シグマアルドリッチジャパン合同会社から入手することができる。
<Polyvinyl cinnamate (PVCi)>
Polyvinyl cinnamate is also known as poly(vinyl cinnamate) and is available from, for example, Sigma-Aldrich Japan LLC.
<溶媒>
 本実施形態の感光性有機絶縁材料組成物は、更に溶媒を含んでもよい。溶媒として、アルコール系溶媒、エステル系溶媒、炭化水素系芳香族溶媒、アミド系溶媒、ケトン系溶媒、グリコールエーテル系溶媒、エーテル系溶媒などが挙げられる。溶解性と成膜性の観点から、含まれる溶剤としてはエステル系、ケトン系溶媒が好ましく、中でも、プロピレングリコール1-モノメチルエーテル2-アセタート(PGMEA)、シクロペンタノンが好ましい。
<Solvent>
The photosensitive organic insulating material composition of the present embodiment may further contain a solvent. Examples of the solvent include alcohol-based solvents, ester-based solvents, hydrocarbon-based aromatic solvents, amide-based solvents, ketone-based solvents, glycol ether-based solvents, and ether-based solvents. From the viewpoints of solubility and film-forming properties, the solvent contained is preferably an ester-based or ketone-based solvent, and among these, propylene glycol 1-monomethyl ether 2-acetate (PGMEA) and cyclopentanone are preferable.
<その他の成分>
 耐候性、耐光性を高めるため、既知の酸化防止剤、光安定剤、紫外線吸収剤を添加してもよい。密着性を高めるため既知の密着性付与剤を添加してもよい。レベリング性、表面の濡れ性あるいは疎水性を高めるため、既知の表面改質剤を添加してもよい。
<Other ingredients>
To improve weather resistance and light resistance, known antioxidants, light stabilizers, and ultraviolet absorbers may be added. To improve adhesion, known adhesion promoters may be added. To improve leveling properties, surface wettability, or hydrophobicity, known surface modifiers may be added.
<組成物の組成比>
 本実施形態の感光性有機絶縁材料組成物は、上記カルコン類化合物と、ポリビニルシンナメートとを以下の質量比で含んでもよい。ポリビニルシンナメートの質量に対するカルコン類化合物の総質量の比は0.01~1であり、好ましくは0.01~0.3であり、より好ましくは0.03~0.3であり、さらに好ましくは0.05~0.1である。
 本実施形態の感光性有機絶縁材料組成物においては、組成物の総量100質量%に対して、カルコン類化合物とポリビニルシンナメートとの総量が、10質量%~30質量%であることが好ましく、10質量%~15質量%であることがより好ましい。
 本実施形態の感光性有機絶縁材料組成物においては、組成物の総量100質量%に対して、カルコン類化合物の総量が、0.1質量%~15質量%であることが好ましく、0.1質量%~3質量%であることがより好ましい。
<Composition ratio of composition>
The photosensitive organic insulating material composition of the present embodiment may contain the above chalcone compound and polyvinyl cinnamate in the following mass ratio: The ratio of the total mass of the chalcone compound to the mass of polyvinyl cinnamate is 0.01 to 1, preferably 0.01 to 0.3, more preferably 0.03 to 0.3, and even more preferably 0.05 to 0.1.
In the photosensitive organic insulating material composition of the present embodiment, the total amount of the chalcone compound and the polyvinyl cinnamate is preferably 10% by mass to 30% by mass, and more preferably 10% by mass to 15% by mass, relative to 100% by mass of the total amount of the composition.
In the photosensitive organic insulating material composition of the present embodiment, the total amount of the chalcone compounds is preferably 0.1% by mass to 15% by mass, and more preferably 0.1% by mass to 3% by mass, relative to 100% by mass of the total amount of the composition.
<組成物のi線感度>
 本実施形態の感光性有機絶縁材料組成物は、300~370nmの波長範囲に吸収スペクトルのピークを有することが好ましく、320~370nmの波長範囲に吸収スペクトルのピークを有することがより好ましく、340~370nmの波長範囲に吸収スペクトルのピークを有することが更に好ましく、i線(365nm)に吸収スペクトルのピークを有することが最も好ましい。本実施形態の感光性有機絶縁材料組成物は、ポリビニルシンナメートの以外に、カルコン類化合物も含むので、ポリビニルシンナメートのみを含む場合に比べて、i線で吸収が大きくなる。その結果、同じ光強度のi線露光機を用いる場合、光硬化に必要な時間が短くなる。生産性が大きく向上することができる。
 本実施形態の感光性有機絶縁材料組成物のi線においての吸光強度は、カルコン類化合物の種類、カルコン類化合物の含有量などで調整することができる。例えば、カルコン類化合物が無置換のカルコンである場合、感光性有機絶縁材料組成物の溶媒を除いた成分(固形分)100質量%において、10質量%~50質量%であることが好ましい。また、カルコン類化合物がメトキシカルコンである場合、5質量%~25質量%であることが好ましい。
<i-line sensitivity of composition>
The photosensitive organic insulating material composition of this embodiment preferably has an absorption spectrum peak in the wavelength range of 300 to 370 nm, more preferably has an absorption spectrum peak in the wavelength range of 320 to 370 nm, even more preferably has an absorption spectrum peak in the wavelength range of 340 to 370 nm, and most preferably has an absorption spectrum peak at i-line (365 nm). The photosensitive organic insulating material composition of this embodiment contains a chalcone compound in addition to polyvinyl cinnamate, so that the absorption at i-line is greater than when only polyvinyl cinnamate is contained. As a result, when an i-line exposure machine with the same light intensity is used, the time required for photocuring is shorter. The productivity can be greatly improved.
The light absorption intensity at i-line of the photosensitive organic insulating material composition of this embodiment can be adjusted by the type of chalcone compound, the content of the chalcone compound, etc. For example, when the chalcone compound is an unsubstituted chalcone, the content is preferably 10% by mass to 50% by mass in 100% by mass of the components (solid content) excluding the solvent of the photosensitive organic insulating material composition. When the chalcone compound is methoxychalcone, the content is preferably 5% by mass to 25% by mass.
〔第二実施形態〕
 第二実施形態の感光性有機絶縁材料組成物は、カルコン骨格を有するポリマーを含む。
Second Embodiment
The photosensitive organic insulating material composition of the second embodiment contains a polymer having a chalcone skeleton.
<カルコン骨格を有するポリマー>
 本実施形態に係る前記ポリマーに有するカルコン骨格とは、上記第一実施形態の感光性有機絶縁材料組成物に含まれている各種カルコン類化合物由来の構造である。本実施形態に係るカルコン類化合物は、上記第一実施形態に係るカルコン類化合物と同じ意味であり、その好ましい例も同じである。本実施形態に係る前記ポリマーに有するカルコン骨格は、前記ポリマーの主鎖に連結した側鎖に含まれている構造であることが好ましい。
 本実施形態に係る前記ポリマーの主鎖は、エチレン性不飽和結合を有するモノマーの重合反応により生成したビニルポリマー鎖であることが好ましい。
 本実施形態に係る、カルコン骨格を有するポリマーは、ビニルポリマー主鎖と、カルコン骨格を含む側鎖とを有することが好ましい。
<Polymers having chalcone skeleton>
The chalcone skeleton in the polymer according to this embodiment is a structure derived from various chalcone compounds contained in the photosensitive organic insulating material composition according to the first embodiment. The chalcone compounds according to this embodiment have the same meaning as the chalcone compounds according to the first embodiment, and the preferred examples thereof are also the same. The chalcone skeleton in the polymer according to this embodiment is preferably a structure contained in a side chain linked to the main chain of the polymer.
The main chain of the polymer according to this embodiment is preferably a vinyl polymer chain produced by a polymerization reaction of a monomer having an ethylenically unsaturated bond.
The polymer having a chalcone skeleton according to this embodiment preferably has a vinyl polymer main chain and a side chain containing a chalcone skeleton.
 本実施形態に係る、カルコン骨格を有するポリマーは、ビニルポリマー主鎖と、カルコン骨格を含む側鎖とを含む以外に、カルコン骨格を含まない側鎖を含んでもよい。本実施形態に係る、カルコン骨格を有するポリマーは、ビニルポリマー主鎖と、カルコン骨格を含む側鎖とを含む以外に、他の側鎖を含まないことが好ましい。 The polymer having a chalcone skeleton according to this embodiment includes a vinyl polymer main chain and a side chain that includes a chalcone skeleton, and may also include a side chain that does not include a chalcone skeleton. It is preferable that the polymer having a chalcone skeleton according to this embodiment includes a vinyl polymer main chain and a side chain that includes a chalcone skeleton, and does not include any other side chains.
 本実施形態に係る、カルコン骨格を有するポリマーは、エチレン性不飽和基を有する置換カルコン化合物を含む単量体の重合体又は共重合体であることが好ましい。前記エチレン性不飽和基を有する置換カルコン化合物が、エチレン性不飽和基を有するカルコン、及びエチレン性不飽和基とメトキシ基とを有するカルコンからなる群から選択される少なくとも1種であることが好ましい。
 本実施形態に係る、カルコン骨格を有するポリマーの具体例としは、例えば、以下の式(1)~(3)で表すポリマーが挙げられる。
The polymer having a chalcone skeleton according to the present embodiment is preferably a polymer or copolymer of a monomer containing a substituted chalcone compound having an ethylenically unsaturated group. The substituted chalcone compound having an ethylenically unsaturated group is preferably at least one selected from the group consisting of chalcones having an ethylenically unsaturated group and chalcones having an ethylenically unsaturated group and a methoxy group.
Specific examples of the polymer having a chalcone skeleton according to this embodiment include polymers represented by the following formulas (1) to (3).
Figure JPOXMLDOC01-appb-C000004
(式(1)中、n1は1~1000の整数である。)
Figure JPOXMLDOC01-appb-C000004
(In formula (1), n1 is an integer from 1 to 1000.)
Figure JPOXMLDOC01-appb-C000005
(式(2)中、n2は1~1000の整数である。)
Figure JPOXMLDOC01-appb-C000005
(In formula (2), n2 is an integer from 1 to 1000.)
Figure JPOXMLDOC01-appb-C000006
(式(3)中、n3は1~1000の整数である。)
Figure JPOXMLDOC01-appb-C000006
(In formula (3), n3 is an integer from 1 to 1000.)
 本実施形態に係る、カルコン骨格を有するポリマーの重量平均分子量は、5000~100000であることが好ましく、10000~80000であることがより好ましく、20000~50000であることが更に好ましい。
 重量平均分子量の測定方法は、ゲルパーミエーションクロマトグラフィー(GPC)を適用できる。
The weight average molecular weight of the polymer having a chalcone skeleton according to this embodiment is preferably 5,000 to 100,000, more preferably 10,000 to 80,000, and even more preferably 20,000 to 50,000.
The weight average molecular weight can be measured by gel permeation chromatography (GPC).
 本実施形態に係る、カルコン骨格を有するポリマーは、カルコン骨格(カルコン類化合物由来の構造、例えば、下記スキームの化合物3のーOH基を除く構造)の含有量は、ポリマー100質量%に対して、20質量%~97質量%であることが好ましく、50質量%~80質量%であることがより好ましい。 In the polymer having a chalcone skeleton according to this embodiment, the content of the chalcone skeleton (a structure derived from a chalcone compound, for example, the structure excluding the -OH group of compound 3 in the scheme below) is preferably 20% by mass to 97% by mass, and more preferably 50% by mass to 80% by mass, relative to 100% by mass of the polymer.
<カルコン骨格を有するポリマーの製造方法>
 本実施形態に係る、カルコン骨格を有するポリマーの製造方法は、上記式(2)のポリマーを例として用いて、以下詳細に説明する。
 本実施形態に係るポリマーの製造方法は、カルコン骨格を有するエチレン性不飽和化合物を合成する工程と、前記エチレン性不飽和化合物を重合させてビニルポリマー主鎖を形成する重合工程とを含む。
<Method of producing polymer having chalcone skeleton>
The method for producing a polymer having a chalcone skeleton according to this embodiment will be described in detail below using the polymer of the above formula (2) as an example.
The method for producing a polymer according to this embodiment includes a step of synthesizing an ethylenically unsaturated compound having a chalcone skeleton, and a polymerization step of polymerizing the ethylenically unsaturated compound to form a vinyl polymer main chain.
 上記カルコン骨格を有するエチレン性不飽和化合物は、ヒドロキシ基及びカルコン骨格を有する化合物と、エチレン性不飽和基を有する酸クロリドを溶剤中で反応させる公知の方法で製造できる。例えば、以下のスキーム1に示すように、非特許文献2に記載の方法で化合物3を合成する。得られたフェノール誘導体の化合物3(あるいは、Biosynth製4’-ヒドロキシ-4-メトキシカルコンを用いる)と化合物4と反応させて、化合物5を合成する方法が挙げられる。 The above ethylenically unsaturated compound having a chalcone skeleton can be produced by a known method in which a compound having a hydroxy group and a chalcone skeleton is reacted with an acid chloride having an ethylenically unsaturated group in a solvent. For example, as shown in the following scheme 1, compound 3 is synthesized by the method described in Non-Patent Document 2. One method is to react the obtained phenol derivative compound 3 (or use 4'-hydroxy-4-methoxychalcone manufactured by Biosynth) with compound 4 to synthesize compound 5.
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
 (非特許文献2:X. Yang et.al. Synthesis of a series of novel dihydroartemisinin derivatives containing a substituted chalcone with greater cytotoxic effects in leukemia cells, Bioorganic & Medicinal Chemistry Letters,Volume 19, Issue 15,(2009),Pages 4385-4388.) (Non-patent document 2: X. Yang et. al. Synthesis of a series of novel dihydroartemisinin derivatives containing a Substituted chalcone with greater cytotoxic effects in leukemia cells, Bioorganic & Medicinal Che mistry Letters, Volume 19, Issue 15, (2009), Pages 4385-4388.)
 エチレン性不飽和化合物を重合させる重合工程において、例えば、エチレン性不飽和化合物をラジカル共重合するとき、該ラジカル共重合には溶液重合、乳化重合、懸濁重合、及び塊状重合等の公知の方法を用いることが出来る。
 溶液重合において用いる溶剤は上記の単量体、及び本発明の重合体が溶解する限り、何ら制限されず、例えば、トルエン、キシレン、ジエチルエーテル、テトラヒドロフラン、1,4-ジオキサン、ジメチルホルムアミド、ジメチルスルホキシド等が挙げられ、これらの溶剤を混合して用いることも出来る。
In the polymerization step of polymerizing an ethylenically unsaturated compound, for example, when the ethylenically unsaturated compound is radically copolymerized, the radical copolymerization can be performed using a known method such as solution polymerization, emulsion polymerization, suspension polymerization, or bulk polymerization.
The solvent used in the solution polymerization is not limited in any way as long as it dissolves the above-mentioned monomers and the polymer of the present invention. Examples of the solvent include toluene, xylene, diethyl ether, tetrahydrofuran, 1,4-dioxane, dimethylformamide, dimethyl sulfoxide, and the like. These solvents can also be used in combination.
 重合温度は用いる開始剤に依存して選択されるが、特に制限されない。開始剤は特に制限されず、アゾイソブチロニトリル等のアゾ系開始剤;ベンゾイルパーオキサイド、ジ(t-ブチル)パーオキサイド等の過酸化物系開始剤が例示される。具体例として、2,2’-アゾビス(イソブチロニトリル)(AIBN)が挙げられる。反応時間は何ら制限されず用いる開始剤の半減期に従い設定されるが、経済性の観点から4~30時間が好ましい。 The polymerization temperature is selected depending on the initiator used, but is not particularly limited. The initiator is not particularly limited, and examples include azo-based initiators such as azoisobutyronitrile; and peroxide-based initiators such as benzoyl peroxide and di(t-butyl) peroxide. A specific example is 2,2'-azobis(isobutyronitrile) (AIBN). The reaction time is not limited in any way and is set according to the half-life of the initiator used, but from an economical standpoint, 4 to 30 hours is preferable.
 例えば、以下のスキーム2に示すように、上記得た化合物5を重合させて化合物6を合成する。
 合成反応の条件は実施例で詳細に説明する。また、化合物6の評価結果も実施例で説明する。
For example, as shown in the following scheme 2, compound 6 is synthesized by polymerizing compound 5 obtained above.
The synthesis reaction conditions will be described in detail in the Examples, and the evaluation results of Compound 6 will also be described in the Examples.
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
 上記重合工程において、重合反応の原料であるエチレン性不飽和単量体は、上記スキーム2の化合物5のようなカルコン骨格を有するエチレン性不飽和化合物以外に、カルコン骨格を有しないエチレン性不飽和化合物を含んでもよい。カルコン骨格を有しないエチレン性不飽和化合物を含む場合、得られるポリマーの側鎖は、カルコン骨格を有する側鎖以外に、カルコン骨格を有しない側鎖も含む。その場合、カルコン骨格を有するエチレン性不飽和化合物の総質量100質量部に対して、カルコン骨格を有しないエチレン性不飽和化合物の総質量は、0~50質量部であることが好ましく、0~30質量部であることがより好ましく、0質量部であることが更に好ましい。 In the above polymerization step, the ethylenically unsaturated monomers that are the raw materials for the polymerization reaction may contain, in addition to ethylenically unsaturated compounds having a chalcone skeleton such as compound 5 in Scheme 2 above, ethylenically unsaturated compounds not having a chalcone skeleton. When an ethylenically unsaturated compound not having a chalcone skeleton is contained, the side chains of the resulting polymer contain, in addition to side chains having a chalcone skeleton, side chains not having a chalcone skeleton. In that case, the total mass of the ethylenically unsaturated compounds not having a chalcone skeleton is preferably 0 to 50 parts by mass, more preferably 0 to 30 parts by mass, and even more preferably 0 parts by mass, relative to 100 parts by mass of the total mass of the ethylenically unsaturated compounds having a chalcone skeleton.
<溶媒>
 本実施形態の感光性有機絶縁材料組成物は、更に溶媒を含んでもよい。溶媒として、アルコール系、エステル系、ケトン系溶媒などが挙げられる。中に、プロピレングリコール1-モノメチルエーテル2-アセタート(PGMEA)、シクロペンタノンが好ましい。また、上記重合反応で用いる溶媒をそのまま、組成物の溶媒の一部として用いてもよい。
<Solvent>
The photosensitive organic insulating material composition of this embodiment may further contain a solvent. Examples of the solvent include alcohol-based, ester-based, and ketone-based solvents. Among these, propylene glycol 1-monomethyl ether 2-acetate (PGMEA) and cyclopentanone are preferable. In addition, the solvent used in the polymerization reaction may be used as it is as a part of the solvent of the composition.
<その他の成分>
 耐候性、耐光性を高めるため、既知の酸化防止剤、光安定剤、紫外線吸収剤を添加してもよい。密着性を高めるため既知の密着性付与剤を添加してもよい。レベリング性、表面の濡れ性あるいは疎水性を高めるため、既知の表面改質剤を添加してもよい。
<Other ingredients>
To improve weather resistance and light resistance, known antioxidants, light stabilizers, and ultraviolet absorbers may be added. To improve adhesion, known adhesion promoters may be added. To improve leveling properties, surface wettability, or hydrophobicity, known surface modifiers may be added.
<組成物の組成比>
 本実施形態の感光性有機絶縁材料組成物の溶媒を除いた成分(固形分)100質量%において、上記カルコン骨格を有するポリマーを50質量%~100質量%であることが好ましく、75質量%~100質量%であることがよりこのましい。100質量%であることが更に好ましい。カルコン類化合物と、ポリビニルシンナメートとを以下の質量比で含んでもよい。
 本実施形態の感光性有機絶縁材料組成物においては、組成物の総量100質量%に対して、上記カルコン骨格を有するポリマーの総量が、10質量%~30質量%であることが好ましく、10質量%~15質量%であることがより好ましい。
<Composition ratio of composition>
In the photosensitive organic insulating material composition of the present embodiment, the polymer having a chalcone skeleton is preferably 50% by mass to 100% by mass, more preferably 75% by mass to 100% by mass, and even more preferably 100% by mass, based on 100% by mass of the components (solid content) excluding the solvent. The chalcone compound and polyvinyl cinnamate may be contained in the following mass ratio.
In the photosensitive organic insulating material composition of the present embodiment, the total amount of the polymer having a chalcone skeleton is preferably 10% by mass to 30% by mass, and more preferably 10% by mass to 15% by mass, relative to 100% by mass of the total amount of the composition.
<組成物のi線感度>
 本実施形態の感光性有機絶縁材料組成物は、300~370nmの波長範囲に吸収スペクトルのピークを有することが好ましく、320~370nmの波長範囲に吸収スペクトルのピークを有することがより好ましく、340~370nmの波長範囲に吸収スペクトルのピークを有することが更に好ましく、i線(365nm)に吸収スペクトルのピークを有することが最も好ましい。本実施形態の感光性有機絶縁材料組成物は、カルコン骨格を有するポリマーを含むので、従来技術のポリビニルシンナメートのみを含む場合に比べて、i線で吸収が大きくなる。その結果、同じ光強度のi線露光機を用いる場合、光硬化に必要な時間が短くなる。生産性が大きく向上することができる。
 本実施形態の感光性有機絶縁材料組成物のi線においての吸光強度は、カルコン骨格に対するするカルコン類化合物の種類、ポリマー中のカルコン骨格の含有量などで調整することができる。例えば、カルコン類化合物がメトキシカルコンである場合、すなわちメトキシカルコン骨格を有するポリマーある場合、50~90質量部であることが好ましい。i線吸収が大きい場合、深部硬化性が低下し、厚膜での光硬化や端部描画性の低下が生じる。所望の膜厚で優れた光硬化性を得るために、任意に含有量を調整できる。
<i-line sensitivity of composition>
The photosensitive organic insulating material composition of this embodiment preferably has an absorption spectrum peak in the wavelength range of 300 to 370 nm, more preferably has an absorption spectrum peak in the wavelength range of 320 to 370 nm, even more preferably has an absorption spectrum peak in the wavelength range of 340 to 370 nm, and most preferably has an absorption spectrum peak at i-line (365 nm). Since the photosensitive organic insulating material composition of this embodiment contains a polymer having a chalcone skeleton, it has a higher absorption at i-line than the conventional technique containing only polyvinyl cinnamate. As a result, when using an i-line exposure machine with the same light intensity, the time required for photocuring is shorter. Productivity can be greatly improved.
The light absorption intensity of the photosensitive organic insulating material composition of this embodiment at i-line can be adjusted by the type of chalcone compound relative to the chalcone skeleton, the content of the chalcone skeleton in the polymer, etc. For example, when the chalcone compound is methoxychalcone, that is, when there is a polymer having a methoxychalcone skeleton, it is preferably 50 to 90 parts by mass. When the i-line absorption is large, the deep part curing property is reduced, and photocuring in a thick film and edge drawing property are reduced. The content can be adjusted arbitrarily to obtain excellent photocuring property at a desired film thickness.
(有機絶縁膜)
 本発明の一実施形態の有機絶縁膜(以後、本実施形態の有機絶縁膜をいう)は、上記説明した第一実施形態及び第二実施形態の感光性有機絶縁材料組成物からなる群から選択される1種以上(以後、本実施形態に係る組成物を言うことがある。)を基材上に成膜し、光硬化してから得られるもの(光硬化物)である。本実施形態に係る組成物は、種々の基材上に印刷出来る。使用する有機溶剤としては、該組成物に含まれている化合物を溶解し、同時に有機薄膜トランジスタなどのデバイスの製造に用いる有機半導体等の材料を溶解しない溶剤であれば何ら制限なく用いることができ、例えば、シクロヘキサン、ベンゼン、トルエン、キシレン、エチルベンゼン、イソプロピルベンゼン、N-ヘキシルベンゼン、テトラリン、デカリン、イソプロピルベンゼン、クロロベンゼン、などの芳香族炭化水素溶剤;塩化メチレン、1,1,2-トリクロロエチレン等の塩素化脂肪族炭化水素化合物;テトラヒドロフラン、テトラヒドロピラン、ジオキサン等の脂肪族環状エーテル化合物;メチルエチルケトン、シクロペンタノン、シクロヘキサノン等のケトン化合物;エチルアセテート、ジメチルフタレート、サリチル酸メチル、アミルアセテート、プロピレングリコール1-モノメチルエーテル2-アセタート(PGMEA)等のエステル化合物;n-ブタノール、エタノール、iso-ブタノール等のアルコール類;1-ニトロプロパン、2硫化炭素、リモネン等が例示され、これらの溶剤は必要に応じて混合して使用することが出来る。上記合成用有機溶剤と同じ有機溶剤であることが好ましく、プロピレングリコール1-モノメチルエーテル2-アセタート(PGMEA)、シクロペンタノン等がより好ましい。
(Organic insulating film)
An organic insulating film according to one embodiment of the present invention (hereinafter referred to as the organic insulating film according to this embodiment) is obtained by forming a film of one or more types selected from the group consisting of the photosensitive organic insulating material compositions according to the first and second embodiments described above (hereinafter sometimes referred to as the composition according to this embodiment) on a substrate and photocuring the film (photocured product). The composition according to this embodiment can be printed on various substrates. The organic solvent used can be any solvent that dissolves the compounds contained in the composition and does not dissolve materials such as organic semiconductors used in the manufacture of devices such as organic thin film transistors, without any limitations. Examples of the organic solvent include aromatic hydrocarbon solvents such as cyclohexane, benzene, toluene, xylene, ethylbenzene, isopropylbenzene, N-hexylbenzene, tetralin, decalin, isopropylbenzene, and chlorobenzene; chlorinated aliphatic hydrocarbon compounds such as methylene chloride and 1,1,2-trichloroethylene; aliphatic cyclic ether compounds such as tetrahydrofuran, tetrahydropyran, and dioxane; ketone compounds such as methyl ethyl ketone, cyclopentanone, and cyclohexanone; ester compounds such as ethyl acetate, dimethyl phthalate, methyl salicylate, amyl acetate, and propylene glycol 1-monomethyl ether 2-acetate (PGMEA); alcohols such as n-butanol, ethanol, and iso-butanol; and 1-nitropropane, carbon disulfide, and limonene, and these solvents can be used in combination as necessary. It is preferable that the organic solvent is the same as the organic solvent for synthesis described above, and more preferable are propylene glycol 1-monomethyl ether 2-acetate (PGMEA), cyclopentanone, and the like.
 塗工又は印刷方法には何ら制限はなく、例えば、スピンコーティング、ドロップキャスト、ディップコーティング、ドクターブレードコーティング、パッド印刷、スキージコート、ロールコーティング、ロッドバーコーティング、エアナイフコーティング、ワイヤーバーコーティング、フローコーティング、グラビア印刷、フレキソ印刷、スクリーン印刷、インクジェット印刷、凸版反転印刷等を用いて印刷することが出来る。 There are no limitations on the coating or printing method, and printing can be performed using, for example, spin coating, drop casting, dip coating, doctor blade coating, pad printing, squeegee coating, roll coating, rod bar coating, air knife coating, wire bar coating, flow coating, gravure printing, flexographic printing, screen printing, inkjet printing, letterpress reverse printing, etc.
 本実施形態に係る組成物は光二量化反応性を有する光架橋基を有し、該光架橋には放射線が好適に用いられ、放射線としては、例えば、波長245~450nmの紫外線・可視光が挙げられる。本発明の効果を最大限に発揮できる観点から、i線付近が好ましく、i線単色光源がより好ましい。放射線の射量は重合体の組成により適宜変更されるが、例えば、100~300mJ/cmが挙げられ、架橋度の低下を防止し、かつ、プロセスの短時間化による経済性向上のため、好ましくは50~200mJ/cmである。紫外線・可視光を照射する際の環境は特に制限されず、大気中、不活性ガス中、または一定量の不活性ガス気流下で行うことが出来る。必要に応じて組成物に光増感剤を添加して光架橋反応を促進させることも出来る。用いる光増感剤には何ら制限はなく、例えば、ベンゾフェノン化合物、アントラキノン化合物、チオキサントン化合物、ニトロフェニル化合物等が挙げられる。また、該増感剤は必要に応じて2種以上を組み合わせて使用できる。また、本実施形態の有機絶縁膜の電気特性を高める観点から、実質的に光増感剤を含まないことを好ましい。ここで、光増感剤とは、自らが光を吸収して得たエネルギーを他の物質に渡すことで、光架橋反応のプロセスを助ける役割を果たす物質のことである。例えば、ベンゾフェノン化合物、アントラキノン化合物、チオキサントン化合物、ニトロフェニル化合物が挙げられる。上記説明した第一実施形態の感光性有機絶縁材料組成物に含まれているカルコン類化合物は、自らが光を吸収して自らが光架橋反応に参加する物質は、光増感剤ではない。
 「実質的に含まない」意味は、光増感効果が見られないほど少ない量しか含まない意味であり、例えば、本実施形態に係る組成物において、0質量%~0.05質量%の範囲であることが好ましく、0質量%~0.01質量%の範囲であることがより好ましく、0質量%~0.05質量%の範囲であることがより好ましく、0質量%であることが更に好ましい。
The composition according to the present embodiment has a photocrosslinking group having photodimerization reactivity, and radiation is preferably used for the photocrosslinking, and examples of the radiation include ultraviolet and visible light having a wavelength of 245 to 450 nm. From the viewpoint of maximizing the effects of the present invention, radiation near i-line is preferable, and i-line monochromatic light source is more preferable. The radiation dose is appropriately changed depending on the composition of the polymer, and examples include 100 to 300 mJ/cm 2 , and in order to prevent a decrease in the degree of crosslinking and improve the economy by shortening the process time, it is preferably 50 to 200 mJ/cm 2. The environment when irradiating ultraviolet and visible light is not particularly limited, and it can be performed in the air, in an inert gas, or under a constant amount of inert gas flow. If necessary, a photosensitizer can be added to the composition to promote the photocrosslinking reaction. There is no limitation on the photosensitizer used, and examples include benzophenone compounds, anthraquinone compounds, thioxanthone compounds, and nitrophenyl compounds. In addition, the sensitizer can be used in combination of two or more types as necessary. In addition, from the viewpoint of enhancing the electrical properties of the organic insulating film of this embodiment, it is preferable that the composition does not substantially contain a photosensitizer. Here, the photosensitizer is a substance that plays a role in assisting the process of photocrosslinking reaction by transferring the energy obtained by absorbing light to another substance. Examples of the photosensitizer include benzophenone compounds, anthraquinone compounds, thioxanthone compounds, and nitrophenyl compounds. The chalcone compounds contained in the photosensitive organic insulating material composition of the first embodiment described above are not photosensitizers because they absorb light and participate in the photocrosslinking reaction.
The term "substantially free" means that the amount is so small that no photosensitizing effect is observed. For example, in the composition according to the present embodiment, the amount is preferably in the range of 0 mass % to 0.05 mass %, more preferably in the range of 0 mass % to 0.01 mass %, even more preferably in the range of 0 mass % to 0.05 mass %, and even more preferably 0 mass %.
 また、本実施形態の有機絶縁膜に用いる感光性有機絶縁材料組成物は、短時間で効率良く光架橋出来る。より短時間で効率良く光架橋するため、例えば、i線を用いる場合、光照射時間を2分以内とすることが好ましい。なお、架橋時間の制御に好適であることから、例えば、i線を用いる場合、光照射時間を1分以内とすることがさらに好ましい。 In addition, the photosensitive organic insulating material composition used in the organic insulating film of this embodiment can be photocrosslinked efficiently in a short time. In order to achieve photocrosslinking efficiently in a shorter time, for example, when using i-rays, it is preferable to set the light irradiation time to 2 minutes or less. In addition, since this is suitable for controlling the crosslinking time, for example, when using i-rays, it is even more preferable to set the light irradiation time to 1 minute or less.
 本実施形態の有機絶縁膜は、有機薄膜トランジスタ等の種々のデバイスの絶縁膜として好適に用いることができる。本実施形態の有機絶縁膜は、特に後述の有機薄膜トランジスタのゲート絶縁膜として好適に用いることができる。 The organic insulating film of this embodiment can be suitably used as an insulating film for various devices such as organic thin-film transistors. The organic insulating film of this embodiment can be suitably used as a gate insulating film for organic thin-film transistors, which will be described later.
(有機薄膜トランジスタ) (Organic thin-film transistor)
 本実施形態の有機薄膜トランジスタは図1に示すボトムゲート-トップコンタクト型(A)、ボトムゲート-ボトムコンタクト型(B)、トップゲート-トップコンタクト型(C)、トップゲート-ボトムコンタクト型(D)のいずれの素子構造でもよい。本実施形態の重合体は特に(A)及び(B)の形態の素子への適用性が高い。実施例では、(B)の形態の素子を使用した。ここで、1は有機半導体層、2は基板、3はゲート電極、4はゲート絶縁層、5はソース電極、6はドレイン電極を示す。 The organic thin-film transistor of this embodiment may have any of the device structures shown in FIG. 1, namely bottom gate-top contact type (A), bottom gate-bottom contact type (B), top gate-top contact type (C), and top gate-bottom contact type (D). The polymer of this embodiment is particularly applicable to devices of the types (A) and (B). In the examples, a device of the type (B) was used. Here, 1 is the organic semiconductor layer, 2 is the substrate, 3 is the gate electrode, 4 is the gate insulating layer, 5 is the source electrode, and 6 is the drain electrode.
 該有機薄膜トランジスタにおいて、用いることが出来る基材(基板)は素子を作製できる十分な平坦性を確保できれば特に制限されず、例えば、ガラス、石英、酸化アルミニウム、ハイドープシリコン、酸化シリコン、二酸化タンタル、五酸化タンタル、インジウム錫酸化物等の無機材料基板;プラスチック;金、銅、クロム、チタン、アルミニウム等の金属;セラミックス;コート紙;表面コート不織布等が挙げられ、これらの材料からなる複合材料又はこれらの材料を多層化した材料であっても良い。また、表面張力を調整するため、これらの材料表面をコーティングすることも出来る。 In the organic thin-film transistor, the base material (substrate) that can be used is not particularly limited as long as it can ensure sufficient flatness for fabricating an element, and examples include inorganic material substrates such as glass, quartz, aluminum oxide, highly doped silicon, silicon oxide, tantalum dioxide, tantalum pentoxide, indium tin oxide, etc.; plastics; metals such as gold, copper, chromium, titanium, aluminum, etc.; ceramics; coated paper; surface-coated nonwoven fabric, etc. Composite materials made of these materials or materials made by multilayering these materials may also be used. Furthermore, the surfaces of these materials can be coated to adjust the surface tension.
 基材として用いるプラスチックとしては、ポリエチレンテレフタレート、ポリエチレンナフタレート、トリアセチルセルロース、ポリカーボネート、ポリメチルアクリレート、ポリメチルメタクリレート、ポリ塩化ビニル、ポリエチレン、エチレン・酢酸ビニル共重合体、ポリメチルペンテン-1、ポリプロピレン、環状ポリオレフィン、フッ素化環状ポリオレフィン、ポリスチレン、ポリイミド、ポリビニルフェノール、ポリビニルアルコール、ポリ(ジイソプロピルフマレート)、ポリ(ジエチルフマレート)、ポリ(ジイソプロピルマレエート)、ポリエーテルスルホン、ポリフェニレンスルフィド、ポリフェニレンエーテル、ポリエステルエラストマー、ポリウレタンエラストマー、ポリオレフィンエラストマー、ポリアミドエラストマー、スチレンブロック共重合体等が例示される。また、上記のプラスチックを2種以上用いて積層して基材として用いることができる。 Plastics that can be used as the substrate include polyethylene terephthalate, polyethylene naphthalate, triacetyl cellulose, polycarbonate, polymethyl acrylate, polymethyl methacrylate, polyvinyl chloride, polyethylene, ethylene-vinyl acetate copolymer, polymethylpentene-1, polypropylene, cyclic polyolefins, fluorinated cyclic polyolefins, polystyrene, polyimide, polyvinylphenol, polyvinyl alcohol, poly(diisopropyl fumarate), poly(diethyl fumarate), poly(diisopropyl maleate), polyethersulfone, polyphenylene sulfide, polyphenylene ether, polyester elastomers, polyurethane elastomers, polyolefin elastomers, polyamide elastomers, styrene block copolymers, etc. Two or more of the above plastics can also be laminated and used as the substrate.
 本実施形態で用いることが出来るゲート電極、ソース電極、又はドレイン電極としては、金、銀、アルミニウム、銅、チタン、白金、クロム、ポリシリコン、シリサイド、インジウム・錫・オキサイド(ITO)、酸化錫等の導電性材料が例示される。また、これらの導電性材料を複数、積層して用いることもできる。 Examples of the gate electrode, source electrode, or drain electrode that can be used in this embodiment include conductive materials such as gold, silver, aluminum, copper, titanium, platinum, chromium, polysilicon, silicide, indium tin oxide (ITO), and tin oxide. In addition, multiple layers of these conductive materials can be used.
 また、ボトムゲート-トップコンタクト型(A)型素子、ボトムゲート-ボトムコンタクト型(B)型素子では前記の有機半導体層の上、あるいは前記ゲート絶縁膜の上に電極を形成する。この場合、電極の形成方法としては特に制限はなく、蒸着、高周波スパッタリング、電子ビームスパッタリング等が挙げられ、前記導電性材料のナノ粒子を水又は有機溶剤に溶解させたインクを用いて、溶液スピンコート、ドロップキャスト、ディップコート、ドクターブレード、ダイコート、パッド印刷、ロールコーティング、グラビア印刷、フレキソ印刷、スクリーン印刷、インクジェット印刷、凸版反転印刷等の方法を採用することも出来る。また、必要に応じて電極上にフルオロアルキルチオール、フルオロアリルチオール等を吸着させる処理を行っても良い。 In addition, in the case of bottom gate-top contact type (A) elements and bottom gate-bottom contact type (B) elements, an electrode is formed on the organic semiconductor layer or on the gate insulating film. In this case, the method for forming the electrode is not particularly limited, and examples thereof include vapor deposition, high frequency sputtering, and electron beam sputtering. Methods such as solution spin coating, drop casting, dip coating, doctor blade, die coating, pad printing, roll coating, gravure printing, flexographic printing, screen printing, inkjet printing, and letterpress reverse printing can also be used using an ink in which nanoparticles of the conductive material are dissolved in water or an organic solvent. In addition, a treatment for adsorbing fluoroalkylthiol, fluoroarylthiol, or the like onto the electrode may be performed as necessary.
 本実施形態の有機薄膜トランジスタで用いることが出来る有機半導体には何ら制限はなく、N型及びP型の有機半導体の何れも使用することができ、N型とP型を組み合わせたバイポーラトランジスタとしても使用できる。例えば、ポリピロール類、ポリチオフェン類、ポリアニリン類、ポリアリルアミン類、フルオレン類、ポリカルバゾール類、ポリインドール類、ポリ(p-フェニレンビニレン)類などを用いることができる。また、有機溶媒への溶解性を有する低分子物質、例えば、ペンタセンなどの多環芳香族の誘導体、フタロシアニン誘導体、ペリレン誘導体、テトラチアフルバレン誘導体、テトラシアノキノジメタン誘導体、フラーレン類、カーボンナノチューブ類などを用いることができる。具体的には、9,9-ジ-n-オクチルフルオレン-2,7-ジ(エチレンボロネート)と、5,5’-ジブロモ-2,2’-バイチオフェンとの縮合物等があげられる。 There are no limitations on the organic semiconductors that can be used in the organic thin-film transistor of this embodiment, and both N-type and P-type organic semiconductors can be used, and it can also be used as a bipolar transistor combining N-type and P-type. For example, polypyrroles, polythiophenes, polyanilines, polyallylamines, fluorenes, polycarbazoles, polyindoles, poly(p-phenylenevinylenes), etc. can be used. In addition, low molecular weight substances that are soluble in organic solvents, such as polycyclic aromatic derivatives such as pentacene, phthalocyanine derivatives, perylene derivatives, tetrathiafulvalene derivatives, tetracyanoquinodimethane derivatives, fullerenes, carbon nanotubes, etc. can be used. Specifically, examples include condensates of 9,9-di-n-octylfluorene-2,7-di(ethyleneboronate) and 5,5'-dibromo-2,2'-bithiophene.
 本実施形態において、有機半導体層を形成する方法としては、有機半導体を有機溶剤に溶解させて塗布、印刷する方法が好適に用いられるが、有機半導体層の薄膜を形成出来る限り何らの制限もない。有機半導体層を有機溶剤に溶解させた溶液を印刷する際の溶液濃度は有機半導体の構造及び用いる溶剤により異なるが、より均一な半導体層の形成及び層の厚みの低減の観点から、0.5~5重量%であることが好ましい。この際の有機溶剤としては有機半導体が製膜可能な一定の濃度で溶解する限り何ら制限はなく、ヘキサン、ヘプタン、オクタン、デカン、ドデカン、テトラデカン、デカリン、インダン、1-メチルナフタレン、2-エチルナフタレン、1,4-ジメチルナフタレン、ジメチルナフタレン異性体混合物、トルエン、キシレン、エチルベンゼン、1,2,4-トリメチルベンゼン、メシチレン、イソプロピルベンゼン、ペンチルベンゼン、ヘキシルベンゼン、テトラリン、オクチルベンゼン、シクロヘキシルベンゼン、1,2-ジクロロベンゼン、1,3-ジクロロベンゼン、1,4-ジクロロベンゼン、トリクロロベンゼン、1,2-ジメトキシベンゼン、1,3-ジメトキシベンゼン、γ-ブチロラクトン、1,3-ブチレングリコール、エチレングリコール、ベンジルアルコール、グリセリン、シクロヘキサノールアセテート、3-メトキシブチルアセテート、エチレングリコールモノメチルエーテルアセテート、エチレングリコールモノブチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテート、アニソール、シクロヘキサノン、メシチレン、3-メトキシブチルアセテート、シクロヘキサノールアセテート、ジプロピレングリコールジアセテート、ジプロピレングリコールメチルエーテルアセテート、ジエチレングリコールモノブチルエーテルアセテート、ジエチレングリコールモノエチルエーテルアセテート、1,6-ヘキサンジオールジアセテート、1,3-ブチレングリコールジアセテート、1,4-ブタンジオールジアセテート、エチルアセテート、フェニルアセテート、ジプロピレングリコールジメチルエーテル、ジプロピレングリコールメチル-N-プロピルエーテル、テトラデカヒドロフェナントレン、1,2,3,4,5,6,7,8-オクタヒドロフェナントレン、デカヒドロ-2-ナフトール、1,2,3,4-テトラヒドロ-1-ナフトール、α-テルピネオール、イソホロントリアセチンデカヒドロ-2-ナフトール、ジプロピレングリコールジメチルエーテル、2,6-ジメチルアニソール、1,2-ジメチルアニソール、2,3-ジメチルアニソール、3,4-ジメチルアニソール、1-ベンゾチオフェン、3-メチルベンゾチオフェン、1,2-ジクロロエタン、1,1,2,2-テトラクロロエタン、クロロホルム、ジクロロメタン、テトラヒドロフラン、1,2-ジメトキシエタン、ジオキサン、シクロヘキサノン、アセトン、メチルエチルケトン、ジエチルケトン、ジイソプロピルケトン、アセトフェノン、N,N-ジメチルホルムアミド、N-メチル-2-ピロリドン、リモネン等が例示されるが、好ましい性状の結晶膜を得るためには有機半導体の溶解力が高く、沸点が100℃以上の溶剤が適しており、キシレン、イソプロピルベンゼン、アニソール、シクロヘキサノン、メシチレン、1,2-ジクロロベンゼン、3,4-ジメチルアニソール、ペンチルベンゼン、テトラリン、シクロヘキシルベンゼン、デカヒドロ-2-ナフトールが好ましい。また、前述の溶剤2種以上を適切な割合で混合した混合溶剤も用いることが出来る。 In this embodiment, the method of forming the organic semiconductor layer is preferably a method of dissolving an organic semiconductor in an organic solvent and coating or printing the solution, but there are no limitations as long as a thin film of the organic semiconductor layer can be formed. The solution concentration when printing the solution in which the organic semiconductor layer is dissolved in an organic solvent varies depending on the structure of the organic semiconductor and the solvent used, but from the viewpoint of forming a more uniform semiconductor layer and reducing the thickness of the layer, it is preferably 0.5 to 5% by weight. The organic solvent used in this case is not limited as long as it dissolves the organic semiconductor at a certain concentration that allows film formation, and examples of the organic solvent include hexane, heptane, octane, decane, dodecane, tetradecane, decalin, indane, 1-methylnaphthalene, 2-ethylnaphthalene, 1,4-dimethylnaphthalene, a mixture of dimethylnaphthalene isomers, toluene, xylene, ethylbenzene, 1,2,4-trimethylbenzene, mesitylene, isopropylbenzene, pentylbenzene, hexylbenzene, tetralin, octylbenzene, cyclohexylbenzene, 1,2-dichlorobenzene, 1,3-dichlorobenzene, 1,4-dichlorobenzene, trichlorobenzene, 1,2-dimethoxybenzene, 1,3-dimethoxybenzene, and γ-butyrolactone. , 1,3-butylene glycol, ethylene glycol, benzyl alcohol, glycerin, cyclohexanol acetate, 3-methoxybutyl acetate, ethylene glycol monomethyl ether acetate, ethylene glycol monobutyl ether acetate, propylene glycol monomethyl ether acetate, anisole, cyclohexanone, mesitylene, 3-methoxybutyl acetate, cyclohexanol acetate, dipropylene glycol diacetate, dipropylene glycol methyl ether acetate, diethylene glycol monobutyl ether acetate, diethylene glycol monoethyl ether acetate, 1,6-hexanediol diacetate, 1,3-butylene glycol diacetate, 1,4-butanediol diacetate, ethyl acetate, phenyl acetate, dipropylene glycol dimethyl ether, dipropylene glycol methyl-N-propyl ether, tetradecahydrophenanthrene, 1,2,3,4,5,6,7,8-octahydrophenanthrene, decahydro-2-naphthol, 1,2,3,4-tetrahydro-1-naphthol, α-terpineol, isophorone triacetin decahydro-2-naphthol, dipropylene glycol dimethyl ether, 2,6-dimethylanisole, 1,2-dimethylanisole, 2,3-dimethylanisole, 3,4-dimethylanisole, 1-benzothiophene, 3-methylbenzothiophene, 1,2-dichloro Examples include ethane, 1,1,2,2-tetrachloroethane, chloroform, dichloromethane, tetrahydrofuran, 1,2-dimethoxyethane, dioxane, cyclohexanone, acetone, methyl ethyl ketone, diethyl ketone, diisopropyl ketone, acetophenone, N,N-dimethylformamide, N-methyl-2-pyrrolidone, and limonene. In order to obtain a crystal film with preferred properties, a solvent that has a high dissolving power for organic semiconductors and a boiling point of 100°C or higher is suitable, and xylene, isopropylbenzene, anisole, cyclohexanone, mesitylene, 1,2-dichlorobenzene, 3,4-dimethylanisole, pentylbenzene, tetralin, cyclohexylbenzene, and decahydro-2-naphthol are preferred. Mixed solvents in which two or more of the above-mentioned solvents are mixed in an appropriate ratio can also be used.
 有機半導体層には必要に応じて各種有機・無機の高分子若しくはオリゴマー、又は有機・無機ナノ粒子を固体若しくは、ナノ粒子を水若しくは有機溶剤に分散させた分散液として添加でき、上記高分子誘電体層上に高分子溶液を塗布して保護膜を形成出来る。更に、必要に応じて本保護膜上に各種防湿コーティング、耐光性コーティング等を行うことが出来る。 Various organic and inorganic polymers or oligomers, or organic and inorganic nanoparticles can be added to the organic semiconductor layer as a solid or as a dispersion liquid in which nanoparticles are dispersed in water or an organic solvent, as required, and a protective film can be formed by applying the polymer solution onto the polymer dielectric layer. Furthermore, various types of moisture-proof coatings, light-resistant coatings, etc. can be applied to this protective film as required.
 本実施形態有機薄膜トランジスタで用いることが出来るゲート電極、ソース電極、又はドレイン電極としては、アルミニウム、金、銀、銅、ハイドープシリコン、ポリシリコン、シリサイド、スズ酸化物、酸化インジウム、インジウムスズ酸化物、クロム、白金、チタン、タンタル、グラフェン、カーボンナノチューブ等の無機電極、又はドープされた導電性高分子(例えば、PEDOT-PSS)等の有機電極等の導電性材料が例示され、これらの導電性材料を複数、積層して用いることもできる。また、キャリアの注入効率を上げるために、これらの電極に表面処理剤を用いて表面処理を実施することもできる。このような表面処理剤としては、例えば、ベンゼンチオール、ペンタフルオロベンゼンチオール等を挙げることができる。 Examples of the gate electrode, source electrode, or drain electrode that can be used in the organic thin-film transistor of this embodiment include inorganic electrodes such as aluminum, gold, silver, copper, highly doped silicon, polysilicon, silicide, tin oxide, indium oxide, indium tin oxide, chromium, platinum, titanium, tantalum, graphene, and carbon nanotubes, and organic electrodes such as doped conductive polymers (e.g., PEDOT-PSS). A plurality of these conductive materials can also be stacked for use. In addition, in order to increase the carrier injection efficiency, surface treatment can be performed on these electrodes using a surface treatment agent. Examples of such surface treatment agents include benzenethiol and pentafluorobenzenethiol.
 また、前記の基材、絶縁層または有機半導体層の上に電極を形成する方法に特に制限はなく、蒸着、高周波スパッタリング、電子ビームスパッタリング等が挙げられ、前記導電性材料のナノ粒子を水又は有機溶剤に溶解させたインクを用いて、溶液スピンコート、ドロップキャスト、ディップコート、ドクターブレード、ダイコート、パッド印刷、ロールコーティング、グラビア印刷、フレキソ印刷、スクリーン印刷、インクジェット印刷、凸版反転印刷等の方法を採用することも出来る。 In addition, there are no particular limitations on the method for forming an electrode on the substrate, insulating layer, or organic semiconductor layer, and examples of the method include vapor deposition, high-frequency sputtering, and electron beam sputtering. It is also possible to employ methods such as solution spin coating, drop casting, dip coating, doctor blade, die coating, pad printing, roll coating, gravure printing, flexographic printing, screen printing, inkjet printing, and letterpress reverse printing using an ink in which nanoparticles of the conductive material are dissolved in water or an organic solvent.
 本実施形態の有機薄膜トランジスタは、例えば、実施例で用いたボトムゲート-ボトムコンタクト型の形態の素子を用いることができる。図2は、本実施形態の一例であるボトムゲート-ボトムコンタクト型有機薄膜トランジスタの構造を示す模式断面図である。この有機薄膜トランジスタには、基板2と、基板2上に形成されたゲート電極3と、ゲート電極3上に形成されたゲート絶縁層4と、ゲート絶縁層4上にチャネル部を挟んで形成されたソース電極5及びドレイン電極6と、電極上に形成された有機半導体層1とが、備えられている。 The organic thin-film transistor of this embodiment can be, for example, a bottom-gate-bottom-contact type element used in the examples. FIG. 2 is a schematic cross-sectional view showing the structure of a bottom-gate-bottom-contact type organic thin-film transistor, which is an example of this embodiment. This organic thin-film transistor includes a substrate 2, a gate electrode 3 formed on the substrate 2, a gate insulating layer 4 formed on the gate electrode 3, a source electrode 5 and a drain electrode 6 formed on the gate insulating layer 4 with a channel portion therebetween, and an organic semiconductor layer 1 formed on the electrodes.
 本実施形態の有機薄膜トランジスタは、有機薄膜トランジスタ素子の実用性の観点から、移動度が0.20cm/Vs以上であることが好ましい。 From the viewpoint of practicality of an organic thin film transistor element, the organic thin film transistor of this embodiment preferably has a mobility of 0.20 cm 2 /Vs or more.
 本実施形態の有機薄膜トランジスタは、有機薄膜トランジスタ素子の実用性の観点から、閾値電圧が-10.0V以上で0Vより小さいことが好ましい。 From the viewpoint of practicality of the organic thin-film transistor element, it is preferable that the threshold voltage of the organic thin-film transistor of this embodiment is -10.0 V or more and less than 0 V.
 本実施形態の有機薄膜トランジスタは、有機薄膜トランジスタ素子の実用性の観点から、漏洩電流密度が10-9A/cm以下であることが好ましい。 From the viewpoint of practicality of the organic thin film transistor element, the organic thin film transistor of this embodiment preferably has a leakage current density of 10 −9 A/cm 2 or less.
(有機薄膜トランジスタを含む電子デバイス)
 本実施形態の電子デバイスは、上記本実施形態の有機薄膜トランジスタを含む。本実施形態の電子デバイスとしては、例えば、有機エレクトロルミネッセンス素子、有機光電変換素子、ディスプレイなどが挙げられる。
(Electronic devices including organic thin film transistors)
The electronic device of the present embodiment includes the organic thin film transistor of the present embodiment. Examples of the electronic device of the present embodiment include an organic electroluminescence element, an organic photoelectric conversion element, and a display.
 以下、本発明を実施例により説明するが、本発明が実施例に限定されるものではない。 The present invention will be described below with reference to examples, but the present invention is not limited to these examples.
 以下、本発明の実施例に用いた原料、装置等を説明する。 The following describes the raw materials, equipment, etc. used in the examples of the present invention.
(原料)
 カルコン:東京化成工業株式会社、製品コード C0071、純度(試験方法): >98.0%(GC)
 メトキシカルコン:東京化成工業株式会社、製品コード M1409、純度(試験方法): >98.0%(GC)
 ポリビニルシンナメート(PVCi):Sigma-Aldrich、製品コード 182648
 シクロペンタノン:富士フイルム和光純薬工業株式会社、製品コード 039-09716、純度(試験方法): >95.0%(GC)
 PGMEA:東京化成工業株式会社、製品コード P1171、純度(試験方法): >98.0%(GC)
 シリコンウェハ:湘南電子材料研究所、P型比抵抗1Ωcm以下
 ガラス基板:湘南電子材料研究所、ソーダライム
有機半導体層原料:2-デシル-7-フェニル[1]ベンゾチエノ[3,2-b][1]ベンゾチオフェン、東京化成工業株式会社、製品コードD5491、純度(試験方法): >99.5%(HPLC)
 有機半導体層添加原料:ポリスチレン、Sigma-Aldrich、製品コード 182427、average Mw ~280,000 (GPC)
(Raw materials)
Chalcon: Tokyo Chemical Industry Co., Ltd., product code C0071, purity (test method): >98.0% (GC)
Methoxychalcone: Tokyo Chemical Industry Co., Ltd., product code M1409, purity (test method): >98.0% (GC)
Polyvinyl cinnamate (PVCi): Sigma-Aldrich, product code 182648
Cyclopentanone: Fujifilm Wako Pure Chemical Industries, Ltd., Product code 039-09716, Purity (Test method): >95.0% (GC)
PGMEA: Tokyo Chemical Industry Co., Ltd., product code P1171, purity (test method): >98.0% (GC)
Silicon wafer: Shonan Electronic Materials Research Institute, P-type resistivity 1Ωcm or less Glass substrate: Shonan Electronic Materials Research Institute, soda lime Organic semiconductor layer raw material: 2-decyl-7-phenyl[1]benzothieno[3,2-b][1]benzothiophene, Tokyo Chemical Industry Co., Ltd., product code D5491, purity (test method): >99.5% (HPLC)
Organic semiconductor layer additive raw material: polystyrene, Sigma-Aldrich, product code 182427, average Mw ~280,000 (GPC)
(装置)
 成膜用装置:スピンコーター(ミカサ株式会社製、MS-A150)
 i線露光機:マルチライト(ウシオ電機株式会社製)
フォトリソグラフィー
 重量平均分子量:GPC(TOSO製:GPC-8020)
 残膜率:触針式プロファイラ(KLA-Tencor社製:P16)
 各電気特性評価:半導体パラメータ・アナライザ(ケースレーインスツルメンツ社製:4200A-SCS型)
(Device)
Film forming device: Spin coater (MS-A150, manufactured by Mikasa Co., Ltd.)
i-line exposure machine: Multilight (manufactured by Ushio Inc.)
Photolithography Weight average molecular weight: GPC (TOSO: GPC-8020)
Remaining film rate: Stylus profiler (KLA-Tencor: P16)
Evaluation of electrical characteristics: Semiconductor parameter analyzer (Keithley Instruments: 4200A-SCS model)
(評価方法)
 平均分子量:GPC(TOSO製:GPC-8020)で算出
 カルコン骨格の含有量:合成原料の仕込み比から算出
 残膜率:露光前の膜厚に対する、露光・現像後の膜厚の割合
 リーク電流:半導体パラメータ・アナライザによるMetal-Insulator-Metal構造の電流-電圧(I-V)測定により取得 
誘電率:半導体パラメータ・アナライザによるMetal-Insulator-Metal構造のキャパシタンス測定から算出
 伝達特性:半導体パラメータ・アナライザにより取得
 バイアスストレステストによる閾値電圧のシフト量:ソースゲート間に一定の電圧(VGS=-20V)を印加するNegative Bias Stress (NBS)テストにより取得。印加時間を1秒、10秒、100秒、1000秒とし、各印加時間経過後に伝達特性を測定して閾値電圧の差を算出した。
(Evaluation Method)
Average molecular weight: Calculated by GPC (TOSO: GPC-8020) Content of chalcone skeleton: Calculated from the ratio of synthetic raw materials used Residual film ratio: Ratio of film thickness after exposure and development to film thickness before exposure Leakage current: Obtained by current-voltage (IV) measurement of Metal-Insulator-Metal structure using a semiconductor parameter analyzer
Dielectric constant: Calculated from capacitance measurement of Metal-Insulator-Metal structure using a semiconductor parameter analyzer. Transfer characteristics: Obtained using a semiconductor parameter analyzer. Threshold voltage shift due to bias stress test: Obtained using a Negative Bias Stress (NBS) test that applies a constant voltage (VGS = -20V) between the source and gate. The application time was set to 1 second, 10 seconds, 100 seconds, and 1000 seconds, and the transfer characteristics were measured after each application time to calculate the difference in threshold voltage.
 (合成例1)
「ヒドロキシ基及びメトキシカルコン骨格を有する化合物(上記スキーム1の化合物3)の合成」
 化合物3:<物質名:4’-ヒドロキシ-4-メトキシカルコン>
 Ar下、20Lの4つ口フラスコに4-ヒドロキシアセトフェノン(富士フイルム和光純薬株式会社製、390g)、p-アニスアルデヒド(富士フイルム和光純薬株式会社製、390g)、メタノール(富士フイルム和光純薬株式会社製、5.5L)を混合した。次いで、氷浴中で内温15℃以下に維持しながら50%NaOH水溶液(2.7L)を60分かけて滴下した。その後、氷浴を外して室温で95時間撹拌した。90Lの容器に蒸留水5.4Lをいれ、反応液を注いだ。次いで1N HCl水溶液(約35L)を少しずつ注いだ。内温が30℃を超えそうな場合は氷を加えて25℃程度に保った。pH4程度に調整し析出固体を吸引ろ過にて分取し、メタノールと蒸留水の混合溶液(2/1,3L)で洗浄、得られた固体を50℃で24時間減圧乾燥することで、淡黄色固体544.6gを得た。エタノールを用いて再結晶を行い、淡黄色固体520.8gの目的物を得た(収率71%)。
 4’-ヒドロキシ-4-メトキシカルコンの1H-NMRの測定結果を以下に示す。
 1H-NMR(CDCl)3.86(3H,s),5.52(1H,s),6.93(4H,m),7.41(1H,m),7.60(2H,m),7.81(1H,m),8.01(2H,m)
(Synthesis Example 1)
"Synthesis of a compound having a hydroxy group and a methoxychalcone skeleton (compound 3 in the above scheme 1)"
Compound 3: <Substance name: 4'-hydroxy-4-methoxychalcone>
Under Ar, 4-hydroxyacetophenone (FUJIFILM Wako Pure Chemical Industries, Ltd., 390 g), p-anisaldehyde (FUJIFILM Wako Pure Chemical Industries, Ltd., 390 g), and methanol (FUJIFILM Wako Pure Chemical Industries, Ltd., 5.5 L) were mixed in a 20 L four-neck flask. Next, 50% NaOH aqueous solution (2.7 L) was added dropwise over 60 minutes while maintaining the internal temperature at 15°C or less in an ice bath. The ice bath was then removed and the mixture was stirred at room temperature for 95 hours. 5.4 L of distilled water was placed in a 90 L container, and the reaction solution was poured into it. Next, 1N HCl aqueous solution (approximately 35 L) was poured in little by little. If the internal temperature was about to exceed 30°C, ice was added to maintain the temperature at about 25°C. The pH was adjusted to about 4, and the precipitated solid was separated by suction filtration, washed with a mixed solution of methanol and distilled water (2/1, 3 L), and the obtained solid was dried under reduced pressure at 50° C. for 24 hours to obtain 544.6 g of a pale yellow solid. Recrystallization was performed using ethanol to obtain 520.8 g of the target product as a pale yellow solid (yield 71%).
The results of 1H-NMR measurement of 4'-hydroxy-4-methoxychalcone are shown below.
1H-NMR (CDCl 3 ) 3.86 (3H, s), 5.52 (1H, s), 6.93 (4H, m), 7.41 (1H, m), 7.60 (2H, m), 7.81 (1H, m), 8.01 (2H, m)
 (合成例2)
「メトキシカルコン骨格を有するエチレン性不飽和化合物(上記スキーム1の化合物5)の合成」
 化合物5:<物質名:(E)-4-(3-(4-メトキシフェニル)アクリロイル)フェニルメタクリレート>
 2Lの4つ口フラスコにアルゴン下で4’-ヒドロキシ-4-メトキシカルコン(30.0g)、THF(dry)を加え、溶解した。ここにトリエチルアミン(富士フイルム和光純薬株式会社製、15.5g)を加え、氷水で冷却した後、塩化メタクリロイル(富士フイルム和光純薬株式会社製、14.8g)を滴下した後、終夜撹拌した。反応器に水(600mL)を注いだ後、分液ロートに移し、酢酸エチル(富士フイルム和光純薬株式会社製、1.2L)で抽出した。次に酢酸エチル層を5% 重曹水(600mL)で2回、水(600mL)で3回洗浄した後、無水硫酸ナトリウムで乾燥した。乾燥剤除去後、減圧濃縮(40℃/ 20mmHg)し、淡黄色固体を得た。得られた粗体にエタノール(600mL)を加え、30分間懸濁撹拌した後、ろ過し、白色の固体を得た。これを減圧乾燥(40℃/<1mmHg)することで目的物を30.1 g(79.2%)得た。
 (E)-4-(3-(4-メトキシフェニル)アクリロイル)フェニルメタクリレートの1H-NMRの測定結果を以下に示す。
 1H-NMR(CDCl)2.09(3H,s),3.87(3H,s),5.81(1H,m),6.39(1H,m),6.93(2H,d),7.26(2H,d),7.38(1H,m),7.63(2H,d),7.78(1H,m),8.08(2H,d)
(Synthesis Example 2)
"Synthesis of an ethylenically unsaturated compound having a methoxychalcone skeleton (compound 5 in the above scheme 1)"
Compound 5: <Substance name: (E)-4-(3-(4-methoxyphenyl)acryloyl)phenyl methacrylate>
4'-hydroxy-4-methoxychalcone (30.0 g) and THF (dry) were added to a 2L four-neck flask under argon and dissolved. Triethylamine (FUJIFILM Wako Pure Chemical Industries, Ltd., 15.5 g) was added thereto, and after cooling with ice water, methacryloyl chloride (FUJIFILM Wako Pure Chemical Industries, Ltd., 14.8 g) was added dropwise, and then stirred overnight. Water (600 mL) was poured into the reactor, and then transferred to a separatory funnel and extracted with ethyl acetate (FUJIFILM Wako Pure Chemical Industries, Ltd., 1.2 L). Next, the ethyl acetate layer was washed twice with 5% sodium bicarbonate water (600 mL) and three times with water (600 mL), and then dried with anhydrous sodium sulfate. After removing the desiccant, the mixture was concentrated under reduced pressure (40 ° C / 20 mmHg) to obtain a pale yellow solid. Ethanol (600 mL) was added to the obtained crude product, and the mixture was suspended and stirred for 30 minutes, and then filtered to obtain a white solid. This was dried under reduced pressure (40° C./<1 mmHg) to obtain 30.1 g (79.2%) of the desired product.
The results of 1H-NMR measurement of (E)-4-(3-(4-methoxyphenyl)acryloyl)phenyl methacrylate are shown below.
1H-NMR (CDCl 3 ) 2.09 (3H, s), 3.87 (3H, s), 5.81 (1H, m), 6.39 (1H, m), 6.93 (2H, d), 7.26 (2H, d), 7.38 (1H, m), 7.63 (2H, d), 7.78 (1H, m), 8.08 (2H, d)
 (合成例3)
「メトキシカルコン骨格を有するポリマー(PMC:Poly(4-Methoxychalcone))(上記式(2)で表す化合物、スキーム2の化合物6)の合成」
 以上のスキーム2に示すように、合成例2で得た化合物5を重合させて化合物6を合成する。
 3Lの4つ口フラスコにアルゴン下で(E)-4-(3-(4-メトキシフェニル)アクリロイル)フェニルメタクリレート、脱気したDMFを加え、撹拌した。ここにAIBN(富士フイルム和光純薬株式会社製、3.82g)を加えた後、60℃まで昇温し、21時間加熱撹拌した。放冷後、メタノール(30 L)に滴下した。60分間撹拌した後、減圧ろ過し、メタノール(2L)で3回かけ洗いをし、得られた固体を減圧乾燥(50℃/<1mmHg)し、目的のPMCを135g得た。
 PMCの1H-NMRの測定結果を以下に示す。
 1H-NMR(CDCl)1.57(3H,br),1.94(1H,br),3.75(3H,br),6.83(2H,br),7.31(6H,m、br),7.96(2H,br)
 得られた化合物6を重量平均分子量、カルコン骨格の含有量。固形分などを評価し、結果は以下に示す。評価方法は上記に示す。
 重量平均分子量:44131
 カルコン骨格の含有量:74質量部
(Synthesis Example 3)
"Synthesis of polymer having a methoxychalcone skeleton (PMC: Poly(4-Methoxychalcone) (compound represented by the above formula (2), compound 6 in scheme 2)"
As shown in Scheme 2 above, compound 6 is synthesized by polymerizing compound 5 obtained in Synthesis Example 2.
In a 3 L four-neck flask, (E)-4-(3-(4-methoxyphenyl)acryloyl)phenyl methacrylate and degassed DMF were added under argon and stirred. AIBN (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd., 3.82 g) was added thereto, and the temperature was raised to 60° C. and the mixture was heated and stirred for 21 hours. After cooling, the mixture was added dropwise to methanol (30 L). After stirring for 60 minutes, the mixture was filtered under reduced pressure and washed three times with methanol (2 L). The obtained solid was dried under reduced pressure (50° C./<1 mmHg) to obtain 135 g of the target PMC.
The results of 1H-NMR measurement of PMC are shown below.
1H-NMR (CDCl 3 ) 1.57 (3H, br), 1.94 (1H, br), 3.75 (3H, br), 6.83 (2H, br), 7.31 (6H, m, br), 7.96 (2H, br)
The weight average molecular weight, the content of the chalcone skeleton, the solid content, etc. of the obtained compound 6 were evaluated, and the results are shown below. The evaluation method is as described above.
Weight average molecular weight: 44131
Content of chalcone skeleton: 74 parts by mass
(実施例1)
〔組成物の調製〕
 カルコン3質量%及びポリビニルシンナメート10質量%は、シクロペンタノンに溶解させ、本実施例の組成物を調製した。
Example 1
[Preparation of Composition]
The composition of this example was prepared by dissolving 3% by mass of chalcone and 10% by mass of polyvinyl cinnamate in cyclopentanone.
〔有機絶縁膜の作成と評価〕
 図3は、本実施例で調製した組成物から得られた有機絶縁膜の電気特性を調べるために作製したMetal-Insulator-Metal構造の模式図である。本実施例で調製した組成物を用いて、シリコンウェハ上にスピンコート2000rpm,60秒で成膜した。フォトリソグラフィー前の膜厚は450nmであった。80℃で20分プリベークを行い、様々なi線露光量で露光し、有機絶縁膜をPGMEAで現像を行った。図4と図5(図4の拡大図)は露光量に対する残膜率である。図5に示すように、2400mJ/cmで残膜率がほぼ1に達した。
 図6は図3示すMIM構造の上部電極-下部電極間のリーク電流である。
 図6から、実施例1の有機絶縁膜は、後述の比較例1のポ有機絶縁膜とほぼ同等の絶縁性を有する事が分かった。
 また、実施例1の有機絶縁膜の誘電率も評価した。
 実施例1の有機絶縁膜の評価結果を表1に示す。
[Creation and evaluation of organic insulating films]
FIG. 3 is a schematic diagram of a Metal-Insulator-Metal structure prepared to examine the electrical properties of the organic insulating film obtained from the composition prepared in this example. Using the composition prepared in this example, a film was formed on a silicon wafer by spin coating at 2000 rpm for 60 seconds. The film thickness before photolithography was 450 nm. Pre-baking was performed at 80°C for 20 minutes, and the organic insulating film was exposed to various i-line exposure doses and developed with PGMEA. FIG. 4 and FIG. 5 (an enlarged view of FIG. 4) show the remaining film ratio versus exposure dose. As shown in FIG. 5, the remaining film ratio reached almost 1 at 2400 mJ/ cm2 .
FIG. 6 shows the leakage current between the upper electrode and the lower electrode of the MIM structure shown in FIG.
It is apparent from FIG. 6 that the organic insulating film of Example 1 has almost the same insulating properties as the organic insulating film of Comparative Example 1 described below.
The dielectric constant of the organic insulating film of Example 1 was also evaluated.
The evaluation results of the organic insulating film of Example 1 are shown in Table 1.
〔有機薄膜トランジスタの製造と評価〕
 図7は、本実施形態による有機薄膜トランジスタ作製方法である。また、図2は作製した有機薄膜トランジスタの積層構造の模式図である。
 まず、図7(1)の工程でゲート電極を形成した。絶縁性基板であるソーダライムウェハに、抵抗加熱型真空蒸着法でアルミニウム(Al)を50nm成膜した。次に電極加工を行った。まずAl層表面にポジ型フォトレジストであるスミレジストPFI-34A(住友化学製)をスピンコート1500rpm,45秒で成膜し、105℃で10分間プリベークを行いレジスト膜から溶媒を除去した。次に、フォトマスクを用いてi線ドーズ量270mJ/cm2でゲート電極パターンを露光し、105℃で10分間露光後ベーク(PEB)を行った。その後、室温25℃でテトラメチルアンモニウムヒドロキシド(TMAH)に1分間浸漬して露光部のレジストを除去した。基板を純水で洗浄した後、Nガスを吹き付けて乾燥させ、105℃で10分間ポストベークした。次に、Al層の加工を行った。加温した混酸水溶液(HPO:CHCOOH:HNO:HO=10:1:1:2重量比)に基板を浸漬し、露出したAlをエッチングした。基板上のレジストをアセトンで除去し、純水で洗浄後、Nガスを吹き付けて乾燥させた。
 次に、図7(2)の工程でゲート絶縁膜を形成した。本実施例で得られた組成物を、スピンコート2000rpm,60秒で成膜し、80℃で20分プリベークを行った。次にフォトマスクを用いてi線ドーズ量2400mJ/cmで硬化させた。その後、室温25℃で現像液としてPGMEAに浸漬し、ゲート電極のパッド部のみを開口した。その後、150℃で1時間ポストベークした。
 次に図7(3)の工程でソース/ドレイン電極を形成した。ゲート絶縁膜(層)の上に、抵抗加熱型真空蒸着法で金(Au)を50nm成膜した。次に電極加工を行った。図7(1)の工程と同様にレジスト工程およびエッチング工程を実施した。
 最後に、図7(4)の工程で半導体層の形成を行った。ソース/ドレイン電極を作製した基板をUV処理した後、浸漬法によりAu電極表面にチオール系自己組織化単分子膜(SAM)を形成した。その後、有機半導体0.5質量%及びポリスチレン0.2質量%をキシレンに溶解させた半導体溶液を150℃に加熱し、スピンコート1000rpm、30秒で成膜し、120℃で5分間ポストベークした。最後に各電極パッド上を払拭して半導体層のパターニングを行った。完成したOTFTの顕微鏡像を図8に示す。
 図9に作製したOTFT(チャネル長L=50μm、チャネル幅W=500μm)の伝達特性およびバイアスストレステストの結果を示す。伝達特性はソース/ドレイン間電圧Vds=-2Vで取得した。バイアスストレステストはソース/ゲート間にバイアス電圧Vg=-20Vを印加し、1秒印加後、10秒印加後、100秒印加後、1000秒印加後に取得して特性変化を取得した。図10に印加時間に対する閾値電圧のシフト量を示す。本実施例のゲート絶縁膜では1000秒印加で0.5Vの閾値電圧シフトが確認された。
[Fabrication and evaluation of organic thin-film transistors]
Fig. 7 shows a method for producing an organic thin film transistor according to this embodiment, and Fig. 2 is a schematic diagram of a laminated structure of the produced organic thin film transistor.
First, a gate electrode was formed in the process of FIG. 7(1). A 50 nm thick aluminum (Al) film was formed on a soda lime wafer, which is an insulating substrate, by a resistance heating vacuum deposition method. Next, electrode processing was performed. First, a positive photoresist, Sumiresist PFI-34A (manufactured by Sumitomo Chemical), was spin-coated on the surface of the Al layer at 1500 rpm for 45 seconds, and pre-baked at 105°C for 10 minutes to remove the solvent from the resist film. Next, the gate electrode pattern was exposed to light with an i-line dose of 270 mJ/cm2 using a photomask, and post-exposure baking (PEB) was performed at 105°C for 10 minutes. After that, the exposed resist was removed by immersing the substrate in tetramethylammonium hydroxide (TMAH) at room temperature of 25°C for 1 minute. After washing the substrate with pure water, N2 gas was sprayed on the substrate to dry it, and post-baked at 105°C for 10 minutes. Next, the Al layer was processed. The substrate was immersed in a heated mixed acid solution ( H3PO4 : CH3COOH : HNO3 : H2O = 10:1:1:2 weight ratio) to etch the exposed Al. The resist on the substrate was removed with acetone, washed with pure water, and then dried by blowing N2 gas onto the substrate.
Next, a gate insulating film was formed in the process of FIG. 7(2). The composition obtained in this example was spin-coated at 2000 rpm for 60 seconds, and pre-baked at 80° C. for 20 minutes. Next, a photomask was used to harden the film with an i-ray dose of 2400 mJ/cm 2. After that, the film was immersed in PGMEA as a developer at room temperature of 25° C., and only the pad portion of the gate electrode was opened. Then, the film was post-baked at 150° C. for 1 hour.
Next, source/drain electrodes were formed in the process of Fig. 7 (3). A gold (Au) film was formed to a thickness of 50 nm on the gate insulating film (layer) by resistance heating vacuum deposition. Next, electrodes were processed. Resist and etching processes were carried out in the same manner as in the process of Fig. 7 (1).
Finally, the semiconductor layer was formed in the process of FIG. 7(4). After the substrate on which the source/drain electrodes were formed was UV-treated, a thiol-based self-assembled monolayer (SAM) was formed on the surface of the Au electrode by immersion. Then, a semiconductor solution in which 0.5% by mass of organic semiconductor and 0.2% by mass of polystyrene were dissolved in xylene was heated to 150° C., and a film was formed by spin-coating at 1000 rpm for 30 seconds, and post-baked at 120° C. for 5 minutes. Finally, the semiconductor layer was patterned by wiping each electrode pad. A microscope image of the completed OTFT is shown in FIG. 8.
Fig. 9 shows the transfer characteristics and bias stress test results of the fabricated OTFT (channel length L = 50 μm, channel width W = 500 μm). The transfer characteristics were obtained at a source/drain voltage Vds = -2 V. The bias stress test was performed by applying a bias voltage Vg = -20 V between the source/gate, and obtaining the characteristic changes after 1 second, 10 seconds, 100 seconds, and 1000 seconds of application. Fig. 10 shows the shift in threshold voltage versus application time. In the gate insulating film of this example, a threshold voltage shift of 0.5 V was confirmed after 1000 seconds of application.
(実施例2~15)
〔組成物の調製〕
 表1及び表2に示す組成で、実施例2~5の組成物を調製した。
(Examples 2 to 15)
[Preparation of Composition]
Compositions of Examples 2 to 5 were prepared according to the compositions shown in Tables 1 and 2.
〔有機絶縁膜の作成と評価〕
 実施例1の組成物の代わりに、実施例2~15の組成物を用いた以外は、実施例1と同様な方法で、有機絶縁膜を作成し、評価した。結果を表1及び表2に示す。
[Creation and evaluation of organic insulating films]
Organic insulating films were prepared and evaluated in the same manner as in Example 1, except that the compositions of Examples 2 to 15 were used instead of the composition of Example 1. The results are shown in Tables 1 and 2.
〔有機薄膜トランジスタの製造と評価〕
 実施例1の組成物の代わりに、実施例2~15の組成物を用いた以外は、実施例1と同様な方法で、有機薄膜トランジスタを作成し、評価した。結果を表1及び表2に示す。
[Fabrication and evaluation of organic thin-film transistors]
Organic thin film transistors were produced and evaluated in the same manner as in Example 1, except that the compositions of Examples 2 to 15 were used instead of the composition of Example 1. The results are shown in Tables 1 and 2.
(実施例16)
〔組成物の調製〕
 合成例3で得られたポリマー化メトキシカルコン膜を10質量%でシクロペンタノンに溶解させ、本実施例の組成物を調製した。
(Example 16)
[Preparation of Composition]
The polymerized methoxychalcone film obtained in Synthesis Example 3 was dissolved in cyclopentanone at 10% by mass to prepare the composition of this example.
〔有機絶縁膜の作成と評価〕
 図3は、本実施例で調製した組成物から得られた有機絶縁膜の電気特性を調べるために作製したMetal-Insulator-Metal構造の模式図である。本実施例で調製した組成物を用いて、シリコンウェハ上にスピンコート2000rpm,60秒で成膜した。フォトリソグラフィー前の膜厚は450nmであった。80℃で20分プリベークを行い、様々なi線露光量で露光し、有機絶縁膜をシクロペンタノンで現像を行った。図11と図12(図11の拡大図)は露光量に対する残膜率である。図12に示すように、200mJ/cmで残膜率がほぼ1に達した。
 図13は図3示すMIM構造の上部電極-下部電極間のリーク電流である。
 図13から、実施例1の有機絶縁膜は、後述の比較例1のポ有機絶縁膜とほぼ同等の絶縁性を有する事が分かった。
 また、実施例16の有機絶縁膜の誘電率も評価した。
 実施例16の有機絶縁膜の評価結果を表2に示す。
[Creation and evaluation of organic insulating films]
FIG. 3 is a schematic diagram of a Metal-Insulator-Metal structure prepared to examine the electrical properties of the organic insulating film obtained from the composition prepared in this example. Using the composition prepared in this example, a film was formed on a silicon wafer by spin coating at 2000 rpm for 60 seconds. The film thickness before photolithography was 450 nm. The film was prebaked at 80°C for 20 minutes, exposed to various i-line exposure doses, and the organic insulating film was developed with cyclopentanone. FIG. 11 and FIG. 12 (an enlarged view of FIG. 11) show the remaining film ratio versus exposure dose. As shown in FIG. 12, the remaining film ratio reached almost 1 at 200 mJ/ cm2 .
FIG. 13 shows the leakage current between the upper electrode and the lower electrode of the MIM structure shown in FIG.
It is apparent from FIG. 13 that the organic insulating film of Example 1 has almost the same insulating properties as the organic insulating film of Comparative Example 1 described below.
The dielectric constant of the organic insulating film of Example 16 was also evaluated.
The evaluation results of the organic insulating film of Example 16 are shown in Table 2.
〔有機薄膜トランジスタの製造と評価〕
 図7は、本実施形態による有機薄膜トランジスタ作製方法である。また、図2は作製した有機薄膜トランジスタの積層構造の模式図である。
 まず、図7(1)の工程でゲート電極を形成した。絶縁性基板であるソーダライムウェハに、抵抗加熱型真空蒸着法でアルミニウム(Al)を50nm成膜した。次に電極加工を行った。まずAl層表面にポジ型フォトレジストであるスミレジストPFI-34A(住友化学製)をスピンコート1500rpm,45秒で成膜し、105℃で10分間プリベークを行いレジスト膜から溶媒を除去した。次に、フォトマスクを用いてi線ドーズ量270mJ/cm2でゲート電極パターンを露光し、105℃で10分間露光後ベーク(PEB)を行った。その後、室温25℃でテトラメチルアンモニウムヒドロキシド(TMAH)に1分間浸漬して露光部のレジストを除去した。基板を純水で洗浄した後、N2ガスを吹き付けて乾燥させ、105℃で10分間ポストベークした。次に、Al層の加工を行った。加温した混酸水溶液(HPO:CHCOOH:HNO:HO=10:1:1:2重量比)に基板を浸漬し、露出したAlをエッチングした。基板上のレジストをアセトンで除去し、純水で洗浄後、Nガスを吹き付けて乾燥させた。
 次に、図7(2)の工程でゲート絶縁膜を形成した。本実施例で得られた組成物を、スピンコート2000rpm,60秒で成膜し、80℃で20分プリベークを行った。次にフォトマスクを用いてi線ドーズ量2400mJ/cmで硬化させた。その後、室温25℃で現像液としてシクロペンタノンに浸漬し、ゲート電極のパッド部のみを開口した。その後、150℃で1時間ポストベークした。
 次に図7(3)の工程でソース/ドレイン電極を形成した。ゲート絶縁膜(層)の上に、抵抗加熱型真空蒸着法で金(Au)を50nm成膜した。次に電極加工を行った。図7(1)の工程と同様にレジスト工程およびエッチング工程を実施した。
 最後に、図7(4)の工程で半導体層の形成を行った。ソース/ドレイン電極を作製した基板をUV処理した後、浸漬法によりAu電極表面にチオール系自己組織化単分子膜(SAM)を形成した。その後、有機半導体0.5質量%及びポリスチレン0.2質量%をキシレンに溶解させた半導体溶液を150℃に加熱し、スピンコート1000rpm、30秒で成膜し、120℃で5分間ポストベークした。最後に各電極パッド上を払拭して半導体層のパターニングを行った。完成したOTFTの顕微鏡像を図13に示す。
 図15に作製したOTFT(チャネル長L=50μm、チャネル幅W=500μm)の伝達特性およびバイアスストレステストの結果を示す。伝達特性はソース/ドレイン間電圧Vds=-2Vで取得した。バイアスストレステストはソース/ゲート間にバイアス電圧Vg=-20Vを印加し、1秒印加後、10秒印加後、100秒印加後、1000秒印加後に取得して特性変化を取得した。図10に印加時間に対する閾値電圧のシフト量を示す。本実施例のゲート絶縁膜では1000秒印加で0.67Vの閾値電圧シフトが確認された。
[Fabrication and evaluation of organic thin-film transistors]
Fig. 7 shows a method for producing an organic thin film transistor according to this embodiment, and Fig. 2 is a schematic diagram of a laminated structure of the produced organic thin film transistor.
First, a gate electrode was formed in the process of FIG. 7(1). A 50 nm thick aluminum (Al) film was formed on a soda lime wafer, which is an insulating substrate, by a resistance heating vacuum deposition method. Next, electrode processing was performed. First, a positive photoresist, Sumiresist PFI-34A (manufactured by Sumitomo Chemical), was spin-coated on the surface of the Al layer at 1500 rpm for 45 seconds, and pre-baked at 105°C for 10 minutes to remove the solvent from the resist film. Next, the gate electrode pattern was exposed to light using a photomask at an i-line dose of 270 mJ/cm2, and post-exposure baked (PEB) was performed at 105°C for 10 minutes. After that, the exposed resist was removed by immersing the substrate in tetramethylammonium hydroxide (TMAH) at room temperature of 25°C for 1 minute. The substrate was washed with pure water, dried by blowing N2 gas, and post-baked at 105°C for 10 minutes. Next, the Al layer was processed. The substrate was immersed in a heated mixed acid solution ( H3PO4 : CH3COOH : HNO3 : H2O = 10:1:1:2 weight ratio) to etch the exposed Al. The resist on the substrate was removed with acetone, washed with pure water, and then dried by blowing N2 gas onto the substrate.
Next, a gate insulating film was formed in the process of FIG. 7(2). The composition obtained in this example was spin-coated at 2000 rpm for 60 seconds, and pre-baked at 80° C. for 20 minutes. Next, a photomask was used to harden the film with an i-ray dose of 2400 mJ/cm 2. After that, the film was immersed in cyclopentanone as a developer at room temperature of 25° C., and only the pad portion of the gate electrode was opened. Then, the film was post-baked at 150° C. for 1 hour.
Next, source/drain electrodes were formed in the process of Fig. 7 (3). A gold (Au) film was formed to a thickness of 50 nm on the gate insulating film (layer) by resistance heating vacuum deposition. Next, electrodes were processed. Resist and etching processes were carried out in the same manner as in the process of Fig. 7 (1).
Finally, the semiconductor layer was formed in the process of FIG. 7(4). After the substrate on which the source/drain electrodes were formed was UV-treated, a thiol-based self-assembled monolayer (SAM) was formed on the surface of the Au electrode by immersion. Then, a semiconductor solution in which 0.5% by mass of organic semiconductor and 0.2% by mass of polystyrene were dissolved in xylene was heated to 150° C., and a film was formed by spin-coating at 1000 rpm for 30 seconds, and post-baked at 120° C. for 5 minutes. Finally, the semiconductor layer was patterned by wiping each electrode pad. A microscope image of the completed OTFT is shown in FIG. 13.
FIG. 15 shows the transfer characteristics and bias stress test results of the fabricated OTFT (channel length L=50 μm, channel width W=500 μm). The transfer characteristics were obtained at a source/drain voltage Vds=-2V. The bias stress test was performed by applying a bias voltage Vg=-20V between the source/gate, and the characteristics were obtained after 1 second, 10 seconds, 100 seconds, and 1000 seconds of application. FIG. 10 shows the shift in threshold voltage versus application time. In the gate insulating film of this example, a threshold voltage shift of 0.67 V was confirmed after 1000 seconds of application.
(比較例1)
 PVCiは10質量%でシクロペンタノンに溶解させ、本比較例の組成物を調製した。
(Comparative Example 1)
PVCi was dissolved in cyclopentanone at 10% by mass to prepare the composition of this comparative example.
〔有機絶縁膜の作成と評価〕
 実施例1の組成物の代わりに、本比較例の組成物を用い、また、得られた有機絶縁膜をPGMEAで現像を行った外は、実施例1と同様な方法で、有機絶縁膜を作成し、評価した。結果を表1に示す。
[Creation and evaluation of organic insulating films]
An organic insulating film was prepared and evaluated in the same manner as in Example 1, except that the composition of this comparative example was used instead of the composition of Example 1 and the obtained organic insulating film was developed with PGMEA. The results are shown in Table 1.
〔有機薄膜トランジスタの製造と評価〕
 比較例1として、上記実施例1でのOTFT作製プロセスにおいて、ゲート絶縁膜をPVCiとした。PVCiを10質量%でシクロペンタノンに溶解させ、スピンコート2000rpm,60秒で成膜し、80℃で20分プリベークを行った。次にフォトマスクを用いて低圧水銀灯で十分に硬化させた。その後、室温25℃でシクロペンタノンに浸漬し、ゲート電極のパッド部のみを開口した。その後、150℃で1時間ポストベークした。
 図16に作製したOTFT(チャネル長L=50 μm、チャネル幅W=500μm)の伝達特性およびバイアスストレステストの結果を示す。伝達特性はソース/ドレイン間電圧Vds=-2Vで取得した。バイアスストレステストはソース/ゲート間にバイアス電圧Vg=-20Vを印加し、1秒印加後、10秒印加後、100秒印加後、1000秒印加後に取得して特性変化を取得した。図9に印加時間に対する閾値電圧のシフト量を示す。PVCiでは1000秒印加で0.74Vの閾値電圧シフトが確認された。
[Fabrication and evaluation of organic thin-film transistors]
As Comparative Example 1, in the OTFT manufacturing process of Example 1, the gate insulating film was PVCi. PVCi was dissolved in cyclopentanone at 10 mass %, and a film was formed by spin coating at 2000 rpm for 60 seconds, and pre-baked at 80°C for 20 minutes. Next, the film was sufficiently cured with a low-pressure mercury lamp using a photomask. After that, the film was immersed in cyclopentanone at room temperature of 25°C, and only the pad portion of the gate electrode was opened. Then, the film was post-baked at 150°C for 1 hour.
Figure 16 shows the transfer characteristics and bias stress test results of the fabricated OTFT (channel length L = 50 μm, channel width W = 500 μm). The transfer characteristics were obtained at a source/drain voltage Vds = -2V. The bias stress test was performed by applying a bias voltage Vg = -20V between the source/gate, and the characteristics were obtained after 1 second, 10 seconds, 100 seconds, and 1000 seconds of application. Figure 9 shows the shift in threshold voltage versus application time. For PVCi, a threshold voltage shift of 0.74V was confirmed after 1000 seconds of application.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
 表中の符号の意味は以下である。
 PVCi:ポリビニルシンナメート
 CH:カルコン
 MC:メトキシカルコン
 PMC:ポリ(4-メトキシカルコン)
 CPN:シクロペンタノン
 PGMEA:プロピレングリコール1-モノメチルエーテル2-アセタート
The symbols in the table have the following meanings:
PVCi: Polyvinyl cinnamate CH: Chalcone MC: Methoxychalcone PMC: Poly(4-methoxychalcone)
CPN: Cyclopentanone PGMEA: Propylene glycol 1-monomethyl ether 2-acetate
  1、11:有機半導体層
  2、12、22:基板
  3、13、33:ゲート電極
  4、14:ゲート絶縁層
  5、15、35:ソース電極
  6、16、36:ドレイン電極
  22:基板
  23:電極
  24:絶縁層
1, 11: organic semiconductor layer 2, 12, 22: substrate 3, 13, 33: gate electrode 4, 14: gate insulating layer 5, 15, 35: source electrode 6, 16, 36: drain electrode 22: substrate 23: electrode 24: insulating layer

Claims (12)

  1.  カルコン骨格を有するポリマー
    を含むことを特徴とする感光性有機絶縁材料組成物。
    A photosensitive organic insulating material composition comprising a polymer having a chalcone skeleton.
  2.  前記カルコン骨格を有するポリマーは、エチレン性不飽和基を有する置換カルコン化合物を含む単量体の重合体又は共重合体である、請求項1に記載の感光性有機絶縁材料組成物。 The photosensitive organic insulating material composition according to claim 1, wherein the polymer having a chalcone skeleton is a polymer or copolymer of a monomer containing a substituted chalcone compound having an ethylenically unsaturated group.
  3.  前記エチレン性不飽和基を有する置換カルコン化合物が、エチレン性不飽和基を有するカルコン、及びエチレン性不飽和基とメトキシ基とを有するカルコンからなる群から選択される少なくとも1種である、請求項2に記載の感光性有機絶縁材料組成物。 The photosensitive organic insulating material composition according to claim 2, wherein the substituted chalcone compound having an ethylenically unsaturated group is at least one selected from the group consisting of chalcones having an ethylenically unsaturated group and chalcones having an ethylenically unsaturated group and a methoxy group.
  4.  前記カルコン骨格を有するポリマーは、下記一般式(1)~(3)で表される化合物のうちのいずれかである、請求項1に記載の感光性有機絶縁材料組成物。
    Figure JPOXMLDOC01-appb-C000001
    Figure JPOXMLDOC01-appb-C000002
    Figure JPOXMLDOC01-appb-C000003
    (式(1)中、n1は1~1000の整数である。式(2)中、n2は1~1000の整数である。式(3)中、n3は1~1000の整数である。)
    2. The photosensitive organic insulating material composition according to claim 1, wherein the polymer having a chalcone skeleton is any one of compounds represented by the following general formulas (1) to (3):
    Figure JPOXMLDOC01-appb-C000001
    Figure JPOXMLDOC01-appb-C000002
    Figure JPOXMLDOC01-appb-C000003
    (In formula (1), n1 is an integer from 1 to 1000. In formula (2), n2 is an integer from 1 to 1000. In formula (3), n3 is an integer from 1 to 1000.)
  5.  重量平均分子量が、5000~100000である、請求項1~4のいずれか1項に記載の感光性有機絶縁材料組成物。 The photosensitive organic insulating material composition according to any one of claims 1 to 4, having a weight average molecular weight of 5,000 to 100,000.
  6.  300~370nmの波長範囲に吸収スペクトルのピークを有する、請求項1~5のいずれか1項に記載の感光性有機絶縁材料組成物。 The photosensitive organic insulating material composition according to any one of claims 1 to 5, having an absorption spectrum peak in the wavelength range of 300 to 370 nm.
  7.  請求項1~6のいずれか1項に記載の感光性有機絶縁材料組成物の光硬化物である、有機絶縁膜。 An organic insulating film that is a photocured product of the photosensitive organic insulating material composition according to any one of claims 1 to 6.
  8.  請求項1~6のいずれか1項に記載の感光性有機絶縁材料組成物の光硬化物である、ゲート絶縁膜。 A gate insulating film that is a photocured product of the photosensitive organic insulating material composition according to any one of claims 1 to 6.
  9.  請求項8に記載のゲート絶縁膜を有する、トランジスタ。 A transistor having the gate insulating film according to claim 8.
  10.  請求項9に記載のトランジスタを有する、電子デバイス。 An electronic device having the transistor according to claim 9.
  11.  請求項1~6のいずれか1項に記載の感光性有機絶縁材料組成物を基板に塗布する工程と、
     露光により、前記感光性有機絶縁材料組成物を硬化してゲート絶縁膜を形成する工程と、を含む、ゲート絶縁膜の製造方法。
    A step of applying the photosensitive organic insulating material composition according to any one of claims 1 to 6 onto a substrate;
    and curing the photosensitive organic insulating material composition by exposure to light to form a gate insulating film.
  12.  ゲート絶縁膜を有するトランジスタの製造方法であって、
     請求項11に記載のゲート絶縁膜の製造方法により前記ゲート絶縁膜を形成する工程を含む、トランジスタの製造方法。
    A method for manufacturing a transistor having a gate insulating film, comprising the steps of:
    A method for manufacturing a transistor, comprising the step of forming the gate insulating film by the method for manufacturing the gate insulating film according to claim 11.
PCT/JP2023/010262 2023-03-16 2023-03-16 Photosensitive organic insulating material composition, insulating film, gate insulating film, transistor, electronic device, and method for manufacturing transistor WO2024189876A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2023/010262 WO2024189876A1 (en) 2023-03-16 2023-03-16 Photosensitive organic insulating material composition, insulating film, gate insulating film, transistor, electronic device, and method for manufacturing transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2023/010262 WO2024189876A1 (en) 2023-03-16 2023-03-16 Photosensitive organic insulating material composition, insulating film, gate insulating film, transistor, electronic device, and method for manufacturing transistor

Publications (1)

Publication Number Publication Date
WO2024189876A1 true WO2024189876A1 (en) 2024-09-19

Family

ID=92754981

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/010262 WO2024189876A1 (en) 2023-03-16 2023-03-16 Photosensitive organic insulating material composition, insulating film, gate insulating film, transistor, electronic device, and method for manufacturing transistor

Country Status (1)

Country Link
WO (1) WO2024189876A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010122274A (en) * 2008-11-17 2010-06-03 Osaka Prefecture Photoresist composition
JP2017016116A (en) * 2015-06-30 2017-01-19 富士フイルム株式会社 Photosensitive resin composition, production method of cured film, cured film and liquid crystal display device
JP2018031805A (en) * 2016-08-22 2018-03-01 住友化学株式会社 Method for forming insulating layer

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010122274A (en) * 2008-11-17 2010-06-03 Osaka Prefecture Photoresist composition
JP2017016116A (en) * 2015-06-30 2017-01-19 富士フイルム株式会社 Photosensitive resin composition, production method of cured film, cured film and liquid crystal display device
JP2018031805A (en) * 2016-08-22 2018-03-01 住友化学株式会社 Method for forming insulating layer

Similar Documents

Publication Publication Date Title
US9500952B2 (en) Orthogonal processing of organic materials used in electronic and electrical devices
JP6214768B2 (en) Azide crosslinking agent
TWI571474B (en) Bank structures for organic electronic devices
WO2011162001A1 (en) Curable composition and method for producing cured film
WO2013089204A1 (en) Liquid repellent compound, liquid repellent polymer, curable composition, coating composition, article having cured film, article having pattern with lyophilic region and liquid repellent region, and method for producing same
JP6821991B2 (en) Insulating film and organic field effect transistor device containing it
JP2015194674A (en) laminate
WO2014156910A1 (en) Composition, method for producing substrate having pattern formed thereon, film and method for producing same, and compound
WO2013115195A1 (en) Compound, polymer, curable composition, coating composition, article having cured film, article having pattern of lyophilic regions and lyophobic regions, and method for producing same
WO2014199958A1 (en) Liquid-repellent compound, liquid-repellent polymer, curable composition, coating composition, article having cured film, article having pattern of lyophilic region and liquid-repellent region, and method for producing article
EP3740523B1 (en) Organic dielectric materials and devices including them
JP2019178191A (en) Fluorine resin
WO2024189876A1 (en) Photosensitive organic insulating material composition, insulating film, gate insulating film, transistor, electronic device, and method for manufacturing transistor
WO2024189875A1 (en) Photosensitive organic insulating material composition, insulating film, gate insulating film, transistor, electronic device, and method for manufacturing transistor
JP2012012495A (en) Polymerizable compound, polymerizable composition, polymer and semiconductor device
EP4317225A1 (en) Fluorine resin, composition, photocrosslinked product, and electronic device provided therewith
TWI573194B (en) Insulation film for semiconductor and organic film transister using the same
JP7480484B2 (en) Resin composition
WO2023074606A1 (en) Resin, insulating film and organic field effect transistor comprising same
JP7371334B2 (en) Polymerizable compounds, photocrosslinkable polymers, insulating films, and organic transistor devices
WO2024070915A1 (en) Resin, composition, photocrosslinked product, pattern, and electronic device comprising same
JP7363060B2 (en) Polymerizable compounds, photocurable polymers, insulating films, protective films, and organic transistor devices
JP2004191993A (en) Composition for formation of conjugate polymer pattern and method of forming pattern using the same
JP2022108813A (en) Composition for forming protective film
JP6953986B2 (en) Photocrosslinkable polymers, insulating films and organic field effect transistor devices containing them

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23927495

Country of ref document: EP

Kind code of ref document: A1