WO2024181393A1 - Epoxy-based adhesive composition containing functional block copolymer, method for producing same, and cured product of epoxy-based adhesive containing functional block copolymer - Google Patents

Epoxy-based adhesive composition containing functional block copolymer, method for producing same, and cured product of epoxy-based adhesive containing functional block copolymer Download PDF

Info

Publication number
WO2024181393A1
WO2024181393A1 PCT/JP2024/006923 JP2024006923W WO2024181393A1 WO 2024181393 A1 WO2024181393 A1 WO 2024181393A1 JP 2024006923 W JP2024006923 W JP 2024006923W WO 2024181393 A1 WO2024181393 A1 WO 2024181393A1
Authority
WO
WIPO (PCT)
Prior art keywords
block copolymer
functional
mass
polystyrene
group
Prior art date
Application number
PCT/JP2024/006923
Other languages
French (fr)
Japanese (ja)
Inventor
和優 坂口
達弥 加納
和男 服部
吉朗 藤井
篤史 野呂
貴都 梶田
武信 酒井
紗椰 山田
実緒 西本
堀内純子
Original Assignee
アイシン化工株式会社
国立大学法人東海国立大学機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アイシン化工株式会社, 国立大学法人東海国立大学機構 filed Critical アイシン化工株式会社
Publication of WO2024181393A1 publication Critical patent/WO2024181393A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J153/00Adhesives based on block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Adhesives based on derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J153/00Adhesives based on block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Adhesives based on derivatives of such polymers
    • C09J153/02Vinyl aromatic monomers and conjugated dienes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J163/00Adhesives based on epoxy resins; Adhesives based on derivatives of epoxy resins

Definitions

  • the present invention relates to a functional block copolymer-containing epoxy adhesive composition that can be used in applications such as automotive structural adhesives, a method for producing the same, and a cured product of a functional block copolymer-containing epoxy adhesive, and in particular to a functional block copolymer-containing epoxy adhesive composition that enables improved toughness, a method for producing the same, and a cured product of a functional block copolymer-containing epoxy adhesive.
  • the cured product of the epoxy resin is hard and has poor flexibility.
  • one-component epoxy resins generally have low peel adhesive strength and impact adhesive strength because they are insufficient in elongation and difficult to bend, although they exhibit high shear adhesive strength.
  • a modification technique using core-shell rubber particles as shown in Patent Document 1, for example, is known.
  • the present invention aims to provide a functional block copolymer-containing epoxy adhesive composition that enables improved toughness, a method for producing the same, and a cured product of the functional block copolymer-containing epoxy adhesive.
  • the functional block copolymer-containing epoxy adhesive composition of the invention of claim 1 contains an epoxy resin, a curing agent, and a functional block copolymer consisting of a rubber-like polymer that is incompatible with the epoxy resin and has a non-covalent functional group with a glass transition temperature of 25°C or less, and a polymer that is compatible with the epoxy resin.
  • epoxy resin general-purpose epoxy resins such as bisphenol A type epoxy resins and bisphenol F type epoxy resins, urethane-modified epoxy resins, rubber-modified epoxy resins, etc. can be used, with general-purpose epoxy resins such as bisphenol A type epoxy resins being preferred.
  • the curing agent may be any agent having an active group that reacts with an epoxy group, and for example, a latent curing agent such as an imidazole compound such as dicyandiamide, which has excellent storage stability, is preferably used.
  • the functional block copolymer is a polymer in which different polymer chains, a rubber-like polymer that is incompatible with the epoxy resin, has a glass transition temperature (T g ) of 25° C. or lower, and has a non-covalent functional group, and a polymer that is compatible with the epoxy resin, are chemically bonded to each other.
  • the rubbery polymer having a non-covalent functional group in the functional block copolymer is a polymer that is incompatible with the epoxy resin and has a glass transition temperature (T g ) of 25° C. or less, which is lower than room temperature, and corresponds to a soft segment at room temperature.
  • the lower limit of the glass transition temperature (T g ) is a finite value determined by the type of rubbery polymer, and is, for example, at its minimum , about ⁇ 120° C.
  • the glass transition temperature (glass transition point: T g ) can be determined by differential scanning calorimetry (DSC).
  • the rubber-like polymer having a non-covalent functional group may contain a monomer having a non-covalent functional group, and the non-covalent functional group may be directly bonded to the block copolymer or may be bonded via a linking group. It is preferably a conjugated diene polymer having a non-covalent functional group, and more preferably, it is a polymer having a portion in which a monomer having a non-covalent functional group is polymerized in a main polymer chain consisting of a polymerization of a hydrocarbon monomer unit such as isoprene, butadiene, hydrogenated isoprene, or hydrogenated butadiene.
  • a hydrocarbon monomer unit such as isoprene, butadiene, hydrogenated isoprene, or hydrogenated butadiene.
  • the non-covalent functional group refers to a functional group capable of non-covalent bonding, and may be any functional group capable of intermolecular or intramolecular non-covalent bonding that can form a pseudo-crosslinking point or a physical crosslinking point.
  • functional groups include hydrogen-bonding functional groups such as amide groups, imide groups, carboxyl groups, phenol groups, pyridyl groups, imidazolyl groups, pyrazolyl groups, and urethane groups, and ionic-bonding functional groups such as carboxylate groups, phosphonate groups, sulfonate groups, ammonium groups, pyridinium groups, imidazolium groups, and pyrazolium groups.
  • the non-covalent bond includes a hydrogen bond and an ionic bond
  • the hydrogen-bonding functional group refers to a functional group capable of forming a hydrogen bond
  • the ionic-bonding functional group refers to a functional group capable of forming an ionic bond that generates an ionic interaction
  • rubbery in the rubbery polymer means that the glass transition temperature (T g ) of the polymer is 25° C. or lower, and therefore the segments in the polymer behave as soft segments at room temperature.
  • T g glass transition temperature
  • a soft segment is one in which segment motion (micro-Brownian motion of segments) occurs actively, and a hard segment is one in which segment motion has essentially stopped.
  • a segment is a unit related to the motion of a polymer chain, and is a unit that groups together several to a dozen or so monomer units.
  • the polymer compatible with the epoxy resin in the functional block copolymer is a block chain having a glass transition temperature (T g ) higher than room temperature and corresponds to a hard segment at room temperature, and is preferably an aromatic vinyl polymer.
  • the above-mentioned functional block copolymers include, for example, polystyrene-functional polyisoprene-polystyrene block copolymers in which non-covalently bonded functional groups are introduced into the polyisoprene chain of polystyrene-polyisoprene-polystyrene block copolymer (SIS), a styrene-based thermoplastic elastomer (Thermoplastic Styrene Elastomer: TPS), polystyrene-functional polybutadiene-polystyrene block copolymers in which non-covalently bonded functional groups are introduced into the polybutadiene chain of polystyrene-polybutadiene-polystyrene block copolymer (SBS), a styrene-based thermoplastic elastomer, and polystyrene-polyethylene propylene-polystyrene block copo
  • Examples of usable block copolymers include polystyrene-functionalized polyethylene-propylene-polystyrene block copolymers (SEPS) in which a non-covalent functional group is introduced into the polyethylene-propylene chains, polystyrene-functionalized polyethylene-butylene-polystyrene block copolymers (SEBS) in which a non-covalent functional group is introduced into the polyethylene-butylene chains, and polystyrene-functionalized polyisobutylene-polystyrene block copolymers (SIBS) in which a non-covalent functional group is introduced into the polyisobutylene chains of polystyrene-polyisobutylene-polystyrene block copolymers (SIBS), which are styrene-based thermoplastic elastomers containing polyisobutylene.
  • SIBS polystyrene-based thermoplastic elastomers containing poly
  • the non-covalent functional group in the rubber-like polymer having a non-covalent functional group in the functional block copolymer of the epoxy adhesive composition according to claim 2 is a hydrogen-bonding functional group and/or an ionic-bonding functional group.
  • the hydrogen-bonding functional group is a functional group capable of forming a hydrogen bond, and is preferably an amide group, an imide group, a carboxyl group, a phenol group, a pyridyl group, an imidazolyl group, a pyrazolyl group, or a urethane group (urethane bond), and more preferably an amide group or a carboxyl group.
  • the ion-bonding functional group is a functional group capable of forming an ion bond that generates an ionic interaction, and is preferably a carboxylate group (carboxylate salt), a phosphonate group (phosphate salt), a sulfonate group (sulfonate salt), an ammonium group (ammonium salt), a pyridinium group (pyridinium salt), an imidazolium group (imidazolium salt), or a pyrazolium (pyrazolium salt), and more preferably a carboxylate group.
  • the non-covalent functional group in the rubber-like polymer having the non-covalent functional group in the functional block copolymer of the functional block copolymer-containing epoxy adhesive composition of the invention of claim 3 is one or more of an amide group, an imide group, a carboxyl group, a phenol group, a pyridyl group, an imidazolyl group, a pyrazolyl group, a urethane group, a carboxylate group, a phosphonate group, a sulfonate group, an ammonium group, a pyridinium group, an imidazolium group, or a pyrazolium group.
  • the rubber-like polymer having a non-covalent functional group in the functional block copolymer of the epoxy adhesive composition containing a functional block copolymer of the invention of claim 4 contains a monomer unit of isoprene, butadiene, hydrogenated isoprene (ethylene-propylene), or hydrogenated butadiene (ethylene-butylene), and the polymer compatible with the epoxy resin in the functional block copolymer contains a monomer unit having a styrene skeleton, a methacrylic skeleton, an acrylic skeleton, or an ether skeleton.
  • the monomer unit of isoprene is a monomer unit formed by polymerizing CH 2 ⁇ C(CH 3 )CH ⁇ CH 2 and is represented by the chemical structural formula, for example, --CH 2 --C(CH 3 ) ⁇ CH--CH 2 --.
  • the hydrogenated isoprene monomer unit is an isoprene monomer unit in which hydrogen has been added to the double bond of the isoprene, and is represented by the chemical structural formula, for example, --CH 2 --CH(CH 3 )--CH 2 --CH 2 --.
  • the butadiene monomer unit is a monomer unit formed by polymerizing CH 2 ⁇ CH-CH ⁇ CH 2 and is represented by the chemical structural formula, for example, --CH 2 --CH ⁇ CH--CH 2 -- or --CH 2 --CH(CH ⁇ CH 2 )--.
  • the hydrogenated butadiene monomer unit is a butadiene monomer unit in which hydrogen has been added to the double bond moiety of butadiene, and is represented by the chemical structural formula, for example, --CH 2 --CH 2 --CH 2 --CH 2 -- or --CH 2 --CH(CH 2 --CH 3 )--.
  • the rubbery polymer having the non-covalent functional group may have these conjugated diene or hydrogenated conjugated diene units as the main repeating units, and the main repeating units of these conjugated dienes or hydrogenated conjugated dienes are preferably contained in the rubbery polymer in an amount of 50% by mass or more, more preferably 60% by mass or more, and even more preferably 80% by mass or more, and may further contain monomers having non-covalent functional groups in an amount of preferably less than 50% by mass, preferably 40% by mass or less, and even more preferably 30% by mass or less.
  • the styrene skeleton is represented by the chemical structural formula -CH 2 -CH(C 6 H 4 R)- [R is H or an organic functional group], and examples thereof include polystyrene, polystyrenes having an alkyl group with 1 to 12 carbon atoms as a substituent, and polystyrenes having an ether group or an ester group as a substituent.
  • More specific examples thereof include polystyrene, polyacetylstyrene, polymethylstyrene, polydimethylstyrene, polybiphenylstyrene, polyphenylacetylstyrene, polyphenylstyrene, polybromoethoxystyrene, polybromomethoxystyrene, polybromostyrene, polybutoxymethylstyrene, poly-tert-butylstyrene, and polybutyryl.
  • styrenes examples include styrene, polychlorofluorostyrene, polychloromethylstyrene, polychlorostyrene, polydichlorostyrene, polydifluorostyrene, polyethoxymethylstyrene, polycyanostyrene, polyethoxystyrene, polyfluoromethylstyrene, polyfluorostyrene, polyiodostyrene, polymethoxycarbonylstyrene, polymethoxymethylstyrene, polyanisoylstyrene, polybenzoylstyrene, polymethoxystyrene, polyperfluorostyrene, polyphenoxystyrene, polypropoxystyrene, polytoluoylstyrene, and polytrimethylstyrene. Polystyrene is preferred.
  • the methacryl skeleton is —CH 2 —C(CH 3 ) (COOR)- [R is H or an organic functional group], and examples thereof include polymethacrylic acid esters such as polymethyl methacrylate, polyethyl methacrylate, polymethacrylonitrile, polyadamantyl methacrylate, polybenzyl methacrylate, polytert-butyl methacrylate, polytert-butylphenyl methacrylate, polycycloethyl methacrylate, polycyanoethyl methacrylate, polycyanomethylphenyl methacrylate, polycyanophenyl methacrylate, polycyclodecyl methacrylate, polycyclododecyl methacrylate, polycyclobutyl methacrylate, polycyclohexyl methacrylate, polycyclooctyl methacrylate, polyfluoroalkyl methacrylate, polyglycidyl methacrylate, poly
  • the acrylic skeleton is represented by the chemical structural formula -CH2 -CH(COOR)- [R is H or an organic functional group], and examples include polyacrylic esters such as polyadamantyl acrylate, polytert-butyl acrylate, polytert-butylphenyl acrylate, cyanoheptyl polyacrylate, cyanohexyl polyacrylate, cyanomethyl polyacrylate, cyanophenyl polyacrylate, fluoromethyl polyacrylate, methoxycarbonylphenyl polyacrylate, methoxyphenyl polyacrylate, naphthyl polyacrylate, pentachlorophenyl polyacrylate, and phenyl polyacrylate.
  • polyacrylic esters such as polyadamantyl acrylate, polytert-butyl acrylate, polytert-butylphenyl acrylate, cyanoheptyl polyacrylate, cyanohexyl polyacrylate, cyanomethyl polyacrylate,
  • the above ether skeleton is represented by the chemical structural formula -( CH2 ) n -O- [n is a natural number from 1 to 8], and examples include polyvinyl ethers such as polybutoxyethylene, polydecyloxyethylene, polyethoxyethylene, polyhexyloxyethylene, polyisobutoxyethylene, polymethoxyethylene, and polypropoxyethylene.
  • the styrene skeleton, methacryl skeleton, acrylic skeleton, or ether skeleton is preferably 80% by mass or more, more preferably 90% by mass or more, and even more preferably substantially 100% by mass or more in the polymer compatible with the epoxy resin in the functional block copolymer, but other monomer units may be included as long as the styrene skeleton, methacryl skeleton, acrylic skeleton, or ether skeleton is the main repeating unit.
  • the non-covalent functional group in the rubbery polymer having the non-covalent functional group in the functional block copolymer of the functional block copolymer of the epoxy-based adhesive composition according to the invention of claim 5 has an introduction rate within the range of, relative to 100 mol % of the monomer units constituting the rubbery polymer having the non-covalent functional group, a lower limit of preferably 1 mol % or more, more preferably 1.5 mol % or more, and even more preferably 2.0 mol % or more, and an upper limit of preferably 30 mol % or less, more preferably 25 mol % or less, and even more preferably 20 mol % or less.
  • the introduction rate of the non-covalent functional group is calculated using 1 H-NMR.
  • the rubber-like polymer having a non-covalent functional group in the functional block copolymer of the epoxy adhesive composition containing a functional block copolymer according to the invention of claim 6 is contained in an amount within the range of 0.5 parts by mass or more and 3000 parts by mass or less, more preferably 0.8 parts by mass or more and 2800 parts by mass or less, even more preferably 1.0 parts by mass or more and 2500 parts by mass or less, and particularly preferably 1.5 parts by mass or more and 2000 parts by mass or less, relative to 100 parts by mass of the epoxy resin.
  • the content of the polymer compatible with the epoxy resin in the functional block copolymer of the epoxy adhesive composition containing the functional block copolymer of the invention of claim 7 is preferably in the range of 3 mass % or more and 80 mass % or less, more preferably 5 mass % or more and 70 mass % or less, and even more preferably 10 mass % or more and 50 mass % or less.
  • the polymer compatible with the epoxy resin in the functional block copolymer of the functional block copolymer-containing epoxy adhesive composition of the invention of claim 8 has a number average molecular weight (Mn) preferably in the range of 1000 or more and 50,000 or less, more preferably 1000 or more and 40,000 or less, and even more preferably 1500 or more and 30,000 or less.
  • Mn number average molecular weight
  • the number average molecular weight (Mn) is determined by gel permeation chromatography (GPC) using standard polystyrene.
  • the functional block copolymer of the functional block copolymer-containing epoxy adhesive composition of the invention of claim 9 is preferably blended in an amount of 1 part by mass or more and 3,500 parts by mass or less, more preferably 1.5 parts by mass or more and 3,400 parts by mass or less, even more preferably 2 parts by mass or more and 3,200 parts by mass or less, and particularly preferably 3 parts by mass or more and 3,000 parts by mass or less, per 100 parts by mass of the epoxy resin.
  • the functional block copolymer of the functional block copolymer-containing epoxy adhesive composition of the invention of claim 10 is a functional styrene-based thermoplastic elastomer containing a functional polyisoprene obtained by introducing the non-covalent functional group into polyisoprene, a functional styrene-based thermoplastic elastomer containing a functional polybutadiene obtained by introducing the non-covalent functional group into polybutadiene, a functional styrene-based thermoplastic elastomer containing a functional hydrogenated polyisoprene obtained by introducing the non-covalent functional group into hydrogenated polyisoprene, or a functional styrene-based thermoplastic elastomer containing a functional hydrogenated polybutadiene obtained by introducing the non-covalent functional group into hydrogenated polybutadiene.
  • the functional block copolymer-containing epoxy adhesive composition of the invention of claim 11 contains an epoxy resin, a curing agent, and a polystyrene-functional polyisoprene-polystyrene block copolymer in which a non-covalent functional group has been introduced into the polyisoprene chain, or a polystyrene-functional hydrogenated polyisoprene-polystyrene block copolymer in which a non-covalent functional group has been introduced into the hydrogenated polyisoprene chain.
  • the polystyrene-functionalized polyisoprene-polystyrene block is a block copolymer in which a non-covalent functional group is introduced into the polyisoprene chain of a polystyrene-polyisoprene-polystyrene block copolymer (SIS), which is a styrene-based thermoplastic elastomer (TPS), and has polystyrene blocks at both ends that behave as hard segments at room temperature and a functionalized polyisoprene block in the center that behaves as a soft segment at room temperature.
  • SIS polystyrene-polyisoprene-polystyrene block copolymer
  • TPS thermoplastic elastomer
  • the polystyrene-functionalized hydrogenated polyisoprene-polystyrene block is a hydrogenated polyisoprene chain of a polystyrene-polyethylene propylene-polystyrene block copolymer (SEPS) obtained by hydrogenating the polyisoprene portion of a polystyrene-polyisoprene-polystyrene block copolymer (SIS), i.e., a polystyrene-functionalized polyethylene propylene-polystyrene block obtained by introducing a non-covalent functional group into a polyethylene propylene chain, and is a block copolymer having polystyrene blocks that behave as hard segments at both ends and a functional polyethylene propylene block that behaves as a soft segment at room temperature in the center.
  • SEPS polystyrene-polyethylene propylene-polystyrene block copolymer
  • the functional block copolymer-containing epoxy adhesive composition of the invention of claim 12 contains an epoxy resin, a curing agent, and a polystyrene-functional polybutadiene-polystyrene block copolymer in which a non-covalent functional group has been introduced into the polybutadiene chain, or a polystyrene-functional hydrogenated polybutadiene-polystyrene block copolymer in which a non-covalent functional group has been introduced into the hydrogenated polybutadiene chain.
  • the polystyrene-functionalized polybutadiene-polystyrene block is a block copolymer in which a non-covalently bonded functional group is introduced into the polybutadiene chain of a polystyrene-polybutadiene-polystyrene block copolymer (SBS), which is a styrene-based thermoplastic elastomer (TPS), and has polystyrene blocks at both ends that behave as hard segments at room temperature and a functionalized polybutadiene block in the center that behaves as a soft segment at room temperature.
  • SBS polystyrene-polybutadiene-polystyrene block copolymer
  • TPS thermoplastic elastomer
  • the polystyrene-functional hydrogenated polybutadiene-polystyrene block is a hydrogenated polybutadiene chain of a polystyrene-polyethylene butylene-polystyrene block copolymer (SEBS) obtained by hydrogenating the polybutadiene portion of a polystyrene-polybutadiene-polystyrene block copolymer (SBS), i.e., a polystyrene-functional polyethylene butylene-polystyrene block obtained by introducing a non-covalent functional group into a polyethylene butylene chain, and is a block copolymer having polystyrene blocks at both ends that behave as hard segments at room temperature and a functional polyethylene butylene block in the center that behaves as a soft segment at room temperature.
  • SEBS polystyrene-polyethylene butylene-polystyrene block copolymer
  • the method for producing an epoxy adhesive composition containing a functional block copolymer according to the invention of claim 13 is a method for producing an epoxy adhesive composition containing an epoxy resin, a curing agent, and a functional block copolymer consisting of a rubber-like polymer that is incompatible with the epoxy resin and has a non-covalent functional group and a glass transition temperature of 25°C or lower, and a polymer that is compatible with the epoxy resin, in which at least the epoxy resin and the functional block copolymer are mixed with a solvent in a mixing step, and then the solvent is removed in a solvent removal step.
  • the term "at least" in the above mixing step means that the curing agent and other additives may be mixed in the mixing step.
  • the curing agent and other additives may be mixed after the solvent removal step, not necessarily in the mixing step.
  • the solvent include tetrahydrofuran (THF), 2-methyltetrahydrofuran, toluene, acetone, cyclohexane, normal hexane, ethyl acetate, methanol, methylene chloride (dichloromethane), methyl ethyl ketone (MEK), butyl acetate, methylcyclohexane (MCH), N,N-dimethylformamide (DMF), and N-methyl-2-pyrrolidone (NMP).
  • THF tetrahydrofuran
  • 2-methyltetrahydrofuran toluene
  • acetone cyclohexane
  • normal hexane ethyl acetate
  • methanol methylene chloride (dichloromethane)
  • MEK methyl ethyl ketone
  • the cured epoxy adhesive containing functional block copolymer of the invention of claim 14 is obtained by heating and curing an epoxy adhesive composition containing an epoxy resin, a curing agent, and a functional block copolymer consisting of a rubber-like polymer that is incompatible with the epoxy resin and has a non-covalent functional group with a glass transition temperature of 25°C or less, and a polymer that is compatible with the epoxy resin.
  • the functional block copolymer-containing epoxy adhesive composition contains an epoxy resin, a curing agent, and a functional block copolymer consisting of a rubbery polymer having a non-covalent functional group that is incompatible with the epoxy resin and has a glass transition temperature ( Tg ) of 25°C or less, and a polymer compatible with the epoxy resin, so that the polymer compatible with the epoxy resin in the functional block copolymer is compatible with the epoxy resin, while the rubbery polymer having the non-covalent functional group is incompatible with the epoxy resin, and therefore the elongation, flexibility and elastic modulus due to the rubbery polymer having the non-covalent functional group are expressed. Therefore, the adhesive cured product becomes tough.
  • the non-covalent functional groups between polymer chains form non-covalent bonds that can dissociate and recombine freely, forming pseudo-crosslinking points and physical crosslinking points, thereby enabling the toughness to be improved.
  • the non-covalent functional group in the rubber-like polymer having the non-covalent functional group of the functional block copolymer is a hydrogen-bonding functional group and/or an ionic-bonding functional group, and therefore, in addition to the effect described in claim 1, the impact resistance can be improved by improving the stress relaxation property.
  • the non-covalent functional group in the rubber-like polymer having the non-covalent functional group of the functional block copolymer is one or more of amide groups, imide groups, carboxyl groups, phenol groups, pyridyl groups, imidazolyl groups, pyrazolyl groups, urethane groups, carboxylate groups, phosphonate groups, sulfonate groups, ammonium groups, pyridinium groups, imidazolium groups, and pyrazolium groups, so that the functional block copolymer is relatively easy to manufacture and has a good yield, thereby enabling cost reduction in addition to the effect of claim 1.
  • the rubber-like polymer having a non-covalent functional group in the functional block copolymer contains a monomer unit of isoprene, butadiene, hydrogenated isoprene, or hydrogenated butadiene
  • the polymer compatible with the epoxy resin in the block copolymer contains a monomer unit having a styrene skeleton, a methacrylic skeleton, an acrylic skeleton, or an ether skeleton, thereby enabling improvements in properties such as rubber elasticity, heat aging resistance, and weather resistance in addition to the effect described in claim 1.
  • the introduction rate of the non-covalent functional group in the rubbery polymer having the non-covalent functional group is within the range of 1 mol% or more and 30 mol% or less relative to 100 mol% of the monomer units constituting the rubbery polymer having the non-covalent functional group, so in addition to the effect described in claim 1, improved toughness can be stably ensured.
  • the rubber-like polymer having a non-covalent functional group in the functional block copolymer is contained in the range of 0.5 parts by mass or more and 3,000 parts by mass or less per 100 parts by mass of the epoxy resin, so that the toughness and durability can be improved. Therefore, in addition to the effect of claim 1, a highly reliable adhesive strength can be obtained even when applied to the adhesion of different materials.
  • the content of the polymer compatible with the epoxy resin in the functional block copolymer is in the range of 3% by mass or more and 80% by mass or less, so that compatibility with the epoxy resin can be improved and the mixture can be mixed homogeneously. Therefore, in addition to the effect of claim 1, stable properties of the adhesive cured product can be obtained.
  • the functional block copolymer-containing epoxy adhesive composition has a polymer in the functional block copolymer that is compatible with the epoxy resin, and has a number average molecular weight in the range of 1,000 to 50,000, so that compatibility with the epoxy resin can be improved and the mixture can be homogeneously mixed. Therefore, in addition to the effect of claim 1, stable properties of the adhesive cured product can be obtained.
  • the functional block copolymer-containing epoxy adhesive composition contains the block copolymer in an amount ranging from 1 part by mass to 3,500 parts by mass per 100 parts by mass of the epoxy resin, which makes it possible to achieve both good coatability and improved toughness in addition to the effect of claim 1.
  • the functional block copolymer according to the invention of claim 10 is a functional styrene-based thermoplastic elastomer containing a functional polyisoprene obtained by introducing the non-covalent functional group into polyisoprene, a functional styrene-based thermoplastic elastomer containing a functional polybutadiene obtained by introducing the non-covalent functional group into polybutadiene, a functional styrene-based thermoplastic elastomer containing a functional hydrogenated polyisoprene obtained by introducing the non-covalent functional group into hydrogenated polyisoprene, or a functional styrene-based thermoplastic elastomer containing a functional hydrogenated polybutadiene obtained by introducing the non-covalent functional group into hydrogenated polybutadiene, and therefore can be produced at low cost and has excellent elongation, flexibility, and elastic modulus, thereby improving toughness at low cost in addition to the effect described in claim 1.
  • the epoxy adhesive composition containing a functional block copolymer contains an epoxy resin, a curing agent, and a polystyrene-functional polyisoprene-polystyrene block copolymer having a non-covalent functional group introduced into a polyisoprene chain or a polystyrene-functional hydrogenated polyisoprene-polystyrene block copolymer having a non-covalent functional group introduced into a hydrogenated polyisoprene chain, so that the polystyrene portion in the polystyrene-functional polyisoprene-polystyrene block copolymer or the polystyrene-functional hydrogenated polyisoprene-polystyrene block copolymer is compatible with the epoxy resin, while the functional polyisoprene portion and the functional hydrogenated isoprene portion are incompatible with the epoxy resin, and therefore the elongation, flexibility and elastic modul
  • the adhesive cured product becomes tough.
  • the functional polyisoprene portion of the polystyrene-functionalized polyisoprene-polystyrene block copolymer or the functional hydrogenated polyisoprene portion of the polystyrene-functionalized hydrogenated polyisoprene-polystyrene block copolymer has a non-covalent functional group, the non-covalent functional groups between the polymer chains form non-covalent bonds that can be freely dissociated and recombined to form pseudo-crosslinking points and physical crosslinking points, thereby enabling improvement in toughness.
  • the epoxy adhesive composition containing a functional block copolymer contains an epoxy resin, a curing agent, and a polystyrene-functional polybutadiene-polystyrene block copolymer having a non-covalent functional group introduced into a polybutadiene chain or a polystyrene-functional hydrogenated polybutadiene-polystyrene block copolymer having a non-covalent functional group introduced into a hydrogenated polybutadiene chain, so that the polystyrene portion of the polystyrene-functional polybutadiene-polystyrene block copolymer or the polystyrene-functional hydrogenated polybutadiene-polystyrene block copolymer is compatible with the epoxy resin, while the functional polybutadiene portion and the functional hydrogenated polybutadiene portion are incompatible with the epoxy resin, and therefore the elongation, flexibility and elastic modulus due to the functional polybut
  • the adhesive cured product becomes tough.
  • the functional polybutadiene portion of the polystyrene-functional polybutadiene-polystyrene block copolymer or the functional hydrogenated polybutadiene portion of the polystyrene-functional hydrogenated polybutadiene-polystyrene block copolymer has a non-covalent functional group, the non-covalent functional groups between the polymer chains form non-covalent bonds that can be freely dissociated and recombined to form pseudo-crosslinking points and physical crosslinking points, thereby enabling improvement in toughness.
  • an epoxy adhesive composition containing a functional block copolymer which contains an epoxy resin, a curing agent, a rubber-like polymer having a non-covalent functional group that is incompatible with the epoxy resin and has a glass transition temperature of 25° C.
  • the adhesive cured product is tough.
  • the non-covalent functional groups between polymer chains form non-covalent bonds that can dissociate and recombine freely, forming pseudo-crosslinking points and physical crosslinking points, thereby enabling the toughness to be improved.
  • the cured epoxy adhesive containing functional block copolymer is obtained by curing an epoxy adhesive composition containing an epoxy resin, a curing agent, and a functional block copolymer consisting of a rubber-like polymer having a non-covalent functional group that is incompatible with the epoxy resin and has a glass transition temperature of 25°C or less, and a polymer compatible with the epoxy resin, and since the polymer compatible with the epoxy resin in the functional block copolymer is compatible with the epoxy resin while the rubber-like polymer having a non-covalent functional group is incompatible with the epoxy resin, the elongation, flexibility and elastic modulus due to the rubber-like polymer having a non-covalent functional group are expressed. Therefore, the cured adhesive is tough.
  • the non-covalent functional groups between polymer chains form non-covalent bonds that can dissociate and recombine freely, forming pseudo-crosslinking points and physical crosslinking points, thereby enabling the toughness to be improved.
  • FIG. 1(a) is a chemical reaction formula showing a method for synthesizing a polystyrene-functionalized polyisoprene-polystyrene block copolymer (h- SIS ) in which a carboxyl group and an amino group, which are hydrogen-bonding functional groups, are introduced as non-covalent functional groups into the polyisoprene chain of a polystyrene-polyisoprene-polystyrene block copolymer (SIS), as an example of a functional block copolymer consisting of a rubber-like polymer that is incompatible with epoxy resins, has a glass transition temperature (T g ) of 25° C.
  • T g glass transition temperature
  • FIG. 1(b) is a chemical reaction formula showing a method for synthesizing polystyrene-functionalized polyisoprene-polystyrene block copolymer (i- SIS ) in which a carboxylate group, which is an ionic bonding functional group, and an amino group, which is a hydrogen bonding functional group, are introduced as non-covalent functional groups into the polyisoprene chain of polystyrene-polyisoprene-polystyrene block copolymer (SIS), as an example of a functional block copolymer consisting of a rubber-like polymer that is incompatible with epoxy resins, has a glass transition temperature (T g ) of 25° C.
  • T g glass transition temperature
  • FIG. 2(a) is a conceptual diagram showing the molecular structure of a polystyrene-functionalized polyisoprene-polystyrene block copolymer (h- SIS ) in which carboxyl groups and amino groups, which are hydrogen-bonding functional groups, are introduced as non-covalent functional groups into the polyisoprene chain of a polystyrene-polyisoprene-polystyrene block copolymer (SIS), as an example of a functional block copolymer consisting of a rubber-like polymer that is incompatible with epoxy resins, has a glass transition temperature (T g ) of 25°C or less, and has a non-covalent functional group, and a polymer that is compatible with epoxy resins.
  • T g glass transition temperature
  • Fig. 2(b) is a conceptual diagram showing the phase-separated structure of a polystyrene-functionalized polyisoprene-polystyrene block copolymer (h-SIS) in which carboxyl groups and amino groups, which are hydrogen-bonding functional groups, are introduced as non-covalent functional groups into the polyisoprene chain.
  • h-SIS polystyrene-functionalized polyisoprene-polystyrene block copolymer
  • FIG. 2(c) is a conceptual diagram showing the structure of polystyrene-functionalized polyisoprene-polystyrene block copolymer (h-SIS) in an epoxy resin when polystyrene-functionalized polyisoprene-polystyrene block copolymer (h-SIS) in which a carboxyl group and an amino group, which are hydrogen-bonding functional groups, are introduced as non-covalent functional groups in a polyisoprene chain, is mixed with an epoxy resin.
  • h-SIS polystyrene-functionalized polyisoprene-polystyrene block copolymer
  • 3(a) is a conceptual diagram showing the molecular structure of polystyrene-functionalized polyisoprene-polystyrene block copolymer (i- SIS ) in which a carboxylate group, which is an ionic bonding functional group, and an amino group, which is a hydrogen-bonding functional group, are introduced as non-covalent functional groups into the polyisoprene chain of polystyrene-polyisoprene-polystyrene block copolymer (SIS) as an example of a functional block copolymer consisting of a rubber-like polymer that is incompatible with epoxy resins, has a glass transition temperature (T g ) of 25°C or less, and has a non-covalent functional group, and a polymer that is compatible with epoxy resins.
  • T g glass transition temperature
  • Fig. 3(b) is a conceptual diagram showing the phase-separated structure of polystyrene-functionalized polyisoprene-polystyrene block copolymer (i-SIS) in which a carboxyl group, which is a hydrogen-bonding functional group, and an amino group, which is a hydrogen-bonding functional group, are introduced as non-covalent functional groups into the polyisoprene chain.
  • i-SIS polystyrene-functionalized polyisoprene-polystyrene block copolymer
  • FIG. 3(c) is a conceptual diagram showing the structure of polystyrene-functional polyisoprene-polystyrene block copolymer (i-SIS) in an epoxy resin when polystyrene-functional polyisoprene-polystyrene block copolymer (i-SIS) in which a carboxylate group, which is an ionic bonding functional group, and an amino group, which is a hydrogen bonding functional group, are introduced as non-covalent bonding functional groups into a polyisoprene chain, is mixed with an epoxy resin.
  • FIG. 4 is a 1 H-NMR spectrum of the liquid functional block copolymer-containing epoxy adhesive composition according to Example 1 of the embodiment of the present invention.
  • FIG. 5 is a 1 H-NMR spectrum of the liquid functional block copolymer-containing epoxy adhesive composition according to Example 9 of the embodiment of the present invention.
  • FIG. 6 is a FT-IR spectrum diagram of the liquid functional block copolymer-containing epoxy adhesive composition according to Example 24 of an embodiment of the present invention, the liquid epoxy adhesive compositions according to Comparative Examples 6 and 10, the polystyrene-polyisoprene-polystyrene block copolymer (SIS), and the polystyrene-functional polyisoprene-polystyrene block copolymer (h-SIS-3) used in Example 24.
  • SIS polystyrene-polyisoprene-polystyrene block copolymer
  • h-SIS-3) polystyrene-functional polyisoprene-polystyrene block copolymer
  • FIG. 7 is a graph showing loss tangent (tan ⁇ ) data in dynamic viscoelasticity measurement of the liquid functional block copolymer-containing epoxy adhesive composition according to Example 24 of an embodiment of the present invention, and the liquid epoxy adhesive compositions according to Comparative Examples 6 and 10.
  • FIG. 8(a) is a TEM image of a polystyrene-polyisoprene-polystyrene block copolymer (SIS)
  • FIG. 8(b) is a TEM image of a polystyrene-functional polyisoprene-polystyrene block copolymer (h-SIS-3) used in Example 24
  • FIG. 8(c) is a TEM image of a liquid epoxy adhesive composition according to Comparative Example 10, and FIG.
  • FIG. 8(d) is a TEM image of a cured product of the liquid functional block copolymer-containing epoxy adhesive composition according to Example 24.
  • FIG. 9(a) is a DSC thermogram of polystyrene-polyisoprene-polystyrene block copolymer (SIS), a cured product of a liquid epoxy adhesive composition according to Comparative Example 6, and a cured product of an epoxy adhesive composition according to Comparative Examples 7 to 11 containing a polystyrene-polyisoprene-polystyrene block copolymer (SIS); FIG.
  • 9(b) is a DSC thermogram of a polystyrene-functional polyisoprene-polystyrene block copolymer (h-SIS-2) used in Examples 15 to 19, and a cured product of a functional block copolymer-containing epoxy adhesive composition according to Examples 15 to 19 containing the polystyrene-functional polyisoprene-polystyrene block copolymer; and FIG.
  • 9(c) is a DSC thermogram of a polystyrene-functional polyisoprene-polystyrene block copolymer (h-SIS-3) used in Examples 21 to 25, and a cured product of a functional block copolymer-containing epoxy adhesive composition according to Examples 21 to 25 containing the polystyrene-functional polyisoprene-polystyrene block copolymer.
  • h-SIS-3 polystyrene-functional polyisoprene-polystyrene block copolymer
  • FIG. 10 is a graph showing the peel adhesion strength versus weight fraction of the block copolymer in the adhesive for cured products of functional block copolymer-containing epoxy adhesive compositions of Examples 15 to 25 and 27 to 31, which contain a functional block copolymer, and for cured products of liquid epoxy adhesive compositions of Comparative Examples 6 to 11, which contain a polystyrene-polyisoprene-polystyrene block copolymer (SIS).
  • SIS polystyrene-polyisoprene-polystyrene block copolymer
  • FIG. 11 is a graph showing dynamic splitting resistance versus weight fraction of the block copolymer in the adhesive for cured products of functional block copolymer-containing epoxy adhesive compositions of Examples 15 to 25 and 27 to 31, which contain a functional block copolymer, and for cured products of liquid epoxy adhesive compositions of Comparative Examples 6 to 11, which contain a polystyrene-polyisoprene-polystyrene block copolymer (SIS).
  • FIG. 12 is an optical microscope photograph showing the phase separation state between polyisoprene and epoxy resin.
  • the functional block copolymer-containing epoxy adhesive composition according to an embodiment of the present invention is a thermosetting epoxy resin composition having as its basic composition an epoxy resin and a curing agent for the epoxy resin, i.e., an epoxy resin having two or more epoxy groups (oxirane rings) in the molecule and a curing agent component having active hydrogen and catalytic action, blended with a functional block copolymer (hereinafter, sometimes simply referred to as "functional block copolymer”) consisting of a rubber-like polymer having a non-covalent functional group that is incompatible with the epoxy resin and has a glass transition temperature of 25°C or less, and a polymer that is compatible with the epoxy resin.
  • a functional block copolymer consisting of a rubber-like polymer having a non-covalent functional group that is incompatible with the epoxy resin and has a glass transition temperature of 25°C or less, and a polymer that is compatible with the epoxy resin.
  • Epoxy resins are generally compounds that have two or more epoxy groups (oxirane rings) in one molecule and give a three-dimensional cured product when cured with a curing agent.
  • epoxy compounds having bisphenyl groups such as bisphenol A type, bisphenol F type, brominated bisphenol A type, hydrogenated bisphenol A type, bisphenol S type, bisphenol AD type, bisphenol AF type, and biphenyl type, epoxy compounds such as polyalkylene glycol type and alkylene glycol type, bifunctional glycidyl ether type epoxy resins such as epoxy compounds having a naphthalene ring and epoxy compounds having a fluorene group, novolac type epoxy resins such as phenol novolac type and orthocresol novolac type, multifunctional glycidyl ether and tetraphenylolethane type multifunctional glycidyl ether type epoxy resins, glycidyl ester type epoxy resins of synthetic fatty acids such as dimer acid, and N,N,
  • modified epoxy resins such as urethane-modified epoxy resins, dimer acid-modified epoxy resins, and rubber-modified epoxy resins can also be used as the epoxy resin.
  • the structure of the urethane-modified epoxy resin is not particularly limited as long as it is a resin having a urethane bond and two or more epoxy groups in the molecule, but it is preferable that the resin is obtained by reacting a urethane bond-containing compound having an isocyanate group with a hydroxyl group-containing epoxy compound, since the urethane bond and the epoxy group can be efficiently introduced into one molecule.
  • the rubber-modified epoxy resin has two or more epoxy groups, and examples of the rubber skeleton include polybutadiene, acrylonitrile butadiene rubber (NBR), butadiene-acrylonitrile rubber (CTBN), etc. Two or more of these epoxy resins can also be used in combination.
  • epoxy resins undergo a ring-opening polymerization curing reaction, so they experience less shrinkage during curing compared to other thermosetting resins.
  • hydrophilic and hydrophobic groups within the molecule provides high adhesion to a variety of substrates.
  • functional block copolymers consisting of a rubber-like polymer that is incompatible with epoxy resins, has a glass transition temperature of 25°C or less, and has a non-covalent functional group, and a polymer that is compatible with epoxy resins, are preferred from the viewpoint of high compatibility with functional styrene-based thermoplastic elastomers such as polystyrene-functional polyisoprene-polystyrene block copolymers.
  • functional styrene-based thermoplastic elastomers such as polystyrene-functional polyisoprene-polystyrene block copolymers.
  • DGEBA diglycidyl ether
  • the benzene ring of bisphenol A also confers favorable properties such as adhesion, heat resistance, and chemical resistance.
  • Bisphenol A type epoxy resins and the like can be used in liquid or solid form depending on the molecular weight, but due to their compatibility with functional styrene-based thermoplastic elastomers such as polystyrene-functional polyisoprene-polystyrene block copolymers, it is preferable to use high molecular weight ones that are solid at room temperature or low molecular weight ones that are liquid to semi-solid at room temperature.
  • General-purpose epoxy resins that are solid at room temperature usually have a number average molecular weight of about 900 to 3000, and an epoxy equivalent in the range of 400 to 2500 g/eq, preferably 450 to 2200 g/eq.
  • General-purpose epoxy resins that are liquid at room temperature usually have a number average molecular weight of about 300 to 500, and an epoxy equivalent in the range of 150 to 400 g/eq, preferably 180 to 300 g/eq.
  • the epoxy equivalent means the number of grams of resin containing 1 gram equivalent of epoxy groups (unit: g/eq). If it is a liquid epoxy resin, it is preferable that the viscosity is within the range of 5,000 to 30,000 mPa ⁇ s/25°C, and more preferably within the range of 10,000 to 20,000 mPa ⁇ s/25°C.
  • the curing agent may be any of those normally used for curing epoxy resins, i.e., any of those having an active group that reacts with an epoxy group, such as dicyandiamide, polyaminoamide, 4,4'-diaminodiphenyl sulfone, imidazole compounds such as 2-n-heptadecylimidazole, organic acid hydrazide compounds such as adipic acid dihydrazide, stearic acid dihydrazide, isophthalic acid dihydrazide, and dibasic acid hydrazide, urea compounds such as N,N-dialkyl urea derivatives and N,N-dialkyl thiourea derivatives, acid anhydrides such as tetrahydrophthalic anhydride, semicarbazide, cyanoacetamide, diaminodiphenyl sulfone, and the like.
  • an epoxy group such as dicyandiamide, polyaminoamide, 4,4
  • amine compounds include phenylmethane, aliphatic and aromatic tertiary amines, polyamines, amine compounds such as isophoronediamine and m-phenylenediamine, aminotriazoles such as 3-amino-1,2,4-triazole, N-aminoethylpiperazine, melamines, guanamines such as acetoguanamine and benzoguanamine, guanidines, dimethylureas, boron trifluoride complex compounds, boron trichloride complex compounds, Lewis acid complexes, polymercaptan, liquid phenols such as trisdimethylaminomethylphenol, polythiols, triphenylphosphine, ketimine compounds, sulfonium salts, onium salts, and phenol novolac resins. These may be used alone or in combination of two or more.
  • heat-activated dispersion-type latent hardeners such as dicyandiamide, imidazole compounds, and organic acid hydrazides, which do not undergo chemical reactions with epoxy resins at room temperature, are preferred.
  • dicyandiamide including derivatives such as polyepoxide addition modified products, amidation modified products, Mannich modified products, and Michael addition modified products
  • thermal dissolution reaction type is more preferred.
  • the hardener components dissolve and are activated by heat, and epoxy resins can be hardened at temperatures of 160 to 180°C.
  • the amount of hardener to be added is set based on the amine equivalent and epoxy equivalent if the hardener is an amine such as dicyandiamide.
  • the hardener such as dicyandiamide is added in an amount of 1 to 20 parts by weight, preferably 2 to 15 parts by weight, and more preferably 5 to 10 parts by weight per 100 parts by weight of epoxy resin.
  • a curing accelerator may be blended to accelerate the chemical reaction between the epoxy resin and the curing agent by shortening the curing time or lowering the curing temperature.
  • the curing accelerator curing accelerator
  • examples of the curing accelerator (curing accelerator) that can be used include urea-based (dimethylurea, etc.), imidazole-based, amine-based, triphenylphosphine, etc.
  • the amount is preferably within a range of 0.5 to 10 parts by mass, more preferably 0.7 to 8 parts by mass, and even more preferably 1 to 5 parts by mass, relative to 100 parts by mass of the epoxy resin. Within this range, the curing acceleration effect can be obtained without impairing the coatability, viscosity characteristics, adhesiveness, etc.
  • the functional block copolymer consisting of a rubber-like polymer that is incompatible with epoxy resins, has a glass transition temperature (T g ) of 25° C. or lower, and has a non-covalent functional group, and a polymer that is compatible with epoxy resins, is a diblock copolymer or triblock polymer that is a two-component block copolymer consisting of a polymer block that is incompatible with epoxy resins and a polymer block that is compatible with epoxy resins, and is preferably a triblock polymer having polymer blocks that are compatible with epoxy resins at both ends and a polymer block that is incompatible with epoxy resins inside.
  • T g glass transition temperature
  • the functional block copolymer consisting of a rubber-like polymer that is incompatible with epoxy resins, has a glass transition temperature (T g ) of 25° C. or less, and has a non-covalent functional group, and a polymer that is compatible with epoxy resins, is preferably a functional block copolymer in which a non-covalent functional group has been introduced into a block copolymer of an aromatic vinyl polymer and a conjugated diene polymer, and examples of such functional block copolymers include polystyrene-functional polyisoprene-polystyrene block copolymers and polystyrene-functional polyisoprene-polystyrene block copolymers obtained by introducing a non-covalent functional group into a styrene-based thermoplastic elastomer such as polystyrene-polyisoprene-polystyrene block copolymer (SIS) or polystyrene
  • Examples of the functional styrene-based thermoplastic elastomers that can be used include functional styrene-based thermoplastic elastomers such as styrene-functional polybutadiene-polystyrene block copolymers, and functional hydrogenated styrene-based thermoplastic elastomers such as polystyrene-functional polyethylene-propylene-polystyrene block copolymers and polystyrene-functional polyethylene-butylene-polystyrene block copolymers, which are obtained by introducing non-covalent functional groups into hydrogenated styrene-based thermoplastic elastomers such as polystyrene-polyethylene-propylene-polystyrene block copolymers (SEPS) and polystyrene-polyethylene-butylene-polystyrene block copolymers (SEBS) by modification treatment or the like.
  • examples of the functional block copolymer include polystyrene-functional polyisoprene-polystyrene block copolymers in which the polyisoprene chain of the polystyrene-polyisoprene-polystyrene block copolymer (SIS) contains a polymerized portion of a monomer having a non-covalently bonded functional group, preferably a hydrogen-bonding or ionic-bonding functional group; polystyrene-functional polyethylene-propylene-polystyrene block copolymers in which the polyethylene-propylene chain of the polystyrene-polyisoprene-polystyrene block copolymer (SEPS), which is a hydrogenated product of the polystyrene-polyisoprene-polystyrene block copolymer (SIS), contains a polymerized portion of a monomer having a non-covalently
  • block copolymer examples include polystyrene-functionalized polybutadiene-polystyrene block copolymers containing a polymerized portion of a monomer having a functional group capable of bonding with another polymer, polystyrene-functionalized polyethylene-butylene-polystyrene block copolymers (SEBS) which are hydrogenated products of polystyrene-polybutadiene-polystyrene block copolymers (SBS) in which the polyethylene-butylene chains of the SEBS block copolymers contain a polymerized portion of a monomer having a non-covalently bonded functional group, preferably a hydrogen-bonding or ionic-bonding functional group, and polystyrene-functionalized polyisobutylene-polystyrene block copolymers (SIBS) which are styrene-based thermoplastic elastomers containing polyisobuty
  • triblock polymers having blocks at both ends that have a glass transition temperature (T g ) exceeding 25°C and are compatible with epoxy resins, and an internal block with a rubber structure that has a glass transition temperature (T g ) of 25°C or lower and is incompatible with epoxy resins.
  • polystyrene-polyisoprene-polystyrene block copolymer is a type of styrene-based thermoplastic elastomer (TPS) among thermoplastic elastomers (TPE), and is a triblock copolymer made of styrene (S) and isoprene (I), which are incompatible with each other, and is a thermoplastic block copolymer having, as basic structural units, a block (hard segment) made of polystyrene having a glass transition temperature (T g ) of about 100°C and a block (soft segment) made of isoprene having a glass transition temperature (T g ) of about -20 to -80°C.
  • TPS thermoplastic elastomer
  • I isoprene
  • polystyrene-polyisoprene-polystyrene block copolymers which are functional block copolymers in which non-covalent functional groups have been introduced into the polyisoprene chains
  • thermoplastic block copolymers having, as basic structural units, mutually incompatible polystyrene blocks (hard segments) having a glass transition temperature (T g ) of about 100° C. and functionalized polyisoprene blocks (soft segments) containing polymerized portions of monomers having non-covalent functional groups in the polyisoprene chains and having a glass transition temperature (T g ) of 25° C. or lower.
  • polystyrene-polybutadiene-polystyrene block copolymer is also a type of styrene-based thermoplastic elastomer (TPS) among thermoplastic elastomers (TPE), and is a triblock copolymer made of styrene (S) and butadiene (B), which are incompatible with each other, and is a thermoplastic block copolymer having, as basic structural units, a block (hard segment) made of polystyrene having a glass transition temperature (T g ) of about 100°C and a block (soft segment) made of butadiene having a glass transition temperature (T g ) of about -30 to -80°C.
  • TPS thermoplastic elastomer
  • TPE thermoplastic elastomers
  • B butadiene
  • polystyrene-polybutadiene-polystyrene block copolymers which are functional block copolymers in which non-covalent functional groups have been introduced into the polybutadiene chains
  • thermoplastic block copolymers having, as basic structural units, mutually incompatible polystyrene blocks (hard segments) having a glass transition temperature (T g ) of about 100° C. and functional polybutadiene blocks (soft segments) containing polymerized portions of monomers having non-covalent functional groups in the polybutadiene chains and having a glass transition temperature (T g ) of 25° C. or lower.
  • saturated TPS hydrogenated TPS
  • SEPS saturated TPS polystyrene-polyethylene propylene-polystyrene block copolymer
  • SEBS saturated TPS polystyrene-polyethylene butylene-polystyrene block copolymer
  • the polystyrene-functional polyethylene propylene-polystyrene block copolymer is a thermoplastic block copolymer having, as basic structural units, a polystyrene block (hard segment) having a glass transition temperature (T g ) of about 100°C and a functional polyethylene propylene block (soft segment) which contains a polymerized portion of a monomer having a non-covalent functional group in the polyethylene propylene chain and has a glass transition temperature (T g ) of 25°C or lower, which are mutually incompatible.
  • SEPS polystyrene-polyethylene propylene-polystyrene block copolymer
  • the functional block copolymer is a thermoplastic block copolymer having, as basic structural units, a polystyrene block (hard segment) having a glass transition temperature (T g ) of about 100°C, which are incompatible with each other, and a functionalized polyethylene butylene block (soft segment) having a glass transition temperature (T g ) of 25°C or lower, which contains a polymerized portion of a monomer having a non-covalent functional group in the polyethylene butylene chain and is made of functionalized polyethylene butylene.
  • SEBS polystyrene-functionalized polyethylene butylene-polystyrene block copolymer
  • polystyrene-polyisobutylene-polystyrene block copolymer is a type of isobutylene-based thermoplastic elastomer among thermoplastic elastomers (TPE), and is a triblock copolymer consisting of styrene (S) and isobutylene (IB), and is a thermoplastic block copolymer having, as basic structural units, a block (hard segment) consisting of polystyrene having a glass transition temperature (T g ) of about 100°C, and a block (soft segment) consisting of polyisobutylene having a glass transition temperature (T g ) of about -80°C.
  • TPE thermoplastic elastomers
  • IB isobutylene
  • polystyrene-functional polyisobutylene-polystyrene block copolymers which are functional block copolymers in which non-covalent functional groups have been introduced into the polyisobutylene chains
  • thermoplastic block copolymers having, as basic structural units, a polymer (hard segment) made of a styrene block made of polystyrene having a glass transition temperature (T g ) of about 100°C, which are incompatible with each other, and a polymer (soft segment) made of functional polyisobutylene containing a polymerized portion of a monomer having a non-covalent functional group in the polyisobutylene chain and having a glass transition temperature (T g ) of 25°C or lower.
  • T g glass transition temperature
  • the functional (hydrogenated) styrene-based thermoplastic elastomer of the present embodiment which is a functional block copolymer consisting of a rubber-like polymer that is incompatible with the epoxy resin, has a glass transition temperature (T g ) of 25° C.
  • a non-covalent functional group such as a polyisoprene chain, polybutadiene chain, polyethylene-propylene chain, polyethylene-butylene chain, or polyisobutylene chain of a (hydrogenated) styrene-based thermoplastic elastomer by a modification method using a modifier or a functional group conversion reaction of an alkene.
  • a rubber-like polymer such as a polyisoprene chain, polybutadiene chain, polyethylene-propylene chain, polyethylene-butylene chain, or polyisobutylene chain of a (hydrogenated) styrene-based thermoplastic elastomer
  • the non-covalently bonding functional group contained in the rubbery polymer is preferably a hydrogen-bonding functional group or an ionic-bonding functional group, excluding a functional group having an oxirane ring skeleton, such as an epoxy group or a glycidyl group, or a hydroxyl group obtained by ring-opening thereof.
  • the hydrogen-bonding functional group is preferably an amide group, an imide group, a carboxyl group, a phenol group, a pyridyl group, an imidazolyl group, a pyrazolyl group, or a urethane group
  • the ionic-bonding functional group is preferably a carboxylate group, a phosphonate group, a sulfonate group, an ammonium group, a pyridinium group, an imidazolium group, or a pyrazolium group.
  • the non-covalent functional group contained in the monomer of the rubber polymer may be any one of the above-mentioned types, or two or more of the above-mentioned types of functional groups may be introduced.
  • a method for producing a functional styrenic thermoplastic elastomer which is a functional block copolymer consisting of a rubber-like polymer that is incompatible with epoxy resins, has a glass transition temperature (T g ) of 25° C. or less, and has a non-covalent functional group, and a polymer that is compatible with epoxy resins, by introducing a non-covalent functional group into a (hydrogenated) styrenic thermoplastic elastomer, will be described using an example in which a non-covalent functional group is introduced into a (hydrogenated) styrenic thermoplastic elastomer by modification treatment with a modifying agent, etc.
  • a non-covalent functional group can be introduced into the rubber-like polymer of a (hydrogenated) styrene-based thermoplastic elastomer by a modification method using a modifying agent such as an unsaturated carboxylic acid or an unsaturated dicarboxylic acid anhydride.
  • a modifying agent such as an unsaturated carboxylic acid or an unsaturated dicarboxylic acid anhydride.
  • an unsaturated carboxylic acid as a modifying agent (for example, an ethylenically unsaturated carboxylic acid having 8 or less carbon atoms, such as acrylic acid, methacrylic acid, crotonic acid, maleic acid, fumaric acid, itaconic acid, or citraconic acid, or a Diels-Alder adduct of a conjugated diene, such as 3,6-endomethylene-1,2,3,6-tetrahydrophthalic acid, with an ⁇ , ⁇ -unsaturated dicarboxylic acid having 8 or less carbon atoms, a carboxyl group (hydrogen-bonding functional group) derived from the unsaturated carboxylic acid can be introduced as a non-covalently bonding functional group.
  • an unsaturated carboxylic acid for example, an ethylenically unsaturated carboxylic acid having 8 or less carbon atoms, such as acrylic acid, methacrylic acid, crotonic acid, maleic acid, fuma
  • a further non-covalent functional group e.g., an amide group which is a hydrogen-bonding functional group, or a metal salt of a carboxylic acid, i.e., a carboxylate group which is an ionic-bonding functional group
  • a further non-covalent functional group e.g., an amide group which is a hydrogen-bonding functional group, or a metal salt of a carboxylic acid, i.e., a carboxylate group which is an ionic-bonding functional group
  • an unsaturated dicarboxylic anhydride e.g., an ⁇ , ⁇ -unsaturated dicarboxylic anhydride having 8 or less carbon atoms, such as maleic anhydride, itaconic anhydride, or citraconic anhydride, or a Diels-Alder adduct of a conjugated diene, such as 3,6-endomethylene-1,2,3,6-tetrahydrophthalic anhydride, with an ⁇ , ⁇ -unsaturated dicarboxylic anhydride having 8 or less carbon atoms
  • an acid anhydride group derived from the unsaturated dicarboxylic anhydride is introduced, and this is further treated with a base to react a part or all of the acid anhydride group with a base, thereby introducing a non-covalent functional group (e.g., an amide group, which is a hydrogen-bonding functional group, or a metal salt of a carboxylic acid,
  • an acid anhydride group derived from an unsaturated dicarboxylic anhydride may be introduced by a modification treatment using an unsaturated dicarboxylic anhydride as a modifier, and the acid anhydride group may be reacted with a base by a base treatment to form an amide group and a carboxyl group, and then the carboxyl group may be reacted with a base by a further base treatment to form the carboxyl group into a salt of a carboxylic acid, i.e., a carboxylate group which is an ionic functional group.
  • a carboxyl group which is a hydrogen-bonding functional group
  • the acid anhydride group introduced by the modification treatment using an unsaturated dicarboxylic anhydride as a modifier may be hydrolyzed with a base to form a carboxyl group, and then the carboxyl group may be reacted with a base by a further base treatment to form a salt of a carboxylic acid, i.e., a carboxylate group which is an ionic functional group.
  • a base is mixed in and neutralized to introduce an ion-bonding functional group (such as a salt of a carboxylic acid) generated by the reaction between an acidic group (e.g., a carboxyl group, etc.) derived from the Arrhenius acid introduced by modification and an Arrhenius base (e.g., a metal-containing compound, ammonium, an amine compound, pyridine, imidazole, etc.).
  • an ion-bonding functional group such as a salt of a carboxylic acid generated by the reaction between an acidic group derived from the Bronsted acid introduced by modification and a Bronsted base can be introduced.
  • the non-covalent functional group When a non-covalent functional group is introduced by a modification treatment using such a modifying agent, the non-covalent functional group will contain a residue of the modifying agent (e.g., a residue of an unsaturated carboxylic acid or a residue of an unsaturated dicarboxylic acid anhydride).
  • a residue of the modifying agent e.g., a residue of an unsaturated carboxylic acid or a residue of an unsaturated dicarboxylic acid anhydride.
  • an unsaturated carboxylic acid or an unsaturated dicarboxylic acid anhydride is preferable, an unsaturated dicarboxylic acid anhydride is more preferable, an ⁇ , ⁇ -unsaturated aliphatic dicarboxylic acid anhydride having 8 or less carbon atoms is even more preferable, and maleic anhydride is particularly preferable.
  • an alkali metal-containing compound e.g., oxides, hydroxides, carbonates, hydrogen carbonates, acetates, sulfates, phosphates, etc. of alkali metals such as sodium, lithium, and potassium
  • an alkaline earth metal-containing compound e.g., oxides, hydroxides, carbonates, hydrogen carbonates, acetates, sulfates, phosphates, etc.
  • an amine compound e.g., aliphatic amines, aromatic amines, alicyclic amines, heterocyclic amines, etc.
  • ammonia etc.
  • an amide group which is a hydrogen-bonding functional group, is generated (introduced) as a non-covalent functional group.
  • the functional block copolymer is one in which an acid anhydride group is formed by the modification treatment, and two types of hydrogen-bonding functional groups, an amide group and a carboxyl group, are introduced as non-covalent functional groups by the reaction with the amine compound of the base.
  • the rubber-like polymer can contain non-covalent functional groups, such as carboxyl groups (hydrogen-bonding functional groups) generated by modification with an unsaturated carboxylic acid or the like modifying agent, functional groups generated by reacting the carboxyl groups with a base such as an alkali metal-containing compound, an alkaline earth metal-containing compound, ammonia, or an amine compound (e.g., amide groups, which are hydrogen-bonding functional groups, or metal salts of carboxyl acids, i.e., carboxylate groups, which are ionic-bonding functional groups), functional groups generated by reacting an acid anhydride group (a group derived from an unsaturated dicarboxylic acid anhydride) generated by modification with an unsaturated dicarboxylic acid anhydride or the like modifying agent with a base such as an alkali metal-containing compound, an alkaline earth metal-containing compound, ammonia, or an amine compound or hydrolyzing the acid anhydr
  • a base such as an alkali metal
  • the rubbery polymer may contain one monomer having one or more types of non-covalent functional groups, or may contain two or more monomers having one or more types of non-covalent functional groups.
  • the non-covalent functional group is not limited to being directly bonded to the main chain of the rubber polymer, but may be bonded via a linking group.
  • the introduction rate of the non-covalent functional group of the rubber-like polymer in the functional block copolymer is preferably within a range of 1 mol % or more and 30 mol % or less, more preferably 2.5 mol % or more and 25 mol % or less, and even more preferably 5 mol % or more and 20 mol % or less, relative to 100 mol % of the monomer units constituting the rubber-like polymer having the non-covalent functional group.
  • the non-covalent bonds between the non-covalent functional groups within or between molecules can be rearranged, and the concentration of stress at the non-covalent crosslinking points is not caused, so that improvement in toughness can be stably ensured.
  • the functional block copolymer preferably has a weight average molecular weight (Mw) in the range of 30,000 to 500,000, more preferably 60,000 to 480,000, and even more preferably 90,000 to 450,000. Furthermore, the weight average molecular weight (Mw) of the rubbery polymer in the functional block copolymer is preferably in the range of 10,000 to 500,000, more preferably in the range of 40,000 to 400,000, and the weight average molecular weight (Mw) of the polymer compatible with the epoxy resin in the functional block copolymer is preferably in the range of 3,000 to 50,000, more preferably in the range of 6,000 to 20,000.
  • Mw weight average molecular weight
  • the method for producing polystyrene-polyisoprene-polystyrene block copolymer (SIS) into which the above-mentioned non-covalent functional groups are introduced generally involves first filling a polymerization vessel with a solvent such as purified cyclohexane (e.g., hexane, cyclohexane, etc.), then adding purified styrene, and adding a lithium catalyst such as butyllithium as a polymerization initiator, and polymerizing the polystyrene block under nitrogen to produce polystyrene lithium.
  • a solvent such as purified cyclohexane (e.g., hexane, cyclohexane, etc.)
  • a lithium catalyst such as butyllithium as a polymerization initiator
  • isoprene is added to produce polystyrene-polyisoprene lithium
  • styrene is added to produce polystyrene-polyisoprene-polystyrene lithium
  • the active end is deactivated with water, acid, alcohol, etc.
  • polystyrene-polyisoprene-polystyrene block copolymer SIS
  • such a production method using living anionic polymerization allows control of the content, molecular weight, and molecular weight distribution of styrene and isoprene, as well as the monomer arrangement such as the chain of styrene and isoprene, the branched structure, and the isomer composition of the isoprene portion, and thus allows for a high degree of freedom in polymer structure design.
  • Polystyrene-polyisoprene-polystyrene block copolymers produced by known methods such as solution polymerization (batch) can also be used, and commercially available products such as Quintack (registered trademark) from Zeon Corporation, VECTOR (registered trademark) from TSRC Corporation, Hypler from Kuraray Corporation, and Kraton D from Kraton Polymer Japan can also be used.
  • polystyrene-polyisoprene-polystyrene block copolymers are usually symmetrical in that the molecular weights of the two styrene blocks at both ends are the same, but they may also be asymmetrical in that the molecular weights of the two styrene blocks at both ends are different.
  • polystyrene-polybutadiene-polystyrene block copolymer similarly to the polystyrene-polyisoprene-polystyrene block copolymer (SIS), a polystyrene-polybutadiene-polystyrene block copolymer produced by the above-mentioned production method using butadiene instead of isoprene can be used.
  • polystyrene-polybutadiene-polystyrene block copolymers such as Tufprene (registered trademark) and Asaprene (registered trademark) manufactured by Asahi Kasei Chemicals Corporation and Epofriend manufactured by Daicel Chemical Industries, Ltd.
  • SEPS polystyrene-polyethylene propylene-polystyrene block copolymer
  • SEPS commercially available products such as SEPTON from Kuraray Co., Ltd.
  • SEBS polystyrene-polyethylene butylene-polystyrene block copolymer
  • SEBS polystyrene-polyethylene butylene-polystyrene block copolymer
  • TUFTEC polystyrene-polyethylene butylene-polystyrene block copolymer
  • RAVALON from Mitsubishi Chemical Corporation
  • ACTIMER from Riken Technos Corporation
  • ELASTOMER AR from Aronkasei Corporation
  • CRAYTON G from Kraton Polymer Japan Co., Ltd.
  • SIBS polystyrene-polyisobutylene-polystyrene block copolymer
  • SIBSTAR registered trademark
  • non-covalent functional groups such as hydrogen-bonding functional groups or ionic-bonding functional groups have been introduced
  • the non-covalent functional groups are non-covalently bonded between molecules or within molecules, and these non-covalent bonds can be freely dissociated and recombined. This allows for reversible pseudo-crosslinking points and physical crosslinking points due to non-covalent bonds, i.e., dynamic bonding ability between molecules and within molecules, resulting in high toughness.
  • a functional block copolymer consisting of a rubbery polymer having a non-covalent functional group that is incompatible with epoxy resin and has a glass transition temperature ( Tg ) of 25°C or less, and a polymer compatible with epoxy resin
  • the polymer compatible with epoxy resin in the functional block copolymer is compatible with epoxy resin
  • the rubbery polymer having a non-covalent functional group is incompatible with epoxy resin, so that the rubbery polymer incompatible with epoxy resin is dispersed in the epoxy resin, and the elongation, flexibility and elastic modulus of the rubbery polymer are exhibited, thereby toughening the adhesive cured product.
  • the rubber-like polymer incompatible with the epoxy resin in the functional block copolymer has a non-covalent functional group
  • the non-covalent functional groups bond non-covalently between molecules or within molecules to form reversible pseudo-crosslinking points and physical crosslinking points, so that elasticity and flexibility such as breaking elongation, maximum stress, and toughness are improved, and toughness can be further increased.
  • the peel strength and impact resistance of the cured epoxy resin can be improved.
  • this functional block copolymer consisting of a rubber-like polymer with non-covalent functional groups that is incompatible with epoxy resin and has a glass transition temperature of 25°C or less, and a polymer that is compatible with epoxy resin, it is possible to reduce internal stresses caused by cure shrinkage and thermal shrinkage when the adhesive composition is cured, and stresses that occur at the interface between the adhesive and adherend after adhesion due to differences in the thermal expansion coefficients between them, thereby improving the durability of the cured adhesive, which is a cured epoxy resin product.
  • the content of the polymer compatible with the epoxy resin in the functional block copolymer is within the range of 3% by mass or more and 80% by mass or less, so that the compatibility with the epoxy resin can be increased and the mixture can be mixed homogeneously, and therefore, more stable properties of the cured adhesive can be obtained. More preferably, it is within the range of 5% by mass or more and 70% by mass or less, and even more preferably, it is within the range of 10% by mass or more and 50% by mass or less.
  • chemical manufacturers that handle TPS generally sell products with a polystyrene weight fraction of 10 to 50 wt%, so if it is within this range, production is easy and a cured adhesive with more stable properties can be obtained.
  • the content of the rubber-like polymer having a non-covalent functional group if the content of the rubber-like polymer having a non-covalent functional group in the functional block copolymer is within the range of 20% by mass or more and 97% by mass or less, the elongation, flexibility and elastic modulus can be stably increased, and the peel strength and impact resistance can be increased. More preferably, it is within the range of 30% by mass or more and 95% by mass or less, and even more preferably, it is within the range of 50% by mass or more and 90% by mass or less.
  • the functional block copolymer can effectively toughen the epoxy resin cured product without impairing the coatability, preferably in the range of 1 part by mass or more and 3,500 parts by mass or less per 100 parts by mass of the epoxy resin. More preferably, it is in the range of 1.5 parts by mass or more and 3,400 parts by mass or less, even more preferably 2 parts by mass or more and 3,200 parts by mass or less, and particularly preferably 3.0 parts by mass or more and 3,000 parts by mass or less.
  • the rubber-like polymer having a non-covalent functional group in the functional block copolymer is preferably in the range of 0.5 parts by mass or more and 3000 parts by mass or less relative to 100 parts by mass of the epoxy resin, the elongation, flexibility and elastic modulus can be stably increased, and the peel strength and impact resistance can be increased, more preferably in the range of 0.8 parts by mass or more and 2800 parts by mass or less, even more preferably in the range of 1.0 parts by mass or more and 2500 parts by mass or less, and particularly preferably in the range of 1.5 parts by mass or more and 2000 parts by mass or less.
  • the content of the polymer compatible with the epoxy resin in the block copolymer is within the range of 0.1 parts by mass or more and 650 parts by mass or less per 100 parts by mass of the epoxy resin, compatibility with the epoxy resin can be increased and the mixture can be homogeneously mixed, so that more stable properties of the adhesive cured product can be obtained, more preferably within the range of 0.15 parts by mass or more and 620 parts by mass or less, and more preferably within the range of 0.2 parts by mass or more and 600 parts by mass or less.
  • the rubber-like polymer having a non-covalent functional group in the functional block copolymer preferably contains a monomer unit of a functional polyisoprene in which a non-covalent functional group is introduced into a polyisoprene chain, a functional polybutadiene in which a non-covalent functional group is introduced into a polybutadiene chain, a functional hydrogenated polyisoprene in which a non-covalent functional group is introduced into a hydrogenated isoprene chain, a polyethylene-propylene chain, or a functional hydrogenated polybutadiene in which a non-covalent functional group is introduced into a hydrogenated butadiene chain, a polyethylene-butylene chain, and the content of these monomer units is preferably 50 mol% or more, more preferably 70 mol% or more, and even more preferably 90 mol% or more.
  • the polymer compatible with the epoxy resin preferably contains a monomer unit having a styrene skeleton, a methacrylic skeleton, an acrylic skeleton, or an ether skeleton, and the content of these monomer units is preferably 50 mol % or more, more preferably 70 mol % or more, and even more preferably 90 mol % or more. This makes it possible to improve properties such as rubber elasticity, heat aging resistance, and weather resistance.
  • the functional block copolymer is a functional styrene-based thermoplastic elastomer containing a functional polyisoprene obtained by introducing a non-covalent functional group into polyisoprene, a functional styrene-based thermoplastic elastomer containing a functional polybutadiene obtained by introducing a non-covalent functional group into polybutadiene, a functional styrene-based thermoplastic elastomer containing a functional hydrogenated polyisoprene obtained by introducing a non-covalent functional group into hydrogenated polyisoprene, or a functional styrene-based thermoplastic elastomer containing a functional hydrogenated polybutadiene obtained by introducing a non-covalent functional group into hydrogenated polybutadiene.
  • Such functional (hydrogenated) styrene-based thermoplastic elastomers can be produced at a relatively low cost, since styrene-based thermoplastic elastomers are easily available and produced. Furthermore, because of their high elastic modulus, they can increase the toughness of the cured epoxy resin material at low cost, thereby improving the peel strength and impact resistance.
  • the method for producing the epoxy adhesive composition is not particularly limited, but for example, a masterbatch epoxy adhesive composition is produced by carrying out a mixing step in which the epoxy resin and the functional block copolymer are mixed with a solvent, and a solvent removal step in which the solvent is removed by evaporating it by heating or the like.
  • the curing agent may be mixed together with the epoxy resin, the functional block copolymer, and the solvent in the mixing step, or may be mixed after the solvent removal step.
  • a mixer for mixing (including kneading) the epoxy resin, the functional block copolymer, and the solvent
  • a mixer for mixing (including kneading) the epoxy resin, the functional block copolymer, and the solvent
  • a planetary mixer, Disper (Dissolver), Henschel mixer, kneader, roll mill, homogenizer, intermixer, kneader, roll, etc. can be used.
  • Solvents that can be used in this case include, for example, tetrahydrofuran (THF), 2-methyltetrahydrofuran, toluene, acetone, cyclohexane, normal hexane, ethyl acetate, methanol, methylene chloride (dichloromethane), methyl ethyl ketone (MEK), butyl acetate, methylcyclohexane (MCH), N,N-dimethylformamide (DMF), and N-methyl-2-pyrrolidone (NMP).
  • THF tetrahydrofuran
  • 2-methyltetrahydrofuran 2-methyltetrahydrofuran
  • toluene acetone
  • cyclohexane normal hexane
  • ethyl acetate methanol
  • methylene chloride dimethyl ketone
  • MEK methyl ethyl ketone
  • NMP N-
  • the epoxy adhesive composition of this embodiment thus prepared is in liquid, paste, or film (sheet) form. If it is in liquid or paste form, it can be applied to the object to be bonded (adherend) by a known method, such as spraying using a pump or the like, applying with a gun, or applying with a brush. For example, if the object to be bonded is a car body, it is applied to the joints of the car body by spraying using a pump or the like, applying with a gun, or the like, in a car body manufacturing process. If it is in film (sheet) form, it can be applied to the adherend by applying a solution of a resin or functional block copolymer mixed in a solvent to the adherend and drying it, or it can be attached to the adherend.
  • a liquid or paste-like epoxy adhesive composition can be obtained.
  • a liquid or paste-like epoxy adhesive composition can be obtained by volatilizing and removing the solvent from a liquid or paste-like mixture prepared by mixing a functional block copolymer, a solvent, and an epoxy resin.
  • the functional block copolymer is preferably blended in an amount of 2.0 parts by mass or more and 56 parts by mass or less, more preferably 3.0 parts by mass or more and 55 parts by mass or less, per 100 parts by mass of the epoxy resin.
  • a film-like epoxy adhesive composition can be obtained.
  • a film-like epoxy adhesive composition can be obtained by spreading a solution prepared by mixing a functional block copolymer, a solvent, and an epoxy resin on a sheet (substrate) such as a board or pad on which a sheet is laid, and volatilizing and removing the solvent.
  • the functional block copolymer is preferably blended in an amount of 80 parts by mass or more and 3,500 parts by mass or less, more preferably 100 parts by mass or more and 3,000 parts by mass or less, per 100 parts by mass of the epoxy resin.
  • additives such as reactive diluents (epoxy-based reactive diluents having epoxy groups, etc.) for reducing viscosity and improving fluidity
  • fillers such as heavy calcium carbonate and talc, silica fine powder, carbon black such as Ketjen black, colloidal calcium carbonate (fine calcium carbonate), sepiolite, thixotropy-imparting agents (thixotropic agents, thixotropic agents) such as colloidal hydrated aluminum silicate/organic complexes, viscosity adjusters (thickeners), heat resistance-imparting agents such as multifunctional epoxy resins (e.g.
  • novolac-type epoxy resins novolac-type epoxy resins
  • glycidyl amine resins glycidyl ether resins
  • acrylic resins as adhesion improvers, coupling agents, etc. may be blended as necessary, i.e. depending on the object to be bonded (adherend), the environment of the bonding location, the desired properties, etc.
  • additives such as pigments, dyes, colorants, defoamers, leveling agents, tackifiers (adhesion promoters), flame retardants, catalysts, plasticizers, reaction retarders, antioxidants, antioxidants, antistatic agents, conductivity promoters, lubricants, sliding agents, UV absorbers, surfactants, dispersants, dispersion stabilizers, dehydrating agents, crosslinking agents, rust inhibitors, solvents, etc. can also be added.
  • tackifiers as flame retardants, catalysts, plasticizers, reaction retarders, antioxidants, antioxidants, antistatic agents, conductivity promoters, lubricants, sliding agents, UV absorbers, surfactants, dispersants, dispersion stabilizers, dehydrating agents, crosslinking agents, rust inhibitors, solvents, etc.
  • the epoxy adhesive composition of this embodiment by containing an epoxy resin, a curing agent, and a functional block copolymer consisting of a rubber-like polymer that is incompatible with the epoxy resin and has a non-covalent functional group having a glass transition temperature ( Tg ) of 25°C or lower, and a polymer that is compatible with the epoxy resin, the low toughness of the epoxy resin, which is poor in flexibility and hard and brittle, is improved by the blending of the functional block copolymer consisting of a rubber-like polymer that is incompatible with the epoxy resin and has a non-covalent functional group having a glass transition temperature ( Tg ) of 25°C or lower, and a polymer that is compatible with the epoxy resin, and a tough adhesive cured product is obtained.
  • Tg glass transition temperature
  • the polymer compatible with the epoxy resin in the functional block copolymer is compatible with the epoxy resin, and the polymer compatible with the epoxy resin in the functional block copolymer and the rubbery polymer having non-covalent functional groups that is incompatible with the epoxy resin in the functional block copolymer are linked by chemical bonds, so that even at room temperature, the rubbery polymer having non-covalent functional groups is dispersed and present in the epoxy resin, and the elongation, flexibility and elastic modulus due to the rubbery polymer having non-covalent functional groups are expressed.
  • functional block copolymers containing rubber-like polymers with non-covalent functional groups such as hydrogen-bonding functional groups or ionic-bonding functional groups form non-covalent bonds between or within molecules, and these non-covalent bonds can be freely dissociated and recombined.
  • the rubber-like polymer having the non-covalent functional group of the functional block copolymer exhibits elongation, flexibility and elastic modulus, which makes it easier to absorb impact energy, thereby improving the impact resistance of the obtained cured adhesive.
  • the formation of reversible pseudo-crosslinking points and physical crosslinking points due to non-covalent bonds between the non-covalent functional groups of the rubber-like polymer of the functional block copolymer and their rearrangement, i.e., the rearrangement of the non-covalent bonds between the non-covalent functional groups enables the dispersion and alleviation of stress, thereby obtaining high impact resistance. Therefore, by incorporating a functional block copolymer, it is possible to reduce these stresses and impact energies, thereby improving the durability of the cured adhesive.
  • an epoxy resin is thermosetting
  • a functional block copolymer consisting of a rubber-like polymer having a non-covalent functional group that is incompatible with the epoxy resin and has a glass transition temperature ( Tg ) of 25°C or lower and a polymer compatible with the epoxy resin is a thermoplastic elastomer
  • Tg glass transition temperature
  • the epoxy resin and the functional block copolymer can be mixed without separation.
  • the epoxy resin and the functional block copolymer can be mixed more easily and homogeneously.
  • liquid rubber e.g., butadiene acrylonitrile copolymer
  • liquid rubbers are poorly compatible with epoxy resins and difficult to mix, so that the mixing reaction between them requires time and effort, and in addition, they do not show sufficient compatibility in the cured epoxy resin, so that dispersibility is poor and there is a limit to how much toughening can be achieved.
  • phase separation occurs and large domains (dispersed rubber particle phases) of several to several tens of micrometers or more are formed, and the formation of such domains also strongly depends on the curing conditions, making it difficult to obtain stable properties.
  • core-shell rubber particles can be used to improve these problems with liquid rubber, but it is difficult to mix and disperse powdered core-shell rubber particles uniformly into thermosetting resins without destroying them, and because of the shell content, the effect of improving toughness relative to the amount of rubber component added is small, so there is a limit to how much the adhesive composition can be toughened by improving its flexibility and elongation without impairing its applicability. Furthermore, such core-shell rubber particles are labor-intensive to produce and are expensive.
  • the epoxy adhesive composition of the present embodiment imparts toughness by blending a functional block copolymer consisting of a rubbery polymer having a non-covalent functional group that is incompatible with epoxy resin and has a glass transition temperature ( Tg ) of 25° C. or lower, and a polymer that is compatible with epoxy resin. That is, because the polymer that is compatible with epoxy resin in the functional block copolymer is compatible with epoxy resin, no domains are formed even at room temperature, and the elongation, flexibility and elastic modulus due to the rubbery polymer having a non-covalent functional group are expressed.
  • Tg glass transition temperature
  • the non-covalent functional groups are non-covalently bonded between molecules or within molecules, and the non-covalent bonds can be freely dissociated and recombined.
  • This allows for reversible pseudo-crosslinking points and physical crosslinking points due to the non-covalent bonds, i.e., dynamic bonding ability between molecules or within molecules, thereby providing high toughness. This makes it possible to improve the peel strength and impact resistance of the cured adhesive made of epoxy resin.
  • a functional block copolymer consisting of a rubber-like polymer having a non-covalent functional group that is incompatible with epoxy resin and has a glass transition temperature (T g ) of 25° C. or less, and a polymer compatible with epoxy resin
  • the polymer compatible with epoxy resin in the functional block copolymer is compatible with epoxy resin, so that the rubber-like polymer having a non-covalent functional group has good dispersibility in epoxy resin, and the elongation, flexibility and elastic modulus due to the rubber-like polymer having a non-covalent functional group are expressed, and in particular, high toughness that improves peel strength and impact resistance is exhibited by non-covalent bonding between molecules or intramolecularly between the non-covalent functional groups of the rubber-like polymer.
  • the functional block copolymer consisting of a rubber-like polymer having a non-covalent functional group that is incompatible with epoxy resin and has a glass transition temperature (T g ) of 25° C. or less, and a polymer compatible with epoxy resin can be synthesized relatively easily, and can be reduced in cost.
  • a functional block copolymer consisting of a rubber-like polymer having a non-covalent functional group that is incompatible with epoxy resins and has a glass transition temperature (T g ) of 25° C. or lower, and a polymer that is compatible with epoxy resins, can improve toughness without impairing coatability and while maintaining the original properties of epoxy resins (heat resistance, adhesiveness, mechanical properties, durability, etc.), and can also improve crack resistance, fatigue resistance, and durability by reducing stress, which allows the absorption of residual strain associated with shrinkage caused by curing and heat.
  • T g glass transition temperature
  • a functional block copolymer consisting of a rubbery polymer having a non-covalent functional group that is incompatible with epoxy resins and has a glass transition temperature ( Tg ) of 25°C or lower, and a polymer that is compatible with epoxy resins
  • the rubbery polymer having a non-covalent functional group and the polymer that is compatible with epoxy resins are incompatible with each other, so that it is easy to produce a functional block copolymer in which the ratio between them is changed, and it is also easy to control the physical properties of the adhesive cured product by controlling the ratio between the rubbery polymer having a non-covalent functional group and the polymer that is compatible with epoxy resins.
  • a vibration damping effect can be expected due to the improvement in flexibility, elongation and elastic modulus.
  • Example 1 As a functional block copolymer consisting of a rubber-like polymer having a non-covalent functional group that is incompatible with epoxy resin and has a glass transition temperature (T g ) of 25° C.
  • SIS polystyrene-polyisoprene-polystyrene block copolymer
  • h-SIS hydrogen-bonding functional groups, amide groups and carboxyl groups, as non-covalent functional groups, into the polyisoprene chain
  • Example 1 a liquid adhesive composition (hereinafter referred to as "adhesive”) was prepared containing a functional block copolymer having an amide group (hydrogen-bonding functional group) and a carboxyl group (hydrogen-bonding functional group) obtained by modifying SIS with maleic anhydride and n-butylamine in this manner, i.e., h-SIS, a bisphenol A type epoxy resin (bisphenol A diglycidyl ether: DGEBA, a bifunctional epoxy resin) (hereinafter also referred to as "EP resin”) which is a general-purpose epoxy resin that is liquid at room temperature, dicyandiamide (hereinafter also referred to as "DICY”) which is a latent curing agent, phenyl-1,1-dimethylurea A (hereinafter also referred to as "DCMU”) as a curing accelerator, colloidal calcium carbonate (ViscoExcel (registered trademark) 30HV, manufactured by Shiraishi Kogyo Co.
  • h-SIS has a polystyrene block (hereinafter also referred to as "S block”) as a polymer compatible with EP resin, and a polyisoprene block (hereinafter also referred to as “h-I block “ ) having non-covalent functional groups, amide groups (hydrogen-bonding functional groups) and carboxyl groups (hydrogen-bonding functional groups), as a rubbery polymer having a glass transition temperature (T g ) of 25° C. or lower, and the rubbery polymer is a polymer that is incompatible (insoluble) with EP resin.
  • S block content of SIS which is the base polymer of h-SIS-1, is 19 wt %, and the I block content is 81 wt %.
  • Example 1 a relatively homogeneous liquid mixture was prepared by mixing 3 parts by mass of h-SIS with 100 parts by mass of EP resin. Next, 6 parts by mass of DICY, 1 part by mass of DCMU, 35 parts by mass of CaCO3 , and 1 part by mass of CaO were added to 100 parts by mass of EP resin in the obtained liquid mixture, and the mixture was mixed while degassing and stirring to obtain an adhesive.
  • Example 1 24 g of h-SIS-1, 150 g of THF, and 0.017 g of Irganox (registered trademark) 565 (hindered phenol-based antioxidant, manufactured by BASF) and 0.024 g of Irgafos (registered trademark) 168 (phosphorus-based processing stabilizer, manufactured by BASF) as antioxidants were added and stirred. 120 g of EP resin was further added and thoroughly stirred at room temperature using a mechanical stirrer to obtain a homogeneous solution. The resulting mixed solution was then rotary evaporated to evaporate the THF. The mixture was further stirred at 55°C for 8 hours using a mechanical stirrer and vacuum dried to evaporate most of the THF. The resulting mixture of h-SIS-1 and EP resin was relatively homogeneous and liquid.
  • Irganox registered trademark
  • Irgafos registered trademark 168
  • h-SIS-1 was 3 parts by mass per 100 parts by mass of EP resin, DICY 6 parts by mass, DCMU 1 part by mass, CaCO3 35 parts by mass, and CaO 1 part by mass were added and degassed and stirred to obtain a mixture (adhesive composition).
  • the obtained mixture is a relatively homogeneous liquid, and is a one-part thermosetting epoxy adhesive composition.
  • Example 2 a liquid mixture consisting of h-SIS-1, EP resin, DICY, DCMU, CaCO3 , and CaO was prepared in the same manner as in Example 1, except that 6 parts by mass of h-SIS-1, 6 parts by mass of DICY, 2 parts by mass of DCMU, 36 parts by mass of CaCO3, and 2 parts by mass of CaO were blended relative to 100 parts by mass of EP resin, and this was used as an adhesive.
  • Example 3 a liquid mixture consisting of h-SIS-1, EP resin, DICY, DCMU, CaCO3 , and CaO was prepared in the same manner as in Example 1, except that 10 parts by mass of h-SIS-1, 6 parts by mass of DICY, 2 parts by mass of DCMU, 38 parts by mass of CaCO3, and 2 parts by mass of CaO were blended relative to 100 parts by mass of EP resin, and this was used as an adhesive.
  • Example 4 a liquid mixture consisting of h-SIS-1, EP resin, DICY, DCMU, CaCO3 , and CaO was prepared in the same manner as in Example 1, except that 100 parts by mass of EP resin were blended with 13 parts by mass of h-SIS-1, 6 parts by mass of DICY, 2 parts by mass of DCMU, 39 parts by mass of CaCO3, and 2 parts by mass of CaO, and this was used as an adhesive.
  • Example 5 a liquid mixture consisting of h-SIS-1, EP resin, DICY, DCMU, CaCO3 , and CaO was prepared in the same manner as in Example 1, except that 17 parts by mass of h-SIS-1, 6 parts by mass of DICY, 2 parts by mass of DCMU, 40 parts by mass of CaCO3, and 2 parts by mass of CaO were blended relative to 100 parts by mass of EP resin, and this was used as an adhesive.
  • Example 6 In Example 6, 13.3 g of h-SIS, 6.68 g of EP resin, and 0.466 g of DICY were dissolved in 133 g of a mixed solvent of THF and methanol (weight ratio 8:2). 0.0093 g of Irganox (registered trademark) 565 and 0.0133 g of Irgafos (registered trademark) 168 were added as antioxidants and stirred. The resulting solution was then transferred to a 20 x 16.5 cm tray covered with a Teflon (registered trademark) sheet and solvent cast at 35 ° C. for one day.
  • Irganox registered trademark
  • Irgafos registered trademark
  • the mixture was then vacuum dried at room temperature for more than two days, and the volatile solvents (THF and methanol) were evaporated to obtain a mixture (adhesive composition).
  • the obtained mixture was in the form of a relatively homogeneous film (sheet), and was a one-component thermosetting epoxy adhesive composition consisting of h-SIS, EP resin, and DICY, with a blend ratio of 200 parts by mass of h-SIS-1 and 7 parts by mass of DICY per 100 parts by mass of EP resin.
  • Example 7 a mixed film consisting of h-SIS-1, EP resin, and DICY was prepared in the same manner as in Example 6, except that 100 parts by mass of h-SIS-1 was mixed with 100 parts by mass of EP resin, and this was used as an adhesive.
  • Example 8 a mixed film consisting of h-SIS-1, EP resin, and DICY was prepared in the same manner as in Example 6, except that 600 parts by mass of h-SIS-1 was mixed with 100 parts by mass of EP resin, and this was used as an adhesive.
  • Example 9 a functional block copolymer consisting of a rubber-like polymer having a non-covalent functional group that is incompatible with epoxy resin and has a glass transition temperature (T g ) of 25° C. or lower, and a polymer compatible with epoxy resin, was used.
  • T g glass transition temperature
  • the functional block copolymer used in Example 9 was a polystyrene-functional polyisoprene-polystyrene block copolymer (hereinafter also referred to as "i-SIS") obtained by modifying a polystyrene-polyisoprene-polystyrene block copolymer (SIS), which is a styrene-based thermoplastic elastomer, with a modifying agent and a base, and further neutralizing it with a base, to introduce an amide group, which is a hydrogen-bonding functional group, and a carboxylate group, which is an ionic functional group, as non-covalent functional groups into the polyisoprene chain of the SIS.
  • SIS polystyrene-functional polyisoprene-polystyrene block copolymer
  • i-SIS having an ionic functional group is synthesized by neutralizing the carboxyl group in the above h-SIS with sodium methoxide, which is a base. That is, i-SIS was obtained by reacting h-SIS-1 of Example 1 with sodium methoxide.
  • h-SIS-1 obtained in Example 1, 160 g of THF, and 40 g of methanol (weight ratio of THF to methanol: 8/2) were added to a round-bottom flask, and the mixture was stirred well at room temperature using a mechanical stirrer to obtain a homogeneous solution. Then, 3.0 mL of a methanol solution of sodium methoxide (concentration 5 mol/L) was added. At this time, the amount of succinic anhydride unit introduced in h-SIS-1 and the amount of sodium methoxide were approximately equimolar.
  • a functional block copolymer (hereinafter also referred to as "i-SIS-1") was obtained in which the carboxylic acid of the carboxyl group of h-SIS-1, a functional block copolymer obtained by modifying SIS with maleic anhydride and n-butylamine, was neutralized with sodium methoxide, a base, to be modified into a carboxylate group. That is, since the carboxyl group in h-SIS is acidic, it reacts with sodium methoxide, a basic compound, to form a salt or a carboxylate, which is an acid-base complex, in the above-mentioned process.
  • the product obtained by modifying the h-SIS with maleic anhydride (modifier) and n-butylamine (base) and further neutralizing the carboxylic acid with sodium methoxide (base) is a functional block copolymer containing a portion in which a monomer having a carboxylate group (ionic bond functional group) and an amide group (hydrogen bond functional group) is polymerized in the polyisoprene chain of the SIS.
  • the chemical reaction formula of the functional block copolymer (i-SIS) having an amide group (hydrogen bond functional group) and a carboxylate group (ionic bond functional group) obtained by modifying and base-treating the SIS to form h-SIS and further base-treating the h-SIS is shown in FIG.
  • i-SIS-1 has a polystyrene block (S block) as a polymer compatible with EP resin, and a polyisoprene block (hereinafter also referred to as "i-I block” ) having non-covalent functional groups, an amide group (hydrogen-bonding functional group) and a carboxylate group (ionic-bonding functional group), as a rubbery polymer having a glass transition temperature (T g ) of 25° C. or lower, and the rubbery polymer is a polymer that is incompatible (insoluble) with EP resin.
  • S block content of SIS which is the base of i-SIS, is 19 wt %, and the I block content is 81 wt %.
  • Example 9 EP resin was added to the liquid mixture containing i-SIS-1 described above so that the amount of i-SIS-1 was 3 parts by mass per 100 parts by mass of EP resin, and then 6 parts by mass of DICY, 1 part by mass of DCMU, 35 parts by mass of CaCO 3 and 1 part by mass of CaO were added to 100 parts by mass of EP resin in the resulting liquid mixture, and the mixture was mixed by degassing and stirring to obtain a liquid mixture (adhesive composition).
  • the resulting mixture was a relatively homogeneous liquid, and was a one-part thermosetting epoxy adhesive composition consisting of i-SIS, EP resin, DICY, DCMU, CaCO 3 and CaO.
  • Example 10 a liquid mixture consisting of i-SIS, EP resin, DICY, DCMU, CaCO3, and CaO was prepared in the same manner as in Example 7, except that 100 parts by mass of EP resin were mixed with 6 parts by mass of i-SIS, 6 parts by mass of DICY, 2 parts by mass of DCMU, 36 parts by mass of CaCO3, and 2 parts by mass of CaO, and this was used as an adhesive.
  • Example 11 a liquid mixture consisting of i-SIS, EP resin, DICY, DCMU, CaCO3, and CaO was prepared in the same manner as in Example 7, except that 100 parts by mass of EP resin were mixed with 9 parts by mass of i-SIS, 6 parts by mass of DICY, 2 parts by mass of DCMU, 37 parts by mass of CaCO3, and 2 parts by mass of CaO, and this was used as an adhesive.
  • Example 12 a liquid mixture consisting of i-SIS, EP resin, DICY, DCMU, CaCO3, and CaO was prepared in the same manner as in Example 7, except that 100 parts by mass of EP resin were mixed with 13 parts by mass of i-SIS, 6 parts by mass of DICY, 2 parts by mass of DCMU, 39 parts by mass of CaCO3, and 2 parts by mass of CaO, and this was used as an adhesive.
  • Example 13 a liquid mixture consisting of i-SIS, EP resin, DICY, DCMU, CaCO3 , and CaO was prepared in the same manner as in Example 7, except that 17 parts by mass of i-SIS, 6 parts by mass of DICY, 2 parts by mass of DCMU, 40 parts by mass of CaCO3, and 2 parts by mass of CaO were blended relative to 100 parts by mass of EP resin, and this was used as an adhesive.
  • Example 14 In Example 14, 13.4 g of h-SIS-1 was dissolved in 130 g of a mixed solvent of THF and methanol (weight ratio 8:2), and 1.74 mL of a methanol solution of sodium methoxide (concentration 5 mol/L) was added to obtain i-SIS-1, and then 6.67 g of EP resin and 0.467 g of DICY were added and dissolved. An anti-aging agent was further added appropriately and stirred. The resulting solution was then transferred to a 20 x 16.5 cm tray covered with a Teflon (registered trademark) sheet and solvent cast at 35 ° C. for one day.
  • Teflon registered trademark
  • the mixture was then vacuum dried at room temperature for more than two days, and the volatile solvents (THF and methanol) were evaporated to obtain a mixture (adhesive composition).
  • the obtained mixture was in the form of a relatively homogeneous film (sheet), and was a one-component thermosetting epoxy adhesive composition consisting of i-SIS-1, EP resin, and DICY, with a blend ratio of 200 parts by mass of i-SIS-1 and 7 parts by mass of DICY per 100 parts by mass of EP resin.
  • Example 15 h-SIS (hereinafter also referred to as "h-SIS-2”) having a succinic anhydride unit introduction rate of 2.1 mol% was synthesized in the same manner as in Example 1, and a relatively homogeneous liquid mixture containing 4.8 parts by mass of h-SIS-2 per 100 parts by mass of EP resin was prepared. 7 parts by mass of DICY, 1 part by mass of an amine adduct accelerator (Amicure TMMY-24, hereinafter also referred to as "AA”), and 19.9 parts by mass of CaCO3 (15 parts by mass when the entire mixture is taken as 100 parts by mass) were added to 100 parts by mass of EP resin in the obtained liquid mixture, and the resulting liquid mixture was used as an adhesive by thoroughly stirring.
  • AA amine adduct accelerator
  • Example 16 a relatively homogeneous liquid mixture containing 9.8 parts by mass of h-SIS-2 per 100 parts by mass of EP resin was prepared in the same manner as in Example 15, and 7 parts by mass of DICY, 1 part by mass of AA, and 20.8 parts by mass of CaCO 3 (15 parts by mass when the entire mixture is taken as 100 parts by mass) were added thereto and mixed well to obtain a liquid mixture as an adhesive.
  • Example 17 a relatively homogeneous liquid mixture containing 15 parts by mass of h-SIS-2 for 100 parts by mass of EP resin was prepared in the same manner as in Example 15, and 7 parts by mass of DICY, 1 part by mass of AA, and 21.7 parts by mass of CaCO 3 (15 parts by mass when the entire mixture is taken as 100 parts by mass) were added thereto and mixed well to obtain a liquid mixture as an adhesive.
  • Example 18 In Example 18, a relatively homogeneous liquid mixture containing 21 parts by mass of h-SIS-2 per 100 parts by mass of EP resin was prepared in the same manner as in Example 15, and 7 parts by mass of DICY, 1 part by mass of AA, and 22.8 parts by mass of CaCO 3 (15 parts by mass when the entire mixture is taken as 100 parts by mass) were added thereto and mixed well to obtain a liquid mixture as an adhesive.
  • Example 19 a relatively homogeneous liquid mixture containing 24 parts by mass of h-SIS-2 per 100 parts by mass of EP resin was prepared in the same manner as in Example 15, and 7 parts by mass of DICY, 1 part by mass of AA, and 23.3 parts by mass of CaCO 3 (15 parts by mass when the entire mixture is taken as 100 parts by mass) were added thereto and mixed well to obtain a liquid mixture as an adhesive.
  • Example 20 a relatively homogeneous liquid mixture containing 28 parts by mass of h-SIS-2 per 100 parts by mass of EP resin was prepared in the same manner as in Example 15, and 7 parts by mass of DICY, 1 part by mass of AA, and 24.0 parts by mass of CaCO 3 (15 parts by mass when the entire mixture is taken as 100 parts by mass) were added thereto and mixed well to obtain a liquid mixture as an adhesive.
  • Example 21 h-SIS (hereinafter also referred to as h-SIS-3) having a succinic anhydride unit introduction rate of 4.4 mol% was synthesized in the same manner as in Example 1, and a relatively homogeneous liquid mixture containing 6.0 parts by mass of h-SIS-3 per 100 parts by mass of EP resin was prepared in the same manner as in Example 1, and 7 parts by mass of DICY, 1 part by mass of AA, and 20.1 parts by mass of CaCO3 (15 parts by mass when the entire mixture is taken as 100 parts by mass) were added thereto and mixed well to obtain a liquid mixture to be used as an adhesive.
  • h-SIS-3 having a succinic anhydride unit introduction rate of 4.4 mol% was synthesized in the same manner as in Example 1, and a relatively homogeneous liquid mixture containing 6.0 parts by mass of h-SIS-3 per 100 parts by mass of EP resin was prepared in the same manner as in Example 1, and 7 parts by mass of DICY, 1 part by mass of AA, and 2
  • Example 22 a relatively homogeneous liquid mixture containing 9.0 parts by mass of h-SIS-3 per 100 parts by mass of EP resin was prepared in the same manner as in Example 21, and 7 parts by mass of DICY, 1 part by mass of AA, and 20.6 parts by mass of CaCO 3 (15 parts by mass when the entire mixture is taken as 100 parts by mass) were added thereto and mixed well to obtain a liquid mixture as an adhesive.
  • Example 23 a relatively homogeneous liquid mixture containing 16 parts by mass of h-SIS-3 per 100 parts by mass of EP resin was prepared in the same manner as in Example 21, and 7 parts by mass of DICY, 1 part by mass of AA, and 21.9 parts by mass of CaCO 3 (15 parts by mass when the entire mixture is taken as 100 parts by mass) were added thereto and mixed well to obtain a liquid mixture as an adhesive.
  • Example 24 a relatively homogeneous liquid mixture containing 19 parts by mass of h-SIS-3 per 100 parts by mass of EP resin was prepared in the same manner as in Example 21, and 7 parts by mass of DICY, 1 part by mass of AA, and 22.4 parts by mass of CaCO 3 (15 parts by mass when the entire mixture is taken as 100 parts by mass) were added thereto and mixed well to obtain a liquid mixture as an adhesive.
  • Example 25 a relatively homogeneous liquid mixture containing 24 parts by mass of h-SIS-3 per 100 parts by mass of EP resin was prepared in the same manner as in Example 10, and 7 parts by mass of DICY, 1 part by mass of AA, and 23.3 parts by mass of CaCO 3 (15 parts by mass when the entire mixture is taken as 100 parts by mass) were added thereto and mixed well to obtain a liquid mixture as an adhesive.
  • Example 26 a mixed film was prepared by blending 3,000 parts by mass of h-SIS-1, 7 parts by mass of DICY, and 1 part by mass of AA with 100 parts by mass of EP resin in the same manner as in Example 6, and this was used as an adhesive.
  • Example 27 h-SIS (hereinafter also referred to as h-SIS-4) having a succinic anhydride unit introduction rate of about 7.5 mol% was synthesized in the same manner as in Example 1, and a relatively homogeneous liquid mixture containing 4.8 parts by mass of h-SIS-3 per 100 parts by mass of EP resin was prepared in the same manner as in Example 1, and 7 parts by mass of DICY, 1 part by mass of AA, and 19.9 parts by mass of CaCO3 ( 15 parts by mass of the entire mixture) were added thereto and mixed well to obtain a liquid mixture to be used as an adhesive.
  • h-SIS-4 having a succinic anhydride unit introduction rate of about 7.5 mol% was synthesized in the same manner as in Example 1, and a relatively homogeneous liquid mixture containing 4.8 parts by mass of h-SIS-3 per 100 parts by mass of EP resin was prepared in the same manner as in Example 1, and 7 parts by mass of DICY, 1 part by mass of AA, and 19.9 parts by
  • Example 28 a relatively homogeneous liquid mixture containing 9.7 parts by mass of h-SIS-4 per 100 parts by mass of EP resin was prepared in the same manner as in Example 27, and 7 parts by mass of DICY, 1 part by mass of AA, and 20.8 parts by mass of CaCO3 (15 parts by mass of the entire mixture) were added thereto and mixed well to obtain a liquid mixture as an adhesive.
  • Example 29 In Example 29, a relatively homogeneous liquid mixture containing 14 parts by mass of h-SIS-4 per 100 parts by mass of EP resin was prepared in the same manner as in Example 27, and 7 parts by mass of DICY, 1 part by mass of AA, and 21.5 parts by mass of CaCO 3 (15 parts by mass when the entire mixture is taken as 100 parts by mass) were added thereto and mixed well to obtain a liquid mixture as an adhesive.
  • Example 30 In Example 30, a relatively homogeneous liquid mixture containing 21 parts by mass of h-SIS-4 per 100 parts by mass of EP resin was prepared in the same manner as in Example 27, and 7 parts by mass of DICY, 1 part by mass of AA, and 22.8 parts by mass of CaCO 3 (15 parts by mass when the entire mixture is taken as 100 parts by mass) were added thereto and mixed well to obtain a liquid mixture as an adhesive.
  • Example 31 In Example 31, a relatively homogeneous liquid mixture containing 24 parts by mass of h-SIS-4 per 100 parts by mass of EP resin was prepared in the same manner as in Example 10, and 7 parts by mass of DICY, 1 part by mass of AA, and 23.3 parts by mass of CaCO 3 (15 parts by mass when the entire mixture is taken as 100 parts by mass) were added thereto and mixed well to obtain a liquid mixture as an adhesive.
  • an adhesive composition was also prepared that did not contain the functional block copolymer.
  • Comparative Example 1 In Comparative Example 1, no polymer other than EP resin was used, and 6 parts by mass of DICY, 1 part by mass of DCMU, 34 parts by mass of CaCO3 , and 1 part by mass of CaO were blended with 100 parts by mass of EP resin, and the resulting liquid mixture was stirred to form an adhesive.
  • Comparative Example 2 In Comparative Example 2, a functional block copolymer having a non-covalent functional group was not used, and the same procedure as in Example 1 was used to mix 5 parts by mass of SIS having no non-covalent functional group, 6 parts by mass of DICY, 1 part by mass of DCMU, 34 parts by mass of CaCO3 , and 1 part by mass of CaO with respect to 100 parts by mass of EP resin, and the resulting liquid mixture was used as an adhesive.
  • Comparative Example 3 In Comparative Example 3, no polymer other than EP resin was used, and 7 parts by mass of DICY and 1 part by mass of AA were blended with 100 parts by mass of EP resin, and the resulting liquid mixture was stirred to prepare an adhesive.
  • Comparative Example 4 In Comparative Example 4, a functional block copolymer having a non-covalent functional group was not used, and a mixed film containing 200 parts by mass of SIS not having a non-covalent functional group and 7 parts by mass of DICY per 100 parts by mass of EP resin was prepared in the same manner as in Example 6, and this was used as an adhesive.
  • Comparative Example 5 In Comparative Example 5, a functional block copolymer having a non-covalent functional group was not used, and a mixed film containing 600 parts by mass of SIS having no non-covalent functional group and 7 parts by mass of DICY per 100 parts by mass of EP resin was prepared in the same manner as in Example 6, and this was used as an adhesive.
  • Comparative Example 6 In Comparative Example 6, no polymer other than EP resin was used, and 7 parts by mass of DICY, 1 part by mass of AA, and 19.1 parts by mass of CaCO3 (15 parts by mass when the entire mixture is 100 parts by mass) were mixed with 100 parts by mass of EP resin, and the resulting liquid mixture was used as an adhesive.
  • Comparative Example 7 In Comparative Example 7, a functional block copolymer having a non-covalent functional group was not used, and the same procedure as in Example 1 was used to mix 5.6 parts by mass of SIS having no non-covalent functional group, 7 parts by mass of DICY, 1 part by mass of AA, and 20.0 parts by mass of CaCO3 (15 parts by mass when the entire mixture is 100 parts by mass) with 100 parts by mass of EP resin, and the resulting liquid mixture was used as an adhesive.
  • Comparative Example 8 In Comparative Example 8, a functional block copolymer having a non-covalent functional group was not used, and the same procedure as in Example 1 was used to mix 9.6 parts by mass of SIS having no non-covalent functional group, 7 parts by mass of DICY, 1 part by mass of AA, and 20.8 parts by mass of CaCO3 (15 parts by mass when the total mixture is 100 parts by mass) with 100 parts by mass of EP resin, and the resulting liquid mixture was used as an adhesive.
  • Comparative Example 9 In Comparative Example 9, a functional block copolymer having a non-covalent functional group was not used, and the same procedure as in Example 1 was used to mix 16 parts by mass of SIS having no non-covalent functional group, 7 parts by mass of DICY, 1 part by mass of AA, and 21.9 parts by mass of CaCO3 (15 parts by mass when the total mixture is 100 parts by mass) with 100 parts by mass of EP resin, and the resulting liquid mixture was used as an adhesive.
  • Comparative Example 10 In Comparative Example 10, a functional block copolymer having a non-covalent functional group was not used, and the same procedure as in Example 1 was used to mix 19 parts by mass of SIS having no non-covalent functional group, 7 parts by mass of DICY, 1 part by mass of AA, and 22.4 parts by mass of CaCO3 (15 parts by mass when the entire mixture is 100 parts by mass) with 100 parts by mass of EP resin, and the resulting liquid mixture was used as an adhesive.
  • Comparative Example 11 In Comparative Example 11, a functional block copolymer having a non-covalent functional group was not used, and the same procedure as in Example 1 was used to mix 26 parts by mass of SIS having no non-covalent functional group, 7 parts by mass of DICY, 1 part by mass of AA, and 23.6 parts by mass of CaCO3 (15 parts by mass when the entire mixture is 100 parts by mass) with 100 parts by mass of EP resin, and the resulting liquid mixture was used as an adhesive.
  • Comparative Example 12 In Comparative Example 12, a functional block copolymer having a non-covalent functional group was not used, and the same procedure as in Example 1 was used to mix 28 parts by mass of SIS having no non-covalent functional group, 7 parts by mass of DICY, 1 part by mass of AA, and 24.0 parts by mass of CaCO3 (15 parts by mass when the entire mixture is 100 parts by mass) with 100 parts by mass of EP resin, and the resulting liquid mixture was used as an adhesive.
  • Comparative Example 13 In Comparative Example 13, a functional block copolymer having a non-covalent functional group was not used, and the same procedure as in Example 26 was used to mix 3,000 parts by mass of SIS having no non-covalent functional group, 7 parts by mass of DICY, and 1 part by mass of AA with 100 parts by mass of EP resin, and the resulting film-like mixture was used as an adhesive.
  • Example 24 which is a representative epoxy adhesive composition containing h-SIS that has a hydrogen-bonding functional group as a non-covalent functional group
  • Comparative Example 10 which is a representative epoxy adhesive composition containing SIS that does not have a non-covalent functional group
  • Comparative Example 6 which is a representative epoxy adhesive composition that does not use a polymer other than EP resin
  • Example 24 The liquid adhesives of Example 24, Comparative Example 6, and Comparative Example 10 were transferred to a silicone mold (width about 4.5 m ⁇ length about 350 mm ⁇ thickness about 2 mm), degassed at 60 ° C, transferred to an oven heated to 170 ° C, and removed from the oven after 50 minutes to obtain heat-cured test specimens.
  • h-SIS-3 and SIS films were prepared by a solution casting method using THF solvent.
  • h-SIS-3 a peak derived from relaxation of hydrogen bonds was observed at about 8°C, so the peak in the sample of Example 24 is considered to be an overlap of peaks derived from ⁇ relaxation of the EP resin, Tg of the h-I block, and relaxation of hydrogen bonds in the h-I block.
  • the tan ⁇ value at 26°C near room temperature was 0.022 for the sample of Comparative Example 6, whereas it was 0.029 for the sample of Comparative Example 10, suggesting that the presence of the I block, which is a soft rubber-like component, somewhat increased the stress relaxation ability.
  • the tan ⁇ value at 26°C for the sample of Example 24 was 0.033, which was larger than that of Comparative Example 10, and this is believed to be due to the relaxation of hydrogen bonds, suggesting that the inclusion of h-SIS-3 exhibits a higher stress dispersion ability than the inclusion of SIS.
  • Example 24 and Comparative Example 10 containing the block copolymer were transferred to an oven heated to 170°C, and after 50 minutes, they were removed from the oven to obtain heat-cured test pieces.
  • h-SIS-3 and SIS films were prepared by a solution casting method using THF solvent and embedded in epoxy resin. Ultrathin sections of about 80 nm thick were prepared from these samples by a microtome method. In order to enhance the contrast of the TEM image, the samples were stained overnight with osmium tetroxide vapor.
  • TEM observation was performed using a JEM-1400Flash (manufactured by JEOL) at an accelerating voltage of 100 kV.
  • TEM images of the adhesive cured products of SIS, h-SIS-3, Comparative Example 10, and Example 24 are shown in Figures 8(a), 8(b), 8(c), and 8(d), respectively. Because staining was performed with osmium tetroxide vapor, the I or h-I block phase appears dark, and the S block and EP resin phase appear bright. In Figures 8(a) and 8(b), bright spherical or columnar fine phases (about 10 to 20 nm) are seen on the dark continuous phase, and it was found that SIS and h-SIS-3 form a nanophase separation structure in which isolated microdomains (columns or spheres) of the S block exist in the I or h-I matrix.
  • DSC Differential Scanning Calorimetry
  • thermograms are shown in Fig. 9(a) for SIS, the cured adhesive of Comparative Example 6, and the cured adhesives of Comparative Examples 7 to 11 containing SIS, in Fig. 9(b) for h-SIS-2 and the cured adhesives of Examples 15 to 19 containing h-SIS-2, and in Fig. 9(c) for h-SIS-3 and the cured adhesives of Examples 21 to 25 containing h-SIS-3.
  • the white arrows ( ⁇ ) in the thermograms indicate the position of the T g derived from the rubber-like component, and the black arrows ( ⁇ ) indicate the position of the T g derived from the EP resin, and the values of T g are summarized in Table 3 below.
  • the T g derived from the I or h-I block tended to become slightly higher, which is believed to be due to a slight decrease in molecular mobility caused by slight dissolution or reaction at the interface between the I or h-I block and the EP resin, but the effect was slight.
  • the T g at around 150°C derived from the EP resin hardly changed regardless of the content of SIS or h-SIS, so it was found that the heat resistance of the adhesive was hardly decreased by the inclusion of SIS or h-SIS.
  • the I or h-I block is incompatible with the EP resin, and the amount of the S block ( Tg of about 100°C) which is compatible with the EP resin is small, at less than 3% of the total, and therefore the effect on the Tg of the EP resin is small.
  • the prepared sample was then transferred to an oven heated to 170°C, and after 50 minutes, it was removed from the oven to obtain a test piece in which the adhesive composition was heat-cured and the substrates were bonded. Then, a shear tensile test was performed on the obtained test piece.
  • the measurement device used was Shimadzu Corporation's AGS-X, 10 kN load cell, and pneumatic flat-type gripper, and the shear tensile test was performed at an air pressure of 0.40 MPa, room temperature, and a tensile speed of 50 mm/min.
  • the film-like adhesive composition (Examples 6 to 8, 14, 26, Comparative Examples 4 to 5, and 13) was cut to a size of about 25 mm x 12.5 mm, sandwiched between two SPC270 substrates with a thickness of 1.6 mm, width of 25 mm, and length of 100 mm together with spacer glass beads (about 0.2 mm), and fixed with clips (adhesive area is about 25 mm x 12.5 mm).
  • the prepared sample was then transferred to an oven heated to 170°C, and removed from the oven after 50 minutes, whereby the mixed film (film-like adhesive composition) was heat-cured to obtain a test piece in which the substrates were bonded together.
  • the obtained test piece was subjected to a shear tensile test under the same conditions as above. The test was performed three times for each sample, and the average values are shown in Tables 1 to 4 below.
  • T-peel test The T-peel test was performed in accordance with the T-peel adhesion strength test method of JIS K6854-3 (1999).
  • the liquid adhesive (Examples 1 to 5, 9 to 13, 15 to 25, 27 to 31, Comparative Examples 1 to 3, and 6 to 12) was applied between two T-peel test substrates made of SPC270 with a thickness of 0.8 mm, a width of 25 mm, and a length of 150 mm together with spacer glass beads (about 0.2 mm), and was fixed with a clip.
  • the prepared sample was then transferred to an oven heated to 170°C, and after 50 minutes, it was removed from the oven to obtain a test piece in which the adhesive composition was heated and cured, and the substrates were bonded together.
  • the obtained test piece was then subjected to a T-peel test.
  • the measurement device used was Shimadzu Corporation's AGS-X, 500N load cell, and air-operated flat gripper, and the T-peel test was performed at an air pressure of 0.40 MPa, room temperature, and a tensile speed of 200 mm/min.
  • the film-like adhesive composition (Examples 6 to 8, 14, 26, Comparative Examples 4 to 5, and 13) was cut to a size of approximately 25 mm x 150 mm, and sandwiched between two SPC270 T-peel test substrates with an adherend surface of 0.8 mm thickness, 25 mm width, and 150 mm length together with spacer glass beads (approximately 0.2 mm), and secured with clips.
  • the prepared sample was then transferred to an oven heated to 170°C, and removed from the oven after 50 minutes, resulting in a test specimen in which the mixed film (film-like adhesive composition) was heat-cured and the substrates were bonded together.
  • the obtained test specimen was subjected to a T-peel test under the same conditions as above.
  • the impact resistance test was performed by a dynamic split resistance test (wedge impact method) under impact conditions in accordance with JIS K6865.
  • the liquid adhesive (Examples 1 to 5, 9 to 13, 15 to 25, 27 to 31, Comparative Examples 1 to 3, and Comparative Examples 6 to 11) was applied to two cold-rolled steel plates made of SPC270, which were dynamic splitting resistance test substrates, and had a thickness of 0.8 mm, a width of 25 mm, and a length of 150 mm, together with spacer glass beads (about 0.2 mm), and was fixed with a clip (adhesive area is about 25 mm x 12.5 mm).
  • the prepared sample was then transferred to an oven heated to 170°C, and removed from the oven after 60 minutes to obtain a symmetrical wedge test piece in which the substrates were bonded with a heat-cured mixed film. Then, using a high speed tensile testing machine (manufactured by Shimadzu Corporation), an impact test was carried out in which a load was applied to the symmetrical wedge test piece with a test wedge (made of hardened steel) so as to split it at room temperature (approximately 20°C) and a test speed of 2 m/s.
  • the test force (strength) (kN) was measured in the range of 25 to 90% of the total displacement (stroke) during the test, and the impact strength was calculated by dividing the average strength (kN) by the width (mm) of the test piece.
  • the film-like adhesive compositions (Examples 6 to 8, 14, 26, Comparative Examples 4 to 5, and 13) were cut to a size of approximately 25 mm x 150 mm, and together with spacer glass beads (approximately 0.2 mm), were sandwiched between two cold-rolled steel plates made of SPC270, which were dynamic splitting resistance test substrates and had an adhesive surface of 0.8 mm thickness, 25 mm width, and 150 mm length, and secured in place with clips (adhesive area approximately 25 mm x 12.5 mm). Test pieces were then prepared in the same manner as above and impact tests were carried out.
  • Tables 1 to 4 The results of the impact resistance tests are shown in Tables 1 to 4 below.
  • the values shown in Tables 1 to 4 are the average values when the test was performed two or three times for each sample.
  • Figure 11 shows plots of impact strength versus weight fraction of block copolymer in the adhesive for Comparative Example 6 which does not have a block copolymer, Comparative Examples 7 to 11 which contain SIS, and Examples 15 to 19, 21 to 25, and 26 to 31 which contain functional block copolymers.
  • the compounding compositions and the results of various tests of these Examples and Comparative Examples are shown in Tables 1 to 4 below.
  • Examples 1 to 5 and Examples 9 to 13 which are liquid adhesives containing functional block copolymers, in addition to having good shear strength, they also had excellent peel strength and impact strength, and their peel strength and impact resistance were improved compared to Comparative Example 1.
  • Examples 1 to 5 and Examples 9 to 13 all had an extremely higher elastic modulus than Comparative Example 1, and therefore while the S block in h-SIS was compatible with the EP resin, the h-I block, which is a rubber-like polymer in h-SIS, was not compatible with the EP resin, and the compatibility of the S block in h-SIS with the EP resin caused the h-I block to disperse in the EP resin, and the h-I block continued to function as rubber even after the EP resin was heat-cured, and the h-I block provided elongation, flexibility and elastic modulus, thereby toughening the epoxy resin.
  • a cured adhesive consisting of an epoxy adhesive composition made by mixing an epoxy resin, a curing agent, and a polystyrene-functionalized polyisoprene-polystyrene block copolymer, etc.
  • the polystyrene part of the polystyrene-functionalized polyisoprene-polystyrene block copolymer is compatible with the epoxy resin, so that the polystyrene parts do not aggregate or coagulate to form pseudo-crosslinking points, and the functionalized polyisoprene parts are dispersed in the epoxy resin, and flexibility, elongation, and elastic modulus are imparted by the action of the rubber-like functionalized polyisoprene parts.
  • the spherical domains of the EP resin that are not mixed with the S block are dispersed relatively uniformly on the order of several tens to several hundreds of nanometers, which is less than a micrometer, and therefore it is presumed that the epoxy resin is toughened. It is presumed that this results in the toughening of the cured epoxy resin, improving its elastic modulus, peel strength and impact resistance.
  • the adhesives of Examples 1 to 5 and Examples 9 to 13 all had superior peel strength and impact strength when compared to the adhesive of Comparative Example 2, which contained a block copolymer (SIS) without non-covalent functional groups instead of a functional block copolymer (h-SIS, i-SIS) with non-covalent functional groups.
  • SIS block copolymer
  • h-SIS, i-SIS functional block copolymer
  • non-covalent functional groups such as hydrogen-bonding functional groups and ionic-bonding functional groups are non-covalently bonded between molecules and within molecules, and these non-covalent bonds can be freely dissociated and recombined.
  • a liquid adhesive composition in which the functional block copolymer (h-SIS, i-SIS) is preferably in the range of 3 parts by mass or more and 20 parts by mass or less per 100 parts by mass of epoxy resin can improve impact resistance and peel strength while maintaining shear strength.
  • a liquid adhesive composition is also suitable for applications such as an automotive structural adhesive.
  • Examples 15-25 and 27-31 which are liquid adhesives containing functional block copolymers, in addition to having good shear strength, they also had superior peel strength and impact strength to Comparative Example 6.
  • the S block in h-SIS is compatible with EP resin
  • the h-I block which is a rubber-like polymer in h-SIS
  • the S block in h-SIS is compatible with EP resin, so that the h-I block disperses in the EP resin, and even after the EP resin is heat-cured, the h-I block functions as rubber, not only imparting elongation and flexibility due to the h-I block, but also, as seen in the TEM image in Figure 8, the spherical domains of EP resin that are not mixed with the S block are dispersed relatively uniformly on the order of tens to hundreds of nanometers, which is less than a micrometer, and the epoxy resin is toughened.
  • a cured adhesive consisting of an epoxy adhesive composition made by mixing an epoxy resin, a curing agent, and a polystyrene-functionalized polyisoprene-polystyrene block copolymer, etc.
  • the polystyrene part of the polystyrene-functionalized polyisoprene-polystyrene block copolymer is compatible with the epoxy resin, so that the polystyrene parts do not aggregate or coagulate to form pseudo-crosslinking points, and the functionalized polyisoprene parts are dispersed in the epoxy resin, and flexibility, elongation, and elastic modulus are imparted by the action of the rubber-like functionalized polyisoprene parts.
  • the spherical domains of the EP resin that are not mixed with the S block are dispersed relatively uniformly on the order of several tens to several hundreds of nanometers, which is less than a micrometer, and therefore it is presumed that the epoxy resin is toughened. It is presumed that this results in the toughening of the cured epoxy resin, improving its elastic modulus, peel strength and impact resistance.
  • Examples 15-25 and Examples 27-31 all had superior peel strength and impact strength when compared to the adhesives of Comparative Examples 7-12, which contained a block copolymer (SIS) without non-covalent functional groups instead of a functional block copolymer (h-SIS) with non-covalent functional groups.
  • SIS block copolymer
  • h-SIS functional block copolymer
  • hydrogen-bonding functional groups are non-covalently bonded between molecules and within molecules, and these non-covalent bonds can be freely dissociated and recombined.
  • the adhesives of Examples 27 to 31, which contain h-SIS-4 with a succinic anhydride unit introduction rate of approximately 7.5 mol% tend to have superior peel strength and impact resistance compared to the adhesives of the corresponding formulations of Examples 21 to 25, which contain h-SIS-3 with a succinic anhydride unit introduction rate of 4.4 mol%, and the adhesives of Examples 21 to 25 also tend to have superior peel strength and impact resistance compared to the adhesives of the corresponding formulations of Examples 15 to 20, which contain h-SIS-2 with a succinic anhydride unit introduction rate of 2.1 mol%.
  • Example 26 Similar to Examples 15 to 25 and Examples 27 to 31, improved peel strength was observed compared to the adhesives of Comparative Examples 6 and 13.
  • the shear strength of Example 26 is lower than that of Comparative Example 6 because the amount of epoxy resin in Example 26 is relatively smaller than that in Comparative Example 6.
  • the elastic modulus of the dumbbell-shaped No. 7 is higher in the above-mentioned embodiment than in the comparative example by measuring the elastic modulus of the dumbbell-shaped No. 7.
  • Reference Example 1 the compatibility of polyisoprene (rich in 1,4 structure, number average molecular weight of 150,000, hereinafter also referred to as "PI"), a rubber-like polymer having a glass transition temperature ( Tg ) of 25°C or lower, with a bisphenol A type epoxy resin (prepolymer) (hereinafter also referred to as "EP resin”) was confirmed.
  • PI polyisoprene
  • Tg glass transition temperature
  • EP resin bisphenol A type epoxy resin
  • PI and EP resin were weighed out so that the PI was 11, 43, 100, 233, and 900 parts by mass per 100 parts by mass of EP resin, and tetrahydrofuran (THF), a common good solvent for PI and EP resin, was added to prepare approximately 10 wt% solutions. Approximately 1 to 2 drops of the resulting solution were placed on a cover glass. The cover glass with the solution on it was placed on a hot plate at 40°C to evaporate the THF. When the obtained samples were observed under an optical microscope (see Figure 12), macrophase separation of several tens to several hundreds of ⁇ m was observed in all cases, confirming that the PI and EP resin were incompatible.
  • THF tetrahydrofuran
  • Reference Example 2 the compatibility of polystyrene (manufactured by Polymer Source Inc., product number P41847-S, number average molecular weight 11,000, hereinafter also referred to as "PS1") with EP resin was confirmed.
  • PS1 polystyrene
  • mixtures were prepared so that 11, 43, 100, 233, and 900 parts by mass of PS1 were contained per 100 parts by mass of EP resin, and when observed under an optical microscope, all of the mixtures were homogeneous and no phase separation was observed, confirming that PS1 and EP resin are compatible.
  • Reference Example 3 In Reference Example 3, the compatibility of polystyrene (manufactured by Polymer Source Inc., product number P40440-S, number average molecular weight 17,000, hereinafter also referred to as "PS2") with EP resin was confirmed. In the same manner as in Reference Example 1, mixtures were prepared so that 11, 43, 100, 233, and 900 parts by mass of PS2 were contained per 100 parts by mass of EP resin, and when observed under an optical microscope, all of the mixtures were homogeneous and no phase separation was observed, confirming that PS2 and EP resin were also compatible.
  • PS2 polystyrene
  • Reference Example 4 the compatibility of polystyrene (manufactured by Polymer Source Inc., product number P1507-S, number average molecular weight 24,000, hereinafter also referred to as "PS3" with EP resin was confirmed.
  • PS3 polystyrene
  • mixtures were prepared so that 11, 43, 100, 233, and 900 parts by mass of PS3 were used per 100 parts by mass of EP resin, and when observed under an optical microscope, all of the mixtures were homogeneous and no phase separation was observed, confirming that PS3 and EP resin were also compatible.
  • Reference Example 5 the compatibility of polystyrene (manufactured by Polymer Source Inc., product number P40382-S, number average molecular weight 34,000, hereinafter also referred to as "PS4") with EP resin was confirmed.
  • PS4 polystyrene
  • mixtures were prepared so that 11, 43, 100, 233, and 900 parts by mass of PS4 were contained per 100 parts by mass of EP resin, and when observed under an optical microscope, all of the mixtures were homogeneous and no phase separation was observed, confirming that PS4 and EP resin were also compatible.
  • Reference Example 6 the compatibility of polybutadiene (number average molecular weight: 3,000, hereinafter also referred to as "PB") with EP resin was confirmed.
  • PB number average molecular weight
  • mixtures were prepared so that 11, 100, and 900 parts by mass of PB were used per 100 parts by mass of EP resin, and the mixtures were observed under an optical microscope. Macrophase separation of several tens of ⁇ m was observed in all the mixtures, and it was confirmed that PB and EP resin were incompatible.
  • a polymer compatible with an epoxy resin in a functional block copolymer is one that has high affinity with the epoxy resin and mixes with it without phase separation.
  • polyisoprene a rubber-like polymer with a glass transition temperature ( Tg ) of 25°C or less, does not mix with the epoxy resin and undergoes phase separation, and does not show compatibility with the epoxy resin, it can be inferred that even functional polyisoprene in which a non-covalent functional group has been introduced into the polyisoprene chain is incompatible with the epoxy resin.
  • thermosetting epoxy adhesive composition containing an epoxy resin, a latent curing agent, and a styrene-based thermoplastic elastomer such as polystyrene-functional polyisoprene-polystyrene block copolymer (h-SIS, i-SIS) as a functional block copolymer consisting of a rubber-like polymer incompatible with the epoxy resin and having a non-covalent functional group with a glass transition temperature (T g ) of 25° C.
  • h-SIS, i-SIS polystyrene-functional polyisoprene-polystyrene block copolymer
  • T g glass transition temperature
  • the polystyrene portion of the functional block copolymer has good compatibility with the epoxy resin at room temperature (normal temperature), and therefore no pseudo-crosslinking points are formed due to aggregation of the polystyrene portion, and the flexibility, elongation, and elastic modulus are imparted by the functional polyisoprene portion of the rubber-like polymer having a non-covalent functional group, thereby toughening the adhesive cured product, which is the epoxy resin cured product. As a result, peel strength and impact strength are improved.
  • rubber-like polymers that have non-covalent functional groups form non-covalent bonds between or within molecules, such as hydrogen-bonding functional groups or ionic-bonding functional groups, that can dissociate and recombine freely, allowing stress to be dispersed, resulting in greater toughness than rubber-like polymers that do not have non-covalent functional groups.
  • the above examples are based on a one-liquid thermosetting epoxy resin, and the one-liquid type does not require the laborious measurement and mixing required for two-liquid mixing, does not have restrictions on pot life, and has more stable quality. Furthermore, it does not require storage space.
  • the polystyrene-functionalized polyisoprene-polystyrene block copolymer (h-SIS, i-SIS) was used as an example in which a non-covalent functional group was introduced into the polyisoprene chain of the polystyrene-polyisoprene-polystyrene block copolymer (SIS).
  • SPES polystyrene-functionalized polyethylene-propylene-polystyrene block copolymer
  • SBS polystyrene-polybutadiene-polystyrene block copolymer
  • the epoxy resin cured material can also be toughened similarly with polystyrene-functionalized polybutadiene-polystyrene block copolymers in which a non-covalent bonding functional group has been introduced into the polybutadiene chain of polystyrene-polyethylene butylene-polystyrene block copolymer (SEBS), polystyrene-functionalized polyethylene butylene-polystyrene block copolymers in which a non-covalent bonding functional group has been introduced into the polyethylene butylene chain of polystyrene-polyisobutylene-polystyrene block copolymer (SIBS), and the like.
  • SEBS polystyrene-functionalized polybutadiene chain of polystyrene-polyethylene butylene-polystyrene block copolymer
  • SIBS polystyrene-functionalized polyethylene butylene-polyisobutylene-
  • a functional block copolymer-containing epoxy adhesive composition according to an embodiment of the present invention, an example of a polystyrene-functional polyethylene butylene-polystyrene block copolymer (polystyrene-functional hydrogenated polybutadiene-polystyrene block copolymer) in which a non-covalent functional group has been introduced into the polyethylene butylene chain (hydrogenated polybutadiene chain) of a polystyrene-polyethylene butylene-polystyrene block copolymer (SEBS) is also described.
  • SEBS polystyrene-functional hydrogenated polybutadiene-polystyrene block copolymer
  • Example 32 a polystyrene-functionalized polyethylene butylene-polystyrene block copolymer in which a hydrogen-bonding functional group was introduced as a non-covalent functional group to the polyethylene butylene chain of polystyrene-polyethylene butylene-polystyrene block copolymer (SEBS), which is a styrene-based thermoplastic elastomer, was used as a functional block copolymer consisting of a rubber-like polymer having a non-covalent functional group that is incompatible with epoxy resins and has a glass transition temperature (T g ) of 25° C. or lower, and a polymer that is compatible with epoxy resins.
  • SEBS polystyrene-functionalized polyethylene butylene-polystyrene block copolymer in which a hydrogen-bonding functional group was introduced as a non-covalent functional group to the polyethylene butylene chain of polystyrene-polyethylene
  • Example 32 a polystyrene-maleic anhydride unit-introduced poly(ethylene-r-butylene)-polystyrene block copolymer (manufactured by Aldrich, maleic anhydride unit content: about 2 wt% (catalog value), product number 432431) that gradually generates a carboxylic acid group, which is a hydrogen-bonding functional group, at room temperature due to water molecules in the air, was prepared by ring-opening almost all of the maleic anhydride units to form a dicarboxylic acid, and a polystyrene-hydrogen-bonding functional group-introduced poly(ethylene-r-butylene)-polystyrene block copolymer (the hydrogen-bonding functional group content is twice the maleic anhydride unit content, hereinafter also referred to as "h-SEBS”) was prepared.
  • h-SEBS the hydrogen-bonding functional group content is twice the maleic anhydride unit content
  • a relatively homogeneous liquid mixture containing 7.4 parts of h-SEBS per 100 parts by mass of EP resin was prepared in the same manner as in Example 1, and 7 parts by mass of DICY, 1 part by mass of AA, and 20.0 parts by mass of CaCO 3 were blended and mixed well to obtain a liquid mixture to be used as an adhesive.
  • h-SEBS can be synthesized as follows: 10 g of polystyrene-maleic anhydride unit-introduced poly(ethylene-r-butylene)-polystyrene block copolymer is dissolved in 89 g of THF, 1.6 g of pure water and 9.1 g of triethylamine are added, and the mixture is stirred at 50°C for 20 hours. The resulting solution is then dripped into a solvent of 500 mL or more of acetonitrile mixed with a few drops of concentrated hydrochloric acid to purify and precipitate the polymer, which is then recovered by suction filtration and vacuum dried at 40°C to obtain h-SEBS.
  • Example 33 a liquid mixture containing h-SEBS, EP resin, DICY, AA, and CaCO3 was prepared in the same manner as in Example 32, except that 17 parts by mass of h-SEBS and 21.7 parts by mass of CaCO3 were blended relative to 100 parts by mass of EP resin, and this was used as an adhesive.
  • Example 34 a liquid mixture containing h-SEBS, EP resin, DICY, AA, and CaCO3 was prepared in the same manner as in Example 32, except that 21 parts by mass of h-SEBS and 22.6 parts by mass of CaCO3 were blended relative to 100 parts by mass of EP resin, and this was used as an adhesive.
  • Example 35 a liquid mixture containing h-SEBS, EP resin, DICY, AA, and CaCO3 was prepared in the same manner as in Example 32, except that 27 parts by mass of h-SEBS and 23.5 parts by mass of CaCO3 were blended relative to 100 parts by mass of EP resin, and this was used as an adhesive.
  • an adhesive was prepared in which a block copolymer (SEBS) was used in place of the functional block copolymer h-SEBS.
  • SEBS block copolymer
  • a relatively homogeneous liquid mixture containing 8.0 parts by mass of polystyrene-poly(ethylene-r-butylene)-polystyrene block copolymer (manufactured by Aldrich, product number 200557, hereinafter also referred to as "SEBS") per 100 parts by mass of EP resin was prepared in the same manner as in Example 32, and 7 parts by mass of DICY, 1 part by mass of AA, and 20.0 parts by mass of CaCO3 were blended and thoroughly mixed to obtain an adhesive.
  • Comparative Example 15 a liquid mixture consisting of SEBS, EP resin, DICY, AA, and CaCO3 was prepared in the same manner as in Comparative Example 14, except that 17 parts by mass of SEBS and 21.7 parts by mass of CaCO3 were blended relative to 100 parts by mass of EP resin, and this was used as an adhesive.
  • Comparative Example 16 a liquid mixture consisting of SEBS, EP resin, DICY, AA, and CaCO3 was prepared in the same manner as in Comparative Example 14, except that 22 parts by mass of SEBS and 22.6 parts by mass of CaCO3 were blended relative to 100 parts by mass of EP resin, and this was used as an adhesive.
  • Comparative Example 17 a liquid mixture consisting of SEBS, EP resin, DICY, AA, and CaCO3 was prepared in the same manner as in Comparative Example 14, except that 26 parts by mass of SEBS and 23.5 parts by mass of CaCO3 were blended relative to 100 parts by mass of EP resin, and this was used as an adhesive.
  • Examples 32 to 35 and Comparative Examples 14 to 17 the T-peel test, impact resistance test, and shear tensile test were carried out in the same manner as described above.
  • the compounding compositions and various test results of Examples 32 to 35 and Comparative Examples 14 to 17 are shown in Table 5 below.
  • Examples 32 to 35 which are liquid adhesives containing h-SEBS as a functional block copolymer, the shear strength was good and the peel strength and impact strength were also excellent. This is believed to be because in Examples 32 to 35, the S block in the h-SEBS was compatible with the EP resin, but the h-EB block, which is a rubber-like polymer in the h-SEBS, was dispersed, and the h-EB block continued to function as rubber even after the EP resin was heat-cured, imparting elongation, flexibility, and elastic modulus to the epoxy resin, thereby toughening the epoxy resin.
  • the adhesives of Examples 32 to 35 showed improved peel strength and impact strength when compared with the adhesives of Comparative Examples 14 to 17 in which a block copolymer without non-covalent functional groups (SEBS) was blended instead of the functional block copolymer with non-covalent functional groups (h-SEBS).
  • SEBS block copolymer without non-covalent functional groups
  • h-SEBS functional block copolymer having non-covalent functional groups
  • non-covalent functional groups such as hydrogen-bonding functional groups are non-covalently bonded between molecules or within molecules, and these non-covalent bonds allow for free dissociation and recombination.
  • the functional block copolymer-containing epoxy adhesive composition of the above embodiment contains an epoxy resin, a curing agent, and a functional block copolymer consisting of a rubber-like polymer that is incompatible with the epoxy resin and has a non-covalent functional group and a glass transition temperature (T g ) of 25° C. or lower, and a polymer that is compatible with the epoxy resin.
  • T g glass transition temperature
  • the epoxy adhesive composition containing a functional block copolymer of the above embodiment high adhesiveness is exhibited by the epoxy resin, and the polymer compatible with the epoxy resin of the functional block copolymer has good compatibility with the epoxy resin, while the rubber-like polymer having a non-covalent functional group is incompatible with the epoxy resin and dispersed in the epoxy resin, thereby exhibiting the elongation, flexibility and elastic modulus due to the rubber-like polymer having a non-covalent functional group.
  • the rubber-like polymer has a non-covalent functional group
  • the non-covalent functional groups between the polymer chains form pseudo-crosslinking points and physical crosslinking points through non-covalent bonding that can be freely dissociated and recombined, making it possible to improve toughness.
  • This makes it possible to improve the toughness of the cured adhesive, resulting in a cured adhesive that has high peel strength, high impact resistance, and high durability.
  • the non-covalent functional group in the rubber-like polymer having the non-covalent functional group is a hydrogen-bonding functional group and/or an ionic-bonding functional group, the stress relaxation property can be stably improved, and impact resistance can be improved.
  • non-covalent functional group in the rubber-like polymer having a non-covalent functional group is one or more of amide groups, imide groups, carboxyl groups, phenol groups, pyridyl groups, imidazolyl groups, pyrazolyl groups, urethane groups, carboxylate groups, phosphonate groups, sulfonate groups, ammonium groups, pyridinium groups, imidazolium groups, and pyrazolium groups, the production of the functional block copolymer is relatively easy and the yield is good, which allows for low costs.
  • the introduction rate of the non-covalent functional group in the rubber-like polymer having the non-covalent functional group is within the range of 1 mol% or more and 30 mol% or less relative to 100 mol% of the monomer units constituting the rubber-like polymer having the non-covalent functional group, the improvement in toughness can be stably ensured.
  • the rubber-like polymer having a non-covalent functional group in the functional block copolymer contains a monomer unit of isoprene, butadiene, hydrogenated isoprene, or hydrogenated butadiene
  • the polymer compatible with the epoxy resin in the block copolymer contains a monomer unit having a styrene skeleton, a methacrylic skeleton, an acrylic skeleton, or an ether skeleton
  • the functional block copolymer is a functional styrene-based thermoplastic elastomer containing a functional polyisoprene obtained by introducing a non-covalent functional group into polyisoprene, a functional styrene-based thermoplastic elastomer containing a functional polybutadiene obtained by introducing a non-covalent functional group into polybutadiene, a functional styrene-based thermoplastic elastomer containing a functional hydrogenated polyisoprene obtained by introducing a non-covalent functional group into hydrogenated polyisoprene, or a functional styrene-based thermoplastic elastomer containing a functional hydrogenated polybutadiene obtained by introducing a non-covalent functional group into hydrogenated polybutadiene, it is possible to reduce costs, and since it has excellent elongation, flexibility, and elastic modulus, it is possible to improve toughness, peel strength, and impact strength.
  • the rubber-like polymer having non-covalent functional groups of the functional block copolymer is contained in a range of 0.5 parts by mass or more and 3,000 parts by mass or less per 100 parts by mass of epoxy resin, the toughness can be increased and durability can be improved. Therefore, even when applied to bonding dissimilar materials, highly reliable adhesive strength can be obtained.
  • the content of the polymer compatible with the epoxy resin in the functional block copolymer is within the range of 3% by mass or more and 80% by mass or less, compatibility with the epoxy resin can be improved and the mixture can be homogeneously mixed, resulting in stable properties of the cured adhesive.
  • the number average molecular weight of the polymer that is compatible with the epoxy resin of the functional block copolymer be in the range of 1,000 or more and 50,000 or less, compatibility with the epoxy resin can be improved and the mixture can be mixed homogeneously, resulting in stable properties of the cured adhesive.
  • the functional block copolymer when blended in an amount within the range of 1 part by mass or more and 3,500 parts by mass or less, more preferably 0.8 parts by mass or more and 280 parts by mass or less, and even more preferably 1 part by mass or more and 2,500 parts by mass or less, relative to 100 parts by mass of the epoxy resin, it becomes possible to achieve both good coatability and improved toughness.
  • the amount of the latent curing agent such as dicyandiamide is preferably within the range of 1 part by mass or more and 20 parts by mass or less, and more preferably 5 parts by mass or more and 10 parts by mass or less, per 100 parts by mass of the epoxy resin, the epoxy resin can be cured without impairing the coatability or water resistance.
  • the block copolymer-containing epoxy adhesive composition of the above example contains an epoxy resin, a curing agent, and a polystyrene-functional polyisoprene-polystyrene block copolymer (h-SIS or i-SIS) in which a non-covalent functional group has been introduced into the polyisoprene chain. Therefore, the epoxy adhesive composition of the above example exhibits high adhesiveness due to the epoxy resin, and also provides elongation, flexibility, and elasticity due to the polystyrene-functional polyisoprene-polystyrene block copolymer (h-SIS or i-SIS). This makes it possible to improve the toughness of the adhesive cured product, and to obtain a highly durable adhesive cured product.
  • polystyrene portion of polystyrene-functionalized polyisoprene-polystyrene block copolymers (h-SIS and i-SIS) is compatible with epoxy resin, and the compatibility between the polystyrene portion and epoxy resin causes the functionalized polyisoprene portion to be finely dispersed in the epoxy resin, and the elongation, flexibility, and elastic modulus of the functionalized polyisoprene portion impart toughness.
  • the non-covalent functional groups in the rubber-like polymer which have non-covalent functional groups such as amide groups and carboxyl groups that are hydrogen-bonding functional groups, and carboxylate groups that are ionic-bonding functional groups, form pseudo-crosslinking points and physical crosslinking points between the polymer chains through non-covalent bonds that can freely dissociate and recombine, making it possible to improve toughness.
  • polystyrene-functionalized polyisoprene-polystyrene block copolymers have a high effect of improving toughness due to the amount of functionalized polyisoprene blended, without impairing the inherent properties of epoxy resins (e.g., adhesion, heat resistance, temperature properties, etc.). In addition, the inherent heat resistance of epoxy resins is maintained, so the usable temperature range is also wide.
  • polystyrene-polyisoprene-polystyrene block copolymers which are the raw materials used to produce polystyrene-functionalized polyisoprene-polystyrene block copolymers (h-SIS and i-SIS)
  • SIS polystyrene-polyisoprene-polystyrene block copolymers
  • h-SIS and i-SIS polystyrene-polyisoprene-polystyrene block copolymers
  • a block copolymer-containing epoxy adhesive composition that contains an epoxy resin, a curing agent, and a polystyrene-functional hydrogenated polyisoprene-polystyrene block copolymer in which a non-covalent functional group has been introduced into the hydrogenated polyisoprene chain.
  • a block copolymer-containing epoxy adhesive composition that contains an epoxy resin, a curing agent, and a polystyrene-functional polybutadiene-polystyrene block copolymer in which a non-covalent functional group has been introduced into the polybutadiene chain, or a polystyrene-functional hydrogenated polybutadiene-polystyrene block copolymer in which a non-covalent functional group has been introduced into the hydrogenated polybutadiene chain.
  • the above description can also be understood as an invention of a method for producing an adhesive composition containing an epoxy resin, a curing agent, and a functional block copolymer consisting of a rubber-like polymer that is incompatible with the epoxy resin and has a non-covalent functional group and a glass transition temperature ( Tg ) of 25°C or lower, and a polymer that is compatible with the epoxy resin, the method comprising at least a mixing step of adding the epoxy resin and the functional block copolymer to a solvent and mixing them, and a solvent removal step of removing the solvent.
  • Tg glass transition temperature
  • the obtained adhesive composition contains an epoxy resin, a curing agent, and a functional block copolymer consisting of a rubber-like polymer having a non-covalent functional group that is incompatible with the epoxy resin and has a glass transition temperature (T g ) of 25° C.
  • the polymer that is compatible with the epoxy resin in the functional block copolymer has good compatibility with the epoxy resin, while the rubber-like polymer having a non-covalent functional group is incompatible with the epoxy resin and is dispersed in the epoxy resin, thereby exhibiting elongation, flexibility and elastic modulus due to the rubber-like polymer having a non-covalent functional group.
  • the non-covalent functional groups between polymer chains form non-covalent bonds that can freely dissociate and recombine, forming pseudo-crosslinking points and physical crosslinking points, thereby enabling the toughness to be improved.
  • This makes it possible to improve the toughness of the cured adhesive, resulting in a cured adhesive that has high peel strength, high impact resistance, and high durability.
  • an epoxy resin, a rubber-like polymer having a non-covalent functional group that is incompatible with the epoxy resin and has a glass transition temperature ( Tg ) of 25°C or lower, and a functional block copolymer comprising a polymer that is compatible with the epoxy resin can be easily and uniformly mixed and dispersed in a short time without causing deterioration of the materials, making the composition easy to handle.
  • a cured epoxy adhesive containing functional block copolymer obtained by curing an epoxy adhesive composition containing an epoxy resin, a curing agent, and a block copolymer consisting of a rubber-like polymer that is incompatible with the epoxy resin and has a non-covalent functional group and a glass transition temperature (T g ) of 25° C. or lower, and a polymer that is compatible with the epoxy resin.
  • T g glass transition temperature
  • the cured epoxy adhesive containing functional block copolymer of the above embodiment by containing an epoxy resin, a curing agent, and a functional block copolymer consisting of a rubber-like polymer having a non-covalent functional group that is incompatible with the epoxy resin and has a glass transition temperature (T g ) of 25° C.
  • the non-covalent functional groups between polymer chains form non-covalent bonds that can freely dissociate and recombine, forming pseudo-crosslinking points and physical crosslinking points, thereby enabling the toughness to be improved.
  • This makes it possible to improve the toughness of the cured adhesive, resulting in a product with high peel strength, impact resistance, and durability.
  • the functional block copolymer-containing epoxy adhesive composition of the present invention can be used as an adhesive for structural components (e.g., made of metal materials, organic/polymeric materials such as plastics, inorganic materials such as concrete, etc.) in vehicles such as automobiles, bullet trains, and electric trains, in civil engineering, architecture, electronics, aircraft, and the aerospace industry, as well as for medical, general office, and electronic material adhesives (e.g., interlayer adhesives for electronic device substrates such as build-up substrates, die bonding agents, semiconductor adhesives such as underfills, underfills for reinforcing BGAs, and mounting adhesives such as anisotropic conductive films (ACFs) and anisotropic conductive pastes (ACPs)), and can be applied in a wide range of fields.
  • structural components e.g., made of metal materials, organic/polymeric materials such as plastics, inorganic materials such as concrete, etc.
  • vehicles such as automobiles, bullet trains, and electric trains
  • the epoxy resin composition can also be used in general-purpose articles, such as paints, coatings, molding materials (including sheets, films, FRP, etc.), insulating materials (including printed circuit boards, wire coatings, etc.), and sealants (for example, potting, dipping, and transfer mold sealing for capacitors, transistors, diodes, light-emitting diodes, ICs, and LSIs, potting sealing for COB, COF, and TAB for ICs and LSIs, underfill for flip chips, and sealing for mounting IC packages such as QFP, BGA, and CSP).
  • sealants for example, potting, dipping, and transfer mold sealing for capacitors, transistors, diodes, light-emitting diodes, ICs, and LSIs, potting sealing for COB, COF, and TAB for ICs and LSIs, underfill for flip chips, and sealing for mounting IC packages such as QFP, BGA, and CSP).
  • epoxy resin can be suitably used as a hemming adhesive or structural adhesive for use in hemming parts such as doors and hoods of car bodies of automobiles and aircraft.
  • epoxy resins have high material strength and adhesiveness, and the durability and impact resistance of the adhesive cured product are also high due to the toughening by blending the functional block copolymer, so that they are also suitable for structural adhesives that require high adhesive strength such as peel strength.
  • the improved impact resistance can be expected to improve safety and fatigue resistance.
  • it can be applied to wind power generation blades, laminates, sealing materials, electronic materials such as insulating materials, and composite materials used in industrial applications, bicycles, etc.
  • compositions, ingredients, blending amounts, manufacturing method, etc. of other parts of the functional block copolymer-containing epoxy adhesive composition are not limited to the above embodiment.
  • numerical values given in the embodiment and examples of the present invention do not all indicate critical values, and some numerical values indicate suitable values suitable for implementation, so slight changes to the above numerical values do not negate the implementation. ...

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Epoxy Resins (AREA)

Abstract

The present invention makes it possible to improve toughness. An epoxy-based adhesive composition containing a functional block copolymer according to the present invention contains: an epoxy resin; a curing agent; and a functional block copolymer which is composed of a rubber polymer having a non-covalent bonding functional group, the rubber polymer being incompatible with an epoxy resin and having a glass transition temperature (Tg) of 25°C or less, and a polymer that is compatible with an epoxy resin.

Description

官能性ブロック共重合体含有エポキシ系接着剤組成物及びその製造方法並びに官能性ブロック共重合体含有エポキシ系接着剤硬化物Functional block copolymer-containing epoxy adhesive composition, its manufacturing method, and cured product of functional block copolymer-containing epoxy adhesive
 本発明は、例えば、自動車の構造用接着剤等の用途に適用できる官能性ブロック共重合体含有エポキシ系接着剤組成物及びその製造方法並びに官能性ブロック共重合体含有エポキシ系接着剤硬化物であって、特に、強靭性の向上を可能する官能性ブロック共重合体含有エポキシ系接着剤組成物及びその製造方法並びに官能性ブロック共重合体含有エポキシ系接着剤硬化物に関するものである。 The present invention relates to a functional block copolymer-containing epoxy adhesive composition that can be used in applications such as automotive structural adhesives, a method for producing the same, and a cured product of a functional block copolymer-containing epoxy adhesive, and in particular to a functional block copolymer-containing epoxy adhesive composition that enables improved toughness, a method for producing the same, and a cured product of a functional block copolymer-containing epoxy adhesive.
 近年、環境負荷物質の低減化の目的等から自動車等の車両において低燃費、低排ガス化の動きが加速し、車両の軽量化の技術開発が進んでいる。例えば、自動車の車体パネル等では、鋼板の厚みを薄くする薄肉化を行ったり、アルミニウム、樹脂等のより低比重な材料を使用する所謂、マルチマテリアル化を行ったりすることで、軽量化する試みがなされている。 In recent years, the movement towards lower fuel consumption and lower exhaust gas emissions in automobiles and other vehicles has accelerated, with the aim of reducing environmentally hazardous substances, and technological developments to reduce the weight of vehicles are progressing. For example, attempts are being made to reduce the weight of automobile body panels by making the steel plates thinner and by using so-called multi-materials, which use materials with lower specific gravity such as aluminum and resin.
 ところが、軽量化のために車体パネル等に使用する鋼板の薄肉化を行うと、強度が低下する問題が生じる。そこで、車体の軽量化と強度を両立させる技術として、例えば、鋼板同士の接合をスポット溶接のみの点接合ではなく、接着剤を併用した面接合とする技術が開発されている。
 また、従来の鋼板の接合に適用されてきたスポット溶接は、鋼板以外の材料との接着に不向きであり、アルミニウムや樹脂等の異種材との接着に対しては接着剤による接合が試みられている。
 そして、こうしたスポット溶接との併用やスポット溶接ができない箇所の接着としては、剪断強度や引張強度等に優れる熱硬化性樹脂であるエポキシ樹脂を主剤とする熱硬化性のエポキシ系接着剤が使用されている。
However, when the thickness of steel plates used for the body panels, etc. is reduced in order to reduce the weight of the car, a problem occurs in that the strength is reduced. Therefore, as a technology for achieving both weight reduction and strength of the car body, for example, a technology for joining steel plates together by surface joining in addition to using adhesives, rather than by spot joining only by spot welding, has been developed.
In addition, spot welding, which has traditionally been applied to joining steel plates, is not suitable for bonding materials other than steel plates, and attempts have been made to use adhesives to bond dissimilar materials such as aluminum and resin.
Thermosetting epoxy adhesives, whose main component is epoxy resin, a thermosetting resin with excellent shear strength, tensile strength, etc., are used in conjunction with spot welding or to bond areas where spot welding is not possible.
 しかしながら、エポキシ樹脂の硬化物は、硬くて可撓性に乏しいものである。殊に、一液性エポキシ樹脂では、高い剪断接着力を示すものの、伸びが不十分で撓みにくいために、剥離接着強度や衝撃接着強度が低いことが一般的である。
 そこで、こうしたエポキシ樹脂の低靭性を改良するために、例えば、特許文献1に示すようなコアシェルゴム粒子による改質技術が知られている。
However, the cured product of the epoxy resin is hard and has poor flexibility. In particular, one-component epoxy resins generally have low peel adhesive strength and impact adhesive strength because they are insufficient in elongation and difficult to bend, although they exhibit high shear adhesive strength.
In order to improve the low toughness of such epoxy resins, a modification technique using core-shell rubber particles, as shown in Patent Document 1, for example, is known.
特開平5-065491号公報Japanese Patent Application Publication No. 5-065491
 ところが、こうしたコアシェルゴム粒子による改質の場合、エポキシ樹脂硬化時に相分離してゴム成分のドメインを形成し、そのドメインサイズが硬化条件に依存することで、安定した品質特性を得るのが困難なことがある。また、コアであるゴム状ポリマーがアクリル系共重合体等のシェルで被覆されているため、塗布性等を損なわない程度のゴム状ポリマーの含有量では、強靭性の向上にも限度がある。更に、コアシェルゴム粒子は、その製造に手間がかかりコストの上昇を招く。 However, when modifying with core-shell rubber particles, phase separation occurs during curing of the epoxy resin to form domains of the rubber component, and because the size of these domains depends on the curing conditions, it can be difficult to obtain stable quality characteristics. In addition, because the core rubbery polymer is covered with a shell such as an acrylic copolymer, there is a limit to the improvement in toughness at a content of rubbery polymer that does not impair coatability. Furthermore, the production of core-shell rubber particles is laborious, leading to increased costs.
 そこで、本発明は、強靭性の向上を可能とする官能性ブロック共重合体含有エポキシ系接着剤組成物及びその製造方法並びに官能性ブロック共重合体含有エポキシ系接着剤硬化物の提供を課題とするものである。 The present invention aims to provide a functional block copolymer-containing epoxy adhesive composition that enables improved toughness, a method for producing the same, and a cured product of the functional block copolymer-containing epoxy adhesive.
 請求項1の発明の官能性ブロック共重合体含有エポキシ系接着剤組成物は、エポキシ樹脂と、硬化剤と、前記エポキシ樹脂と非相溶でガラス転移温度が25℃以下である非共有結合性官能基を有したゴム状ポリマー及び前記エポキシ樹脂と相溶するポリマーからなる官能性ブロック共重合体とを含有するものである。 The functional block copolymer-containing epoxy adhesive composition of the invention of claim 1 contains an epoxy resin, a curing agent, and a functional block copolymer consisting of a rubber-like polymer that is incompatible with the epoxy resin and has a non-covalent functional group with a glass transition temperature of 25°C or less, and a polymer that is compatible with the epoxy resin.
 上記エポキシ樹脂としては、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂等の汎用エポキシ樹脂や、ウレタン変性エポキシ樹脂、ゴム変性エポキシ樹脂等が使用できるが、好ましくは、ビスフェノールA型エポキシ樹脂等の汎用エポキシ樹脂である。
 上記硬化剤としては、エポキシ基と反応する活性基を有するものであればよく、例えば、貯蔵安定性に優れるジシアンジアミド等のイミダゾール系化合物といった潜在性硬化剤が好んで使用される。
As the epoxy resin, general-purpose epoxy resins such as bisphenol A type epoxy resins and bisphenol F type epoxy resins, urethane-modified epoxy resins, rubber-modified epoxy resins, etc. can be used, with general-purpose epoxy resins such as bisphenol A type epoxy resins being preferred.
The curing agent may be any agent having an active group that reacts with an epoxy group, and for example, a latent curing agent such as an imidazole compound such as dicyandiamide, which has excellent storage stability, is preferably used.
 上記官能性ブロック共重合体(ブロックポリマー)は、前記エポキシ樹脂と非相溶でガラス転移温度(Tg)が25℃以下であり非共有結合性官能基を有したゴム状ポリマーと前記エポキシ樹脂と相溶するポリマーとの異種のポリマー鎖が化学結合されたものである。 The functional block copolymer (block polymer) is a polymer in which different polymer chains, a rubber-like polymer that is incompatible with the epoxy resin, has a glass transition temperature (T g ) of 25° C. or lower, and has a non-covalent functional group, and a polymer that is compatible with the epoxy resin, are chemically bonded to each other.
 ここで、上記官能性ブロック共重合体中の非共有結合性官能基を有したゴム状ポリマーは、前記エポキシ樹脂と非相溶でガラス転移温度(Tg)が25℃以下と室温より低いガラス転移温度(Tg)を有するポリマーであり、室温ではソフトセグメントに相当する。ガラス転移温度(Tg)の下限値は、ゴム状ポリマーの種類によって決定される有限値であるが、例えば、最小値でも-120℃程度である。なお、ガラス転移温度(ガラス転移点:Tg)は、示差走査熱量測定(DSC)によって決定できるものである。
 上記非共有結合性官能基を有したゴム状ポリマーは、非共有結合性官能基を有するモノマーを含むものであればよく、非共有結合性官能基が、ブロック共重合体に直接結合しているものであっても、連結基を介して結合しているものであってもよい。好ましくは、非共有結合性官能基を有する共役ジエン重合体であり、より好ましくは、イソプレン、ブタジエン、水素添加イソプレン、または、水素添加ブタジエン等の炭化水素系モノマーユニットの重合からなる主ポリマー鎖に、非共有結合性官能基を有するモノマーが重合した部分を含むものである。
Here, the rubbery polymer having a non-covalent functional group in the functional block copolymer is a polymer that is incompatible with the epoxy resin and has a glass transition temperature (T g ) of 25° C. or less, which is lower than room temperature, and corresponds to a soft segment at room temperature. The lower limit of the glass transition temperature (T g ) is a finite value determined by the type of rubbery polymer, and is, for example, at its minimum , about −120° C. The glass transition temperature (glass transition point: T g ) can be determined by differential scanning calorimetry (DSC).
The rubber-like polymer having a non-covalent functional group may contain a monomer having a non-covalent functional group, and the non-covalent functional group may be directly bonded to the block copolymer or may be bonded via a linking group. It is preferably a conjugated diene polymer having a non-covalent functional group, and more preferably, it is a polymer having a portion in which a monomer having a non-covalent functional group is polymerized in a main polymer chain consisting of a polymerization of a hydrocarbon monomer unit such as isoprene, butadiene, hydrogenated isoprene, or hydrogenated butadiene.
 上記非共有結合性官能基とは、非共有結合可能な官能基を示し、分子間や分子内で非共有結合可能な官能基同士が非共有結合して擬似架橋点・物理架橋点を形成できるものであればよく、例えば、アミド基、イミド基、カルボキシル基、フェノール基、ピリジル基、イミダゾリル基、ピラゾリル基、ウレタン基といった水素結合性官能基や、カルボキシレート基、ホスホネート基、スルホネート基、アンモニウム基、ピリジニウム基、イミダゾリウム基、ピラゾリウム基といったイオン結合性官能基がある。
 即ち、上記非共有結合としては、水素結合やイオン結合があり、上記水素結合性官能基とは水素結合可能な官能基を示し、上記イオン結合性官能基とは、イオン性相互作用を生じるイオン結合可能な官能基を示す。
The non-covalent functional group refers to a functional group capable of non-covalent bonding, and may be any functional group capable of intermolecular or intramolecular non-covalent bonding that can form a pseudo-crosslinking point or a physical crosslinking point. Examples of such functional groups include hydrogen-bonding functional groups such as amide groups, imide groups, carboxyl groups, phenol groups, pyridyl groups, imidazolyl groups, pyrazolyl groups, and urethane groups, and ionic-bonding functional groups such as carboxylate groups, phosphonate groups, sulfonate groups, ammonium groups, pyridinium groups, imidazolium groups, and pyrazolium groups.
That is, the non-covalent bond includes a hydrogen bond and an ionic bond, the hydrogen-bonding functional group refers to a functional group capable of forming a hydrogen bond, and the ionic-bonding functional group refers to a functional group capable of forming an ionic bond that generates an ionic interaction.
 上記ゴム状ポリマーのゴム状とは、ポリマーのガラス転移温度(Tg)が25℃以下であることにより、ポリマー中のセグメントが室温ではソフトセグメントとして振る舞うことを意味する。なお、ソフトセグメントは、セグメント運動(セグメントのミクロブラウン運動)が活発に生じているものであり、ハードセグメントとは、セグメント運動が実質的に停止しているものである。因みに、セグメントは、ポリマー鎖の運動に関わる単位で、数~十数モノマー単位をひとまとめにした単位のことである。 The term "rubbery" in the rubbery polymer means that the glass transition temperature (T g ) of the polymer is 25° C. or lower, and therefore the segments in the polymer behave as soft segments at room temperature. Note that a soft segment is one in which segment motion (micro-Brownian motion of segments) occurs actively, and a hard segment is one in which segment motion has essentially stopped. Incidentally, a segment is a unit related to the motion of a polymer chain, and is a unit that groups together several to a dozen or so monomer units.
 また、上記官能性ブロック共重合体中の前記エポキシ樹脂と相溶するポリマーとは、室温よりも高いガラス転移温度(Tg)を有するブロック鎖であり、室温ではハードセグメントに相当する。好ましくは、芳香族ビニル重合体である。 The polymer compatible with the epoxy resin in the functional block copolymer is a block chain having a glass transition temperature (T g ) higher than room temperature and corresponds to a hard segment at room temperature, and is preferably an aromatic vinyl polymer.
 上記官能性ブロック共重合体としては、例えば、スチレン系熱可塑性エラストマー(Thermoplastic Styrenic Elastomer:TPS)であるポリスチレン-ポリイソプレン-ポリスチレンブロック共重合体(SIS)のポリイソプレン鎖に非共有結合性官能基が導入されてなるポリスチレン-官能性ポリイソプレン-ポリスチレンブロック共重合体や、同じくスチレン系熱可塑性エラストマーであるポリスチレン-ポリブタジエン-ポリスチレンブロック共重合体(SBS)のポリブタジエン鎖に非共有結合性官能基が導入されてなるポリスチレン-官能性ポリブタジエン-ポリスチレンブロック共重合体や、水添スチレン系熱可塑性エラストマーであるポリスチレン-ポリエチレン・プロピレン-ポリスチレンブロック共重合体(SEPS)のポリエチレン・プロピレン鎖に非共有結合性官能基が導入されてなるポリスチレン-官能性ポリエチレン・プロピレン-ポリスチレンブロック共重合体や、同じく水添スチレン系熱可塑性エラストマーであるポリスチレン-ポリエチレン・ブチレン-ポリスチレンブロック共重合体(SEBS)のポリエチレン・ブチレン鎖に非共有結合性官能基が導入されてなるポリスチレン-官能性ポリエチレン・ブチレン-ポリスチレンブロック共重合体や、ポリイソブチレンを含有するスチレン系熱可塑性エラストマーであるポリスチレン-ポリイソブチレン-ポリスチレンブロック共重合体(SIBS)のポリイソブチレン鎖に非共有結合性官能基が導入されてなるポリスチレン-官能性ポリイソブチレン-ポリスチレンブロック共重合体等が使用できる。例えば、特許第6516350号、特許第7071968号、特許第7198208号、国際公開2019/216241号公報に記載の官能性ブロック共重合体が使用できる。 The above-mentioned functional block copolymers include, for example, polystyrene-functional polyisoprene-polystyrene block copolymers in which non-covalently bonded functional groups are introduced into the polyisoprene chain of polystyrene-polyisoprene-polystyrene block copolymer (SIS), a styrene-based thermoplastic elastomer (Thermoplastic Styrene Elastomer: TPS), polystyrene-functional polybutadiene-polystyrene block copolymers in which non-covalently bonded functional groups are introduced into the polybutadiene chain of polystyrene-polybutadiene-polystyrene block copolymer (SBS), a styrene-based thermoplastic elastomer, and polystyrene-polyethylene propylene-polystyrene block copolymers, which are hydrogenated styrene-based thermoplastic elastomers. Examples of usable block copolymers include polystyrene-functionalized polyethylene-propylene-polystyrene block copolymers (SEPS) in which a non-covalent functional group is introduced into the polyethylene-propylene chains, polystyrene-functionalized polyethylene-butylene-polystyrene block copolymers (SEBS) in which a non-covalent functional group is introduced into the polyethylene-butylene chains, and polystyrene-functionalized polyisobutylene-polystyrene block copolymers (SIBS) in which a non-covalent functional group is introduced into the polyisobutylene chains of polystyrene-polyisobutylene-polystyrene block copolymers (SIBS), which are styrene-based thermoplastic elastomers containing polyisobutylene. For example, functional block copolymers described in Japanese Patent No. 6516350, Japanese Patent No. 7071968, Japanese Patent No. 7198208, and International Publication WO 2019/216241 can be used.
 請求項2の発明の官能性ブロック共重合体含有エポキシ系接着剤組成物の前記官能性ブロック共重合体における前記非共有結合性官能基を有したゴム状ポリマー中の前記非共有結合性官能基は、水素結合性官能基及び/またはイオン結合性官能基であるものである。
 上記水素結合性官能基は、水素結合可能な官能基であり、好ましくは、アミド基、イミド基、カルボキシル基、フェノール基、ピリジル基、イミダゾリル基、ピラゾリル基、ウレタン基(ウレタン結合)であり、より好ましくは、アミド基やカルボキシル基である。
 上記イオン結合性官能基は、イオン性相互作用を生じるイオン結合可能な官能基であり、好ましくは、カルボキシレート基(カルボン酸塩)、ホスホネート基(リン酸塩)、スルホネート基(スルホン酸塩)、アンモニウム基(アンモニウム塩)、ピリジニウム基(ピリニジウム塩)、イミダゾリウム基(イミダゾリウム塩)、ピラゾリウム(ピラゾリウム塩)であり、より好ましくは、カルボキシレート基である。
The non-covalent functional group in the rubber-like polymer having a non-covalent functional group in the functional block copolymer of the epoxy adhesive composition according to claim 2 is a hydrogen-bonding functional group and/or an ionic-bonding functional group.
The hydrogen-bonding functional group is a functional group capable of forming a hydrogen bond, and is preferably an amide group, an imide group, a carboxyl group, a phenol group, a pyridyl group, an imidazolyl group, a pyrazolyl group, or a urethane group (urethane bond), and more preferably an amide group or a carboxyl group.
The ion-bonding functional group is a functional group capable of forming an ion bond that generates an ionic interaction, and is preferably a carboxylate group (carboxylate salt), a phosphonate group (phosphate salt), a sulfonate group (sulfonate salt), an ammonium group (ammonium salt), a pyridinium group (pyridinium salt), an imidazolium group (imidazolium salt), or a pyrazolium (pyrazolium salt), and more preferably a carboxylate group.
 請求項3の発明の官能性ブロック共重合体含有エポキシ系接着剤組成物の前記官能性ブロック共重合体における前記非共有結合性官能基を有したゴム状ポリマー中の前記非共有結合性官能基は、アミド基、イミド基、カルボキシル基、フェノール基、ピリジル基、イミダゾリル基、ピラゾリル基、ウレタン基、カルボキシレート基、ホスホネート基、スルホネート基、アンモニウム基、ピリジニウム基、イミダゾリウム基、またはピラゾリウム基の何れか1種以上であるものである。 The non-covalent functional group in the rubber-like polymer having the non-covalent functional group in the functional block copolymer of the functional block copolymer-containing epoxy adhesive composition of the invention of claim 3 is one or more of an amide group, an imide group, a carboxyl group, a phenol group, a pyridyl group, an imidazolyl group, a pyrazolyl group, a urethane group, a carboxylate group, a phosphonate group, a sulfonate group, an ammonium group, a pyridinium group, an imidazolium group, or a pyrazolium group.
 請求項4の発明の官能性ブロック共重合体含有エポキシ系接着剤組成物の前記官能性ブロック共重合体中の前記非共有結合性官能基を有したゴム状ポリマーは、イソプレン、ブタジエン、水素添加イソプレン(エチレン・プロピレン)、または、水素添加ブタジエン(エチレン・ブチレン)のモノマーユニットを含有し、前記官能性ブロック共重合体中の前記エポキシ樹脂と相溶するポリマーは、スチレン骨格、メタクリル骨格、アクリル骨格、または、エーテル骨格を有するモノマーユニットを含有するものである。 The rubber-like polymer having a non-covalent functional group in the functional block copolymer of the epoxy adhesive composition containing a functional block copolymer of the invention of claim 4 contains a monomer unit of isoprene, butadiene, hydrogenated isoprene (ethylene-propylene), or hydrogenated butadiene (ethylene-butylene), and the polymer compatible with the epoxy resin in the functional block copolymer contains a monomer unit having a styrene skeleton, a methacrylic skeleton, an acrylic skeleton, or an ether skeleton.
 なお、上記イソプレンのモノマーユニットは、CH2=C(CH3)CH=CH2を重合してなるモノマーユニットであり、例えば、-CH2-C(CH3)=CH-CH2-の化学構造式で表されるものである。
 上記水素添加イソプレンのモノマーユニットは、イソプレンモノマーユニットのイソプレンの二重結合部分に水素を添加したものであり、例えば、-CH2-CH(CH3)-CH2-CH2-の化学構造式で表されるものである。
 上記ブタジエンのモノマーユニットは、CH2=CH-CH=CH2を重合してなるモノマーユニットであり、例えば、-CH2-CH=CH-CH2-や、-CH2-CH(CH=CH2)-の化学構造式で表されるものである。
 上記水素添加ブタジエンのモノマーユニットは、ブタジエンモノマーユニットのブタジエンの二重結合部分に水素を添加したものであり、例えば、-CH2-CH2-CH2-CH2-や、-CH2-CH(CH2-CH3)-の化学構造式で表されるものである。
The monomer unit of isoprene is a monomer unit formed by polymerizing CH 2 ═C(CH 3 )CH═CH 2 and is represented by the chemical structural formula, for example, --CH 2 --C(CH 3 )═CH--CH 2 --.
The hydrogenated isoprene monomer unit is an isoprene monomer unit in which hydrogen has been added to the double bond of the isoprene, and is represented by the chemical structural formula, for example, --CH 2 --CH(CH 3 )--CH 2 --CH 2 --.
The butadiene monomer unit is a monomer unit formed by polymerizing CH 2 ═CH-CH═CH 2 and is represented by the chemical structural formula, for example, --CH 2 --CH═CH--CH 2 -- or --CH 2 --CH(CH═CH 2 )--.
The hydrogenated butadiene monomer unit is a butadiene monomer unit in which hydrogen has been added to the double bond moiety of butadiene, and is represented by the chemical structural formula, for example, --CH 2 --CH 2 --CH 2 --CH 2 -- or --CH 2 --CH(CH 2 --CH 3 )--.
 上記非共有結合性官能基を有したゴム状ポリマーは、これら共役ジエンまたは水添共役ジエンの単位が主たる繰り返し単位であれば良く、ゴム状ポリマー中に、これら共役ジエンまたは水添共役ジエンの主たる繰り返し単位が、好ましくは、50質量%以上、より好ましくは、60質量%以上、更に好ましくは、80質量%以上の含有量であり、これら以外に非共有結合性官能基を有するモノマーを、好ましくは、50質量%未満、好ましくは、40質量%以下、更に好ましくは、30質量%以下で含んでいればよい。 The rubbery polymer having the non-covalent functional group may have these conjugated diene or hydrogenated conjugated diene units as the main repeating units, and the main repeating units of these conjugated dienes or hydrogenated conjugated dienes are preferably contained in the rubbery polymer in an amount of 50% by mass or more, more preferably 60% by mass or more, and even more preferably 80% by mass or more, and may further contain monomers having non-covalent functional groups in an amount of preferably less than 50% by mass, preferably 40% by mass or less, and even more preferably 30% by mass or less.
 また、上記スチレン骨格は、-CH2-CH(C64R)-[Rは、Hまたは有機性官能基]の化学構造式で表されるものであり、例えば、ポリスチレン、炭素数1~12のアルキル基を置換基として有するポリスチレン類、エーテル基やエステル基を置換基として有するポリスチレン類等があり、より具体的には、例えば、ポリスチレン、ポリアセチルスチレン、ポリメチルスチレン、ポリジメチルスチレン、ポリビフェニルスチレン、ポリフェニルアセチルスチレン、ポリフェニルスチレン、ポリブロモエトキシスチレン、ポリブロモメトキシスチレン、ポリブロモスチレン、ポリブトキシメチルスチレン、ポリ-tert-ブチルスチレン、ポリブチリルスチレン、ポリクロロフルオロスチレン、ポルクロロメチルスチレン、ポリクロロスチレン、ポリジクロロスチレン、ポリジフルオロスチレン、ポリエトキシメチルスチレン、ポリシアノスチレン、ポリエトキシスチレン、ポリフルオロメチルスチレン、ポリフルオロスチレン、ポリヨードスチレン、ポリメトキシカルボニルスチレン、ポリメトキシメチルスチレン、ポリアニソイルスチレン、ポリベンゾイルスチレン、ポリメトキシスチレン、ポリパーフルオロスチレン、ポリフェノキシスチレン、ポリプロポキシスチレン、ポリトルオイルスチレン、ポリトリメチルスチレン等のスチレン類が挙げられる。好ましくは、ポリスチレンである。 The styrene skeleton is represented by the chemical structural formula -CH 2 -CH(C 6 H 4 R)- [R is H or an organic functional group], and examples thereof include polystyrene, polystyrenes having an alkyl group with 1 to 12 carbon atoms as a substituent, and polystyrenes having an ether group or an ester group as a substituent. More specific examples thereof include polystyrene, polyacetylstyrene, polymethylstyrene, polydimethylstyrene, polybiphenylstyrene, polyphenylacetylstyrene, polyphenylstyrene, polybromoethoxystyrene, polybromomethoxystyrene, polybromostyrene, polybutoxymethylstyrene, poly-tert-butylstyrene, and polybutyryl. Examples of styrenes include styrene, polychlorofluorostyrene, polychloromethylstyrene, polychlorostyrene, polydichlorostyrene, polydifluorostyrene, polyethoxymethylstyrene, polycyanostyrene, polyethoxystyrene, polyfluoromethylstyrene, polyfluorostyrene, polyiodostyrene, polymethoxycarbonylstyrene, polymethoxymethylstyrene, polyanisoylstyrene, polybenzoylstyrene, polymethoxystyrene, polyperfluorostyrene, polyphenoxystyrene, polypropoxystyrene, polytoluoylstyrene, and polytrimethylstyrene. Polystyrene is preferred.
 上記メタクリル骨格は、―CH2-C(CH3)(COOR)-[Rは、Hまたは有機性官能基]の化学構造式で表されるものであり、例えば、ポリメタクリル酸メチル、ポリメタクリル酸エチル、ポリメタクリロニトリル、ポリメタクリル酸アダマンチル、ポリメタクリル酸ベンジル、ポリメタクリル酸-tert-ブチル、ポリメタクリル酸-tert-ブチルフェニル、ポリメタクリル酸シクロエチル、ポリメタクリル酸シアノエチル、ポリメタクリル酸シアノメチルフェニル、ポリメタクリル酸シアノフェニル、ポリメタクリル酸シクロデシル、ポリメタクリル酸シクロドデシル、ポリメタクリル酸シクロブチル、ポリメタクリル酸シクロヘキシル、ポリメタクリル酸シクロオクチル、ポリメタクリル酸フルオロアルキル、ポリメタクリル酸グリシジル、ポリメタクリル酸イソボルニル、ポリメタクリル酸イソブチル、ポリメタクリル酸フェニル、ポリメタクリル酸トリメチルシリル、ポリメタクリル酸キシレニル等のポリメタクリル酸エステルが挙げられる。 The methacryl skeleton is —CH 2 —C(CH 3 ) (COOR)- [R is H or an organic functional group], and examples thereof include polymethacrylic acid esters such as polymethyl methacrylate, polyethyl methacrylate, polymethacrylonitrile, polyadamantyl methacrylate, polybenzyl methacrylate, polytert-butyl methacrylate, polytert-butylphenyl methacrylate, polycycloethyl methacrylate, polycyanoethyl methacrylate, polycyanomethylphenyl methacrylate, polycyanophenyl methacrylate, polycyclodecyl methacrylate, polycyclododecyl methacrylate, polycyclobutyl methacrylate, polycyclohexyl methacrylate, polycyclooctyl methacrylate, polyfluoroalkyl methacrylate, polyglycidyl methacrylate, polyisobornyl methacrylate, polyisobutyl methacrylate, polyphenyl methacrylate, polytrimethylsilyl methacrylate, and polyxylenyl methacrylate.
 上記アクリル骨格は、-CH2-CH(COOR)-[Rは、Hまたは有機性官能基]の化学構造式で表されるものであり、例えば、ポリアクリル酸アダマンチル、ポリアクリル酸-tert-ブチル、ポリアクリル酸-tert-ブチルフェニル、ポリアクリル酸シアノヘプチル、ポリアクリル酸シアノヘキシル、ポリアクリル酸シアノメチル、ポリアクリル酸シアノフェニル、ポリアクリル酸フルオロメチル、ポリアクリル酸メトキシカルボニルフェニル、ポリアクリル酸メトキシフェニル、ポリアクリル酸ナフチル、ポリアクリル酸ペンタクロロフェニル、ポリアクリル酸フェニル等のポリアクリル酸エステル類が挙げられる。 The acrylic skeleton is represented by the chemical structural formula -CH2 -CH(COOR)- [R is H or an organic functional group], and examples include polyacrylic esters such as polyadamantyl acrylate, polytert-butyl acrylate, polytert-butylphenyl acrylate, cyanoheptyl polyacrylate, cyanohexyl polyacrylate, cyanomethyl polyacrylate, cyanophenyl polyacrylate, fluoromethyl polyacrylate, methoxycarbonylphenyl polyacrylate, methoxyphenyl polyacrylate, naphthyl polyacrylate, pentachlorophenyl polyacrylate, and phenyl polyacrylate.
 上記エーテル骨格は、-(CH2n-O-[nは、1~8の自然数]の化学構造式で表されるものであり、例えば、ポリブトキシエチレン、ポリデシロキシエチレン、ポリエトキシエチレン、ポリヘキシロキシエチレン、ポリイソブトキシエチレン、ポリメトキシエチレン、ポリプロポキシエチレン等のポリビニルエーテル類が挙げられる。 The above ether skeleton is represented by the chemical structural formula -( CH2 ) n -O- [n is a natural number from 1 to 8], and examples include polyvinyl ethers such as polybutoxyethylene, polydecyloxyethylene, polyethoxyethylene, polyhexyloxyethylene, polyisobutoxyethylene, polymethoxyethylene, and polypropoxyethylene.
 こうしたスチレン骨格、メタクリル骨格、アクリル骨格、または、エーテル骨格は、官能性ブロック共重合体中のエポキシ樹脂と相溶するポリマー中に、好ましくは、80質量%以上、より好ましくは、90質量%以上、更に好ましくは、実質的に100質量%以上であるが、スチレン骨格、メタクリル骨格、アクリル骨格、または、エーテル骨格が主たる繰り返し単位であれば、その他の単量体単位を含んでいてもよい。 The styrene skeleton, methacryl skeleton, acrylic skeleton, or ether skeleton is preferably 80% by mass or more, more preferably 90% by mass or more, and even more preferably substantially 100% by mass or more in the polymer compatible with the epoxy resin in the functional block copolymer, but other monomer units may be included as long as the styrene skeleton, methacryl skeleton, acrylic skeleton, or ether skeleton is the main repeating unit.
 請求項5の発明の官能性ブロック共重合体含有エポキシ系接着剤組成物の前記官能性ブロック共重合体における前記非共有結合性官能基を有したゴム状ポリマー中の前記非共有結合性官能基は、その導入率が、前記非共有結合性官能基を有したゴム状ポリマーを構成するモノマーユニット100mol%に対して、下限値として、好ましくは、1mol%以上、より好ましくは、1.5mol%以上、更に、好ましくは、2.0mol%以上、上限値として、好ましくは30mol%以下、より好ましくは25mol%以下、更に好ましくは、20mol%以下の範囲内であるものである。
 なお、上記非共有結合性官能基の導入率は、1H-NMRを用いた算出によるものである。
The non-covalent functional group in the rubbery polymer having the non-covalent functional group in the functional block copolymer of the functional block copolymer of the epoxy-based adhesive composition according to the invention of claim 5 has an introduction rate within the range of, relative to 100 mol % of the monomer units constituting the rubbery polymer having the non-covalent functional group, a lower limit of preferably 1 mol % or more, more preferably 1.5 mol % or more, and even more preferably 2.0 mol % or more, and an upper limit of preferably 30 mol % or less, more preferably 25 mol % or less, and even more preferably 20 mol % or less.
The introduction rate of the non-covalent functional group is calculated using 1 H-NMR.
 請求項6の発明の官能性ブロック共重合体含有エポキシ系接着剤組成物の前記官能性ブロック共重合体中の前記非共有結合性官能基を有したゴム状ポリマーは、前記エポキシ樹脂100質量部に対し、0.5質量部以上、3000質量部以下、より好ましくは、0.8質量部以上、2800質量部以下、更に好ましくは、1.0質量部以上、2500質量部以下、特に好ましくは、1.5質量部以上、2000質量部以下の範囲内で含有するものである。 The rubber-like polymer having a non-covalent functional group in the functional block copolymer of the epoxy adhesive composition containing a functional block copolymer according to the invention of claim 6 is contained in an amount within the range of 0.5 parts by mass or more and 3000 parts by mass or less, more preferably 0.8 parts by mass or more and 2800 parts by mass or less, even more preferably 1.0 parts by mass or more and 2500 parts by mass or less, and particularly preferably 1.5 parts by mass or more and 2000 parts by mass or less, relative to 100 parts by mass of the epoxy resin.
 請求項7の発明の官能性ブロック共重合体含有エポキシ系接着剤組成物の前記官能性ブロック共重合体中の前記エポキシ樹脂と相溶するポリマーの含有量は、好ましくは、3質量%以上、80質量%以下、より好ましくは、5質量%以上、70質量%以下、更に好ましくは、10質量%以上、50質量%以下の範囲内であるものである。 The content of the polymer compatible with the epoxy resin in the functional block copolymer of the epoxy adhesive composition containing the functional block copolymer of the invention of claim 7 is preferably in the range of 3 mass % or more and 80 mass % or less, more preferably 5 mass % or more and 70 mass % or less, and even more preferably 10 mass % or more and 50 mass % or less.
 請求項8の発明の官能性ブロック共重合体含有エポキシ系接着剤組成物の前記官能性ブロック共重合体中の前記エポキシ樹脂と相溶するポリマーは、その数平均分子量(Mn)が、好ましくは、1000以上、50000以下、より好ましくは、1000以上、40000以下、更に好ましくは、1500以上、30000以下の範囲内のものである。なお、当該分子量は、ブロック単位のポリマー分子量に相当するものである。また、数平均分子量(Mn)は、標準ポリスチレンを用いたゲル浸透クロマトグラフィー(GPC)により求められるものである。 The polymer compatible with the epoxy resin in the functional block copolymer of the functional block copolymer-containing epoxy adhesive composition of the invention of claim 8 has a number average molecular weight (Mn) preferably in the range of 1000 or more and 50,000 or less, more preferably 1000 or more and 40,000 or less, and even more preferably 1500 or more and 30,000 or less. The molecular weight corresponds to the polymer molecular weight of the block unit. The number average molecular weight (Mn) is determined by gel permeation chromatography (GPC) using standard polystyrene.
 請求項9の発明の官能性ブロック共重合体含有エポキシ系接着剤組成物の前記官能性ブロック共重合体は、その配合が、前記エポキシ樹脂100質量部に対し、好ましくは、1質量部以上、3500質量部以下、より好ましくは、1.5質量部以上、3400質量部以下、更に好ましくは、2質量部以上、3200質量部以下、特に好ましくは、3質量部以上、3000質量部以下の範囲内のものである。 The functional block copolymer of the functional block copolymer-containing epoxy adhesive composition of the invention of claim 9 is preferably blended in an amount of 1 part by mass or more and 3,500 parts by mass or less, more preferably 1.5 parts by mass or more and 3,400 parts by mass or less, even more preferably 2 parts by mass or more and 3,200 parts by mass or less, and particularly preferably 3 parts by mass or more and 3,000 parts by mass or less, per 100 parts by mass of the epoxy resin.
 請求項10の発明の官能性ブロック共重合体含有エポキシ系接着剤組成物の前記官能性ブロック共重合体は、ポリイソプレンに前記非共有結合性官能基が導入されてなる官能性ポリイソプレンを含有する官能性スチレン系熱可塑性エラストマー、ポリブタジエンに前記非共有結合性官能基が導入されてなる官能性ポリブタジエンを含有する官能性スチレン系熱可塑性エラストマー、水添ポリイソプレンに前記非共有結合性官能基が導入されてなる官能性水添ポリイソプレンを含有する官能性スチレン系熱可塑性エラストマー、または水添ポリブタジエンに前記非共有結合性官能基が導入されてなる官能性水添ポリブタジエンを含有する官能性スチレン系熱可塑性エラストマーであるものである。 The functional block copolymer of the functional block copolymer-containing epoxy adhesive composition of the invention of claim 10 is a functional styrene-based thermoplastic elastomer containing a functional polyisoprene obtained by introducing the non-covalent functional group into polyisoprene, a functional styrene-based thermoplastic elastomer containing a functional polybutadiene obtained by introducing the non-covalent functional group into polybutadiene, a functional styrene-based thermoplastic elastomer containing a functional hydrogenated polyisoprene obtained by introducing the non-covalent functional group into hydrogenated polyisoprene, or a functional styrene-based thermoplastic elastomer containing a functional hydrogenated polybutadiene obtained by introducing the non-covalent functional group into hydrogenated polybutadiene.
 請求項11の発明の官能性ブロック共重合体含有エポキシ系接着剤組成物は、エポキシ樹脂と、硬化剤と、ポリイソプレン鎖に非共有結合性官能基が導入されてなるポリスチレン-官能性ポリイソプレン-ポリスチレンブロック共重合体または水添ポリイソプレン鎖に非共有結合性官能基が導入されてなるポリスチレン-官能性水添ポリイソプレン-ポリスチレンブロック共重合体とを含有するものである。 The functional block copolymer-containing epoxy adhesive composition of the invention of claim 11 contains an epoxy resin, a curing agent, and a polystyrene-functional polyisoprene-polystyrene block copolymer in which a non-covalent functional group has been introduced into the polyisoprene chain, or a polystyrene-functional hydrogenated polyisoprene-polystyrene block copolymer in which a non-covalent functional group has been introduced into the hydrogenated polyisoprene chain.
 上記ポリスチレン-官能性ポリイソプレン-ポリスチレンブロックは、スチレン系熱可塑性エラストマー(TPS)であるポリスチレンーポリイソプレン-ポリスチレンブロック共重合体(SIS)のポリイソプレン鎖に非共有結合性官能基が導入されてなるものであり、両末端に室温でハードセグメントとして振る舞うポリスチレンブロック、中央に室温でソフトセグメントとして振る舞う官能性ポリイソプレンブロックを有するブロック共重合体である。
 上記ポリスチレン-官能性水添ポリイソプレン-ポリスチレンブロックは、ポリスチレン-ポリイソプレン-ポリスチレンブロック共重合体(SIS)のポリイソプレン部を水素添加してなるポリスチレン-ポリエチレン・プロピレン-ポリスチレンブロック共重合体(SEPS)の水添ポリイソプレン鎖、即ち、ポリエチレン・プロピレン鎖に非共有結合性官能基が導入されてなるポリスチレン-官能性ポリエチレン・プロピレン-ポリスチレンブロックであり、両末端に室温でハードセグメントとして振る舞うポリスチレンブロック、中央に室温でソフトセグメントとして振る舞う官能性ポリエチレン・プロピレンブロックを有するブロック共重合体である。
The polystyrene-functionalized polyisoprene-polystyrene block is a block copolymer in which a non-covalent functional group is introduced into the polyisoprene chain of a polystyrene-polyisoprene-polystyrene block copolymer (SIS), which is a styrene-based thermoplastic elastomer (TPS), and has polystyrene blocks at both ends that behave as hard segments at room temperature and a functionalized polyisoprene block in the center that behaves as a soft segment at room temperature.
The polystyrene-functionalized hydrogenated polyisoprene-polystyrene block is a hydrogenated polyisoprene chain of a polystyrene-polyethylene propylene-polystyrene block copolymer (SEPS) obtained by hydrogenating the polyisoprene portion of a polystyrene-polyisoprene-polystyrene block copolymer (SIS), i.e., a polystyrene-functionalized polyethylene propylene-polystyrene block obtained by introducing a non-covalent functional group into a polyethylene propylene chain, and is a block copolymer having polystyrene blocks that behave as hard segments at both ends and a functional polyethylene propylene block that behaves as a soft segment at room temperature in the center.
 請求項12の発明の官能性ブロック共重合体含有エポキシ系接着剤組成物は、エポキシ樹脂と、硬化剤と、ポリブタジエン鎖に非共有結合性官能基が導入されてなるポリスチレン-官能性ポリブタジエン-ポリスチレンブロック共重合体または水添ポリブタジエン鎖に非共有結合性官能基が導入されてなるポリスチレン-官能性水添ポリブタジエン-ポリスチレンブロック共重合体とを含有するものである。 The functional block copolymer-containing epoxy adhesive composition of the invention of claim 12 contains an epoxy resin, a curing agent, and a polystyrene-functional polybutadiene-polystyrene block copolymer in which a non-covalent functional group has been introduced into the polybutadiene chain, or a polystyrene-functional hydrogenated polybutadiene-polystyrene block copolymer in which a non-covalent functional group has been introduced into the hydrogenated polybutadiene chain.
 上記ポリスチレン-官能性ポリブタジエン-ポリスチレンブロックは、スチレン系熱可塑性エラストマー(TPS)であるポリスチレン-ポリブタジエン-ポリスチレンブロック共重合体(SBS)のポリブタジエン鎖に非共有結合性官能基が導入されてなるものであり、両末端に室温でハードセグメントとして振る舞うポリスチレンブロック、中央に室温でソフトセグメントとして振る舞う官能性ポリブタジエンブロックを有するブロック共重合体である。
 上記ポリスチレン-官能性水添ポリブタジエン-ポリスチレンブロックは、ポリスチレン-ポリブタジエン-ポリスチレンブロック共重合体(SBS)のポリブタジエン部を水素添加してなるポリスチレン-ポリエチレン・ブチレン-ポリスチレンブロック共重合体(SEBS)の水添ポリブタジエン鎖、即ち、ポリエチレン・ブチレン鎖に非共有結合性官能基が導入されてなるポリスチレン-官能性ポリエチレン・ブチレン-ポリスチレンブロックであり、両末端に室温でハードセグメントとして振る舞うポリスチレンブロック、中央に室温でソフトセグメントとして振る舞う官能性ポリエチレン・ブチレンブロックを有するブロック共重合体である。
The polystyrene-functionalized polybutadiene-polystyrene block is a block copolymer in which a non-covalently bonded functional group is introduced into the polybutadiene chain of a polystyrene-polybutadiene-polystyrene block copolymer (SBS), which is a styrene-based thermoplastic elastomer (TPS), and has polystyrene blocks at both ends that behave as hard segments at room temperature and a functionalized polybutadiene block in the center that behaves as a soft segment at room temperature.
The polystyrene-functional hydrogenated polybutadiene-polystyrene block is a hydrogenated polybutadiene chain of a polystyrene-polyethylene butylene-polystyrene block copolymer (SEBS) obtained by hydrogenating the polybutadiene portion of a polystyrene-polybutadiene-polystyrene block copolymer (SBS), i.e., a polystyrene-functional polyethylene butylene-polystyrene block obtained by introducing a non-covalent functional group into a polyethylene butylene chain, and is a block copolymer having polystyrene blocks at both ends that behave as hard segments at room temperature and a functional polyethylene butylene block in the center that behaves as a soft segment at room temperature.
 請求項13の発明の官能性ブロック共重合体含有エポキシ系接着剤組成物の製造方法は、エポキシ樹脂と、硬化剤と、前記エポキシ樹脂と非相溶でガラス転移温度が25℃以下である非共有結合性官能基を有したゴム状ポリマー及び前記エポキシ樹脂と相溶するポリマーからなる官能性ブロック共重合体を含有するエポキシ系接着剤組成物の製造方法であって、混合工程において少なくとも前記エポキシ樹脂及び前記官能性ブロック共重合体を溶媒と混合したのち、溶媒除去工程において溶媒を除去するものである。
 上記混合工程における少なくともとは、混合工程において硬化剤やその他の添加剤を混合してもよいことを意味する。しかし、混合工程でなくとも溶媒除去工程後に硬化剤やその他の添加剤を混合してもよい。
 上記溶媒としては、例えば、テトラヒドロフラン(THF)、2-メチルテトラヒドロフラン、トルエン、アセトン、シクロヘキサン、ノルマルヘキサン、酢酸エチル、メタノール、メチレンクロライド(ジクロロメタン)、メチルエチルケトン(MEK)、酢酸ブチル、メチルシクロヘキサン(MCH)、N,N‐ジメチルホルムアミド(DMF)N-メチル-2-ピロリドン(NMP)等が挙げられる。
The method for producing an epoxy adhesive composition containing a functional block copolymer according to the invention of claim 13 is a method for producing an epoxy adhesive composition containing an epoxy resin, a curing agent, and a functional block copolymer consisting of a rubber-like polymer that is incompatible with the epoxy resin and has a non-covalent functional group and a glass transition temperature of 25°C or lower, and a polymer that is compatible with the epoxy resin, in which at least the epoxy resin and the functional block copolymer are mixed with a solvent in a mixing step, and then the solvent is removed in a solvent removal step.
The term "at least" in the above mixing step means that the curing agent and other additives may be mixed in the mixing step. However, the curing agent and other additives may be mixed after the solvent removal step, not necessarily in the mixing step.
Examples of the solvent include tetrahydrofuran (THF), 2-methyltetrahydrofuran, toluene, acetone, cyclohexane, normal hexane, ethyl acetate, methanol, methylene chloride (dichloromethane), methyl ethyl ketone (MEK), butyl acetate, methylcyclohexane (MCH), N,N-dimethylformamide (DMF), and N-methyl-2-pyrrolidone (NMP).
 請求項14の発明の官能性ブロック共重合体含有エポキシ系接着剤硬化物は、エポキシ樹脂と、硬化剤と、前記エポキシ樹脂と非相溶でガラス転移温度が25℃以下である非共有結合性官能基を有したゴム状ポリマー及び前記エポキシ樹脂と相溶するポリマーからなる官能性ブロック共重合体とを含有するエポキシ系接着剤組成物が加熱により硬化されてなるものである。 The cured epoxy adhesive containing functional block copolymer of the invention of claim 14 is obtained by heating and curing an epoxy adhesive composition containing an epoxy resin, a curing agent, and a functional block copolymer consisting of a rubber-like polymer that is incompatible with the epoxy resin and has a non-covalent functional group with a glass transition temperature of 25°C or less, and a polymer that is compatible with the epoxy resin.
 請求項1の発明に係る官能性ブロック共重合体含有エポキシ系接着剤組成物によれば、エポキシ樹脂と、硬化剤と、前記エポキシ樹脂と非相溶でガラス転移温度(Tg)が25℃以下である非共有結合性官能基を有したゴム状ポリマー及び前記エポキシ樹脂と相溶するポリマーからなる官能性ブロック共重合体とを含有することにより、官能性ブロック共重合体中のエポキシ樹脂と相溶するポリマーがエポキシ樹脂と相溶する一方で非共有結合性官能基を有したゴム状ポリマーはエポキシ樹脂と非相溶なため、非共有結合性官能基を有したゴム状ポリマーによる伸び、柔軟性や、弾性率が発現される。よって、接着剤硬化物は強靭なものとなる。
 特に、ゴム状ポリマーが非共有結合性官能基を有することにより、ポリマー鎖間で非共有結合性官能基同士が解離や再結合自在な非共有結合し擬似架橋点・物理架橋点を形成するから、強靭性の向上を可能とする。
According to the invention of claim 1, the functional block copolymer-containing epoxy adhesive composition contains an epoxy resin, a curing agent, and a functional block copolymer consisting of a rubbery polymer having a non-covalent functional group that is incompatible with the epoxy resin and has a glass transition temperature ( Tg ) of 25°C or less, and a polymer compatible with the epoxy resin, so that the polymer compatible with the epoxy resin in the functional block copolymer is compatible with the epoxy resin, while the rubbery polymer having the non-covalent functional group is incompatible with the epoxy resin, and therefore the elongation, flexibility and elastic modulus due to the rubbery polymer having the non-covalent functional group are expressed. Therefore, the adhesive cured product becomes tough.
In particular, when a rubber-like polymer has non-covalent functional groups, the non-covalent functional groups between polymer chains form non-covalent bonds that can dissociate and recombine freely, forming pseudo-crosslinking points and physical crosslinking points, thereby enabling the toughness to be improved.
 請求項2の発明に係る官能性ブロック共重合体含有エポキシ系接着剤組成物によれば、前記官能性ブロック共重合体の前記非共有結合性官能基を有したゴム状ポリマー中の前記非共有結合性官能基は、水素結合性官能基及び/またはイオン結合性官能基であるから、応力緩和性の向上により、請求項1に記載の効果に加えて、耐衝撃性の向上が可能である。 According to the epoxy adhesive composition containing a functional block copolymer according to the invention of claim 2, the non-covalent functional group in the rubber-like polymer having the non-covalent functional group of the functional block copolymer is a hydrogen-bonding functional group and/or an ionic-bonding functional group, and therefore, in addition to the effect described in claim 1, the impact resistance can be improved by improving the stress relaxation property.
 請求項3の発明の官能性ブロック共重合体含有エポキシ系接着剤組成物によれば、前記官能性ブロック共重合体の前記非共有結合性官能基を有したゴム状ポリマー中の前記非共有結合性官能基は、アミド基、イミド基、カルボキシル基、フェノール基、ピリジル基、イミダゾリル基、ピラゾリル基、ウレタン基、カルボキシレート基、ホスホネート基、スルホネート基、アンモニウム基、ピリジニウム基、イミダゾリウム基、またはピラゾリウム基の何れか1種以上であるから前記官能性ブロック共重合体の製造が比較的容易で歩留まりが良好なものであることにより、請求項1に記載の効果に加えて、低コスト化が可能となる。 According to the epoxy adhesive composition containing a functional block copolymer of the invention of claim 3, the non-covalent functional group in the rubber-like polymer having the non-covalent functional group of the functional block copolymer is one or more of amide groups, imide groups, carboxyl groups, phenol groups, pyridyl groups, imidazolyl groups, pyrazolyl groups, urethane groups, carboxylate groups, phosphonate groups, sulfonate groups, ammonium groups, pyridinium groups, imidazolium groups, and pyrazolium groups, so that the functional block copolymer is relatively easy to manufacture and has a good yield, thereby enabling cost reduction in addition to the effect of claim 1.
 請求項4の発明に係る官能性ブロック共重合体含有エポキシ系接着剤組成物によれば、前記官能性ブロック共重合体中の前記非共有結合性官能基を有したゴム状ポリマーは、イソプレン、ブタジエン、水素添加イソプレン、または、水素添加ブタジエンのモノマーユニットを含有し、前記ブロック共重合体中の前記エポキシ樹脂と相溶するポリマーは、スチレン骨格、メタクリル骨格、アクリル骨格、または、エーテル骨格を有するモノマーユニットを含有することにより、請求項1に記載の効果に加えて、ゴム弾性、耐熱老化性、耐候性等の特性の向上を可能とする。 According to the invention of claim 4, in the functional block copolymer-containing epoxy adhesive composition, the rubber-like polymer having a non-covalent functional group in the functional block copolymer contains a monomer unit of isoprene, butadiene, hydrogenated isoprene, or hydrogenated butadiene, and the polymer compatible with the epoxy resin in the block copolymer contains a monomer unit having a styrene skeleton, a methacrylic skeleton, an acrylic skeleton, or an ether skeleton, thereby enabling improvements in properties such as rubber elasticity, heat aging resistance, and weather resistance in addition to the effect described in claim 1.
 請求項5の発明に係る官能性ブロック共重合体含有エポキシ系接着剤組成物によれば、前記非共有結合性官能基を有したゴム状ポリマー中の前記非共有結合性官能基の導入率が、前記非共有結合性官能基を有したゴム状ポリマーを構成するモノマーユニット100mol%に対して、1mol%以上、30mol%以下の範囲内であるから、請求項1に記載の効果に加えて、強靭性の向上を安定的に確保できる。 According to the functional block copolymer-containing epoxy adhesive composition of the invention of claim 5, the introduction rate of the non-covalent functional group in the rubbery polymer having the non-covalent functional group is within the range of 1 mol% or more and 30 mol% or less relative to 100 mol% of the monomer units constituting the rubbery polymer having the non-covalent functional group, so in addition to the effect described in claim 1, improved toughness can be stably ensured.
 請求項6の発明に係る官能性ブロック共重合体含有エポキシ系接着剤組成物によれば、前記官能性ブロック共重合体中の前記非共有結合性官能基を有したゴム状ポリマーは、前記エポキシ樹脂100質量部に対し、0.5質量部以上、3000質量部以下の範囲内で含有するために、強靭性を向上させることでき、耐久性も向上できる。よって、請求項1に記載の効果に加えて、異種材の接着に適用する場合でも、信頼性の高い接着強度が得られる。 According to the invention of claim 6, the rubber-like polymer having a non-covalent functional group in the functional block copolymer is contained in the range of 0.5 parts by mass or more and 3,000 parts by mass or less per 100 parts by mass of the epoxy resin, so that the toughness and durability can be improved. Therefore, in addition to the effect of claim 1, a highly reliable adhesive strength can be obtained even when applied to the adhesion of different materials.
 請求項7の発明に係る官能性ブロック共重合体含有エポキシ系接着剤組成物によれば、前記官能性ブロック共重合体中の前記エポキシ樹脂と相溶するポリマーの含有量は3質量%以上、80質量%以下の範囲内であるから、エポキシ樹脂との相溶性を向上でき均質に混合できる。よって、請求項1に記載の効果に加えて、接着剤硬化物の安定した特性が得られる。 According to the invention of claim 7, the content of the polymer compatible with the epoxy resin in the functional block copolymer is in the range of 3% by mass or more and 80% by mass or less, so that compatibility with the epoxy resin can be improved and the mixture can be mixed homogeneously. Therefore, in addition to the effect of claim 1, stable properties of the adhesive cured product can be obtained.
 請求項8の発明に係る官能性ブロック共重合体含有エポキシ系接着剤組成物によれば、前記官能性ブロック共重合体中の前記エポキシ樹脂と相溶するポリマーは、その数平均分子量が1000以上、50000以下の範囲内のものであるから、エポキシ樹脂との相溶性を向上でき均質に混合できる。よって、請求項1に記載の効果に加えて、接着剤硬化物の安定した特性が得られる。 According to the invention of claim 8, the functional block copolymer-containing epoxy adhesive composition has a polymer in the functional block copolymer that is compatible with the epoxy resin, and has a number average molecular weight in the range of 1,000 to 50,000, so that compatibility with the epoxy resin can be improved and the mixture can be homogeneously mixed. Therefore, in addition to the effect of claim 1, stable properties of the adhesive cured product can be obtained.
 請求項9の発明に係る官能性ブロック共重合体含有エポキシ系接着剤組成物によれば、前記ブロック共重合体は、前記エポキシ樹脂100質量部に対し、1質量部以上、3500質量部以下の範囲内の配合であるから、請求項1に記載の効果に加えて、良好な塗布性と強靭性向上との両立を可能とする。 According to the invention of claim 9, the functional block copolymer-containing epoxy adhesive composition contains the block copolymer in an amount ranging from 1 part by mass to 3,500 parts by mass per 100 parts by mass of the epoxy resin, which makes it possible to achieve both good coatability and improved toughness in addition to the effect of claim 1.
 請求項10の発明に係る官能性ブロック共重合体は、ポリイソプレンに前記非共有結合性官能基が導入されてなる官能性ポリイソプレンを含有する官能性スチレン系熱可塑性エラストマー、ポリブタジエンに前記非共有結合性官能基が導入されてなる官能性ポリブタジエンを含有する官能性スチレン系熱可塑性エラストマー、水添ポリイソプレンに前記非共有結合性官能基が導入されてなる官能性水添ポリイソプレンを含有する官能性スチレン系熱可塑性エラストマー、または水添ポリブタジエンに前記非共有結合性官能基が導入されてなる官能性水添ポリブタジエンを含有する官能性スチレン系熱可塑性エラストマーであるから安価に製造でき、かつ、伸び、柔軟性や弾性率に優れることにより、請求項1に記載の効果に加えて、低コストで、強靭性を向上できる。 The functional block copolymer according to the invention of claim 10 is a functional styrene-based thermoplastic elastomer containing a functional polyisoprene obtained by introducing the non-covalent functional group into polyisoprene, a functional styrene-based thermoplastic elastomer containing a functional polybutadiene obtained by introducing the non-covalent functional group into polybutadiene, a functional styrene-based thermoplastic elastomer containing a functional hydrogenated polyisoprene obtained by introducing the non-covalent functional group into hydrogenated polyisoprene, or a functional styrene-based thermoplastic elastomer containing a functional hydrogenated polybutadiene obtained by introducing the non-covalent functional group into hydrogenated polybutadiene, and therefore can be produced at low cost and has excellent elongation, flexibility, and elastic modulus, thereby improving toughness at low cost in addition to the effect described in claim 1.
 請求項11の発明に係る官能性ブロック共重合体含有エポキシ系接着剤組成物によれば、エポキシ樹脂と、硬化剤と、ポリイソプレン鎖に非共有結合性官能基が導入されてなるポリスチレン-官能性ポリイソプレン-ポリスチレンブロック共重合体または水添ポリイソプレン鎖に非共有結合性官能基が導入されてなるポリスチレン-官能性水添ポリイソプレン-ポリスチレンブロック共重合体とを含有することにより、ポリスチレン-官能性ポリイソプレン-ポリスチレンブロック共重合体またはポリスチレン-官能性水添ポリイソプレン-ポリスチレンブロック共重合体におけるポリスチレン部がエポキシ樹脂と相溶する一方で、官能性ポリイソプレン部や官能性水素添加イソプレン部はエポキシ樹脂と非相溶なため、官能性ポリイソプレン部や官能性水素添加イソプレン部による伸び、柔軟性や弾性率が発現される。よって、接着剤硬化物は強靭なものとなる。
 特に、ポリスチレン-官能性ポリイソプレン-ポリスチレンブロック共重合体の官能性ポリイソプレン部、または、ポリスチレン-官能性水添ポリイソプレン-ポリスチレンブロック共重合体の官能性水添ポリイソプレン部が非共有結合性官能基を有することにより、ポリマー鎖間で非共有結合性官能基同士が解離や再結合自在な非共有結合し擬似架橋点・物理架橋点を形成するから、強靭性の向上を可能とする。
According to the invention of claim 11, the epoxy adhesive composition containing a functional block copolymer contains an epoxy resin, a curing agent, and a polystyrene-functional polyisoprene-polystyrene block copolymer having a non-covalent functional group introduced into a polyisoprene chain or a polystyrene-functional hydrogenated polyisoprene-polystyrene block copolymer having a non-covalent functional group introduced into a hydrogenated polyisoprene chain, so that the polystyrene portion in the polystyrene-functional polyisoprene-polystyrene block copolymer or the polystyrene-functional hydrogenated polyisoprene-polystyrene block copolymer is compatible with the epoxy resin, while the functional polyisoprene portion and the functional hydrogenated isoprene portion are incompatible with the epoxy resin, and therefore the elongation, flexibility and elastic modulus due to the functional polyisoprene portion and the functional hydrogenated isoprene portion are expressed. Therefore, the adhesive cured product becomes tough.
In particular, since the functional polyisoprene portion of the polystyrene-functionalized polyisoprene-polystyrene block copolymer or the functional hydrogenated polyisoprene portion of the polystyrene-functionalized hydrogenated polyisoprene-polystyrene block copolymer has a non-covalent functional group, the non-covalent functional groups between the polymer chains form non-covalent bonds that can be freely dissociated and recombined to form pseudo-crosslinking points and physical crosslinking points, thereby enabling improvement in toughness.
 請求項12の発明に係る官能性ブロック共重合体含有エポキシ系接着剤組成物によれば、エポキシ樹脂と、硬化剤と、ポリブタジエン鎖に非共有結合性官能基が導入されてなるポリスチレン-官能性ポリブタジエン-ポリスチレンブロック共重合体または水添ポリブタジエン鎖に非共有結合性官能基が導入されてなるポリスチレン-官能性水添ポリブタジエン-ポリスチレンブロック共重合体とを含有することにより、ポリスチレン-官能性ポリブタジエン-ポリスチレンブロック共重合体またはポリスチレン-官能性水添ポリブタジエン-ポリスチレンブロック共重合体におけるポリスチレン部がエポキシ樹脂と相溶する一方で、官能性ポリブタジエン部や官能性水素添加ポリブタジエン部はエポキシ樹脂と非相溶なため、官能性ポリブタジエン部や官能性水素添加ポリブタジエン部による伸び、柔軟性や弾性率が発現される。よって、接着剤硬化物は強靭なものとなる。
 特に、ポリスチレン-官能性ポリブタジエン-ポリスチレンブロック共重合体の官能性ポリブタジエン部、または、ポリスチレン-官能性水添ポリブタジエン-ポリスチレンブロック共重合体の官能性水添ポリブタジエン部が非共有結合性官能基を有することにより、ポリマー鎖間で非共有結合性官能基同士が解離や再結合自在な非共有結合し擬似架橋点・物理架橋点を形成するから、強靭性の向上を可能とする。
According to the invention of claim 12, the epoxy adhesive composition containing a functional block copolymer contains an epoxy resin, a curing agent, and a polystyrene-functional polybutadiene-polystyrene block copolymer having a non-covalent functional group introduced into a polybutadiene chain or a polystyrene-functional hydrogenated polybutadiene-polystyrene block copolymer having a non-covalent functional group introduced into a hydrogenated polybutadiene chain, so that the polystyrene portion of the polystyrene-functional polybutadiene-polystyrene block copolymer or the polystyrene-functional hydrogenated polybutadiene-polystyrene block copolymer is compatible with the epoxy resin, while the functional polybutadiene portion and the functional hydrogenated polybutadiene portion are incompatible with the epoxy resin, and therefore the elongation, flexibility and elastic modulus due to the functional polybutadiene portion and the functional hydrogenated polybutadiene portion are expressed. Therefore, the adhesive cured product becomes tough.
In particular, since the functional polybutadiene portion of the polystyrene-functional polybutadiene-polystyrene block copolymer or the functional hydrogenated polybutadiene portion of the polystyrene-functional hydrogenated polybutadiene-polystyrene block copolymer has a non-covalent functional group, the non-covalent functional groups between the polymer chains form non-covalent bonds that can be freely dissociated and recombined to form pseudo-crosslinking points and physical crosslinking points, thereby enabling improvement in toughness.
 請求項13の発明に係る官能性ブロック共重合体含有エポキシ系接着剤組成物の製造方法によれば、エポキシ樹脂と、硬化剤と、前記エポキシ樹脂と非相溶でガラス転移温度が25℃以下である非共有結合性官能基を有したゴム状ポリマー及び前記エポキシ樹脂と相溶するポリマーからなる官能性ブロック共重合体とを含有するエポキシ系接着剤組成物の製造方法であって、混合工程において少なくともエポキシ樹脂及び前記官能性ブロック共重合体を溶媒と混合し、溶媒除去工程において前記溶媒を除去することでエポキシ系接着剤組成物を得るものであり、得られたエポキシ系接着剤組成物は、官能性ブロック共重合体中のエポキシ樹脂と相溶するポリマーがエポキシ樹脂と相溶する一方で非共有結合性官能基を有したゴム状ポリマーはエポキシ樹脂と非相溶なため、非共有結合性官能基を有したゴム状ポリマーによる伸び、柔軟性や、弾性率が発現される。よって、接着剤硬化物は強靭なものとなる。
 特に、ゴム状ポリマーが非共有結合性官能基を有することにより、ポリマー鎖間で非共有結合性官能基同士が解離や再結合自在な非共有結合し擬似架橋点・物理架橋点を形成するから、強靭性の向上を可能とする。
According to the invention of claim 13, there is provided a method for producing an epoxy adhesive composition containing a functional block copolymer, which contains an epoxy resin, a curing agent, a rubber-like polymer having a non-covalent functional group that is incompatible with the epoxy resin and has a glass transition temperature of 25° C. or less, and a functional block copolymer consisting of a polymer compatible with the epoxy resin, in which at least the epoxy resin and the functional block copolymer are mixed with a solvent in a mixing step, and the solvent is removed in a solvent removal step to obtain an epoxy adhesive composition, and the obtained epoxy adhesive composition exhibits the elongation, flexibility, and elastic modulus due to the rubber-like polymer having a non-covalent functional group, since the polymer compatible with the epoxy resin in the functional block copolymer is compatible with the epoxy resin, while the rubber-like polymer having a non-covalent functional group is incompatible with the epoxy resin. Therefore, the adhesive cured product is tough.
In particular, when a rubber-like polymer has non-covalent functional groups, the non-covalent functional groups between polymer chains form non-covalent bonds that can dissociate and recombine freely, forming pseudo-crosslinking points and physical crosslinking points, thereby enabling the toughness to be improved.
 請求項14の発明に係る官能性ブロック共重合体含有エポキシ系接着剤硬化物によれば、エポキシ樹脂と、硬化剤と、前記エポキシ樹脂と非相溶でガラス転移温度が25℃以下である非共有結合性官能基を有したゴム状ポリマー及び前記エポキシ樹脂と相溶するポリマーからなる官能性ブロック共重合体とを含有するエポキシ系接着剤組成物が硬化してなるものであり、官能性ブロック共重合体中のエポキシ樹脂と相溶するポリマーがエポキシ樹脂と相溶する一方で非共有結合性官能基を有したゴム状ポリマーは非相溶なため、非共有結合性官能基を有したゴム状ポリマーによる伸び、柔軟性や、弾性率が発現される。よって、接着剤硬化物は強靭なものとなる。
 特に、ゴム状ポリマーが非共有結合性官能基を有することにより、ポリマー鎖間で非共有結合性官能基同士が解離や再結合自在な非共有結合し擬似架橋点・物理架橋点を形成するから、強靭性の向上を可能とする。
According to the invention of claim 14, the cured epoxy adhesive containing functional block copolymer is obtained by curing an epoxy adhesive composition containing an epoxy resin, a curing agent, and a functional block copolymer consisting of a rubber-like polymer having a non-covalent functional group that is incompatible with the epoxy resin and has a glass transition temperature of 25°C or less, and a polymer compatible with the epoxy resin, and since the polymer compatible with the epoxy resin in the functional block copolymer is compatible with the epoxy resin while the rubber-like polymer having a non-covalent functional group is incompatible with the epoxy resin, the elongation, flexibility and elastic modulus due to the rubber-like polymer having a non-covalent functional group are expressed. Therefore, the cured adhesive is tough.
In particular, when a rubber-like polymer has non-covalent functional groups, the non-covalent functional groups between polymer chains form non-covalent bonds that can dissociate and recombine freely, forming pseudo-crosslinking points and physical crosslinking points, thereby enabling the toughness to be improved.
図1(a)は、エポキシ樹脂と非相溶でガラス転移温度(Tg)が25℃以下であり非共有結合性官能基を有したゴム状ポリマー及びエポキシ樹脂と相溶するポリマーからなる官能性ブロック共重合体の一例として、ポリスチレン-ポリイソプレン-ポリスチレンブロック共重合体(SIS)のポリイソプレン鎖に非共有結合性官能基として水素結合性官能基であるカルボキシル基及びアミノ基が導入されてなるポリスチレン-官能性ポリイソプレン-ポリスチレンブロック共重合体(h-SIS)の合成方法を示す化学反応式である。図1(b)は、エポキシ樹脂と非相溶でガラス転移温度(Tg)が25℃以下であり非共有結合性官能基を有したゴム状ポリマー及びエポキシ樹脂と相溶するポリマーからなる官能性ブロック共重合体の一例として、ポリスチレン-ポリイソプレン-ポリスチレンブロック共重合体(SIS)のポリイソプレン鎖に非共有結合性官能基としてイオン結合性官能基であるカルボキシレート基及び水素結合性官能基であるアミノ基が導入されてなるポリスチレン-官能性ポリイソプレン-ポリスチレンブロック共重合体(i-SIS)の合成方法を示す化学反応式である。FIG. 1(a) is a chemical reaction formula showing a method for synthesizing a polystyrene-functionalized polyisoprene-polystyrene block copolymer (h- SIS ) in which a carboxyl group and an amino group, which are hydrogen-bonding functional groups, are introduced as non-covalent functional groups into the polyisoprene chain of a polystyrene-polyisoprene-polystyrene block copolymer (SIS), as an example of a functional block copolymer consisting of a rubber-like polymer that is incompatible with epoxy resins, has a glass transition temperature (T g ) of 25° C. or lower, and has a non-covalent functional group, and a polymer that is compatible with epoxy resins. FIG. 1(b) is a chemical reaction formula showing a method for synthesizing polystyrene-functionalized polyisoprene-polystyrene block copolymer (i- SIS ) in which a carboxylate group, which is an ionic bonding functional group, and an amino group, which is a hydrogen bonding functional group, are introduced as non-covalent functional groups into the polyisoprene chain of polystyrene-polyisoprene-polystyrene block copolymer (SIS), as an example of a functional block copolymer consisting of a rubber-like polymer that is incompatible with epoxy resins, has a glass transition temperature (T g ) of 25° C. or lower, and has a non-covalent bonding functional group, and a polymer that is compatible with epoxy resins. 図2(a)エポキシ樹脂と非相溶でガラス転移温度(Tg)が25℃以下であり非共有結合性官能基を有したゴム状ポリマー及びエポキシ樹脂と相溶するポリマーからなる官能性ブロック共重合体の一例として、ポリスチレン-ポリイソプレン-ポリスチレンブロック共重合体(SIS)のポリイソプレン鎖に非共有結合性官能基として水素結合性官能基であるカルボキシル基及びアミノ基が導入されてなるポリスチレン-官能性ポリイソプレン-ポリスチレンブロック共重合体(h-SIS)の分子構造を示す概念図である。図2(b)はポリイソプレン鎖に非共有結合性官能基として水素結合性官能基であるカルボキシル基及びアミノ基が導入されているポリスチレン-官能性ポリイソプレン-ポリスチレンブロック共重合体(h-SIS)の相分離構造を示す概念図である。図2(c)はポリイソプレン鎖に非共有結合性官能基として水素結合性官能基であるカルボキシル基及びアミノ基が導入されているポリスチレン-官能性ポリイソプレン-ポリスチレンブロック共重合体(h-SIS)をエポキシ樹脂と混合したときのエポキシ樹脂中のポリスチレン-官能性ポリイソプレン-ポリスチレンブロック共重合体(h-SIS)の構造を示す概念図である。Fig. 2(a) is a conceptual diagram showing the molecular structure of a polystyrene-functionalized polyisoprene-polystyrene block copolymer (h- SIS ) in which carboxyl groups and amino groups, which are hydrogen-bonding functional groups, are introduced as non-covalent functional groups into the polyisoprene chain of a polystyrene-polyisoprene-polystyrene block copolymer (SIS), as an example of a functional block copolymer consisting of a rubber-like polymer that is incompatible with epoxy resins, has a glass transition temperature (T g ) of 25°C or less, and has a non-covalent functional group, and a polymer that is compatible with epoxy resins. Fig. 2(b) is a conceptual diagram showing the phase-separated structure of a polystyrene-functionalized polyisoprene-polystyrene block copolymer (h-SIS) in which carboxyl groups and amino groups, which are hydrogen-bonding functional groups, are introduced as non-covalent functional groups into the polyisoprene chain. FIG. 2(c) is a conceptual diagram showing the structure of polystyrene-functionalized polyisoprene-polystyrene block copolymer (h-SIS) in an epoxy resin when polystyrene-functionalized polyisoprene-polystyrene block copolymer (h-SIS) in which a carboxyl group and an amino group, which are hydrogen-bonding functional groups, are introduced as non-covalent functional groups in a polyisoprene chain, is mixed with an epoxy resin. 図3(a)エポキシ樹脂と非相溶でガラス転移温度(Tg)が25℃以下であり非共有結合性官能基を有したゴム状ポリマー及びエポキシ樹脂と相溶するポリマーからなる官能性ブロック共重合体の一例として、ポリスチレン-ポリイソプレン-ポリスチレンブロック共重合体(SIS)のポリイソプレン鎖に非共有結合性官能基としてイオン結合性官能基であるカルボキシレート基及び水素結合性官能基であるアミノ基が導入されているポリスチレン-官能性ポリイソプレン-ポリスチレンブロック共重合体(i-SIS)の分子構造を示す概念図である。図3(b)はポリイソプレン鎖に非共有結合性官能基として水素結合性官能基であるカルボキシル基及びアミノ基が導入されてなるポリスチレン-官能性ポリイソプレン-ポリスチレンブロック共重合体(i-SIS)の相分離構造を示す概念図である。図3(c)はポリイソプレン鎖に非共有結合性官能基としてイオン結合性官能基であるカルボキシレート基及び水素結合性官能基であるアミノ基が導入されているポリスチレン-官能性ポリイソプレン-ポリスチレンブロック共重合体(i-SIS)をエポキシ樹脂と混合したときのエポキシ樹脂中のポリスチレン-官能性ポリイソプレン-ポリスチレンブロック共重合体(i-SIS)の構造を示す概念図である。Fig. 3(a) is a conceptual diagram showing the molecular structure of polystyrene-functionalized polyisoprene-polystyrene block copolymer (i- SIS ) in which a carboxylate group, which is an ionic bonding functional group, and an amino group, which is a hydrogen-bonding functional group, are introduced as non-covalent functional groups into the polyisoprene chain of polystyrene-polyisoprene-polystyrene block copolymer (SIS) as an example of a functional block copolymer consisting of a rubber-like polymer that is incompatible with epoxy resins, has a glass transition temperature (T g ) of 25°C or less, and has a non-covalent functional group, and a polymer that is compatible with epoxy resins. Fig. 3(b) is a conceptual diagram showing the phase-separated structure of polystyrene-functionalized polyisoprene-polystyrene block copolymer (i-SIS) in which a carboxyl group, which is a hydrogen-bonding functional group, and an amino group, which is a hydrogen-bonding functional group, are introduced as non-covalent functional groups into the polyisoprene chain. FIG. 3(c) is a conceptual diagram showing the structure of polystyrene-functional polyisoprene-polystyrene block copolymer (i-SIS) in an epoxy resin when polystyrene-functional polyisoprene-polystyrene block copolymer (i-SIS) in which a carboxylate group, which is an ionic bonding functional group, and an amino group, which is a hydrogen bonding functional group, are introduced as non-covalent bonding functional groups into a polyisoprene chain, is mixed with an epoxy resin. 図4は、本発明の実施の形態の実施例1に係る液状の官能性ブロック共重合体含有エポキシ系接着剤組成物の1H-NMRスペクトル図である。FIG. 4 is a 1 H-NMR spectrum of the liquid functional block copolymer-containing epoxy adhesive composition according to Example 1 of the embodiment of the present invention. 図5は、本発明の実施の形態の実施例9に係る液状の官能性ブロック共重合体含有エポキシ系接着剤組成物の1H-NMRスペクトル図である。FIG. 5 is a 1 H-NMR spectrum of the liquid functional block copolymer-containing epoxy adhesive composition according to Example 9 of the embodiment of the present invention. 図6は、本発明の実施の形態の実施例24に係る液状の官能性ブロック共重合体含有エポキシ系接着剤組成物、比較例6及び比較例10に係る液状のエポキシ系接着剤組成物、ポリスチレン-ポリイソプレン-ポリスチレンブロック共重合体(SIS)、並びに、実施例24で用いたポリスチレン-官能性ポリイソプレン-ポリスチレンブロック共重合体(h-SIS-3)のFT-IRスペクトル図である。FIG. 6 is a FT-IR spectrum diagram of the liquid functional block copolymer-containing epoxy adhesive composition according to Example 24 of an embodiment of the present invention, the liquid epoxy adhesive compositions according to Comparative Examples 6 and 10, the polystyrene-polyisoprene-polystyrene block copolymer (SIS), and the polystyrene-functional polyisoprene-polystyrene block copolymer (h-SIS-3) used in Example 24. 図7は本発明の実施の形態の実施例24に係る液状の官能性ブロック共重合体含有エポキシ系接着剤組成物並びに比較例6及び比較例10に係る液状のエポキシ系接着剤組成物の動的粘弾性測定における損失正接(tanδ)データのグラフである。FIG. 7 is a graph showing loss tangent (tan δ) data in dynamic viscoelasticity measurement of the liquid functional block copolymer-containing epoxy adhesive composition according to Example 24 of an embodiment of the present invention, and the liquid epoxy adhesive compositions according to Comparative Examples 6 and 10. 図8(a)はポリスチレン-ポリイソプレン-ポリスチレンブロック共重合体(SIS)のTEM像、図8(b)は実施例24で用いたポリスチレン-官能性ポリイソプレン-ポリスチレンブロック共重合体(h-SIS-3)のTEM像、図8(c)は比較例10に係る液状のエポキシ系接着剤組成物のTEM像、図8(d)は実施例24に係る液状の官能性ブロック共重合体含有エポキシ系接着剤組成物硬化物のTEM像である。FIG. 8(a) is a TEM image of a polystyrene-polyisoprene-polystyrene block copolymer (SIS), FIG. 8(b) is a TEM image of a polystyrene-functional polyisoprene-polystyrene block copolymer (h-SIS-3) used in Example 24, FIG. 8(c) is a TEM image of a liquid epoxy adhesive composition according to Comparative Example 10, and FIG. 8(d) is a TEM image of a cured product of the liquid functional block copolymer-containing epoxy adhesive composition according to Example 24. 図9(a)はポリスチレン-ポリイソプレン-ポリスチレンブロック共重合体(SIS)と、比較例6に係る液状のエポキシ系接着剤組成物硬化物と、ポリスチレンーポリイソプレン-ポリスチレンブロック共重合体(SIS)を含有する比較例7~11に係るエポキシ系接着剤組成物の硬化物のDSCサーモグラムであり、図9(b)は、実施例15~19で用いたポリスチレン-官能性ポリイソプレン-ポリスチレンブロック共重合体(h-SIS-2)と、そのポリスチレン-官能性ポリイソプレン-ポリスチレンブロック共重合体を含有する実施例15~19に係る官能性ブロック共重合体含有エポキシ系接着剤組成物の硬化物のDSCサーモグラムであり、図9(c)は、実施例21~25で用いたポリスチレン-官能性ポリイソプレン-ポリスチレンブロック共重合体(h-SIS-3)と、そのポリスチレン-官能性ポリイソプレン-ポリスチレンブロック共重合体を含有する実施例21~25に係る官能性ブロック共重合体含有エポキシ系接着剤組成物の硬化物のDSCサーモグラムである。FIG. 9(a) is a DSC thermogram of polystyrene-polyisoprene-polystyrene block copolymer (SIS), a cured product of a liquid epoxy adhesive composition according to Comparative Example 6, and a cured product of an epoxy adhesive composition according to Comparative Examples 7 to 11 containing a polystyrene-polyisoprene-polystyrene block copolymer (SIS); FIG. 9(b) is a DSC thermogram of a polystyrene-functional polyisoprene-polystyrene block copolymer (h-SIS-2) used in Examples 15 to 19, and a cured product of a functional block copolymer-containing epoxy adhesive composition according to Examples 15 to 19 containing the polystyrene-functional polyisoprene-polystyrene block copolymer; and FIG. 9(c) is a DSC thermogram of a polystyrene-functional polyisoprene-polystyrene block copolymer (h-SIS-3) used in Examples 21 to 25, and a cured product of a functional block copolymer-containing epoxy adhesive composition according to Examples 21 to 25 containing the polystyrene-functional polyisoprene-polystyrene block copolymer. 図10は官能性ブロック共重合体を含有する実施例15~25及び27~31に係る官能性ブロック共重合体含有エポキシ系接着剤組成物の硬化物と、ポリスチレン-ポリイソプレン-ポリスチレンブロック共重合体(SIS)を含有する比較例6~11に係る液状のエポキシ系接着剤組成物の硬化物における、接着剤中のブロック共重合体の重量分率に対する剥離接着強度を示すグラフである。FIG. 10 is a graph showing the peel adhesion strength versus weight fraction of the block copolymer in the adhesive for cured products of functional block copolymer-containing epoxy adhesive compositions of Examples 15 to 25 and 27 to 31, which contain a functional block copolymer, and for cured products of liquid epoxy adhesive compositions of Comparative Examples 6 to 11, which contain a polystyrene-polyisoprene-polystyrene block copolymer (SIS). 図11は官能性ブロック共重合体を含有する実施例15~25及び27~31に係る官能性ブロック共重合体含有エポキシ系接着剤組成物の硬化物と、ポリスチレン-ポリイソプレン-ポリスチレンブロック共重合体(SIS)を含有する比較例6~11に係る液状のエポキシ系接着剤組成物の硬化物における、接着剤中のブロック共重合体の重量分率に対する動的割裂抵抗力を示すグラフである。FIG. 11 is a graph showing dynamic splitting resistance versus weight fraction of the block copolymer in the adhesive for cured products of functional block copolymer-containing epoxy adhesive compositions of Examples 15 to 25 and 27 to 31, which contain a functional block copolymer, and for cured products of liquid epoxy adhesive compositions of Comparative Examples 6 to 11, which contain a polystyrene-polyisoprene-polystyrene block copolymer (SIS). 図12は、ポリイソプレンとエポキシ樹脂の相分離状態を示す光学顕微鏡写真である。FIG. 12 is an optical microscope photograph showing the phase separation state between polyisoprene and epoxy resin.
 以下、本発明の実施の形態について説明する。
 本発明の実施の形態の官能性ブロック共重合体含有エポキシ系接着剤組成物(以下、単に「エポキシ系接着剤組成物」と称する場合がある)は、エポキシ樹脂及びエポキシ樹脂に対する硬化剤を基本組成とした、即ち、分子中にエポキシ基(オキシラン環)を2個以上有するエポキシ樹脂と活性水素や触媒作用を有する硬化剤成分とを基本組成とした熱硬化性のエポキシ樹脂組成物に、エポキシ樹脂と非相溶でガラス転移温度が25℃以下である非共有結合性官能基を有したゴム状ポリマー及びエポキシ樹脂と相溶するポリマーからなる官能性ブロック共重合体(以下、単に「官能性ブロック共重合体」と称する場合がある)を配合したものである。
Hereinafter, an embodiment of the present invention will be described.
The functional block copolymer-containing epoxy adhesive composition according to an embodiment of the present invention (hereinafter, sometimes simply referred to as "epoxy adhesive composition") is a thermosetting epoxy resin composition having as its basic composition an epoxy resin and a curing agent for the epoxy resin, i.e., an epoxy resin having two or more epoxy groups (oxirane rings) in the molecule and a curing agent component having active hydrogen and catalytic action, blended with a functional block copolymer (hereinafter, sometimes simply referred to as "functional block copolymer") consisting of a rubber-like polymer having a non-covalent functional group that is incompatible with the epoxy resin and has a glass transition temperature of 25°C or less, and a polymer that is compatible with the epoxy resin.
 エポキシ樹脂は、一般に、1分子中にエポキシ基(オキシラン環)を2個以上有し、硬化剤によって3次元化した硬化物を与える化合物である。例えば、ビスフェノールA型、ビスフェノールF型、臭素化ビスフェノールA型、水添ビスフェノールA型、ビスフェノールS型、ビスフェノールAD型、ビスフェノールAF型、ビフェニル型等のビスフェニル基を有するエポキシ化合物、ポリアルキレングリコール型、アルキレングリコール型等のエポキシ化合物、ナフタレン環を有するエポキシ化合物、フルオレン基を有するエポキシ化合物等の二官能型のグリシジルエーテル型エポキシ樹脂、フェノールノボラック型、オルソクレゾールノボラック型等のノボラック型エポキシ樹脂、多官能グリシジルエーテル、テトラフェニロールエタン型等の多官能型のグリシジルエーテル型エポキシ樹脂、ダイマー酸等の合成脂肪酸のグリシジルエステル型エポキシ樹脂、N,N,N′,N′-テトラグリシジルジアミノジフェニルメタン(TGDDM)、テトラグリシジル-m-キシリレンジアミン、トリグリシジル-p-アミノフェノール、N,N-ジグリシジルアニリン等のグリシジルアミノ基を有する芳香族エポキシ樹脂、トリスヒドロキシフェニルメタン型エポキシ樹脂、トリシクロデカン環を有するエポキシ化合物(例えば、ジシクロペンタジエンとm-クレゾールのようなクレゾール類またはフェノール類を重合させた後、エピクロルヒドリンを反応させる製造方法によって得られるエポキシ化合物)、トリスヒドロキシフェニルメタン型エポキシ樹脂、ソルビトール型エポキシ樹脂、ポリグリセロール型エポキシ樹脂、グリシジルエステル型エポキシ樹脂、複素環式エポキシ樹脂、ジアリールスルホン型エポキシ樹脂、ペンタエリスリトール型エポキシ樹脂、トリメチロールプロパン型エポキシ樹脂等がある。更に、エポキシ樹脂として、ウレタン変性エポキシ樹脂、ダイマー酸変性、ゴム変性等の変性エポキシ樹脂を用いることも可能である。ウレタン変性エポキシ樹脂としては、分子中にウレタン結合と2個以上のエポキシ基とを有する樹脂であれば、その構造が特に限定されるものではないが、ウレタン結合とエポキシ基とを効率的に1分子中に導入することができる点から、イソシアネート基を有するウレタン結合含有化合物とヒドロキシ基含有エポキシ化合物とを反応させて得られる樹脂であることが好ましい。ゴム変性エポキシ樹脂はエポキシ基を2個以上有し、骨格のゴムとしては、例えば、ポリブタジエン、アクリロニトリルブタジエンゴム(NBR)、ブタジエン-アクリロニトリルゴム(CTBN)等がある。こうしたエポキシ樹脂は、2種以上を組み合わせて使用することも可能である。 Epoxy resins are generally compounds that have two or more epoxy groups (oxirane rings) in one molecule and give a three-dimensional cured product when cured with a curing agent. For example, epoxy compounds having bisphenyl groups such as bisphenol A type, bisphenol F type, brominated bisphenol A type, hydrogenated bisphenol A type, bisphenol S type, bisphenol AD type, bisphenol AF type, and biphenyl type, epoxy compounds such as polyalkylene glycol type and alkylene glycol type, bifunctional glycidyl ether type epoxy resins such as epoxy compounds having a naphthalene ring and epoxy compounds having a fluorene group, novolac type epoxy resins such as phenol novolac type and orthocresol novolac type, multifunctional glycidyl ether and tetraphenylolethane type multifunctional glycidyl ether type epoxy resins, glycidyl ester type epoxy resins of synthetic fatty acids such as dimer acid, and N,N,N',N'-tetraglycidyldiaminodiphenylmethane ( TGDDM), aromatic epoxy resins having a glycidylamino group such as tetraglycidyl-m-xylylenediamine, triglycidyl-p-aminophenol, and N,N-diglycidylaniline, trishydroxyphenylmethane type epoxy resins, epoxy compounds having a tricyclodecane ring (for example, epoxy compounds obtained by a production method in which dicyclopentadiene and cresols such as m-cresol or phenols are polymerized and then reacted with epichlorohydrin), trishydroxyphenylmethane type epoxy resins, sorbitol type epoxy resins, polyglycerol type epoxy resins, glycidyl ester type epoxy resins, heterocyclic epoxy resins, diarylsulfone type epoxy resins, pentaerythritol type epoxy resins, and trimethylolpropane type epoxy resins. Furthermore, modified epoxy resins such as urethane-modified epoxy resins, dimer acid-modified epoxy resins, and rubber-modified epoxy resins can also be used as the epoxy resin. The structure of the urethane-modified epoxy resin is not particularly limited as long as it is a resin having a urethane bond and two or more epoxy groups in the molecule, but it is preferable that the resin is obtained by reacting a urethane bond-containing compound having an isocyanate group with a hydroxyl group-containing epoxy compound, since the urethane bond and the epoxy group can be efficiently introduced into one molecule. The rubber-modified epoxy resin has two or more epoxy groups, and examples of the rubber skeleton include polybutadiene, acrylonitrile butadiene rubber (NBR), butadiene-acrylonitrile rubber (CTBN), etc. Two or more of these epoxy resins can also be used in combination.
 このようなエポキシ樹脂は、その硬化反応が開環重合なので、他の熱硬化性樹脂に比べ硬化収縮が小さいものである。また、親水基と疎水基が分子内に存在することで、各種被着体との接着性も高いものである。 These epoxy resins undergo a ring-opening polymerization curing reaction, so they experience less shrinkage during curing compared to other thermosetting resins. In addition, the presence of hydrophilic and hydrophobic groups within the molecule provides high adhesion to a variety of substrates.
 これらの中でも、エポキシ樹脂と非相溶でガラス転移温度が25℃以下であり非共有結合性官能基を有するゴム状ポリマーとエポキシ樹脂と相溶するポリマーとからなる官能性ブロック共重合体、例えば、ポリスチレン-官能性ポリイソプレン-ポリスチレンブロック共重合体等の官能性スチレン系熱可塑性エラストマーとの高い相溶性の観点から汎用エポキシ樹脂であるビスフェノールA型、ビスフェノールF型が好ましい。殊に、ビスフェノールAとエピクロルヒドリンの反応で製造されるビスフェノールAジグリシジルエーテル(DGEBA)が一般的に使用される。ビスフェノールA型は、そのベンゼン環が接着性、耐熱性、耐薬品性等の好ましい特性を与えるものでもある。 Among these, functional block copolymers consisting of a rubber-like polymer that is incompatible with epoxy resins, has a glass transition temperature of 25°C or less, and has a non-covalent functional group, and a polymer that is compatible with epoxy resins, are preferred from the viewpoint of high compatibility with functional styrene-based thermoplastic elastomers such as polystyrene-functional polyisoprene-polystyrene block copolymers. In particular, bisphenol A diglycidyl ether (DGEBA), which is produced by the reaction of bisphenol A with epichlorohydrin, is commonly used. The benzene ring of bisphenol A also confers favorable properties such as adhesion, heat resistance, and chemical resistance.
 ビスフェノールA型エポキシ樹脂等は、分子量に応じて液状のものから固形のものまで使用できるが、ポリスチレン-官能性ポリイソプレン-ポリスチレンブロック共重合体等の官能性スチレン系熱可塑性エラストマーとの相溶性から、高分子量の常温で固体状のものまたは低分子量の常温で液状~半固形状のものが好ましく使用される。常温で固体状の汎用エポキシ樹脂は、通常、数平均分子量が900~3000程度であり、エポキシ当量が、400~2500g/eqの範囲内であるものが好ましく、より好ましくは、450~2200g/eqの範囲内のものである。常温で液状の汎用エポキシ樹脂は、通常、数平均分子量が300~500程度であり、エポキシ当量が、150~400g/eqの範囲内であるものが好ましく、より好ましくは、180~300g/eqの範囲内のものである。なお、エポキシ当量は1グラム当量のエポキシ基を含む樹脂のグラム数を意味する(単位:g/eq)。液状エポキシ樹脂であれば、5,000~30,000mPa・s/25℃の範囲内の粘度のものが好ましく、より好ましくは、10,000~20,000mPa・s/25℃の範囲内のものである。 Bisphenol A type epoxy resins and the like can be used in liquid or solid form depending on the molecular weight, but due to their compatibility with functional styrene-based thermoplastic elastomers such as polystyrene-functional polyisoprene-polystyrene block copolymers, it is preferable to use high molecular weight ones that are solid at room temperature or low molecular weight ones that are liquid to semi-solid at room temperature. General-purpose epoxy resins that are solid at room temperature usually have a number average molecular weight of about 900 to 3000, and an epoxy equivalent in the range of 400 to 2500 g/eq, preferably 450 to 2200 g/eq. General-purpose epoxy resins that are liquid at room temperature usually have a number average molecular weight of about 300 to 500, and an epoxy equivalent in the range of 150 to 400 g/eq, preferably 180 to 300 g/eq. The epoxy equivalent means the number of grams of resin containing 1 gram equivalent of epoxy groups (unit: g/eq). If it is a liquid epoxy resin, it is preferable that the viscosity is within the range of 5,000 to 30,000 mPa·s/25°C, and more preferably within the range of 10,000 to 20,000 mPa·s/25°C.
 硬化剤としては、通常、エポキシ樹脂の硬化に用いられるもの、即ち、エポキシ基と反応する活性基を有するものであればよく、例えば、ジシアンジアミド、ポリアミノアミド、4,4'-ジアミノジフェニルスルホン、2-n-ヘプタデシルイミダゾール等のイミダゾール系化合物、アジピン酸ジヒドラジド、ステアリン酸ジヒドラジド、イソフタル酸ジヒドラジド、二塩基酸ヒドラジド等の有機酸ヒドラジド系化合物、N,N-ジアルキル尿素誘導体やN,N-ジアルキルチオ尿素誘導体等の尿素系化合物、テトラヒドロ無水フタル酸等の酸無水物、セミカルバジド、シアノアセトアミド、ジアミノジフェニルメタン、脂肪族や芳香族の3級アミン、ポリアミン、イソホロンジアミン、m-フェニレンジアミン等のアミン系化合物、3-アミノ-1,2,4-トリアゾール等のアミノトリアゾール、N-アミノエチルピペラジン、メラミン類、アセトグアナミンやベンゾグアナミン等のグアナミン類、グアニジン類、ジメチルウレア類、三フッ化ホウ素錯化合物、三塩化ホウ素錯化合物、ルイス酸錯体、ポリメルカプタン、トリスジメチルアミノメチルフェノール等の液状フェノール、ポリチオール、トリフェニルホスフィン、ケチミン化合物、スルホニウム塩、オニウム塩、フェノールノボラック樹脂等がある。これらは、単独で用いてもよいし、2種以上を組み合わせて用いることもできる。 The curing agent may be any of those normally used for curing epoxy resins, i.e., any of those having an active group that reacts with an epoxy group, such as dicyandiamide, polyaminoamide, 4,4'-diaminodiphenyl sulfone, imidazole compounds such as 2-n-heptadecylimidazole, organic acid hydrazide compounds such as adipic acid dihydrazide, stearic acid dihydrazide, isophthalic acid dihydrazide, and dibasic acid hydrazide, urea compounds such as N,N-dialkyl urea derivatives and N,N-dialkyl thiourea derivatives, acid anhydrides such as tetrahydrophthalic anhydride, semicarbazide, cyanoacetamide, diaminodiphenyl sulfone, and the like. Examples of such amine compounds include phenylmethane, aliphatic and aromatic tertiary amines, polyamines, amine compounds such as isophoronediamine and m-phenylenediamine, aminotriazoles such as 3-amino-1,2,4-triazole, N-aminoethylpiperazine, melamines, guanamines such as acetoguanamine and benzoguanamine, guanidines, dimethylureas, boron trifluoride complex compounds, boron trichloride complex compounds, Lewis acid complexes, polymercaptan, liquid phenols such as trisdimethylaminomethylphenol, polythiols, triphenylphosphine, ketimine compounds, sulfonium salts, onium salts, and phenol novolac resins. These may be used alone or in combination of two or more.
 中でも、配合の作業性等の観点から、室温ではエポキシ樹脂と化学反応を生じないジシアンジアミド、イミダゾール化合物、有機酸ヒドラジド等の熱により活性化される分散型の潜在性硬化剤が好適である。より好ましくは、接着強度、エポキシ樹脂中に微粉末の状態で分散させる保存安定性等の観点から、熱溶解反応型であるジシアンジアミド(ポリエポキシド付加変性物、アミド化変性物、マンニッヒ化変性物、ミカエル付加変性物等の誘導体も含む)である。ジシアンジアミドであれば、熱によって硬化剤成分が溶解・活性化するものであり、160~180℃の温度条件でエポキシ樹脂を硬化できる。 Among them, from the viewpoint of workability in compounding, heat-activated dispersion-type latent hardeners such as dicyandiamide, imidazole compounds, and organic acid hydrazides, which do not undergo chemical reactions with epoxy resins at room temperature, are preferred. From the viewpoint of adhesive strength and storage stability when dispersed in the epoxy resin in a fine powder state, dicyandiamide (including derivatives such as polyepoxide addition modified products, amidation modified products, Mannich modified products, and Michael addition modified products), which is a thermal dissolution reaction type, is more preferred. With dicyandiamide, the hardener components dissolve and are activated by heat, and epoxy resins can be hardened at temperatures of 160 to 180°C.
 なお、硬化剤の配合量は、例えば、ジシアンジアミド等のアミン類であれば、そのアミン当量とエポキシ当量を基に設定される。ジシアンジアミド等の硬化剤は、例えば、エポキシ樹脂の100質量部に対し、1~20質量部、好ましくは、2~15質量部、より好ましくは、5~10質量部で配合される。 The amount of hardener to be added is set based on the amine equivalent and epoxy equivalent if the hardener is an amine such as dicyandiamide. For example, the hardener such as dicyandiamide is added in an amount of 1 to 20 parts by weight, preferably 2 to 15 parts by weight, and more preferably 5 to 10 parts by weight per 100 parts by weight of epoxy resin.
 更に、本発明を実施する場合には、硬化時間の短縮や硬化温度を降下させてエポキシ樹脂と硬化剤との化学反応を促進させる硬化促進剤を配合してもよい。硬化促進剤(硬化加速剤)としては、例えば、ウレア系(ジメチル尿素等)、イミダゾール系、アミン系、トリフェニルホスフィン等が使用できる。
 硬化促進剤を配合する場合には、エポキシ樹脂100質量部に対して、好ましくは、0.5~10質量部、より好ましくは、0.7~8質量部、更に好ましくは、1~5質量部の範囲内である。当該範囲内であれば、塗布性、粘度特性、接着性等を損なうことなく硬化促進効果が得られる。
Furthermore, when carrying out the present invention, a curing accelerator may be blended to accelerate the chemical reaction between the epoxy resin and the curing agent by shortening the curing time or lowering the curing temperature. Examples of the curing accelerator (curing accelerator) that can be used include urea-based (dimethylurea, etc.), imidazole-based, amine-based, triphenylphosphine, etc.
When a curing accelerator is added, the amount is preferably within a range of 0.5 to 10 parts by mass, more preferably 0.7 to 8 parts by mass, and even more preferably 1 to 5 parts by mass, relative to 100 parts by mass of the epoxy resin. Within this range, the curing acceleration effect can be obtained without impairing the coatability, viscosity characteristics, adhesiveness, etc.
 エポキシ樹脂と非相溶でガラス転移温度(Tg)が25℃以下であり非共有結合性官能基を有するゴム状ポリマーとエポキシ樹脂と相溶するポリマーとからなる官能性ブロック共重合体は、エポキシ樹脂に対し相溶性のないポリマーブロックとエポキシ樹脂に対し相溶性のあるポリマーブロックとの2成分ブロック共重合体であるジブロックコポリマーまたはトリブロックポリマーであり、好ましくは、両末端にエポキシ樹脂に相溶するポリマーブロックを有し、内部にエポキシ樹脂に非相溶のポリマーブロックを有するトリブロックポリマーである。 The functional block copolymer consisting of a rubber-like polymer that is incompatible with epoxy resins, has a glass transition temperature (T g ) of 25° C. or lower, and has a non-covalent functional group, and a polymer that is compatible with epoxy resins, is a diblock copolymer or triblock polymer that is a two-component block copolymer consisting of a polymer block that is incompatible with epoxy resins and a polymer block that is compatible with epoxy resins, and is preferably a triblock polymer having polymer blocks that are compatible with epoxy resins at both ends and a polymer block that is incompatible with epoxy resins inside.
 エポキシ樹脂と非相溶でガラス転移温度(Tg)が25℃以下であり非共有結合性官能基を有するゴム状ポリマー及びエポキシ樹脂と相溶するポリマーからなる官能性ブロック共重合体は、好ましくは、芳香族ビニル重合体と共役ジエン重合体とのブロック共重合体に非共有結合性官能基が導入された官能性ブロック共重合体であり、例えば、ポリスチレン-ポリイソプレン-ポリスチレンブロック共重合体(SIS)やポリスチレン-ポリブタジエン-ポリスチレンブロック共重合体(SBS)等のスチレン系熱可塑性エラストマーに変性処理等によって非共有結合性官能基を導入してなるポリスチレン-官能性ポリイソプレン-ポリスチレンブロック共重合体やポリスチレン-官能性ポリブタジエン-ポリスチレンブロック共重合体等の官能性スチレン系熱可塑性エラストマーや、ポリスチレン-ポリエチレン・プロピレン-ポリスチレンブロック共重合体(SEPS)やポリスチレン-ポリエチレン・ブチレン-ポリスチレンブロック共重合体(SEBS)等の水添スチレン系熱可塑性エラストマーに変性処理等によって非共有結合性官能基を導入してなるポリスチレン-官能性ポリエチレン・プロピレン-ポリスチレンブロック共重合体やポリスチレン-官能性ポリエチレン・ブチレン-ポリスチレンブロック共重合体等の官能性水添スチレン系熱可塑性エラストマー等が使用される。 The functional block copolymer consisting of a rubber-like polymer that is incompatible with epoxy resins, has a glass transition temperature (T g ) of 25° C. or less, and has a non-covalent functional group, and a polymer that is compatible with epoxy resins, is preferably a functional block copolymer in which a non-covalent functional group has been introduced into a block copolymer of an aromatic vinyl polymer and a conjugated diene polymer, and examples of such functional block copolymers include polystyrene-functional polyisoprene-polystyrene block copolymers and polystyrene-functional polyisoprene-polystyrene block copolymers obtained by introducing a non-covalent functional group into a styrene-based thermoplastic elastomer such as polystyrene-polyisoprene-polystyrene block copolymer (SIS) or polystyrene-polybutadiene-polystyrene block copolymer (SBS) by modification treatment or the like. Examples of the functional styrene-based thermoplastic elastomers that can be used include functional styrene-based thermoplastic elastomers such as styrene-functional polybutadiene-polystyrene block copolymers, and functional hydrogenated styrene-based thermoplastic elastomers such as polystyrene-functional polyethylene-propylene-polystyrene block copolymers and polystyrene-functional polyethylene-butylene-polystyrene block copolymers, which are obtained by introducing non-covalent functional groups into hydrogenated styrene-based thermoplastic elastomers such as polystyrene-polyethylene-propylene-polystyrene block copolymers (SEPS) and polystyrene-polyethylene-butylene-polystyrene block copolymers (SEBS) by modification treatment or the like.
 即ち、官能性ブロック共重合体としては、例えば、ポリスチレン-ポリイソプレン-ポリスチレンブロック共重合体(SIS)のポリイソプレン鎖に非共有結合性の官能基、好ましくは、水素結合性やイオン結合性の官能基を有するモノマーの重合部分を含ませたポリスチレン-官能性ポリイソプレン-ポリスチレンブロック共重合体や、ポリスチレン-ポリイソプレン-ポリスチレンブロック共重合体(SIS)の水素添加物であるポリスチレン-ポリエチレン・プロピレン-ポリスチレンブロック共重合体(SEPS)のポリエチレン・プロピレン鎖に非共有結合性の官能基、好ましくは、水素結合性やイオン結合性の官能基を有するモノマーの重合部分を含ませたポリスチレン-官能性ポリエチレン・プロピレン-ポリスチレンブロック共重合体や、ポリスチレン-ポリブタジエン-ポリスチレンブロック共重合体(SBS)のポリブタジエン鎖に、非共有結合性の官能基、好ましくは、水素結合性やイオン結合性の官能基を有するモノマーの重合部分を含ませたポリスチレン-官能性ポリブタジエン-ポリスチレンブロック共重合体や、ポリスチレン-ポリブタジエン-ポリスチレンブロック共重合体(SBS)の水素添加物であるポリスチレン-ポリエチレン・ブチレン-ポリスチレンブロック共重合体(SEBS)のポリエチレン・ブチレン鎖に非共有結合性の官能基、好ましくは、水素結合性やイオン結合性の官能基を有するモノマーの重合部分を含ませたポリスチレン-官能性ポリエチレン・ブチレン-ポリスチレンブロック共重合体や、ポリイソブチレンを含有するスチレン系熱可塑性エラストマーであるポリスチレン-ポリイソブチレン-ポリスチレンブロック共重合体(SIBS)のポリイソブチレン鎖に非共有結合性の官能基、好ましくは、水素結合性やイオン結合性の官能基を有するモノマーの重合部分を含ませたポリスチレン-官能性ポリイソブチレン-ポリスチレンブロック共重合体等が使用できる。これらは、両末端に25℃を超えるガラス転移温度(Tg)を有しエポキシ樹脂と相溶するブロックと、内部に25℃以下のガラス転移温度(Tg)を有しエポキシ樹脂と相溶しないゴム構造のブロックとを有するトリブロックポリマーである。 That is, examples of the functional block copolymer include polystyrene-functional polyisoprene-polystyrene block copolymers in which the polyisoprene chain of the polystyrene-polyisoprene-polystyrene block copolymer (SIS) contains a polymerized portion of a monomer having a non-covalently bonded functional group, preferably a hydrogen-bonding or ionic-bonding functional group; polystyrene-functional polyethylene-propylene-polystyrene block copolymers in which the polyethylene-propylene chain of the polystyrene-polyisoprene-polystyrene block copolymer (SEPS), which is a hydrogenated product of the polystyrene-polyisoprene-polystyrene block copolymer (SIS), contains a polymerized portion of a monomer having a non-covalently bonded functional group, preferably a hydrogen-bonding or ionic-bonding functional group; and polystyrene-polybutadiene-polystyrene block copolymers in which the polybutadiene chain of the polystyrene-polyisoprene-polystyrene block copolymer (SBS) contains a non-covalently bonded functional group, preferably a hydrogen-bonding or ionic-bonding functional group. Examples of the block copolymer that can be used include polystyrene-functionalized polybutadiene-polystyrene block copolymers containing a polymerized portion of a monomer having a functional group capable of bonding with another polymer, polystyrene-functionalized polyethylene-butylene-polystyrene block copolymers (SEBS) which are hydrogenated products of polystyrene-polybutadiene-polystyrene block copolymers (SBS) in which the polyethylene-butylene chains of the SEBS block copolymers contain a polymerized portion of a monomer having a non-covalently bonded functional group, preferably a hydrogen-bonding or ionic-bonding functional group, and polystyrene-functionalized polyisobutylene-polystyrene block copolymers (SIBS) which are styrene-based thermoplastic elastomers containing polyisobutylene in which the polyisobutylene chains of the SIBS block copolymers contain a polymerized portion of a monomer having a non-covalently bonded functional group, preferably a hydrogen-bonding or ionic-bonding functional group. These are triblock polymers having blocks at both ends that have a glass transition temperature (T g ) exceeding 25°C and are compatible with epoxy resins, and an internal block with a rubber structure that has a glass transition temperature (T g ) of 25°C or lower and is incompatible with epoxy resins.
 なお、上述したポリスチレン-ポリイソプレン-ポリスチレンブロック共重合体(SIS)は、熱可塑性エラストマー(TPE)のうちのスチレン系熱可塑性エラストマー(TPS)の一種で、互いに非相溶なスチレン(S)とイソプレン(I)からなるトリブロック共重合体であり、ガラス転移温度(Tg)が約100℃のポリスチレンからなるブロック(ハードセグメント)とガラス転移温度(Tg)が約-20~-80℃のイソプレンからなるブロック(ソフトセグメント)を基本構造単位に有する熱可塑性ブロック共重合体である。
 こうしたポリスチレン-ポリイソプレン-ポリスチレンブロック共重合体(SIS)に対し、そのポリイソプレン鎖に非共有結合性の官能基が導入された官能性ブロック共重合体であるポリスチレン-官能性ポリイソプレン-ポリスチレンブロック共重合体は、互いに非相溶な、ガラス転移温度(Tg)が約100℃のポリスチレンブロック(ハードセグメント)と、ポリイソプレン鎖に非共有結合性官能基を有するモノマーの重合部分を含みガラス転移温度(Tg)が25℃以下である官能性ポリイソプレンブロック(ソフトセグメント)とを基本構造単位に有する熱可塑性ブロック共重合体である。
The above-mentioned polystyrene-polyisoprene-polystyrene block copolymer (SIS) is a type of styrene-based thermoplastic elastomer (TPS) among thermoplastic elastomers (TPE), and is a triblock copolymer made of styrene (S) and isoprene (I), which are incompatible with each other, and is a thermoplastic block copolymer having, as basic structural units, a block (hard segment) made of polystyrene having a glass transition temperature (T g ) of about 100°C and a block (soft segment) made of isoprene having a glass transition temperature (T g ) of about -20 to -80°C.
In contrast to such polystyrene-polyisoprene-polystyrene block copolymers (SIS), polystyrene-functionalized polyisoprene-polystyrene block copolymers, which are functional block copolymers in which non-covalent functional groups have been introduced into the polyisoprene chains, are thermoplastic block copolymers having, as basic structural units, mutually incompatible polystyrene blocks (hard segments) having a glass transition temperature (T g ) of about 100° C. and functionalized polyisoprene blocks (soft segments) containing polymerized portions of monomers having non-covalent functional groups in the polyisoprene chains and having a glass transition temperature (T g ) of 25° C. or lower.
 また、上述したポリスチレン-ポリブタジエン-ポリスチレンブロック共重合体(SBS)も、熱可塑性エラストマー(TPE)のうちのスチレン系熱可塑性エラストマー(TPS)の一種で、互いに非相溶なスチレン(S)とブタジエン(B)からなるトリブロック共重合体であり、ガラス転移温度(Tg)が約100℃のポリスチレンからなるブロック(ハードセグメント)とガラス転移温度(Tg)が約-30~-80℃のブタジエンからなるブロック(ソフトセグメント)を基本構造単位に有する熱可塑性ブロック共重合体である。
 こうしたポリスチレン-ポリブタジエン-ポリスチレンブロック共重合体(SBS)に対し、そのポリブタジエン鎖に非共有結合性の官能基が導入された官能性ブロック共重合体であるポリスチレン-官能性ポリブタジエン-ポリスチレンブロック共重合体は、互いに非相溶な、ガラス転移温度(Tg)が約100℃のポリスチレンブロック(ハードセグメント)と、ポリブタジエン鎖に非共有結合性官能基を有するモノマーの重合部分を含みガラス転移温度(Tg)が25℃以下である官能性ポリブタジエンブロック(ソフトセグメント)とを基本構造単位に有する熱可塑性ブロック共重合体である。
The above-mentioned polystyrene-polybutadiene-polystyrene block copolymer (SBS) is also a type of styrene-based thermoplastic elastomer (TPS) among thermoplastic elastomers (TPE), and is a triblock copolymer made of styrene (S) and butadiene (B), which are incompatible with each other, and is a thermoplastic block copolymer having, as basic structural units, a block (hard segment) made of polystyrene having a glass transition temperature (T g ) of about 100°C and a block (soft segment) made of butadiene having a glass transition temperature (T g ) of about -30 to -80°C.
In contrast to such polystyrene-polybutadiene-polystyrene block copolymers (SBS), polystyrene-functional polybutadiene-polystyrene block copolymers, which are functional block copolymers in which non-covalent functional groups have been introduced into the polybutadiene chains, are thermoplastic block copolymers having, as basic structural units, mutually incompatible polystyrene blocks (hard segments) having a glass transition temperature (T g ) of about 100° C. and functional polybutadiene blocks (soft segments) containing polymerized portions of monomers having non-covalent functional groups in the polybutadiene chains and having a glass transition temperature (T g ) of 25° C. or lower.
 更に、上述した不飽和TPSであるポリスチレン-ポリイソプレン-ポリスチレンブロック共重合体(SIS)のソフトセグメント(ポリイソプレン部)を水素添加することにより得られる飽和TPS(水添TPS)のポリスチレン-ポリエチレン・プロピレン-ポリスチレンブロック共重合体(SEPS)や、不飽和TPSであるポリスチレン-ポリブタジエン-ポリスチレンブロック共重合体(SBS)のソフトセグメント(ポリブタジエン部)を水素添加することにより得られる飽和TPS(水添TPS)のポリスチレン-ポリエチレン・ブチレン-ポリスチレンブロック共重合体(SEBS)についても同様である。 Furthermore, the same is true for the saturated TPS (hydrogenated TPS) polystyrene-polyethylene propylene-polystyrene block copolymer (SEPS) obtained by hydrogenating the soft segment (polyisoprene portion) of the above-mentioned unsaturated TPS polystyrene-polyisoprene-polystyrene block copolymer (SIS), and the saturated TPS (hydrogenated TPS) polystyrene-polyethylene butylene-polystyrene block copolymer (SEBS) obtained by hydrogenating the soft segment (polybutadiene portion) of the unsaturated TPS polystyrene-polybutadiene-polystyrene block copolymer (SBS).
 即ち、ポリスチレン-ポリエチレン・プロピレン-ポリスチレンブロック共重合体(SEPS)に対し、そのポリエチレン・プロピレン鎖に非共有結合性の官能基が導入された官能性ブロック共重合体であるポリスチレン-官能性ポリエチレン・プロピレン-ポリスチレンブロック共重合体についても、互いに非相溶な、ガラス転移温度(Tg)が約100℃のポリスチレンブロック(ハードセグメント)と、ポリエチレン・プロピレン鎖に非共有結合性官能基を有するモノマーの重合部分を含みガラス転移温度(Tg)が25℃以下である官能性ポリエチレン・プロピレンブロック(ソフトセグメント)とを基本構造単位に有する熱可塑性ブロック共重合体である。
 また、ポリスチレン-ポリエチレン・ブチレン-ポリスチレンブロック共重合体(SEBS)に対し、そのポリエチレン・ブチレン鎖に非共有結合性の官能基が導入されたポリスチレン-官能性ポリエチレン・ブチレン-ポリスチレンブロック共重合体である官能性ブロック共重合体についても、互いに非相溶な、ガラス転移温度(Tg)が約100℃のポリスチレンブロック(ハードセグメント)と、ポリエチレン・ブチレン鎖に非共有結合性官能基を有するモノマーの重合部分を含み官能性ポリエチレン・ブチレンからなるガラス転移温度(Tg)が25℃以下である官能性ポリエチレン・ブチレンブロック(ソフトセグメント)とを基本構造単位に有する熱可塑性ブロック共重合体である。
That is, with respect to polystyrene-polyethylene propylene-polystyrene block copolymer (SEPS), which is a functional block copolymer in which non-covalent functional groups have been introduced into the polyethylene propylene chains, the polystyrene-functional polyethylene propylene-polystyrene block copolymer is a thermoplastic block copolymer having, as basic structural units, a polystyrene block (hard segment) having a glass transition temperature (T g ) of about 100°C and a functional polyethylene propylene block (soft segment) which contains a polymerized portion of a monomer having a non-covalent functional group in the polyethylene propylene chain and has a glass transition temperature (T g ) of 25°C or lower, which are mutually incompatible.
Furthermore, with regard to a polystyrene-functionalized polyethylene butylene-polystyrene block copolymer (SEBS) in which a non-covalent functional group has been introduced into the polyethylene butylene chain, the functional block copolymer is a thermoplastic block copolymer having, as basic structural units, a polystyrene block (hard segment) having a glass transition temperature (T g ) of about 100°C, which are incompatible with each other, and a functionalized polyethylene butylene block (soft segment) having a glass transition temperature (T g ) of 25°C or lower, which contains a polymerized portion of a monomer having a non-covalent functional group in the polyethylene butylene chain and is made of functionalized polyethylene butylene.
 加えて、上述したポリスチレン-ポリイソブチレン-ポリスチレンブロック共重合体(SIBS)は、熱可塑性エラストマー(TPE)のうちのイソブチレン系熱可塑性エラストマーの一種で、スチレン(S)とイソブチレン(IB)からなるトリブロック共重合体であり、ガラス転移温度(Tg)が約100℃のポリスチレンからなるブロック(ハードセグメント)と、ガラス転移温度(Tg)が約-80℃のポリイソブチレンからなるブロック(ソフトセグメント)を基本構造単位に有する熱可塑性ブロック共重合体である。
 こうしたポリスチレン-ポリイソブチレン-ポリスチレンブロック共重合体(SIBS)に対し、そのポリイソブチレン鎖に非共有結合性の官能基が導入された官能性ブロック共重合体であるポリスチレン-官能性ポリイソブチレン-ポリスチレンブロック共重合体についても、互いに非相溶な、ガラス転移温度(Tg)が約100℃のポリスチレンからなるスチレンブロックからなるポリマー(ハードセグメント)と、ポリイソブチレン鎖に非共有結合性官能基を有するモノマーの重合部分を含みガラス転移温度(Tg)が25℃以下である官能性ポリイソブチレンからなるポリマー(ソフトセグメント)とを基本構造単位に有する熱可塑性ブロック共重合体である。
In addition, the above-mentioned polystyrene-polyisobutylene-polystyrene block copolymer (SIBS) is a type of isobutylene-based thermoplastic elastomer among thermoplastic elastomers (TPE), and is a triblock copolymer consisting of styrene (S) and isobutylene (IB), and is a thermoplastic block copolymer having, as basic structural units, a block (hard segment) consisting of polystyrene having a glass transition temperature (T g ) of about 100°C, and a block (soft segment) consisting of polyisobutylene having a glass transition temperature (T g ) of about -80°C.
In contrast to such polystyrene-polyisobutylene-polystyrene block copolymers (SIBS), polystyrene-functional polyisobutylene-polystyrene block copolymers, which are functional block copolymers in which non-covalent functional groups have been introduced into the polyisobutylene chains, are thermoplastic block copolymers having, as basic structural units, a polymer (hard segment) made of a styrene block made of polystyrene having a glass transition temperature (T g ) of about 100°C, which are incompatible with each other, and a polymer (soft segment) made of functional polyisobutylene containing a polymerized portion of a monomer having a non-covalent functional group in the polyisobutylene chain and having a glass transition temperature (T g ) of 25°C or lower.
 こうした本実施の形態のエポキシ樹脂と非相溶でガラス転移温度(Tg)が25℃以下であり非共有結合性官能基を有するゴム状ポリマー及びエポキシ樹脂と相溶するポリマーからなる官能性ブロック共重合体である官能性(水添)スチレン系熱可塑性エラストマーは、例えば、変性剤による変性方法や、アルケンの官能基変換反応により、(水添)スチレン系熱可塑性エラストマーのポリイソプレン鎖、ポリブタジエン鎖、ポリエチレン・プロピレン鎖、ポリエチレン・ブチレン鎖、ポリイソブチレン鎖等のゴム状ポリマーに非共有結合性の官能基を導入することにより得られるものである。 The functional (hydrogenated) styrene-based thermoplastic elastomer of the present embodiment, which is a functional block copolymer consisting of a rubber-like polymer that is incompatible with the epoxy resin, has a glass transition temperature (T g ) of 25° C. or lower, and has a non-covalent functional group, and a polymer that is compatible with the epoxy resin, can be obtained by, for example, introducing a non-covalent functional group into a rubber-like polymer such as a polyisoprene chain, polybutadiene chain, polyethylene-propylene chain, polyethylene-butylene chain, or polyisobutylene chain of a (hydrogenated) styrene-based thermoplastic elastomer by a modification method using a modifier or a functional group conversion reaction of an alkene.
 ゴム状ポリマーに含まれる非共有結合性の官能基は、好ましくは、エポキシ基やグリシジル基などのオキシラン環骨格を有する官能基さらにはそれが開環して得られる水酸基を除く、水素結合性官能基やイオン結合性官能基であり、水素結合性官能基は、好ましくは、アミド基、イミド基、カルボキシル基、フェノール基、ピリジル基、イミダゾリル基、ピラゾリル基、またはウレタン基であり、イオン結合性官能基は、好ましくは、カルボキシレート基、ホスホネート基、スルホネート基、アンモニウム基、ピリジニウム基、イミダゾリウム基、またはピラゾリウム基である。
 なお、ゴム状ポリマーのモノマーに含まれる非共有結合性官能基は上記の何れか1種であってもよいし、上記の2種以上の官能基が導入されていてもよい。
The non-covalently bonding functional group contained in the rubbery polymer is preferably a hydrogen-bonding functional group or an ionic-bonding functional group, excluding a functional group having an oxirane ring skeleton, such as an epoxy group or a glycidyl group, or a hydroxyl group obtained by ring-opening thereof. The hydrogen-bonding functional group is preferably an amide group, an imide group, a carboxyl group, a phenol group, a pyridyl group, an imidazolyl group, a pyrazolyl group, or a urethane group, and the ionic-bonding functional group is preferably a carboxylate group, a phosphonate group, a sulfonate group, an ammonium group, a pyridinium group, an imidazolium group, or a pyrazolium group.
The non-covalent functional group contained in the monomer of the rubber polymer may be any one of the above-mentioned types, or two or more of the above-mentioned types of functional groups may be introduced.
 ここで、(水添)スチレン系熱可塑性エラストマーに対し非共有結合性の官能基を導入して、エポキシ樹脂と非相溶でガラス転移温度(Tg)が25℃以下であり非共有結合性官能基を有するゴム状ポリマー及びエポキシ樹脂と相溶するポリマーからなる官能性ブロック共重合体である官能性スチレン系熱可塑性エラストマーを作製する方法について、(水添)スチレン系熱可塑性エラストマーに対し変性剤による変性処理等で非共有結合性の官能基を導入する例で説明する。 Here, a method for producing a functional styrenic thermoplastic elastomer, which is a functional block copolymer consisting of a rubber-like polymer that is incompatible with epoxy resins, has a glass transition temperature (T g ) of 25° C. or less, and has a non-covalent functional group, and a polymer that is compatible with epoxy resins, by introducing a non-covalent functional group into a (hydrogenated) styrenic thermoplastic elastomer, will be described using an example in which a non-covalent functional group is introduced into a (hydrogenated) styrenic thermoplastic elastomer by modification treatment with a modifying agent, etc.
 例えば、不飽和カルボン酸、不飽和ジカルボン酸無水物等の変性剤による変性方法で(水添)スチレン系熱可塑性エラストマーのゴム状ポリマーに対し非共有結合性の官能基を導入することができる。
 変性剤として不飽和カルボン酸(例えば、アクリル酸、メタクリル酸、クロトン酸、マレイン酸、フマル酸、イタコン酸、シトラコン酸等の炭素数8以下のエチレン性不飽和カルボン酸や、3,6-エンドメチレン-1,2,3,6-テトラヒドロフタル酸等の共役ジエンと炭素数8以下のα,β-不飽和ジカルボン酸とのディールス・アルダー付加物等)を使用することで、非共有結合性の官能基として、不飽和カルボン酸に由来するカルボキシル基(水素結合性官能基)を導入できる。
 当該カルボキシル基を更に塩基処理して、カルボキシル基の一部または全部を塩基と反応させた場合には、更に別の非共有結合性官能基(例えば、水素結合性官能基であるアミド基や、カルボン酸の金属塩、即ち、イオン結合性官能基であるカルボキシレート基)が導入される。
For example, a non-covalent functional group can be introduced into the rubber-like polymer of a (hydrogenated) styrene-based thermoplastic elastomer by a modification method using a modifying agent such as an unsaturated carboxylic acid or an unsaturated dicarboxylic acid anhydride.
By using an unsaturated carboxylic acid as a modifying agent (for example, an ethylenically unsaturated carboxylic acid having 8 or less carbon atoms, such as acrylic acid, methacrylic acid, crotonic acid, maleic acid, fumaric acid, itaconic acid, or citraconic acid, or a Diels-Alder adduct of a conjugated diene, such as 3,6-endomethylene-1,2,3,6-tetrahydrophthalic acid, with an α,β-unsaturated dicarboxylic acid having 8 or less carbon atoms, a carboxyl group (hydrogen-bonding functional group) derived from the unsaturated carboxylic acid can be introduced as a non-covalently bonding functional group.
When the carboxyl group is further treated with a base to react a part or all of the carboxyl group with a base, a further non-covalent functional group (e.g., an amide group which is a hydrogen-bonding functional group, or a metal salt of a carboxylic acid, i.e., a carboxylate group which is an ionic-bonding functional group) is introduced.
 変性剤として不飽和ジカルボン酸無水物(例えば、無水マレイン酸、無水イタコン酸、無水シトラコン酸等の炭素数8以下のα,β-不飽和ジカルボン酸無水物や、3,6-エンドメチレン-1,2,3,6-テトラヒドロ無水フタル酸等の共役ジエンと炭素数8以下のα,β-不飽和ジカルボン酸無水物とのディールス・アルダー付加物等)を使用した場合には、不飽和ジカルボン酸無水物に由来する酸無水物基が導入されるから、更に、これを塩基処理して酸無水物基の一部または全部を塩基と反応させることで非共有結合性の官能基(例えば、水素結合性官能基であるアミド基や、カルボン酸の金属塩、即ち、イオン結合性官能基であるカルボキシレート基)を導入できる。または、酸無水物基を塩基により加水分解した場合には、別の非共有結合性の官能基(例えば、水素結合性官能基であるカルボキシル基)を導入できる。
 加えて、変性剤としての不飽和ジカルボン酸無水物による変性処理により不飽和ジカルボン酸無水物に由来する酸無水物基を導入し、更に、塩基処理によって酸無水物基を塩基と反応させてアミド基及びカルボキシル基としてから、更なる塩基処理によって、カルボキシル基を塩基と反応させることによりカルボキシル基をカルボン酸の塩、即ち、イオン結合性官能基であるカルボキシレート基にしてもよい。または、変性剤としての不飽和ジカルボン酸無水物による変性処理により導入された酸無水物基を塩基によって加水分解することによりカルボキシル基とし、更なる塩基処理によってカルボキシル基を塩基と反応させることにより、カルボン酸の塩、即ち、イオン結合性官能基であるカルボキシレート基としてもよい。
When an unsaturated dicarboxylic anhydride (e.g., an α,β-unsaturated dicarboxylic anhydride having 8 or less carbon atoms, such as maleic anhydride, itaconic anhydride, or citraconic anhydride, or a Diels-Alder adduct of a conjugated diene, such as 3,6-endomethylene-1,2,3,6-tetrahydrophthalic anhydride, with an α,β-unsaturated dicarboxylic anhydride having 8 or less carbon atoms) is used as a modifying agent, an acid anhydride group derived from the unsaturated dicarboxylic anhydride is introduced, and this is further treated with a base to react a part or all of the acid anhydride group with a base, thereby introducing a non-covalent functional group (e.g., an amide group, which is a hydrogen-bonding functional group, or a metal salt of a carboxylic acid, i.e., a carboxylate group, which is an ionic-bonding functional group). Alternatively, when the acid anhydride group is hydrolyzed with a base, another non-covalent functional group (e.g., a carboxyl group, which is a hydrogen-bonding functional group) can be introduced.
In addition, an acid anhydride group derived from an unsaturated dicarboxylic anhydride may be introduced by a modification treatment using an unsaturated dicarboxylic anhydride as a modifier, and the acid anhydride group may be reacted with a base by a base treatment to form an amide group and a carboxyl group, and then the carboxyl group may be reacted with a base by a further base treatment to form the carboxyl group into a salt of a carboxylic acid, i.e., a carboxylate group which is an ionic functional group. Alternatively, the acid anhydride group introduced by the modification treatment using an unsaturated dicarboxylic anhydride as a modifier may be hydrolyzed with a base to form a carboxyl group, and then the carboxyl group may be reacted with a base by a further base treatment to form a salt of a carboxylic acid, i.e., a carboxylate group which is an ionic functional group.
 即ち、ブロック共重合体の変性剤による変性後、塩基を混合して中和することで、変性により導入されたアレニウス酸に由来する酸性基(例えば、カルボキシル基等)とアレニウス塩基(例えば、金属含有化合物、アンモニウム、アミン化合物、ピリジン、イミダゾール等)との反応で生じるイオン結合性官能基(カルボン酸の塩等)を導入することができる。または、変性により導入されたブレンステッド酸に由来する酸性基とブレンステッド塩基との反応で生じるイオン結合性官能基(カルボン酸の塩等)を導入することができる。 In other words, after modifying the block copolymer with a modifying agent, a base is mixed in and neutralized to introduce an ion-bonding functional group (such as a salt of a carboxylic acid) generated by the reaction between an acidic group (e.g., a carboxyl group, etc.) derived from the Arrhenius acid introduced by modification and an Arrhenius base (e.g., a metal-containing compound, ammonium, an amine compound, pyridine, imidazole, etc.). Alternatively, an ion-bonding functional group (such as a salt of a carboxylic acid) generated by the reaction between an acidic group derived from the Bronsted acid introduced by modification and a Bronsted base can be introduced.
 なお、このような変性剤を用いた変性処理により非共有結合性の官能基を導入する場合には、その非共有結合性の官能基には、変性剤の残基(例えば、不飽和カルボン酸の残基、不飽和ジカルボン酸無水物の残基)が含まれることになる。変性剤としては、不飽和カルボン酸や不飽和ジカルボン酸無水物が好ましく、より好ましくは、不飽和ジカルボン酸無水物であり、更に好ましくは、炭素数8以下のα,β-不飽和脂肪族ジカルボン酸無水物であり、無水マレイン酸が特に好ましい。 When a non-covalent functional group is introduced by a modification treatment using such a modifying agent, the non-covalent functional group will contain a residue of the modifying agent (e.g., a residue of an unsaturated carboxylic acid or a residue of an unsaturated dicarboxylic acid anhydride). As the modifying agent, an unsaturated carboxylic acid or an unsaturated dicarboxylic acid anhydride is preferable, an unsaturated dicarboxylic acid anhydride is more preferable, an α,β-unsaturated aliphatic dicarboxylic acid anhydride having 8 or less carbon atoms is even more preferable, and maleic anhydride is particularly preferable.
 また、変性剤の変性処理により導入されたカルボン酸基や酸無水物基と反応させる、または、酸無水物基を加水分解させる塩基処理に使用される塩基としては、例えば、アルカリ金属含有化合物(例えば、ナトリウム、リチウム、カリウム等のアルカリ金属の酸化物、水酸化物、炭酸塩、炭酸水素塩、酢酸塩、硫酸塩、リン酸塩等)や、アルカリ土類金属含有化合物(例えば、マグネシウム、カルシウム等のアルカリ土類金属の酸化物、水酸化物、炭酸塩、炭酸水素塩、酢酸塩、硫酸塩、リン酸塩等)、アミン化合物(例えば、脂肪族アミン、芳香族アミン、脂環式アミン、複素環式アミン等)、アンモニア等が使用できる。例えば、塩基としてアミン化合物やアンモニアをカルボキシル基や酸無水物基と反応させることにより、非共有結合性官能基として水素結合性官能基であるアミド基が生成(導入)される。好ましくは、変性処理により酸無水物基を形成し、更に塩基のアミン化合物との反応により非共有結合性官能基として水素結合性官能基であるアミド基とカルボキシル基の2種が導入された官能性ブロック共重合体である。 In addition, as the base used in the base treatment to react with the carboxylic acid group or acid anhydride group introduced by the modification treatment of the modifier or to hydrolyze the acid anhydride group, for example, an alkali metal-containing compound (e.g., oxides, hydroxides, carbonates, hydrogen carbonates, acetates, sulfates, phosphates, etc. of alkali metals such as sodium, lithium, and potassium), an alkaline earth metal-containing compound (e.g., oxides, hydroxides, carbonates, hydrogen carbonates, acetates, sulfates, phosphates, etc. of alkaline earth metals such as magnesium and calcium), an amine compound (e.g., aliphatic amines, aromatic amines, alicyclic amines, heterocyclic amines, etc.), ammonia, etc. can be used. For example, by reacting an amine compound or ammonia as a base with a carboxyl group or an acid anhydride group, an amide group, which is a hydrogen-bonding functional group, is generated (introduced) as a non-covalent functional group. Preferably, the functional block copolymer is one in which an acid anhydride group is formed by the modification treatment, and two types of hydrogen-bonding functional groups, an amide group and a carboxyl group, are introduced as non-covalent functional groups by the reaction with the amine compound of the base.
 こうしたブロック共重合体の変性処理により、ゴム状ポリマーに非共有結合性官能基として、例えば、変性剤の不飽和カルボン酸等による変性によって生成されるカルボキシル基(水素結合性官能基)や、それをアルカリ金属含有化合物、アルカリ土類金属含有化合物、アンモニア、アミン化合物等塩基と反応させて生成される官能基(例えば、水素結合性官能基であるアミド基や、カルボキシル酸の金属塩、即ち、イオン結合性官能基であるカルボキシレート基)や、変性剤の不飽和ジカルボン酸無水物等による変性によって生成される酸無水物基(不飽和ジカルボン酸無水物に由来する基)をアルカリ金属含有化合物、アルカリ土類金属含有化合物、アンモニア、アミン化合物等の塩基と反応または塩基で加水分解させて生成される官能基(例えば、水素結合性官能基であるアミド基やカルボキシル基や、イオン結合性官能基であるカルボキシレート基等)や、それを更なる塩基と反応または塩基で加水分解させて生成される官能基(例えば、イオン結合性官能基であるカルボキシレート基)等を含ませることができる。 By modifying the block copolymer in this way, the rubber-like polymer can contain non-covalent functional groups, such as carboxyl groups (hydrogen-bonding functional groups) generated by modification with an unsaturated carboxylic acid or the like modifying agent, functional groups generated by reacting the carboxyl groups with a base such as an alkali metal-containing compound, an alkaline earth metal-containing compound, ammonia, or an amine compound (e.g., amide groups, which are hydrogen-bonding functional groups, or metal salts of carboxyl acids, i.e., carboxylate groups, which are ionic-bonding functional groups), functional groups generated by reacting an acid anhydride group (a group derived from an unsaturated dicarboxylic acid anhydride) generated by modification with an unsaturated dicarboxylic acid anhydride or the like modifying agent with a base such as an alkali metal-containing compound, an alkaline earth metal-containing compound, ammonia, or an amine compound or hydrolyzing the acid anhydride group with a base (e.g., amide groups and carboxyl groups, which are hydrogen-bonding functional groups, or carboxylate groups, which are ionic-bonding functional groups), and functional groups generated by reacting the acid anhydride group with a further base or hydrolyzing the acid anhydride group with a base (e.g., carboxylate groups, which are ionic-bonding functional groups).
 なお、ゴム状ポリマーは、非共有結合性の官能基を1種または2種以上有するモノマーを1種含むものであってもよいし、非共有結合性の官能基を1種または2種以上有するモノマーを2種以上含むものであってもよい。
 更に、非供給結合性の官能基は、ゴム状ポリマーの主鎖に直接結合しているものに限られず、連結基を介して結合していてもよい。
The rubbery polymer may contain one monomer having one or more types of non-covalent functional groups, or may contain two or more monomers having one or more types of non-covalent functional groups.
Furthermore, the non-covalent functional group is not limited to being directly bonded to the main chain of the rubber polymer, but may be bonded via a linking group.
 ここで、官能性ブロック共重合体におけるゴム状ポリマーの非共有結合性官能基の導入率は、非共有結合性官能基を有したゴム状ポリマーを構成するモノマーユニット100mol%に対して、好ましくは、1mol%以上、30mol%以下、より好ましくは、2.5mol%以上、25mol%以下、更に好ましくは、5mol%以上、20mol%以下の範囲内であるものである。
 当該範囲内であれば、分子間または分子内での非共有結合性官能基同士による非共有結合が再配列可能な程度で、非共有結合性架橋点への応力の集中を招かない程度であることにより、強靭性の向上を安定的に確保できる。
Here, the introduction rate of the non-covalent functional group of the rubber-like polymer in the functional block copolymer is preferably within a range of 1 mol % or more and 30 mol % or less, more preferably 2.5 mol % or more and 25 mol % or less, and even more preferably 5 mol % or more and 20 mol % or less, relative to 100 mol % of the monomer units constituting the rubber-like polymer having the non-covalent functional group.
Within this range, the non-covalent bonds between the non-covalent functional groups within or between molecules can be rearranged, and the concentration of stress at the non-covalent crosslinking points is not caused, so that improvement in toughness can be stably ensured.
 また、官能性ブロック共重合体は、その重量平均分子量(Mw)が、好ましくは、30,000~500,000の範囲内のものであり、より好ましくは、60,000~480,000、更に好ましくは、90,000~450,000の範囲内ものである。
 更に、官能性ブロック共重合体中のゴム状ポリマーの重量平均分子量(Mw)が、好ましくは、10,000~500,000の範囲内であり、より好ましくは、40,000~400,000の範囲内であり、官能性ブロック共重合体中のエポキシ樹脂と相溶するポリマーの重量平均分子量(Mw)が、好ましくは、3,000~50,000の範囲内であり、より好ましくは、6,000~20,000の範囲内である。
The functional block copolymer preferably has a weight average molecular weight (Mw) in the range of 30,000 to 500,000, more preferably 60,000 to 480,000, and even more preferably 90,000 to 450,000.
Furthermore, the weight average molecular weight (Mw) of the rubbery polymer in the functional block copolymer is preferably in the range of 10,000 to 500,000, more preferably in the range of 40,000 to 400,000, and the weight average molecular weight (Mw) of the polymer compatible with the epoxy resin in the functional block copolymer is preferably in the range of 3,000 to 50,000, more preferably in the range of 6,000 to 20,000.
 なお、上述した非共有結合性の官能基を導入するポリスチレン-ポリイソプレン-ポリスチレンブロック共重合体(SIS)の製造方法としては、一般的には、まず、精製したシクロヘキサン等の溶媒(例えば、ヘキサン、シクロヘキサン等)を重合器に張り込み、次いで、精製したスチレンを添加し、重合開始剤としてブチルリチウム等のリチウム触媒を入れて窒素下で、ポリスチレンブロックを重合してポリスチレンリチウムを生成する。次に、イソプレンを添加してポリスチレン-ポリイソプレンリチウムを生成し、更に、スチレンを添加して、ポリスチレン-ポリイソプレン-ポリスチレンリチウムを生成し、重合完了後に、水、酸、アルコール等で活性末端(リチウム)を失活させる。これより、ポリスチレン-ポリイソプレン-ポリスチレンブロック共重合体(SIS)が製造される。殊に、こうしたリビングアニオン重合による製造方法では、スチレンやイソプレンの含有量、分子量、分子量分布や、スチレンとイソプレンの連鎖、分岐構造、イソプレン部の異性体組成等のモノマー配列の制御が可能でポリマー構造設計の自由度が高いものである。ポリスチレン-ポリイソプレン-ポリスチレンブロック共重合体(SIS)としては、溶液重合(バッチ)式等の公知の方法で製造されたものも使用でき、例えば、日本ゼオン社のQuintack(登録商標)、TSRC社のVECTOR(登録商標)、クラレ社のハイプラー、クレイトンポリマージャパン社のクレイトンD等の市販のものを使用することもできる。なお、ポリスチレン-ポリイソプレン-ポリスチレンブロック共重合体は、通常、両末端の二つのスチレンブロックの分子量は同じとする対称のものを用いるが、両末端の二つのスチレンブロックの分子量が相違する非対称のものであってもよい。 The method for producing polystyrene-polyisoprene-polystyrene block copolymer (SIS) into which the above-mentioned non-covalent functional groups are introduced generally involves first filling a polymerization vessel with a solvent such as purified cyclohexane (e.g., hexane, cyclohexane, etc.), then adding purified styrene, and adding a lithium catalyst such as butyllithium as a polymerization initiator, and polymerizing the polystyrene block under nitrogen to produce polystyrene lithium. Next, isoprene is added to produce polystyrene-polyisoprene lithium, and then styrene is added to produce polystyrene-polyisoprene-polystyrene lithium. After polymerization is complete, the active end (lithium) is deactivated with water, acid, alcohol, etc. In this way, polystyrene-polyisoprene-polystyrene block copolymer (SIS) is produced. In particular, such a production method using living anionic polymerization allows control of the content, molecular weight, and molecular weight distribution of styrene and isoprene, as well as the monomer arrangement such as the chain of styrene and isoprene, the branched structure, and the isomer composition of the isoprene portion, and thus allows for a high degree of freedom in polymer structure design. Polystyrene-polyisoprene-polystyrene block copolymers (SIS) produced by known methods such as solution polymerization (batch) can also be used, and commercially available products such as Quintack (registered trademark) from Zeon Corporation, VECTOR (registered trademark) from TSRC Corporation, Hypler from Kuraray Corporation, and Kraton D from Kraton Polymer Japan can also be used. Note that polystyrene-polyisoprene-polystyrene block copolymers are usually symmetrical in that the molecular weights of the two styrene blocks at both ends are the same, but they may also be asymmetrical in that the molecular weights of the two styrene blocks at both ends are different.
 また、ポリスチレン-ポリブタジエン-ポリスチレンブロック共重合体(SBS)についても、ポリスチレン-ポリイソプレン-ポリスチレンブロック共重合体(SIS)と同様、上記製法において、イソプレンの代わりにブタジエンを使用することで製造されたものが使用でき、例えば、旭化成ケミカルズ社のタフプレン(登録商標)、アサプレン(登録商標)や、ダイセル化学工業社のエポフレンド等の市販のものを使用することもできる。
 ポリスチレン-ポリエチレン・プロピレン-ポリスチレンブロック共重合体(SEPS)としても、例えば、クラレ社のセプトン、TSRC社のTAIPOL(登録商標)等の市販のものが使用でき、ポリスチレン-ポリエチレン・ブチレン-ポリスチレンブロック共重合体(SEBS)としても、例えば、旭化成ケミカルズ社のタフテック、三菱化学社のラバロン、リケンテクノス社のアクティマー、アロン化成社のエラストマーAR、クレイトンポリマージャパン社のクレイトンG等の市販のものが使用できる。
 ポリスチレン-ポリイソブチレン-ポリスチレンブロック共重合体(SIBS)としては、例えば、リビングカチオン重合することにより製造されたものが使用でき、例えば、カネカ社のSIBSTAR(登録商標)等の市販のものが使用できる。
As for the polystyrene-polybutadiene-polystyrene block copolymer (SBS), similarly to the polystyrene-polyisoprene-polystyrene block copolymer (SIS), a polystyrene-polybutadiene-polystyrene block copolymer produced by the above-mentioned production method using butadiene instead of isoprene can be used. For example, commercially available polystyrene-polybutadiene-polystyrene block copolymers such as Tufprene (registered trademark) and Asaprene (registered trademark) manufactured by Asahi Kasei Chemicals Corporation and Epofriend manufactured by Daicel Chemical Industries, Ltd. can also be used.
As the polystyrene-polyethylene propylene-polystyrene block copolymer (SEPS), for example, commercially available products such as SEPTON from Kuraray Co., Ltd. and TAIPOL (registered trademark) from TSRC Corporation can be used, and as the polystyrene-polyethylene butylene-polystyrene block copolymer (SEBS), for example, commercially available products such as TUFTEC from Asahi Kasei Chemicals Corporation, RAVALON from Mitsubishi Chemical Corporation, ACTIMER from Riken Technos Corporation, ELASTOMER AR from Aronkasei Corporation, and CRAYTON G from Kraton Polymer Japan Co., Ltd. can be used.
As the polystyrene-polyisobutylene-polystyrene block copolymer (SIBS), for example, one produced by living cationic polymerization can be used, and commercially available products such as SIBSTAR (registered trademark) from Kaneka Corporation can be used.
 こうした水素結合性官能基やイオン結合性官能基といった非共有結合性官能基が導入されたゴム状ポリマーを含む官能性ブロック共重合体によれば、分子間や分子内で非共有結合性官能基同士が非共有結合し、その非共有結合が解離や再結合が自在なものであるから、非共有結合による可逆的な擬似架橋点・物理架橋点、即ち、分子間や分子内で動的な結合能が付与されることにより、高い強靭性が発現される。 In functional block copolymers containing rubber-like polymers into which non-covalent functional groups such as hydrogen-bonding functional groups or ionic-bonding functional groups have been introduced, the non-covalent functional groups are non-covalently bonded between molecules or within molecules, and these non-covalent bonds can be freely dissociated and recombined. This allows for reversible pseudo-crosslinking points and physical crosslinking points due to non-covalent bonds, i.e., dynamic bonding ability between molecules and within molecules, resulting in high toughness.
 即ち、エポキシ樹脂と非相溶でガラス転移温度(Tg)が25℃以下である非共有結合性官能基を有するゴム状ポリマーとエポキシ樹脂と相溶するポリマーとからなる官能性ブロック共重合体によれば、官能性ブロック共重合体中のエポキシ樹脂と相溶するポリマーがエポキシ樹脂と相溶する一方で、非共有結合性官能基を有するゴム状ポリマーはエポキシ樹脂と非相溶なため、エポキシ樹脂中に、エポキシ樹脂と非相溶なゴム状ポリマーが分散され、ゴム状ポリマーによる伸び、柔軟性や、弾性率が発揮される。よって、接着剤硬化物が強靭化される。
 特に、官能性ブロック共重合体中のエポキシ樹脂と非相溶なゴム状ポリマーが非共有結合性官能基を有することにより、分子間や分子内で非共有結合性官能基同士が非共有結合し可逆的な擬似架橋点・物理架橋点を形成するものであるから、破断伸び、最大応力、靭性等の弾性、柔軟性が向上し、強靭性をより高めることができる。
 よって、エポキシ樹脂硬化物の剥離強度、耐衝撃性を向上できる。
That is, according to a functional block copolymer consisting of a rubbery polymer having a non-covalent functional group that is incompatible with epoxy resin and has a glass transition temperature ( Tg ) of 25°C or less, and a polymer compatible with epoxy resin, the polymer compatible with epoxy resin in the functional block copolymer is compatible with epoxy resin, while the rubbery polymer having a non-covalent functional group is incompatible with epoxy resin, so that the rubbery polymer incompatible with epoxy resin is dispersed in the epoxy resin, and the elongation, flexibility and elastic modulus of the rubbery polymer are exhibited, thereby toughening the adhesive cured product.
In particular, since the rubber-like polymer incompatible with the epoxy resin in the functional block copolymer has a non-covalent functional group, the non-covalent functional groups bond non-covalently between molecules or within molecules to form reversible pseudo-crosslinking points and physical crosslinking points, so that elasticity and flexibility such as breaking elongation, maximum stress, and toughness are improved, and toughness can be further increased.
As a result, the peel strength and impact resistance of the cured epoxy resin can be improved.
 そして、エポキシ樹脂と非相溶でガラス転移温度が25℃以下である非共有結合性官能基を有したゴム状ポリマー及びエポキシ樹脂と相溶するポリマーからなるこの官能性ブロック共重合体による強靭化によって、接着剤組成物の硬化時の硬化収縮や熱収縮で生じる内部応力や、接着後の接着材と被着材間の熱膨張係数差によるそれら界面に生じる応力を緩和できることで、エポキシ樹脂硬化物である接着剤硬化物の耐久性を向上できる。 Furthermore, by toughening with this functional block copolymer consisting of a rubber-like polymer with non-covalent functional groups that is incompatible with epoxy resin and has a glass transition temperature of 25°C or less, and a polymer that is compatible with epoxy resin, it is possible to reduce internal stresses caused by cure shrinkage and thermal shrinkage when the adhesive composition is cured, and stresses that occur at the interface between the adhesive and adherend after adhesion due to differences in the thermal expansion coefficients between them, thereby improving the durability of the cured adhesive, which is a cured epoxy resin product.
 ここで、好ましくは、官能性ブロック共重合体中のエポキシ樹脂と相溶するポリマーの含有量は3質量%以上、80質量%以下の範囲内のものであれば、エポキシ樹脂と相溶性を高くできることにより均質に混合できるから、接着剤硬化物のより安定した特性が得られる。より好ましくは、5質量%以上、70質量%以下、更に好ましくは、10質量%以上、50質量%以下の範囲内である。因みに、TPSを取り扱う化学メーカーでは、一般にはポリスチレン重量分率が10~50wt%のものが販売されていることから、当該範囲内であれば製造が容易であり、より安定した特性の接着剤硬化物が得られる。
 非共有結合性官能基を有したゴム状ポリマーの含有量からすれば、官能性ブロック共重合体中の非共有結合性官能基を有したゴム状ポリマーの含有量が20質量%以上、97質量%以下の範囲内であれば、安定して、伸び、柔軟性や弾性率を高めることができ、剥離強度や耐衝撃性を高めることができる。より好ましくは、30質量%以上、95質量%以下、更に好ましくは、50質量%以上、90質量%以下の範囲内である。
Here, preferably, the content of the polymer compatible with the epoxy resin in the functional block copolymer is within the range of 3% by mass or more and 80% by mass or less, so that the compatibility with the epoxy resin can be increased and the mixture can be mixed homogeneously, and therefore, more stable properties of the cured adhesive can be obtained. More preferably, it is within the range of 5% by mass or more and 70% by mass or less, and even more preferably, it is within the range of 10% by mass or more and 50% by mass or less. Incidentally, chemical manufacturers that handle TPS generally sell products with a polystyrene weight fraction of 10 to 50 wt%, so if it is within this range, production is easy and a cured adhesive with more stable properties can be obtained.
In terms of the content of the rubber-like polymer having a non-covalent functional group, if the content of the rubber-like polymer having a non-covalent functional group in the functional block copolymer is within the range of 20% by mass or more and 97% by mass or less, the elongation, flexibility and elastic modulus can be stably increased, and the peel strength and impact resistance can be increased. More preferably, it is within the range of 30% by mass or more and 95% by mass or less, and even more preferably, it is within the range of 50% by mass or more and 90% by mass or less.
 また、官能性ブロック共重合体は、好ましくは、エポキシ樹脂100質量部に対し、1質量部以上、3500質量部以下の範囲内であれば、塗布性を損なうことなく、効果的にエポキシ樹脂硬化物を強靭化できる。より好ましくは、1.5質量部以上、3400質量部以下、更に好ましくは、2質量部以上、3200質量部以下、特に好ましくは、3.0質量部以上、3000質量部以下の範囲内である。 Furthermore, the functional block copolymer can effectively toughen the epoxy resin cured product without impairing the coatability, preferably in the range of 1 part by mass or more and 3,500 parts by mass or less per 100 parts by mass of the epoxy resin. More preferably, it is in the range of 1.5 parts by mass or more and 3,400 parts by mass or less, even more preferably 2 parts by mass or more and 3,200 parts by mass or less, and particularly preferably 3.0 parts by mass or more and 3,000 parts by mass or less.
 更に、官能性ブロック共重合体中の非共有結合性官能基を有したゴム状ポリマーが、エポキシ樹脂100質量部に対し、好ましくは、0.5質量部以上、3000質量部以下の範囲内であれば、安定して、伸び、柔軟性や弾性率を高めることができ、剥離強度や耐衝撃性を高めることができる。より好ましくは、0.8質量部以上、2800質量部以下、更に好ましくは、1.0質量部以上、2500質量部以下、特に好ましくは、1.5質量部以上、2000質量部以下の範囲内である。
 加えて、ブロック共重合体中のエポキシ樹脂と相溶するポリマー含有量が、エポキシ樹脂100質量部に対し、0.1質量部以上、650質量部以下の範囲内であれば、エポキシ樹脂との相溶性を高くでき均質に混合できるから、接着剤硬化物のより安定した特性が得られる。より好ましくは、0.15質量部以上、620質量部以下、より好ましくは、0.2質量部以上、600質量部以下の範囲内である。
Furthermore, if the rubber-like polymer having a non-covalent functional group in the functional block copolymer is preferably in the range of 0.5 parts by mass or more and 3000 parts by mass or less relative to 100 parts by mass of the epoxy resin, the elongation, flexibility and elastic modulus can be stably increased, and the peel strength and impact resistance can be increased, more preferably in the range of 0.8 parts by mass or more and 2800 parts by mass or less, even more preferably in the range of 1.0 parts by mass or more and 2500 parts by mass or less, and particularly preferably in the range of 1.5 parts by mass or more and 2000 parts by mass or less.
In addition, if the content of the polymer compatible with the epoxy resin in the block copolymer is within the range of 0.1 parts by mass or more and 650 parts by mass or less per 100 parts by mass of the epoxy resin, compatibility with the epoxy resin can be increased and the mixture can be homogeneously mixed, so that more stable properties of the adhesive cured product can be obtained, more preferably within the range of 0.15 parts by mass or more and 620 parts by mass or less, and more preferably within the range of 0.2 parts by mass or more and 600 parts by mass or less.
 特に、官能性ブロック共重合体中の非共有結合性官能基を有したゴム状ポリマーは、ポリイソプレン鎖に非共有結合性官能基が導入されてなる官能性ポリイソプレン、ポリブタジエン鎖に非共有結合性官能基が導入されてなる官能性ポリブタジエン、水素添加イソプレン鎖であるポリエチレン・プロピレン鎖に非共有結合性官能基が導入されてなる官能性水添ポリイソプレン、または、水素添加ブタジエン鎖であるポリエチレン・ブチレン鎖に非共有結合性官能基が導入されてなる官能性水添ポリブタジエンのモノマーユニットを含有するものが好ましく、これらのモノマーユニット含有量が、好ましくは、50mol%以上、より好ましくは70mol%以上、更に好ましくは90mol%以上のものである。当該範囲内であれば安定的に強靭性の向上を確保できる。
 また、エポキシ樹脂と相溶するポリマーは、スチレン骨格、メタクリル骨格、アクリル骨格、または、エーテル骨格を有するモノマーユニットを含有するものが好ましく、これらのモノマーユニットの含有量が、好ましくは、50mol%以上、より好ましくは70mol%以上、更に好ましくは90mol%以上のものである。
 これにより、ゴム弾性、耐熱老化性、耐候性等の特性の向上を可能とする。
In particular, the rubber-like polymer having a non-covalent functional group in the functional block copolymer preferably contains a monomer unit of a functional polyisoprene in which a non-covalent functional group is introduced into a polyisoprene chain, a functional polybutadiene in which a non-covalent functional group is introduced into a polybutadiene chain, a functional hydrogenated polyisoprene in which a non-covalent functional group is introduced into a hydrogenated isoprene chain, a polyethylene-propylene chain, or a functional hydrogenated polybutadiene in which a non-covalent functional group is introduced into a hydrogenated butadiene chain, a polyethylene-butylene chain, and the content of these monomer units is preferably 50 mol% or more, more preferably 70 mol% or more, and even more preferably 90 mol% or more. If it is within this range, the toughness can be stably improved.
In addition, the polymer compatible with the epoxy resin preferably contains a monomer unit having a styrene skeleton, a methacrylic skeleton, an acrylic skeleton, or an ether skeleton, and the content of these monomer units is preferably 50 mol % or more, more preferably 70 mol % or more, and even more preferably 90 mol % or more.
This makes it possible to improve properties such as rubber elasticity, heat aging resistance, and weather resistance.
 より好ましくは、官能性ブロック共重合体は、ポリイソプレンに非共有結合性官能基が導入されてなる官能性ポリイソプレンを含有する官能性スチレン系熱可塑性エラストマー、ポリブタジエンに非共有結合性官能基が導入されてなる官能性ポリブタジエンを含有する官能性スチレン系熱可塑性エラストマー、水添ポリイソプレンに非共有結合性官能基が導入されてなる官能性水添ポリイソプレンを含有する官能性スチレン系熱可塑性エラストマー、または水添ポリブタジエンに非共有結合性官能基が導入されてなる官能性水添ポリブタジエンを含有する官能性スチレン系熱可塑性エラストマーである。
 こうした官能性(水添)スチレン系熱可塑性エラストマーは、スチレン系熱可塑性エラストマーの入手や製造が容易なこともあって、比較的低コストで製造できるものであり、かつ、弾性率が高いことにより、低コストでエポキシ樹脂硬化物の強靭性を可能として剥離強度や耐衝撃性を高めることができる。
More preferably, the functional block copolymer is a functional styrene-based thermoplastic elastomer containing a functional polyisoprene obtained by introducing a non-covalent functional group into polyisoprene, a functional styrene-based thermoplastic elastomer containing a functional polybutadiene obtained by introducing a non-covalent functional group into polybutadiene, a functional styrene-based thermoplastic elastomer containing a functional hydrogenated polyisoprene obtained by introducing a non-covalent functional group into hydrogenated polyisoprene, or a functional styrene-based thermoplastic elastomer containing a functional hydrogenated polybutadiene obtained by introducing a non-covalent functional group into hydrogenated polybutadiene.
Such functional (hydrogenated) styrene-based thermoplastic elastomers can be produced at a relatively low cost, since styrene-based thermoplastic elastomers are easily available and produced. Furthermore, because of their high elastic modulus, they can increase the toughness of the cured epoxy resin material at low cost, thereby improving the peel strength and impact resistance.
 ところで、本実施の形態において、エポキシ系接着剤組成物を製造する方法は特に限定されないが、例えば、エポキシ樹脂及び官能性ブロック共重合体を溶媒と混合する混合工程と、溶媒を加熱等により蒸発させて除去する溶媒除去工程とを実施することによりマスターバッチ形態のエポキシ系接着剤組成物を作製する。このとき、硬化剤は、混合工程においてエポキシ樹脂、官能性ブロック共重合体及び溶媒と一緒に混合させてもよいし、溶媒除去工程後に混合してもよい。更に、接着の対象物に応じ、マスターバッチ形態のエポキシ系接着剤組成物を他の添加剤と混合することで、目的の特性とする接着剤組成物の配合とすることも可能である。 In the present embodiment, the method for producing the epoxy adhesive composition is not particularly limited, but for example, a masterbatch epoxy adhesive composition is produced by carrying out a mixing step in which the epoxy resin and the functional block copolymer are mixed with a solvent, and a solvent removal step in which the solvent is removed by evaporating it by heating or the like. At this time, the curing agent may be mixed together with the epoxy resin, the functional block copolymer, and the solvent in the mixing step, or may be mixed after the solvent removal step. Furthermore, depending on the object to be bonded, it is also possible to mix the masterbatch epoxy adhesive composition with other additives to formulate an adhesive composition with the desired characteristics.
 エポキシ樹脂と、官能性ブロック共重合体と、溶媒とを混合(混練を含む)するときの混合機(混練機を含む)としては、例えば、プラネタリーミキサー、ディスパー(ディゾルパー)、ヘンシェルミキサー、ニーダー、ロールミル、ホモジナイザー、インターミキサー、ニーダー、ロール等が使用できる。少なくともエポキシ樹脂と官能性ブロック共重合体とを溶媒に加えて混合(混練を含む)することで材料の均質な混合、分散が可能となる。 As a mixer (including kneader) for mixing (including kneading) the epoxy resin, the functional block copolymer, and the solvent, for example, a planetary mixer, Disper (Dissolver), Henschel mixer, kneader, roll mill, homogenizer, intermixer, kneader, roll, etc. can be used. By adding at least the epoxy resin and the functional block copolymer to the solvent and mixing (including kneading), it becomes possible to mix and disperse the materials homogeneously.
 このときの溶媒としては、例えば、テトラヒドロフラン(THF)、2-メチルテトラヒドロフラン、トルエン、アセトン、シクロヘキサン、ノルマルヘキサン、酢酸エチル、メタノール、メチレンクロライド(ジクロロメタン)、メチルエチルケトン(MEK)、酢酸ブチル、メチルシクロヘキサン(MCH)、N,N-ジメチルホルムアミド(DMF)Nーメチルー2-ピロリドン(NMP)等が使用できる。 Solvents that can be used in this case include, for example, tetrahydrofuran (THF), 2-methyltetrahydrofuran, toluene, acetone, cyclohexane, normal hexane, ethyl acetate, methanol, methylene chloride (dichloromethane), methyl ethyl ketone (MEK), butyl acetate, methylcyclohexane (MCH), N,N-dimethylformamide (DMF), and N-methyl-2-pyrrolidone (NMP).
 こうして作製された本実施の形態のエポキシ系接着剤組成物は、液状やペースト状や膜状(シート)状であり、液状やペースト状のものであれば、公知の方法、例えば、ポンプ等を使用したスプレ、ガン、刷毛塗り等の方法で接着対象物(被着材)に塗布できる。例えば、接着対象物が車体の場合には、車体工程等において、ポンプ等を使用したスプレ、ガン等の方法で車体の接合個所に塗布される。膜状(シート状)のものでは、樹脂や官能性ブロック共重合体を溶媒に混合した溶液を被着材に塗布し、乾燥させることで被着材に施工することもできるし、被着材に貼付することもできる。 The epoxy adhesive composition of this embodiment thus prepared is in liquid, paste, or film (sheet) form. If it is in liquid or paste form, it can be applied to the object to be bonded (adherend) by a known method, such as spraying using a pump or the like, applying with a gun, or applying with a brush. For example, if the object to be bonded is a car body, it is applied to the joints of the car body by spraying using a pump or the like, applying with a gun, or the like, in a car body manufacturing process. If it is in film (sheet) form, it can be applied to the adherend by applying a solution of a resin or functional block copolymer mixed in a solvent to the adherend and drying it, or it can be attached to the adherend.
 エポキシ樹脂100質量部に対し、官能性ブロック共重合体を0.5質量部以上、60質量部以下の配合では、液状またはペースト状のエポキシ系接着剤組成物を得ることができる。
 例えば、官能性ブロック共重合体と溶媒とエポキシ樹脂の混合により作製される液状またはペースト状混合物から溶媒を揮発除去することで液状またはペースト状のエポキシ系接着剤組成物を得ることができる。液状またはペースト状のエポキシ系接着剤組成物においては、エポキシ樹脂100質量部に対し、好ましくは、官能性ブロック共重合体を2.0質量部以上、56質量部以下、より好ましくは、3.0質量部以上、55質量部以下の配合である。
When the functional block copolymer is blended in an amount of 0.5 parts by mass or more and 60 parts by mass or less per 100 parts by mass of the epoxy resin, a liquid or paste-like epoxy adhesive composition can be obtained.
For example, a liquid or paste-like epoxy adhesive composition can be obtained by volatilizing and removing the solvent from a liquid or paste-like mixture prepared by mixing a functional block copolymer, a solvent, and an epoxy resin. In the liquid or paste-like epoxy adhesive composition, the functional block copolymer is preferably blended in an amount of 2.0 parts by mass or more and 56 parts by mass or less, more preferably 3.0 parts by mass or more and 55 parts by mass or less, per 100 parts by mass of the epoxy resin.
 また、エポキシ樹脂100質量部に対し、官能性ブロック共重合体が60質量部を超え、3500質量部以下の配合では、膜状のエポキシ系接着剤組成物を得ることができる。
 例えば、官能性ブロック共重合体と溶媒とエポキシ樹脂の混合により作製された溶液を、シートを敷いた板やバッド等のシート(基材)上に拡げ、溶媒を揮発除去することで膜状のエポキシ系接着剤組成物を得ることができる。膜状のエポキシ系接着剤組成物においては、エポキシ樹脂100質量部に対し、好ましくは、官能性ブロック共重合体を80質量部以上、3500質量部以下、より好ましくは、100質量部以上、3000質量部以下の配合である。
Furthermore, when the amount of the functional block copolymer is more than 60 parts by mass and not more than 3,500 parts by mass per 100 parts by mass of the epoxy resin, a film-like epoxy adhesive composition can be obtained.
For example, a film-like epoxy adhesive composition can be obtained by spreading a solution prepared by mixing a functional block copolymer, a solvent, and an epoxy resin on a sheet (substrate) such as a board or pad on which a sheet is laid, and volatilizing and removing the solvent. In the film-like epoxy adhesive composition, the functional block copolymer is preferably blended in an amount of 80 parts by mass or more and 3,500 parts by mass or less, more preferably 100 parts by mass or more and 3,000 parts by mass or less, per 100 parts by mass of the epoxy resin.
 本発明を実施する場合には、必要に応じ、即ち、接着対象(被着材)、接着箇所の環境、所望とする特性等に応じ、添加剤、例えば、粘度の低減、流動性の向上を図るための反応性希釈剤(エポキシ基を有するエポキシ系反応型希釈剤等)、重質炭酸カルシウム、タルク等の充填材、シリカ微粉末、ケッチェンブラック等のカーボンブラック、コロイダル炭酸カルシウム(微粒炭酸カルシウム)、セピオライト、コロイド性含水ケイ酸アルミニウム/有機複合体等のチキソトロピー付与剤(揺変性付与、チキソ剤)、粘度調整剤(増粘剤)や、多官能型エポキシ樹脂(例えば、ノボラック型エポキシ樹脂)、グリシジルアミン系樹脂、グリシジルエーテル系樹脂等の耐熱性付与剤、接着性を改良する接着性改良剤としてのアクリル樹脂、カップリング剤等を配合することもできる。その他にも、各種の添加剤、例えば、顔料、染料、着色剤、消泡剤、レベリング剤、粘着付与剤(接着付与剤)、難燃剤、触媒、可塑剤、反応遅延剤、老化防止剤、酸化防止剤、帯電防止剤、導電性付与剤、潤滑剤、摺動性付与剤、紫外線吸収剤、界面活性剤、分散剤、分散安定剤、脱水剤、架橋剤、防錆剤、溶剤等を配合することも可能である。 When implementing the present invention, additives such as reactive diluents (epoxy-based reactive diluents having epoxy groups, etc.) for reducing viscosity and improving fluidity, fillers such as heavy calcium carbonate and talc, silica fine powder, carbon black such as Ketjen black, colloidal calcium carbonate (fine calcium carbonate), sepiolite, thixotropy-imparting agents (thixotropic agents, thixotropic agents) such as colloidal hydrated aluminum silicate/organic complexes, viscosity adjusters (thickeners), heat resistance-imparting agents such as multifunctional epoxy resins (e.g. novolac-type epoxy resins), glycidyl amine resins, glycidyl ether resins, acrylic resins as adhesion improvers, coupling agents, etc. may be blended as necessary, i.e. depending on the object to be bonded (adherend), the environment of the bonding location, the desired properties, etc. In addition, various additives such as pigments, dyes, colorants, defoamers, leveling agents, tackifiers (adhesion promoters), flame retardants, catalysts, plasticizers, reaction retarders, antioxidants, antioxidants, antistatic agents, conductivity promoters, lubricants, sliding agents, UV absorbers, surfactants, dispersants, dispersion stabilizers, dehydrating agents, crosslinking agents, rust inhibitors, solvents, etc. can also be added.
 こうして本実施の形態のエポキシ系接着剤組成物によれば、エポキシ樹脂と、硬化剤と、エポキシ樹脂と非相溶でガラス転移温度(Tg)が25℃以下である非共有結合性官能基を有したゴム状ポリマー及びエポキシ樹脂と相溶するポリマーからなる官能性ブロック共重合体とを含有することにより、エポキシ樹脂の可撓性に乏しく硬くて脆いという低靭性が、エポキシ樹脂と非相溶でガラス転移温度(Tg)が25℃以下である非共有結合性官能基を有したゴム状ポリマー及びエポキシ樹脂と相溶するポリマーからなる官能性ブロック共重合体の配合により改良され、強靭な接着剤硬化物が得られる。
 これは、官能性ブロック共重合体中のエポキシ樹脂と相溶するポリマーがエポキシ樹脂と相溶し、かつ、官能性ブロック共重合体中のエポキシ樹脂と相溶するポリマーと官能性ブロック共重合体中のエポキシ樹脂と非相溶な非共有結合性官能基を有したゴム状ポリマーが化学結合で繋がれていることで、室温でも、非共有結合性官能基を有したゴム状ポリマーはエポキシ樹脂中に分散して存在することとなり、非共有結合性官能基を有したゴム状ポリマーによる伸び、柔軟性や弾性率が発現されるためと考える。
Thus, according to the epoxy adhesive composition of this embodiment, by containing an epoxy resin, a curing agent, and a functional block copolymer consisting of a rubber-like polymer that is incompatible with the epoxy resin and has a non-covalent functional group having a glass transition temperature ( Tg ) of 25°C or lower, and a polymer that is compatible with the epoxy resin, the low toughness of the epoxy resin, which is poor in flexibility and hard and brittle, is improved by the blending of the functional block copolymer consisting of a rubber-like polymer that is incompatible with the epoxy resin and has a non-covalent functional group having a glass transition temperature ( Tg ) of 25°C or lower, and a polymer that is compatible with the epoxy resin, and a tough adhesive cured product is obtained.
This is believed to be because the polymer compatible with the epoxy resin in the functional block copolymer is compatible with the epoxy resin, and the polymer compatible with the epoxy resin in the functional block copolymer and the rubbery polymer having non-covalent functional groups that is incompatible with the epoxy resin in the functional block copolymer are linked by chemical bonds, so that even at room temperature, the rubbery polymer having non-covalent functional groups is dispersed and present in the epoxy resin, and the elongation, flexibility and elastic modulus due to the rubbery polymer having non-covalent functional groups are expressed.
 特に、水素結合性官能基やイオン結合性官能基といった非共有結合性官能基を有したゴム状ポリマーを含む官能性ブロック共重合体によれば、分子間や分子内で非共有結合性官能基同士が非共有結合し、その非共有結合が解離や再結合が自在なものであるから、非共有結合による可逆的な擬似架橋点・物理架橋点、即ち、分子間や分子内で動的な結合能が付与されることにより、接着剤硬化物はより高い強靭性が発現される。 In particular, functional block copolymers containing rubber-like polymers with non-covalent functional groups such as hydrogen-bonding functional groups or ionic-bonding functional groups form non-covalent bonds between or within molecules, and these non-covalent bonds can be freely dissociated and recombined. This gives the adhesive cured material greater toughness by providing reversible pseudo-crosslinking points and physical crosslinking points through non-covalent bonds, i.e., dynamic bonding ability between or within molecules.
 そして、こうした官能性ブロック共重合体により高い強靭性が付与されることで、硬化時に生じる硬化収縮の応力や、硬化温度から室温まで冷却される時に生じる熱収縮の応力を緩和でき、また、接着後の接着剤硬化物の層と被着材間の熱膨張係数差による両者間界面に生じる応力の緩和、特に熱膨張率に差がある異種材の接着の場合には異種材間に生じる応力が大きくなるがそうした応力も効果的に緩和することが可能となる。故に、剥離強度が向上する。また、官能性ブロック共重合体の非共有結合性官能基を有したゴム状ポリマーの伸び、柔軟性や弾性率の発揮により衝撃エネルギを吸収しやすくなることで、得られる接着剤硬化物の耐衝撃性が向上する。特に、官能性ブロック共重合体のゴム状ポリマーが有する非共有結合性官能基同士の非共有結合による可逆的な擬似架橋点・物理架橋点の形成やその組み換え、即ち、非共有結合官能基同士の非共有結合の再配列により、応力の分散、緩和を可能とすることにより、高い耐衝撃性を得ることができる。
 よって、これら応力や衝撃エネルギを官能性ブロック共重合体の配合により緩和できることで、接着剤硬化物の耐久性を向上できる。
And, by imparting high toughness to such functional block copolymers, it is possible to alleviate the stress of cure shrinkage occurring during curing and the stress of thermal shrinkage occurring when cooling from the curing temperature to room temperature, and also to alleviate the stress occurring at the interface between the layer of the cured adhesive and the adherend due to the difference in thermal expansion coefficient between them after adhesion, and in particular, in the case of adhesion of dissimilar materials with different thermal expansion coefficients, the stress occurring between the dissimilar materials increases, but such stress can also be effectively alleviated. Therefore, the peel strength is improved. In addition, the rubber-like polymer having the non-covalent functional group of the functional block copolymer exhibits elongation, flexibility and elastic modulus, which makes it easier to absorb impact energy, thereby improving the impact resistance of the obtained cured adhesive. In particular, the formation of reversible pseudo-crosslinking points and physical crosslinking points due to non-covalent bonds between the non-covalent functional groups of the rubber-like polymer of the functional block copolymer and their rearrangement, i.e., the rearrangement of the non-covalent bonds between the non-covalent functional groups, enables the dispersion and alleviation of stress, thereby obtaining high impact resistance.
Therefore, by incorporating a functional block copolymer, it is possible to reduce these stresses and impact energies, thereby improving the durability of the cured adhesive.
 特に、エポキシ樹脂が熱硬化性であるのに対し、エポキシ樹脂と非相溶でガラス転移温度(Tg)が25℃以下である非共有結合性官能基を有したゴム状ポリマー及びエポキシ樹脂と相溶するポリマーからなる官能性ブロック共重合体が熱可塑性エラストマーであると、熱特性が相反する材料の混合となるが、官能性ブロック共重合体のエポキシ樹脂と相溶するポリマーがエポキシ樹脂と相溶性があることにより、エポキシ樹脂と官能性ブロック共重合体とが分離することなく混ぜ合わせることができる。このとき、上述したように、所定の溶媒に混合することで、より容易に均質にエポキシ樹脂と官能性ブロック共重合体との混合が可能である。 In particular, when an epoxy resin is thermosetting, and a functional block copolymer consisting of a rubber-like polymer having a non-covalent functional group that is incompatible with the epoxy resin and has a glass transition temperature ( Tg ) of 25°C or lower and a polymer compatible with the epoxy resin is a thermoplastic elastomer, a mixture of materials with opposing thermal properties is produced, but since the polymer compatible with the epoxy resin of the functional block copolymer is compatible with the epoxy resin, the epoxy resin and the functional block copolymer can be mixed without separation. At this time, by mixing in a predetermined solvent as described above, the epoxy resin and the functional block copolymer can be mixed more easily and homogeneously.
 ところで、エポキシ樹脂の強靭化に関しては、従来、エポキシ樹脂の主鎖、側鎖、或いは末端にゴム系構造や直鎖上の高分子構造を導入することによって可撓性を付与する方法もあるが、こうした方法によると、材料が高粘度になることで塗布性が損なわれたり、架橋密度が低下することによりエポキシ樹脂の耐熱性、接着性等の本来の特性の劣化が生じたりする。
 また、エポキシ樹脂の改質に可撓性付与剤として液状ゴム(例えば、ブタジエンアクリロニトリルコポリマー)が使用されることがあるが、こうした液状ゴムの場合には、エポキシ樹脂との相溶性が悪く混ざり難いことで、それらの混合反応に時間と手間を要するうえ、硬化エポキシ樹脂中では十分な相溶性を示さないことで分散性が悪く、強靭化を図るにも限度があり、更に、硬化時に相分離して数~数十マイクロメートル以上の大きなドメイン(分散ゴム粒子相)が形成され、そのようなドメインの形成も硬化条件に強く依存するため、安定した特性が得られ難くなる。即ち、有効な改質、安定的な品質を得るためには、液状ゴムの添加量、硬化条件等により相分離構造の発現の制御を要する手間、精密さを要する。また、一部の未架橋ゴムがエポキシ樹脂の硬化物中に一部溶解して残存することでエポキシ樹脂のガラス転移温度(Tg)を低下させ、弾性率低下を伴うこともあり、エポキシ樹脂本来の物性の変化を招く場合もある。
Incidentally, in order to toughen epoxy resins, there have been conventional methods for imparting flexibility to the epoxy resins by introducing a rubber-based structure or a straight-chain polymer structure into the main chain, side chain, or end of the epoxy resin. However, such methods tend to increase the viscosity of the material, impairing its coatability, or to reduce the crosslinking density, resulting in deterioration of the inherent properties of the epoxy resin, such as heat resistance and adhesiveness.
In addition, liquid rubber (e.g., butadiene acrylonitrile copolymer) may be used as a flexibility imparting agent to modify epoxy resins, but such liquid rubbers are poorly compatible with epoxy resins and difficult to mix, so that the mixing reaction between them requires time and effort, and in addition, they do not show sufficient compatibility in the cured epoxy resin, so that dispersibility is poor and there is a limit to how much toughening can be achieved. Furthermore, upon curing, phase separation occurs and large domains (dispersed rubber particle phases) of several to several tens of micrometers or more are formed, and the formation of such domains also strongly depends on the curing conditions, making it difficult to obtain stable properties. That is, in order to obtain effective modification and stable quality, it is necessary to take the effort and precision to control the appearance of the phase separation structure by the amount of liquid rubber added, the curing conditions, etc. In addition, some uncrosslinked rubber remains partially dissolved in the cured epoxy resin, which lowers the glass transition temperature (T g ) of the epoxy resin, which may be accompanied by a decrease in the elastic modulus, and may also cause changes in the inherent physical properties of the epoxy resin.
 液状ゴムのこのような問題点を改善するために、コアシェル型ゴム粒子を使用することも知られているが、熱硬化性樹脂に対し粉体のコアシェル型ゴム粒子を破壊することなく均一に混合分散するのは難しく、また、シェル分もあるので、ゴム成分の添加量に対する靭性の改善効果が小さくなってしまい、塗布性を損なわずに、接着剤組成物の柔軟性、伸びを改善して強靭化を図るにも限度がある。更に、こうしたコアシェル型ゴム粒子はその作製に手間を要するものであり、高コストである。  It is known that core-shell rubber particles can be used to improve these problems with liquid rubber, but it is difficult to mix and disperse powdered core-shell rubber particles uniformly into thermosetting resins without destroying them, and because of the shell content, the effect of improving toughness relative to the amount of rubber component added is small, so there is a limit to how much the adhesive composition can be toughened by improving its flexibility and elongation without impairing its applicability. Furthermore, such core-shell rubber particles are labor-intensive to produce and are expensive.
 これに対し、本実施の形態のエポキシ系接着剤組成物は、エポキシ樹脂と非相溶でガラス転移温度(Tg)が25℃以下である非共有結合性官能基を有したゴム状ポリマー及びエポキシ樹脂と相溶するポリマーからなる官能性ブロック共重合体の配合により強靭性を付与するものである。即ち、官能性ブロック共重合体のエポキシ樹脂と相溶するポリマーがエポキシ樹脂と相溶性があることにより、室温下でもドメインが形成されずに、非共有結合性官能基を有したゴム状ポリマーによる伸び、柔軟性や弾性率が発現される。
 特に、水素結合性官能基やイオン結合性官能基といった非共有結合性官能基を有したゴム状ポリマーを含む官能性ブロック共重合体によれば、分子間や分子内で非共有結合性官能基同士が非共有結合し、その非共有結合が解離や再結合が自在なものであるから、非共有結合による可逆的な擬似架橋点・物理架橋点、即ち、分子間や分子内で動的な結合能が付与されることにより、高い強靭性が得られる。
 これよりエポキシ樹脂からなる接着剤硬化物の剥離強度や耐衝撃性を向上できる。
In contrast, the epoxy adhesive composition of the present embodiment imparts toughness by blending a functional block copolymer consisting of a rubbery polymer having a non-covalent functional group that is incompatible with epoxy resin and has a glass transition temperature ( Tg ) of 25° C. or lower, and a polymer that is compatible with epoxy resin. That is, because the polymer that is compatible with epoxy resin in the functional block copolymer is compatible with epoxy resin, no domains are formed even at room temperature, and the elongation, flexibility and elastic modulus due to the rubbery polymer having a non-covalent functional group are expressed.
In particular, in a functional block copolymer containing a rubber-like polymer having a non-covalent functional group such as a hydrogen-bonding functional group or an ionic-bonding functional group, the non-covalent functional groups are non-covalently bonded between molecules or within molecules, and the non-covalent bonds can be freely dissociated and recombined. This allows for reversible pseudo-crosslinking points and physical crosslinking points due to the non-covalent bonds, i.e., dynamic bonding ability between molecules or within molecules, thereby providing high toughness.
This makes it possible to improve the peel strength and impact resistance of the cured adhesive made of epoxy resin.
 つまり、エポキシ樹脂と非相溶でガラス転移温度(Tg)が25℃以下である非共有結合性官能基を有したゴム状ポリマー及びエポキシ樹脂と相溶するポリマーからなる官能性ブロック共重合体であれば、官能性ブロック共重合体のエポキシ樹脂と相溶するポリマーがエポキシ樹脂と相溶性があることにより非共有結合性官能基を有したゴム状ポリマーのエポキシ樹脂への分散性が良く、非共有結合性官能基を有したゴム状ポリマーによる伸び、柔軟性や弾性率が発現され、特に、ゴム状ポリマーの非共有結合性官能基同士が分子間や分子内で非共有結合することにより、剥離強度及び耐衝撃性を向上させる高い強靭性が発揮される。また、エポキシ樹脂と非相溶でガラス転移温度(Tg)が25℃以下である非共有結合性官能基を有したゴム状ポリマー及びエポキシ樹脂と相溶するポリマーからなる官能性ブロック共重合体は、その合成も比較的容易にできるものであり、低コスト化が可能である。 That is, in the case of a functional block copolymer consisting of a rubber-like polymer having a non-covalent functional group that is incompatible with epoxy resin and has a glass transition temperature (T g ) of 25° C. or less, and a polymer compatible with epoxy resin, the polymer compatible with epoxy resin in the functional block copolymer is compatible with epoxy resin, so that the rubber-like polymer having a non-covalent functional group has good dispersibility in epoxy resin, and the elongation, flexibility and elastic modulus due to the rubber-like polymer having a non-covalent functional group are expressed, and in particular, high toughness that improves peel strength and impact resistance is exhibited by non-covalent bonding between molecules or intramolecularly between the non-covalent functional groups of the rubber-like polymer. In addition, the functional block copolymer consisting of a rubber-like polymer having a non-covalent functional group that is incompatible with epoxy resin and has a glass transition temperature (T g ) of 25° C. or less, and a polymer compatible with epoxy resin can be synthesized relatively easily, and can be reduced in cost.
 そして、こうしたエポキシ樹脂と非相溶でガラス転移温度(Tg)が25℃以下である非共有結合性官能基を有したゴム状ポリマー及びエポキシ樹脂と相溶するポリマーからなる官能性ブロック共重合体の配合により柔軟性、伸びや弾性率が付与され強靭化されることで、エポキシ系接着剤組成物の硬化過程や冷却過程で生じる内部応力や接着剤と被着材との間の両者の熱膨張係数の差により界面に生じる内部応力を軽減でき、クラックや欠陥の成長に対する抵抗力を付与できるから、クラックの発生も抑制される。 Furthermore, by blending a rubber-like polymer having non-covalent functional groups that is incompatible with such epoxy resins and has a glass transition temperature ( Tg ) of 25°C or lower, and a functional block copolymer consisting of a polymer that is compatible with epoxy resins, flexibility, elongation and elastic modulus are imparted to the composition, thereby making it tougher. This reduces internal stresses that arise during the curing and cooling processes of the epoxy adhesive composition and internal stresses that arise at the interface between the adhesive and the adherend due to the difference in thermal expansion coefficients between the two, and provides resistance to the growth of cracks and defects, thereby suppressing the occurrence of cracks.
 更に、エポキシ樹脂と非相溶でガラス転移温度(Tg)が25℃以下である非共有結合性官能基を有したゴム状ポリマー及びエポキシ樹脂と相溶するポリマーからなる官能性ブロック共重合体であれば、塗布性を損なうことなく、また、エポキシ樹脂の本来の特性(耐熱性、接着性、機械的特性、耐久性等)を維持したまま、強靭性を向上させることが可能で、硬化や熱で生じる収縮に伴う残留歪みの吸収を可能とする低応力化により、耐クラック性、耐疲労性、耐久性の向上も可能とする。
 加えて、エポキシ樹脂と非相溶でガラス転移温度(Tg)が25℃以下である非共有結合性官能基を有したゴム状ポリマー及びエポキシ樹脂と相溶するポリマーからなる官能性ブロック共重合体においては、非共有結合性官能基を有したゴム状ポリマーとエポキシ樹脂と相溶するポリマーとが互いに非相溶で、それらの比率を変えた官能性ブロック共重合体の製造が容易であり、非共有結合性官能基を有したゴム状ポリマーとエポキシ樹脂と相溶するポリマーの比率の制御により接着剤硬化物の物性の制御も容易にできる。更に、柔軟性、伸びや弾性率の向上により振動減衰効果も期待できる。
Furthermore, a functional block copolymer consisting of a rubber-like polymer having a non-covalent functional group that is incompatible with epoxy resins and has a glass transition temperature (T g ) of 25° C. or lower, and a polymer that is compatible with epoxy resins, can improve toughness without impairing coatability and while maintaining the original properties of epoxy resins (heat resistance, adhesiveness, mechanical properties, durability, etc.), and can also improve crack resistance, fatigue resistance, and durability by reducing stress, which allows the absorption of residual strain associated with shrinkage caused by curing and heat.
In addition, in a functional block copolymer consisting of a rubbery polymer having a non-covalent functional group that is incompatible with epoxy resins and has a glass transition temperature ( Tg ) of 25°C or lower, and a polymer that is compatible with epoxy resins, the rubbery polymer having a non-covalent functional group and the polymer that is compatible with epoxy resins are incompatible with each other, so that it is easy to produce a functional block copolymer in which the ratio between them is changed, and it is also easy to control the physical properties of the adhesive cured product by controlling the ratio between the rubbery polymer having a non-covalent functional group and the polymer that is compatible with epoxy resins. Furthermore, a vibration damping effect can be expected due to the improvement in flexibility, elongation and elastic modulus.
 以下、本発明の実施の形態に係る官能性ブロック共重合体含有エポキシ系接着剤組成物の実施例について説明する。
[実施例1]
 実施例1では、エポキシ樹脂と非相溶でガラス転移温度(Tg)が25℃以下である非共有結合性官能基を有するゴム状ポリマー及びエポキシ樹脂と相溶するポリマーからなる官能性ブロック共重合体として、スチレン系熱可塑性エラストマーであるポリスチレン-ポリイソプレン-ポリスチレンブロック共重合体(以下、「SIS」とも称する)に対し、変性剤による変性処理を行い、更に、塩基処理を行うことにより、ポリイソプレン鎖に非共有結合性官能基として水素結合性官能基であるアミド基及びカルボキシル基が導入されたポリスチレン-官能性ポリイソプレン-ポリスチレンブロック共重合体(以下、「h-SIS」とも称する)を用いた。
Examples of the functional block copolymer-containing epoxy adhesive composition according to the embodiment of the present invention will be described below.
[Example 1]
In Example 1, as a functional block copolymer consisting of a rubber-like polymer having a non-covalent functional group that is incompatible with epoxy resin and has a glass transition temperature (T g ) of 25° C. or lower, and a polymer compatible with epoxy resin, a polystyrene-polyisoprene-polystyrene block copolymer (hereinafter also referred to as "SIS"), which is a styrene-based thermoplastic elastomer, was modified with a modifying agent and further treated with a base to introduce hydrogen-bonding functional groups, amide groups and carboxyl groups, as non-covalent functional groups, into the polyisoprene chain (hereinafter also referred to as "h-SIS").
 ここでは、文献(Polymer 2021,217,123419.、ACS Omega 2022,7(3),2821-2830.)に基づいて、SISとしてQuintac(登録商標)3440(日本ゼオン社製、ポリスチレン-ポリイソプレン-ポリスチレンブロック共重合体組成物)を無水マレイン酸と反応させて無水コハク酸ユニットをポリイソプレンブロック中に導入し、その無水コハク酸ユニットをn-ブチルアミンとアシル置換反応させることでh-SISを合成することにより、実施例1のh-SIS(以下、「h-SIS-1」とも称する)を得た。なお、プロトン核磁気共鳴分光(1H-NMR)測定によりブロック共重合体中のポリイソプレンブロックに対する無水コハク酸ユニットの導入率を決定したところ、5.6mol%であった。 Here, based on the literature (Polymer 2021, 217, 123419., ACS Omega 2022, 7 (3), 2821-2830.), Quintac (registered trademark) 3440 (manufactured by Nippon Zeon Co., Ltd., polystyrene-polyisoprene-polystyrene block copolymer composition) was reacted with maleic anhydride as SIS to introduce a succinic anhydride unit into the polyisoprene block, and the succinic anhydride unit was subjected to an acyl substitution reaction with n-butylamine to synthesize h-SIS, thereby obtaining the h-SIS of Example 1 (hereinafter also referred to as "h-SIS-1"). In addition, the introduction rate of the succinic anhydride unit relative to the polyisoprene block in the block copolymer was determined by proton nuclear magnetic resonance spectroscopy ( 1H -NMR) measurement, and was 5.6 mol%.
 そして、実施例1では、このようにしてSISを無水マレイン酸及びn-ブチルアミンで変性させることにより得られたアミド基(水素結合性官能基)及びカルボキシル基(水素結合性官能基)を有する官能性ブロック共重合体、即ち、h-SISと、常温で液状の汎用エポキシ樹脂であるビスフェノールA型エポキシ樹脂(二官能エポキシ樹脂であるビスフェノールAジグリシジルエーテル:DGEBA)(以下、「EP樹脂」とも称する)と、潜在性硬化剤であるジシアンジアミド(以下、「DICY」とも称する)と、硬化促進剤としてのフェニル-1,1-ジメチルウレアA(以下、「DCMU」とも称する)と、コロイダル炭酸カルシウム(白石工業株式会社製,ビスコエクセル(登録商標)30HV)、(以下、「CaCO3」とも称する)と、酸化カルシウム(以下、「CaO」とも称する)とを含有する液状の接着剤組成物(以下、「接着剤」とする)を作製した。 In Example 1, a liquid adhesive composition (hereinafter referred to as "adhesive") was prepared containing a functional block copolymer having an amide group (hydrogen-bonding functional group) and a carboxyl group (hydrogen-bonding functional group) obtained by modifying SIS with maleic anhydride and n-butylamine in this manner, i.e., h-SIS, a bisphenol A type epoxy resin (bisphenol A diglycidyl ether: DGEBA, a bifunctional epoxy resin) (hereinafter also referred to as "EP resin") which is a general-purpose epoxy resin that is liquid at room temperature, dicyandiamide (hereinafter also referred to as "DICY") which is a latent curing agent, phenyl-1,1-dimethylurea A (hereinafter also referred to as "DCMU") as a curing accelerator, colloidal calcium carbonate (ViscoExcel (registered trademark) 30HV, manufactured by Shiraishi Kogyo Co., Ltd.) (hereinafter also referred to as "CaCO 3 "), and calcium oxide (hereinafter also referred to as "CaO").
 なお、h-SISは、EP樹脂と相溶するポリマーとしてポリスチレンブロック(以下、「Sブロック」とも称する)を有し、ガラス転移温度(Tg)が25℃以下であるゴム状ポリマーとして非共有結合性官能基であるアミド基(水素結合性官能基)及びカルボキシル基(水素結合性官能基)を有するポリイソプレンブロック(以下、「h-Iブロック」とも称する)を有し、当該ゴム状ポリマーはEP樹脂に非相溶(不溶)なポリマーである。h-SIS-1のベースポリマーであるSISのSブロック含有率は19wt%であり、Iブロック含有率は、81wt%である。 h-SIS has a polystyrene block (hereinafter also referred to as "S block") as a polymer compatible with EP resin, and a polyisoprene block (hereinafter also referred to as "h-I block " ) having non-covalent functional groups, amide groups (hydrogen-bonding functional groups) and carboxyl groups (hydrogen-bonding functional groups), as a rubbery polymer having a glass transition temperature (T g ) of 25° C. or lower, and the rubbery polymer is a polymer that is incompatible (insoluble) with EP resin. The S block content of SIS, which is the base polymer of h-SIS-1, is 19 wt %, and the I block content is 81 wt %.
 実施例1では、まず100質量部のEP樹脂に対して3質量部のh-SISを混合した比較的均質な液状混合物を調製した。続いて得られた液状混合物中のEP樹脂100質量部に対して、6質量部のDICYと、1質量部のDCMUと、35質量部のCaCO3と、1質量部のCaOを加え、脱泡攪拌して混合することで得られた液状混合物を接着剤とした。 In Example 1, a relatively homogeneous liquid mixture was prepared by mixing 3 parts by mass of h-SIS with 100 parts by mass of EP resin. Next, 6 parts by mass of DICY, 1 part by mass of DCMU, 35 parts by mass of CaCO3 , and 1 part by mass of CaO were added to 100 parts by mass of EP resin in the obtained liquid mixture, and the mixture was mixed while degassing and stirring to obtain an adhesive.
 詳細には、実施例1では、24gのh-SIS-1と150gのTHFと、老化防止剤としてIrganox(登録商標)565(ヒンダードフェノール系酸化防止剤,BASF社製)を0.017gとIrgafos(登録商標)168(リン系加工安定剤,BASF社製)を0.024g加えて撹拌した。更にEP樹脂を120g添加し、室温でメカニカルスターラーを用いてよく攪拌して均質な溶液を得た。続いて、得られた混合溶液をロータリーエバポレーションすることで、THFを蒸発させた。更に、55℃で8時間、メカニカルスターラーで攪拌し、真空乾燥を行うことで、THFをほとんど蒸発させた。得られたh-SIS-1とEP樹脂からなる混合物は比較的均質であり、液状であった。 In detail, in Example 1, 24 g of h-SIS-1, 150 g of THF, and 0.017 g of Irganox (registered trademark) 565 (hindered phenol-based antioxidant, manufactured by BASF) and 0.024 g of Irgafos (registered trademark) 168 (phosphorus-based processing stabilizer, manufactured by BASF) as antioxidants were added and stirred. 120 g of EP resin was further added and thoroughly stirred at room temperature using a mechanical stirrer to obtain a homogeneous solution. The resulting mixed solution was then rotary evaporated to evaporate the THF. The mixture was further stirred at 55°C for 8 hours using a mechanical stirrer and vacuum dried to evaporate most of the THF. The resulting mixture of h-SIS-1 and EP resin was relatively homogeneous and liquid.
 なお、得られた液状混合物の組成を確認するためにプロトン核磁気共鳴分光(1H-NMR)法によりスペクトルを得た。溶媒には重クロロホルムを使用した。得られた1H-NMRスペクトルを図4に示す。h-SIS中のh-Iブロックのプロトンに由来するシグナル、EP樹脂のエポキシ環のプロトンに由来するシグナル(a)、THFのプロトンに由来するシグナル(g)の積分比から各成分のモル比を計算し、重量比を見積もったところ、液状混合物にはEP樹脂100質量部に対して、h-SISが18質量部含まれており、THF0.35質量部含まれていたがほとんど除かれていることが分かった。 To confirm the composition of the obtained liquid mixture, a spectrum was obtained by proton nuclear magnetic resonance spectroscopy ( 1H -NMR). Deuterated chloroform was used as the solvent. The obtained 1H -NMR spectrum is shown in Figure 4. The molar ratio of each component was calculated from the integral ratio of the signal derived from the protons of the h-I block in h-SIS, the signal (a) derived from the protons of the epoxy ring of the EP resin, and the signal (g) derived from the protons of THF, and the weight ratio was estimated. It was found that the liquid mixture contained 18 parts by mass of h-SIS per 100 parts by mass of EP resin, and that 0.35 parts by mass of THF was contained but was almost removed.
 更に、得られた液状混合物に対してEP樹脂を加え、EP樹脂100質量部に対して、h-SIS-1が3質量部となるようにし、DICYを6質量部、DCMUを1質量部、CaCO3を35質量部、CaOを1質量部加えて脱泡攪拌し、混合物(接着剤組成物)を得た。得られた混合物は比較的均質な液状であり、一液熱硬化型エポキシ系接着剤組成物である。 Further, EP resin was added to the obtained liquid mixture so that h-SIS-1 was 3 parts by mass per 100 parts by mass of EP resin, DICY 6 parts by mass, DCMU 1 part by mass, CaCO3 35 parts by mass, and CaO 1 part by mass were added and degassed and stirred to obtain a mixture (adhesive composition). The obtained mixture is a relatively homogeneous liquid, and is a one-part thermosetting epoxy adhesive composition.
[実施例2]
 実施例2では、EP樹脂100質量部に対して、h-SIS-1を6質量部、DICYを6質量部、DCMUを2質量部、CaCO3を36質量部、CaOを2質量部の配合とした以外は、実施例1と同様にして、h-SIS-1とEP樹脂とDICYとDCMUとCaCO3とCaOとからなる液状混合物を作製し、これを接着剤とした。
[Example 2]
In Example 2, a liquid mixture consisting of h-SIS-1, EP resin, DICY, DCMU, CaCO3 , and CaO was prepared in the same manner as in Example 1, except that 6 parts by mass of h-SIS-1, 6 parts by mass of DICY, 2 parts by mass of DCMU, 36 parts by mass of CaCO3, and 2 parts by mass of CaO were blended relative to 100 parts by mass of EP resin, and this was used as an adhesive.
[実施例3]
 実施例3では、EP樹脂100質量部に対して、h-SIS-1を10質量部、DICYを6質量部、DCMUを2質量部、CaCO3を38質量部、CaOを2質量部の配合とした以外は、実施例1と同様にして、h-SIS-1とEP樹脂とDICYとDCMUとCaCO3とCaOとからなる液状混合物を作製し、これを接着剤とした。
[Example 3]
In Example 3, a liquid mixture consisting of h-SIS-1, EP resin, DICY, DCMU, CaCO3 , and CaO was prepared in the same manner as in Example 1, except that 10 parts by mass of h-SIS-1, 6 parts by mass of DICY, 2 parts by mass of DCMU, 38 parts by mass of CaCO3, and 2 parts by mass of CaO were blended relative to 100 parts by mass of EP resin, and this was used as an adhesive.
[実施例4]
 実施例4では、EP樹脂100質量部に対して、h-SIS-1を13質量部、DICYを6質量部、DCMUを2質量部、CaCO3を39質量部、CaOを2質量部の配合とした以外は、実施例1と同様にして、h-SIS-1とEP樹脂とDICYとDCMUとCaCO3とCaOとからなる液状混合物を作製し、これを接着剤とした。
[Example 4]
In Example 4, a liquid mixture consisting of h-SIS-1, EP resin, DICY, DCMU, CaCO3 , and CaO was prepared in the same manner as in Example 1, except that 100 parts by mass of EP resin were blended with 13 parts by mass of h-SIS-1, 6 parts by mass of DICY, 2 parts by mass of DCMU, 39 parts by mass of CaCO3, and 2 parts by mass of CaO, and this was used as an adhesive.
[実施例5]
 実施例5では、EP樹脂100質量部に対して、h-SIS-1を17質量部、DICYを6質量部、DCMUを2質量部、CaCO3を40質量部、CaOを2質量部の配合とした以外は、実施例1と同様にして、h-SIS-1とEP樹脂とDICYとDCMUとCaCO3とCaOとからなる液状混合物を作製し、これを接着剤とした。
[Example 5]
In Example 5, a liquid mixture consisting of h-SIS-1, EP resin, DICY, DCMU, CaCO3 , and CaO was prepared in the same manner as in Example 1, except that 17 parts by mass of h-SIS-1, 6 parts by mass of DICY, 2 parts by mass of DCMU, 40 parts by mass of CaCO3, and 2 parts by mass of CaO were blended relative to 100 parts by mass of EP resin, and this was used as an adhesive.
[実施例6]
 実施例6では、13.3gのh-SISと、6.68gのEP樹脂と、0.466gのDICYとをTHFとメタノールの混合溶媒(重量比8:2)133gに溶解させた。老化防止剤としてIrganox(登録商標)565を0.0093gとIrgafos(登録商標)168を0.0133g加えて撹拌した。そして、得られた溶液をテフロン(登録商標)シートが敷かれた20×16.5cmのバットに移し、35℃で1日間溶媒キャストを行った。その後、室温で2日以上真空乾燥し、揮発性の溶媒(THFとメタノール)を蒸発させることで混合物(接着剤組成物)を得た。得られた混合物は比較的均質な膜状(シート状)であり、EP樹脂100質量部に対して、h-SIS-1を200質量部、DICYを7質量部の配合としたh-SISとEP樹脂とDICYとからなる一液熱硬化型エポキシ系接着剤組成物である。
[Example 6]
In Example 6, 13.3 g of h-SIS, 6.68 g of EP resin, and 0.466 g of DICY were dissolved in 133 g of a mixed solvent of THF and methanol (weight ratio 8:2). 0.0093 g of Irganox (registered trademark) 565 and 0.0133 g of Irgafos (registered trademark) 168 were added as antioxidants and stirred. The resulting solution was then transferred to a 20 x 16.5 cm tray covered with a Teflon (registered trademark) sheet and solvent cast at 35 ° C. for one day. The mixture was then vacuum dried at room temperature for more than two days, and the volatile solvents (THF and methanol) were evaporated to obtain a mixture (adhesive composition). The obtained mixture was in the form of a relatively homogeneous film (sheet), and was a one-component thermosetting epoxy adhesive composition consisting of h-SIS, EP resin, and DICY, with a blend ratio of 200 parts by mass of h-SIS-1 and 7 parts by mass of DICY per 100 parts by mass of EP resin.
[実施例7]
 実施例7では、EP樹脂100質量部に対してh-SIS-1を100質量部の配合とした以外は、実施例6と同様にして、h-SIS-1とEP樹脂とDICYからなる混合膜を作製し、これを接着剤とした。
[Example 7]
In Example 7, a mixed film consisting of h-SIS-1, EP resin, and DICY was prepared in the same manner as in Example 6, except that 100 parts by mass of h-SIS-1 was mixed with 100 parts by mass of EP resin, and this was used as an adhesive.
[実施例8]
 実施例8では、EP樹脂100質量部に対してh-SIS-1を600質量部の配合とした以外は、実施例6と同様にして、h-SIS-1とEP樹脂とDICYからなるからなる混合膜を作製し、これを接着剤とした。
[Example 8]
In Example 8, a mixed film consisting of h-SIS-1, EP resin, and DICY was prepared in the same manner as in Example 6, except that 600 parts by mass of h-SIS-1 was mixed with 100 parts by mass of EP resin, and this was used as an adhesive.
[実施例9]
 実施例9ではエポキシ樹脂と非相溶でガラス転移温度(Tg)が25℃以下である非共有結合性官能基を有するゴム状ポリマー及びエポキシ樹脂と相溶するポリマーからなる官能性ブロック共重合体として、スチレン系熱可塑性エラストマーであるポリスチレン-ポリイソプレン-ポリスチレンブロック共重合体(SIS)に対し、変性剤及び塩基による変性処理を行い、更に塩基によって中和を行うことにより、SISのポリイソプレン鎖に非共有結合性官能基として水素結合性官能基であるアミド基及びイオン性官能基であるカルボキレート基が導入されたポリスチレン-官能性ポリイソプレン-ポリスチレンブロック共重合体(以下、「i-SIS」とも称する)を用いた。
[Example 9]
In Example 9, a functional block copolymer consisting of a rubber-like polymer having a non-covalent functional group that is incompatible with epoxy resin and has a glass transition temperature (T g ) of 25° C. or lower, and a polymer compatible with epoxy resin, was used. The functional block copolymer used in Example 9 was a polystyrene-functional polyisoprene-polystyrene block copolymer (hereinafter also referred to as "i-SIS") obtained by modifying a polystyrene-polyisoprene-polystyrene block copolymer (SIS), which is a styrene-based thermoplastic elastomer, with a modifying agent and a base, and further neutralizing it with a base, to introduce an amide group, which is a hydrogen-bonding functional group, and a carboxylate group, which is an ionic functional group, as non-covalent functional groups into the polyisoprene chain of the SIS.
 ここでは、文献(Polymer 2021,217,123419.、ACS Omega 2022,7(3),2821-2830.)に基づき、上記h-SIS中のカルボキシ基を塩基であるナトリウムメトキシドで中和反応させることでイオン性官能基を有するi-SISを合成している。即ち、実施例1のh-SIS-1とナトリウムメトキシドを反応させ、i-SISを得た。具体的には、実施例1で得られたh-SIS-1を22.5gと160gのTHF、40gのメタノール(THFとメタノールの重量比8/2)を丸底フラスコに加え、室温でメカニカルスターラーを用いてよく攪拌して均質な溶液を得た。その後、ナトリウムメトキシドのメタノール溶液(濃度5mol/L)3.0mLを加えた。このとき、h-SIS-1中の無水コハク酸ユニット導入量とナトリウムメトキシドはほぼ等モル量とした。 Here, based on the literature (Polymer 2021, 217, 123419., ACS Omega 2022, 7 (3), 2821-2830.), i-SIS having an ionic functional group is synthesized by neutralizing the carboxyl group in the above h-SIS with sodium methoxide, which is a base. That is, i-SIS was obtained by reacting h-SIS-1 of Example 1 with sodium methoxide. Specifically, 22.5 g of h-SIS-1 obtained in Example 1, 160 g of THF, and 40 g of methanol (weight ratio of THF to methanol: 8/2) were added to a round-bottom flask, and the mixture was stirred well at room temperature using a mechanical stirrer to obtain a homogeneous solution. Then, 3.0 mL of a methanol solution of sodium methoxide (concentration 5 mol/L) was added. At this time, the amount of succinic anhydride unit introduced in h-SIS-1 and the amount of sodium methoxide were approximately equimolar.
 これより、SISを無水マレイン酸及びn-ブチルアミンで変性させてなる官能性ブロック共重合体であるh-SIS-1のカルボキシル基のカルボン酸を塩基であるナトリウムメトキシドで中和してカルボキシレート基に変性させた官能性ブロック共重合体(以下、「i-SIS-1」とも称する)を得た。
 即ち、h-SIS中のカルボキシル基は酸性のため、上述の工程によって、塩基性化合物であるナトリウムメトキシドとの反応により、塩または酸-塩基複合体であるカルボキシレートを形成する。これより、無水マレイン酸(変性剤)及びn-ブチルアミン(塩基)で変性させ、更にナトリウムメトキシド(塩基)によるカルボン酸の中和を行うことにより得られたものは、SISのポリイソプレン鎖にカルボキシレート基(イオン結合性官能基)とアミド基(水素結合性官能基)を有するモノマーが重合している部分を含む官能性ブロック共重合体である。なお、SISを変性及び塩基処理してh-SISを形成し、更にh-SISを塩基処理することで、アミド基(水素結合性官能基)及びカルボキシレート基(イオン結合性官能基)を有する官能性ブロック共重合体(i-SIS)としたその化学反応式を図1(b)に示す。
 因みに官能性ブロック共重合体中のポリイソプレンブロック100モル%中の、イオン結合性基の含有率(=カルボキシレートイオン数/(カルボキシレートイオン数+カルボキシル基数)=酸無水物基の導入率×カルボキシル基に対して使用したナトリウムメトキシドのモル分率)は5.6モル%であった。
As a result, a functional block copolymer (hereinafter also referred to as "i-SIS-1") was obtained in which the carboxylic acid of the carboxyl group of h-SIS-1, a functional block copolymer obtained by modifying SIS with maleic anhydride and n-butylamine, was neutralized with sodium methoxide, a base, to be modified into a carboxylate group.
That is, since the carboxyl group in h-SIS is acidic, it reacts with sodium methoxide, a basic compound, to form a salt or a carboxylate, which is an acid-base complex, in the above-mentioned process. The product obtained by modifying the h-SIS with maleic anhydride (modifier) and n-butylamine (base) and further neutralizing the carboxylic acid with sodium methoxide (base) is a functional block copolymer containing a portion in which a monomer having a carboxylate group (ionic bond functional group) and an amide group (hydrogen bond functional group) is polymerized in the polyisoprene chain of the SIS. The chemical reaction formula of the functional block copolymer (i-SIS) having an amide group (hydrogen bond functional group) and a carboxylate group (ionic bond functional group) obtained by modifying and base-treating the SIS to form h-SIS and further base-treating the h-SIS is shown in FIG. 1(b).
Incidentally, the content of ion-bonding groups in 100 mol % of the polyisoprene blocks in the functional block copolymer (= number of carboxylate ions / (number of carboxylate ions + number of carboxyl groups) = introduction rate of acid anhydride groups × molar fraction of sodium methoxide used relative to the carboxyl groups) was 5.6 mol %.
 なお、i-SIS-1は、EP樹脂と相溶するポリマーとしてポリスチレンブロック(Sブロック)を有し、ガラス転移温度(Tg)が25℃以下であるゴム状ポリマーとして非共有結合性官能基であるアミド基(水素結合性官能基)及びカルボキシレート基(イオン結合性官能基)を有するポリイソプレンブロック(以下、「i-Iブロック」とも称する)を有し、当該ゴム状ポリマーはEP樹脂に非相溶(不溶)なポリマーである。i-SISのベースであるSISのSブロック含有率は19wt%であり、Iブロック含有率は、81wt%である。 Incidentally, i-SIS-1 has a polystyrene block (S block) as a polymer compatible with EP resin, and a polyisoprene block (hereinafter also referred to as "i-I block" ) having non-covalent functional groups, an amide group (hydrogen-bonding functional group) and a carboxylate group (ionic-bonding functional group), as a rubbery polymer having a glass transition temperature (T g ) of 25° C. or lower, and the rubbery polymer is a polymer that is incompatible (insoluble) with EP resin. The S block content of SIS, which is the base of i-SIS, is 19 wt %, and the I block content is 81 wt %.
 上記のi-SIS-1を含む混合溶液に、さらにEP樹脂を112.5g添加し、室温でメカニカルスターラーを用いてよく攪拌し続いて、得られた混合溶液をロータリーエバポレーションすることで、THFとメタノールの混合溶媒を蒸発させた。更に、55℃で10時間、メカニカルスターラーで攪拌し、真空乾燥を行うことで、THFとメタノールをほとんど蒸発させた。得られたi-SIS-1とEP樹脂からなる混合物は比較的均質であり、液状であった。 112.5 g of EP resin was further added to the above-mentioned mixed solution containing i-SIS-1, and the mixture was thoroughly stirred at room temperature using a mechanical stirrer. The resulting mixed solution was then rotary evaporated to evaporate the mixed solvent of THF and methanol. The mixture was then further stirred at 55°C for 10 hours using a mechanical stirrer and vacuum dried to evaporate most of the THF and methanol. The resulting mixture of i-SIS-1 and EP resin was relatively homogeneous and liquid.
 なお、得られた液状混合物の組成を確認するためにプロトン核磁気共鳴分光(1H-NMR)法によりスペクトルを得た。溶媒には重クロロホルムを使用した。得られた1H-NMRスペクトルを図5に示す。i-SIS-1中のi-Iブロックのプロトンに由来するシグナル、EP樹脂のエポキシ環のプロトンに由来するシグナル(a)、THFのプロトンに由来するシグナル(g)、メタノールのプロトンに由来するシグナル(i)の積分比から各成分のモル比を計算し、重量比を見積もったところ、液状混合物にはEP樹脂100質量部に対して、i-SISが19質量部含まれており、THFが0.54質量部、メタノールが0.05質量部含まれていたがほとんど除かれていることが分かった。 In order to confirm the composition of the obtained liquid mixture, a spectrum was obtained by proton nuclear magnetic resonance spectroscopy (1H-NMR). Deuterated chloroform was used as the solvent. The obtained 1H-NMR spectrum is shown in Figure 5. The molar ratio of each component was calculated from the integral ratio of the signal derived from the protons of the i-I block in i-SIS-1, the signal derived from the protons of the epoxy ring of the EP resin (a), the signal derived from the protons of THF (g), and the signal derived from the protons of methanol (i), and the weight ratio was estimated. It was found that the liquid mixture contained 19 parts by mass of i-SIS per 100 parts by mass of EP resin, 0.54 parts by mass of THF, and 0.05 parts by mass of methanol, but most of these had been removed.
 実施例9では、上述のi-SIS-1を含む液状混合物に対してEP樹脂を加え、EP樹脂100質量部に対して、i-SIS-1が3質量部となるようにし、続いて得られた液状混合物中のEP樹脂100質量部に対して、6質量部のDICYと、1質量部のDCMUと、35質量部のCaCO3と、1質量部のCaOを加え、脱泡攪拌して混合することで得られた液状混合物(接着剤組成物)を得た。得られた混合物は比較的均質な液状であり、i-SISとEP樹脂とDICYとDCMUとCaCO3とCaOとからなる一液熱硬化型エポキシ系接着剤組成物である。 In Example 9, EP resin was added to the liquid mixture containing i-SIS-1 described above so that the amount of i-SIS-1 was 3 parts by mass per 100 parts by mass of EP resin, and then 6 parts by mass of DICY, 1 part by mass of DCMU, 35 parts by mass of CaCO 3 and 1 part by mass of CaO were added to 100 parts by mass of EP resin in the resulting liquid mixture, and the mixture was mixed by degassing and stirring to obtain a liquid mixture (adhesive composition). The resulting mixture was a relatively homogeneous liquid, and was a one-part thermosetting epoxy adhesive composition consisting of i-SIS, EP resin, DICY, DCMU, CaCO 3 and CaO.
 [実施例10]
 実施例10では、EP樹脂100質量部に対して、i-SISを6質量部、DICYを6質量部、DCMUを2質量部、CaCO3を36質量部、CaOを2質量部の配合とした以外は、実施例7と同様にして、i-SISとEP樹脂とDICYとDCMUとCaCO3とCaOとからなる液状混合物を作製し、これを接着剤とした。
[Example 10]
In Example 10, a liquid mixture consisting of i-SIS, EP resin, DICY, DCMU, CaCO3, and CaO was prepared in the same manner as in Example 7, except that 100 parts by mass of EP resin were mixed with 6 parts by mass of i-SIS, 6 parts by mass of DICY, 2 parts by mass of DCMU, 36 parts by mass of CaCO3, and 2 parts by mass of CaO, and this was used as an adhesive.
 [実施例11]
 実施例11では、EP樹脂100質量部に対して、i-SISを9質量部、DICYを6質量部、DCMUを2質量部、CaCO3を37質量部、CaOを2質量部の配合とした以外は、実施例7と同様にして、i-SISとEP樹脂とDICYとDCMUとCaCO3とCaOとからなる液状混合物を作製し、これを接着剤とした。
[Example 11]
In Example 11, a liquid mixture consisting of i-SIS, EP resin, DICY, DCMU, CaCO3, and CaO was prepared in the same manner as in Example 7, except that 100 parts by mass of EP resin were mixed with 9 parts by mass of i-SIS, 6 parts by mass of DICY, 2 parts by mass of DCMU, 37 parts by mass of CaCO3, and 2 parts by mass of CaO, and this was used as an adhesive.
 [実施例12]
 実施例10では、EP樹脂100質量部に対して、i-SISを13質量部、DICYを6質量部、DCMUを2質量部、CaCO3を39質量部、CaOを2質量部の配合とした以外は、実施例7と同様にして、i-SISとEP樹脂とDICYとDCMUとCaCO3とCaOとからなる液状混合物を作製し、これを接着剤とした。
[Example 12]
In Example 10, a liquid mixture consisting of i-SIS, EP resin, DICY, DCMU, CaCO3, and CaO was prepared in the same manner as in Example 7, except that 100 parts by mass of EP resin were mixed with 13 parts by mass of i-SIS, 6 parts by mass of DICY, 2 parts by mass of DCMU, 39 parts by mass of CaCO3, and 2 parts by mass of CaO, and this was used as an adhesive.
 [実施例13]
 実施例13では、EP樹脂100質量部に対して、i-SISを17質量部、DICYを6質量部、DCMUを2質量部、CaCO3を40質量部、CaOを2質量部の配合とした以外は、実施例7と同様にして、i-SISとEP樹脂とDICYとDCMUとCaCO3とCaOとからなる液状混合物を作製し、これを接着剤とした。
[Example 13]
In Example 13, a liquid mixture consisting of i-SIS, EP resin, DICY, DCMU, CaCO3 , and CaO was prepared in the same manner as in Example 7, except that 17 parts by mass of i-SIS, 6 parts by mass of DICY, 2 parts by mass of DCMU, 40 parts by mass of CaCO3, and 2 parts by mass of CaO were blended relative to 100 parts by mass of EP resin, and this was used as an adhesive.
 [実施例14]
 実施例14では、13.4gのh-SIS-1をTHFとメタノールの混合溶媒(重量比8:2)130gに溶解させ、ナトリウムメトキシドのメタノール溶液(濃度5mol/L)1.74mLを加えてi-SIS-1とした後に、6.67gのEP樹脂と、0.467gのDICYを加えて溶解させた。さらに老化防止剤を適宜加えて撹拌した。そして、得られた溶液をテフロン(登録商標)シートが敷かれた20×16.5cmのバットに移し、35℃で1日間溶媒キャストを行った。その後、室温で2日以上真空乾燥し、揮発性の溶媒(THFとメタノール)を蒸発させることで混合物(接着剤組成物)を得た。得られた混合物は比較的均質な膜状(シート状)であり、EP樹脂100質量部に対して、i-SIS-1を200質量部、DICYを7質量部の配合としたi-SIS-1とEP樹脂とDICYとからなる一液熱硬化型エポキシ系接着剤組成物である。
[Example 14]
In Example 14, 13.4 g of h-SIS-1 was dissolved in 130 g of a mixed solvent of THF and methanol (weight ratio 8:2), and 1.74 mL of a methanol solution of sodium methoxide (concentration 5 mol/L) was added to obtain i-SIS-1, and then 6.67 g of EP resin and 0.467 g of DICY were added and dissolved. An anti-aging agent was further added appropriately and stirred. The resulting solution was then transferred to a 20 x 16.5 cm tray covered with a Teflon (registered trademark) sheet and solvent cast at 35 ° C. for one day. The mixture was then vacuum dried at room temperature for more than two days, and the volatile solvents (THF and methanol) were evaporated to obtain a mixture (adhesive composition). The obtained mixture was in the form of a relatively homogeneous film (sheet), and was a one-component thermosetting epoxy adhesive composition consisting of i-SIS-1, EP resin, and DICY, with a blend ratio of 200 parts by mass of i-SIS-1 and 7 parts by mass of DICY per 100 parts by mass of EP resin.
 [実施例15]
 実施例15では、実施例1と同様にして無水コハク酸ユニット導入率が2.1mol%のh-SIS(以下、「h-SIS-2」とも称する)を合成し、100質量部のEP樹脂に対して4.8質量部のh-SIS-2を含む比較的均質な液状混合物を調製した。得られた液状混合物中のEP樹脂100質量部に対して、7質量部のDICYと1質量部のアミンアダクト系加速剤(アミキュアTMMY-24、以下「AA」とも称する)、19.9質量部(混合物全体を100質量部としたときの15質量部)のCaCO3を加え、よく攪拌することで得られた液状混合物を接着剤とした。
[Example 15]
In Example 15, h-SIS (hereinafter also referred to as "h-SIS-2") having a succinic anhydride unit introduction rate of 2.1 mol% was synthesized in the same manner as in Example 1, and a relatively homogeneous liquid mixture containing 4.8 parts by mass of h-SIS-2 per 100 parts by mass of EP resin was prepared. 7 parts by mass of DICY, 1 part by mass of an amine adduct accelerator (Amicure TMMY-24, hereinafter also referred to as "AA"), and 19.9 parts by mass of CaCO3 (15 parts by mass when the entire mixture is taken as 100 parts by mass) were added to 100 parts by mass of EP resin in the obtained liquid mixture, and the resulting liquid mixture was used as an adhesive by thoroughly stirring.
 [実施例16]
 実施例16では、実施例15と同様にして100質量部のEP樹脂に対して、9.8質量部のh-SIS-2を含む比較的均質な液状混合物を調製し、7質量部のDICYと1質量部のAA、20.8質量部 (混合物全体を100質量部としたときの15質量部)のCaCO3を加え、よく混合することで得られた液状混合物を接着剤とした。
[Example 16]
In Example 16, a relatively homogeneous liquid mixture containing 9.8 parts by mass of h-SIS-2 per 100 parts by mass of EP resin was prepared in the same manner as in Example 15, and 7 parts by mass of DICY, 1 part by mass of AA, and 20.8 parts by mass of CaCO 3 (15 parts by mass when the entire mixture is taken as 100 parts by mass) were added thereto and mixed well to obtain a liquid mixture as an adhesive.
 [実施例17]
 実施例17では、実施例15と同様にして100質量部のEP樹脂に対して、15質量部のh-SIS-2を含む比較的均質な液状混合物を調製し、7質量部のDICYと1質量部のAA、21.7質量部 (混合物全体を100質量部としたときの15質量)のCaCO3を加え、よく混合することで得られた液状混合物を接着剤とした。
[Example 17]
In Example 17, a relatively homogeneous liquid mixture containing 15 parts by mass of h-SIS-2 for 100 parts by mass of EP resin was prepared in the same manner as in Example 15, and 7 parts by mass of DICY, 1 part by mass of AA, and 21.7 parts by mass of CaCO 3 (15 parts by mass when the entire mixture is taken as 100 parts by mass) were added thereto and mixed well to obtain a liquid mixture as an adhesive.
 [実施例18]
 実施例18では、実施例15と同様にして100質量部のEP樹脂に対して、21質量部のh-SIS-2を含む比較的均質な液状混合物を調製し、7質量部のDICYと1質量部のAA、22.8質量部 (混合物全体を100質量部としたときの15質量)のCaCO3を加え、よく混合することで得られた液状混合物を接着剤とした。
[Example 18]
In Example 18, a relatively homogeneous liquid mixture containing 21 parts by mass of h-SIS-2 per 100 parts by mass of EP resin was prepared in the same manner as in Example 15, and 7 parts by mass of DICY, 1 part by mass of AA, and 22.8 parts by mass of CaCO 3 (15 parts by mass when the entire mixture is taken as 100 parts by mass) were added thereto and mixed well to obtain a liquid mixture as an adhesive.
 [実施例19]
 実施例19では、実施例15と同様にして100質量部のEP樹脂に対して、24質量部のh-SIS-2を含む比較的均質な液状混合物を調製し、7質量部のDICYと1質量部のAA、23.3質量部 (混合物全体を100質量部としたときの15質量)のCaCO3を加え、よく混合することで得られた液状混合物を接着剤とした。
[Example 19]
In Example 19, a relatively homogeneous liquid mixture containing 24 parts by mass of h-SIS-2 per 100 parts by mass of EP resin was prepared in the same manner as in Example 15, and 7 parts by mass of DICY, 1 part by mass of AA, and 23.3 parts by mass of CaCO 3 (15 parts by mass when the entire mixture is taken as 100 parts by mass) were added thereto and mixed well to obtain a liquid mixture as an adhesive.
 [実施例20]
 実施例20では、実施例15と同様にして100質量部のEP樹脂に対して、28質量部のh-SIS-2を含む比較的均質な液状混合物を調製し、7質量部のDICYと1質量部のAA、24.0質量部 (混合物全体を100質量部としたときの15質量)のCaCO3を加え、よく混合することで得られた液状混合物を接着剤とした。
[Example 20]
In Example 20, a relatively homogeneous liquid mixture containing 28 parts by mass of h-SIS-2 per 100 parts by mass of EP resin was prepared in the same manner as in Example 15, and 7 parts by mass of DICY, 1 part by mass of AA, and 24.0 parts by mass of CaCO 3 (15 parts by mass when the entire mixture is taken as 100 parts by mass) were added thereto and mixed well to obtain a liquid mixture as an adhesive.
 [実施例21]
 実施例21では、実施例1と同様にして無水コハク酸ユニット導入率が4.4mol%のh-SIS(以下、h-SIS-3とも称する)を合成し、実施例1と同様にして100質量部のEP樹脂に対して、6.0質量部のh-SIS-3を含む比較的均質な液状混合物を調製し、7質量部のDICYと1質量部のAA、20.1質量部 (混合物全体を100質量部としたときの15質量)のCaCO3を加え、よく混合することで得られた液状混合物を接着剤とした。
[Example 21]
In Example 21, h-SIS (hereinafter also referred to as h-SIS-3) having a succinic anhydride unit introduction rate of 4.4 mol% was synthesized in the same manner as in Example 1, and a relatively homogeneous liquid mixture containing 6.0 parts by mass of h-SIS-3 per 100 parts by mass of EP resin was prepared in the same manner as in Example 1, and 7 parts by mass of DICY, 1 part by mass of AA, and 20.1 parts by mass of CaCO3 (15 parts by mass when the entire mixture is taken as 100 parts by mass) were added thereto and mixed well to obtain a liquid mixture to be used as an adhesive.
 [実施例22]
 実施例22では、実施例21と同様にして100質量部のEP樹脂に対して、9.0質量部のh-SIS-3を含む比較的均質な液状混合物を調製し、7質量部のDICYと1質量部のAA、20.6質量部 (混合物全体を100質量部としたときの15質量)のCaCO3を加え、よく混合することで得られた液状混合物を接着剤とした。
[Example 22]
In Example 22, a relatively homogeneous liquid mixture containing 9.0 parts by mass of h-SIS-3 per 100 parts by mass of EP resin was prepared in the same manner as in Example 21, and 7 parts by mass of DICY, 1 part by mass of AA, and 20.6 parts by mass of CaCO 3 (15 parts by mass when the entire mixture is taken as 100 parts by mass) were added thereto and mixed well to obtain a liquid mixture as an adhesive.
 [実施例23]
 実施例23では、実施例21と同様にして100質量部のEP樹脂に対して、16質量部のh-SIS-3を含む比較的均質な液状混合物を調製し、7質量部のDICYと1質量部のAA、21.9質量部 (混合物全体を100質量部としたときの15質量)のCaCO3を加え、よく混合することで得られた液状混合物を接着剤とした。
[Example 23]
In Example 23, a relatively homogeneous liquid mixture containing 16 parts by mass of h-SIS-3 per 100 parts by mass of EP resin was prepared in the same manner as in Example 21, and 7 parts by mass of DICY, 1 part by mass of AA, and 21.9 parts by mass of CaCO 3 (15 parts by mass when the entire mixture is taken as 100 parts by mass) were added thereto and mixed well to obtain a liquid mixture as an adhesive.
 [実施例24]
 実施例24では、実施例21と同様にして100質量部のEP樹脂に対して、19質量部のh-SIS-3を含む比較的均質な液状混合物を調製し、7質量部のDICYと1質量部のAA、22.4質量部 (混合物全体を100質量部としたときの15質量)のCaCO3を加え、よく混合することで得られた液状混合物を接着剤とした。
[Example 24]
In Example 24, a relatively homogeneous liquid mixture containing 19 parts by mass of h-SIS-3 per 100 parts by mass of EP resin was prepared in the same manner as in Example 21, and 7 parts by mass of DICY, 1 part by mass of AA, and 22.4 parts by mass of CaCO 3 (15 parts by mass when the entire mixture is taken as 100 parts by mass) were added thereto and mixed well to obtain a liquid mixture as an adhesive.
 [実施例25]
 実施例25では、実施例10と同様にして100質量部のEP樹脂に対して、24質量部のh-SIS-3を含む比較的均質な液状混合物を調製し、7質量部のDICYと1質量部のAA、23.3質量部 (混合物全体を100質量部としたときの15質量)のCaCO3を加え、よく混合することで得られた液状混合物を接着剤とした。
[Example 25]
In Example 25, a relatively homogeneous liquid mixture containing 24 parts by mass of h-SIS-3 per 100 parts by mass of EP resin was prepared in the same manner as in Example 10, and 7 parts by mass of DICY, 1 part by mass of AA, and 23.3 parts by mass of CaCO 3 (15 parts by mass when the entire mixture is taken as 100 parts by mass) were added thereto and mixed well to obtain a liquid mixture as an adhesive.
 [実施例26]
 実施例26では、実施例6と同様にして100質量部のEP樹脂に対して、3000質量部のh-SIS-1と7質量部のDICY、1質量部のAAを配合した混合膜を作製し、これを接着剤とした。
[Example 26]
In Example 26, a mixed film was prepared by blending 3,000 parts by mass of h-SIS-1, 7 parts by mass of DICY, and 1 part by mass of AA with 100 parts by mass of EP resin in the same manner as in Example 6, and this was used as an adhesive.
 [実施例27]
 実施例27では、実施例1と同様にして無水コハク酸ユニット導入率が約7.5mol%のh-SIS(以下、h-SIS-4とも称する)を合成し、実施例1と同様にして100質量部のEP樹脂に対して、4.8質量部のh-SIS-3を含む比較的均質な液状混合物を調製し、7質量部のDICYと1質量部のAA、19.9質量部 (混合物全体の15質量部)のCaCO3を加え、よく混合することで得られた液状混合物を接着剤とした。
[Example 27]
In Example 27, h-SIS (hereinafter also referred to as h-SIS-4) having a succinic anhydride unit introduction rate of about 7.5 mol% was synthesized in the same manner as in Example 1, and a relatively homogeneous liquid mixture containing 4.8 parts by mass of h-SIS-3 per 100 parts by mass of EP resin was prepared in the same manner as in Example 1, and 7 parts by mass of DICY, 1 part by mass of AA, and 19.9 parts by mass of CaCO3 ( 15 parts by mass of the entire mixture) were added thereto and mixed well to obtain a liquid mixture to be used as an adhesive.
 [実施例28]
 実施例28では、実施例27と同様にして100質量部のEP樹脂に対して、9.7質量部のh-SIS-4を含む比較的均質な液状混合物を調製し、7質量部のDICYと1質量部のAA、20.8質量部 (混合物全体の15質量部)のCaCO3を加え、よく混合することで得られた液状混合物を接着剤とした。
[Example 28]
In Example 28, a relatively homogeneous liquid mixture containing 9.7 parts by mass of h-SIS-4 per 100 parts by mass of EP resin was prepared in the same manner as in Example 27, and 7 parts by mass of DICY, 1 part by mass of AA, and 20.8 parts by mass of CaCO3 (15 parts by mass of the entire mixture) were added thereto and mixed well to obtain a liquid mixture as an adhesive.
 [実施例29]
 実施例29では、実施例27と同様にして100質量部のEP樹脂に対して、14質量部のh-SIS-4を含む比較的均質な液状混合物を調製し、7質量部のDICYと1質量部のAA、21.5質量部 (混合物全体を100質量部としたときの15質量部)のCaCO3を加え、よく混合することで得られた液状混合物を接着剤とした。
[Example 29]
In Example 29, a relatively homogeneous liquid mixture containing 14 parts by mass of h-SIS-4 per 100 parts by mass of EP resin was prepared in the same manner as in Example 27, and 7 parts by mass of DICY, 1 part by mass of AA, and 21.5 parts by mass of CaCO 3 (15 parts by mass when the entire mixture is taken as 100 parts by mass) were added thereto and mixed well to obtain a liquid mixture as an adhesive.
 [実施例30]
 実施例30では、実施例27と同様にして100質量部のEP樹脂に対して、21質量部のh-SIS-4を含む比較的均質な液状混合物を調製し、7質量部のDICYと1質量部のAA、22.8質量部 (混合物全体を100質量部としたときの15質量部)のCaCO3を加え、よく混合することで得られた液状混合物を接着剤とした。
[Example 30]
In Example 30, a relatively homogeneous liquid mixture containing 21 parts by mass of h-SIS-4 per 100 parts by mass of EP resin was prepared in the same manner as in Example 27, and 7 parts by mass of DICY, 1 part by mass of AA, and 22.8 parts by mass of CaCO 3 (15 parts by mass when the entire mixture is taken as 100 parts by mass) were added thereto and mixed well to obtain a liquid mixture as an adhesive.
 [実施例31]
 実施例31では、実施例10と同様にして100質量部のEP樹脂に対して、24質量部のh-SIS-4を含む比較的均質な液状混合物を調製し、7質量部のDICYと1質量部のAA、23.3質量部 (混合物全体を100質量部としたときの15質量部)のCaCO3を加え、よく混合することで得られた液状混合物を接着剤とした。
[Example 31]
In Example 31, a relatively homogeneous liquid mixture containing 24 parts by mass of h-SIS-4 per 100 parts by mass of EP resin was prepared in the same manner as in Example 10, and 7 parts by mass of DICY, 1 part by mass of AA, and 23.3 parts by mass of CaCO 3 (15 parts by mass when the entire mixture is taken as 100 parts by mass) were added thereto and mixed well to obtain a liquid mixture as an adhesive.
 また、比較例として、官能性ブロック共重合体を配合しない接着剤組成物も作製した。
 [比較例1]
 比較例1では、EP樹脂以外のポリマーを使用せず、EP樹脂100質量部に対してDICYを6質量部、DCMUを1質量部、CaCO3を34質量部、CaOを1質量部配合し、攪拌して得られた液状混合物を接着剤とした。
As a comparative example, an adhesive composition was also prepared that did not contain the functional block copolymer.
[Comparative Example 1]
In Comparative Example 1, no polymer other than EP resin was used, and 6 parts by mass of DICY, 1 part by mass of DCMU, 34 parts by mass of CaCO3 , and 1 part by mass of CaO were blended with 100 parts by mass of EP resin, and the resulting liquid mixture was stirred to form an adhesive.
 [比較例2]
 比較例2では、非共有結合性官能基を有した官能性ブロック共重合体を使用せず、実施例1と同様の手順で、EP樹脂100質量部に対して、非共有結合性官能基を持たないSISを5質量部、DICYを6質量部、DCMUを1質量部、CaCO3を34質量部、CaOを1質量部配合し、得られた液状混合物を接着剤とした。
[Comparative Example 2]
In Comparative Example 2, a functional block copolymer having a non-covalent functional group was not used, and the same procedure as in Example 1 was used to mix 5 parts by mass of SIS having no non-covalent functional group, 6 parts by mass of DICY, 1 part by mass of DCMU, 34 parts by mass of CaCO3 , and 1 part by mass of CaO with respect to 100 parts by mass of EP resin, and the resulting liquid mixture was used as an adhesive.
 [比較例3]
 比較例3では、EP樹脂以外のポリマーを使用せず、EP樹脂100質量部に対してDICYを7質量部、AAを1質量部配合し、攪拌して得られた液状混合物を接着剤とした。
[Comparative Example 3]
In Comparative Example 3, no polymer other than EP resin was used, and 7 parts by mass of DICY and 1 part by mass of AA were blended with 100 parts by mass of EP resin, and the resulting liquid mixture was stirred to prepare an adhesive.
 [比較例4]
 比較例4では、非共有結合性官能基を有した官能性ブロック共重合体を使用せず、実施例6と同様の手順で、EP樹脂100質量部に対して、非共有結合性官能基を持たないSISを200質量部、DICYを7質量部含有する混合膜を作製し、これを接着剤とした。
[Comparative Example 4]
In Comparative Example 4, a functional block copolymer having a non-covalent functional group was not used, and a mixed film containing 200 parts by mass of SIS not having a non-covalent functional group and 7 parts by mass of DICY per 100 parts by mass of EP resin was prepared in the same manner as in Example 6, and this was used as an adhesive.
 [比較例5]
 比較例5では、非共有結合性官能基を有した官能性ブロック共重合体を使用せず、実施例6と同様の手順で、EP樹脂100質量部に対して、非共有結合性官能基を持たないSISを600質量部、DICYを7質量部含有する混合膜を作製し、これを接着剤とした。
[Comparative Example 5]
In Comparative Example 5, a functional block copolymer having a non-covalent functional group was not used, and a mixed film containing 600 parts by mass of SIS having no non-covalent functional group and 7 parts by mass of DICY per 100 parts by mass of EP resin was prepared in the same manner as in Example 6, and this was used as an adhesive.
 [比較例6]
 比較例6では、EP樹脂以外のポリマーを使用せず、EP樹脂100質量部に対してDICYを7質量部、AAを1質量部、CaCO3を19.1質量部 (混合物全体を100質量部としたときの15質量部)配合し、攪拌して得られた液状混合物を接着剤とした。
[Comparative Example 6]
In Comparative Example 6, no polymer other than EP resin was used, and 7 parts by mass of DICY, 1 part by mass of AA, and 19.1 parts by mass of CaCO3 (15 parts by mass when the entire mixture is 100 parts by mass) were mixed with 100 parts by mass of EP resin, and the resulting liquid mixture was used as an adhesive.
 [比較例7]
 比較例7では、非共有結合性官能基を有した官能性ブロック共重合体を使用せず、実施例1と同様の手順で、EP樹脂100質量部に対して、非共有結合性官能基を持たないSISを5.6質量部、DICYを7質量部、AAを1質量部、CaCO3を20.0質量部(混合物全体を100質量部としたときの15質量部)配合し、得られた液状混合物を接着剤とした。
[Comparative Example 7]
In Comparative Example 7, a functional block copolymer having a non-covalent functional group was not used, and the same procedure as in Example 1 was used to mix 5.6 parts by mass of SIS having no non-covalent functional group, 7 parts by mass of DICY, 1 part by mass of AA, and 20.0 parts by mass of CaCO3 (15 parts by mass when the entire mixture is 100 parts by mass) with 100 parts by mass of EP resin, and the resulting liquid mixture was used as an adhesive.
 [比較例8]
 比較例8では、非共有結合性官能基を有した官能性ブロック共重合体を使用せず、実施例1と同様の手順で、EP樹脂100質量部に対して、非共有結合性官能基を持たないSISを9.6質量部、DICYを7質量部、AAを1質量部、CaCO3を20.8質量部(混合物全体を100質量部としたときの15質量部)配合し、得られた液状混合物を接着剤とした。
[Comparative Example 8]
In Comparative Example 8, a functional block copolymer having a non-covalent functional group was not used, and the same procedure as in Example 1 was used to mix 9.6 parts by mass of SIS having no non-covalent functional group, 7 parts by mass of DICY, 1 part by mass of AA, and 20.8 parts by mass of CaCO3 (15 parts by mass when the total mixture is 100 parts by mass) with 100 parts by mass of EP resin, and the resulting liquid mixture was used as an adhesive.
 [比較例9]
 比較例9では、非共有結合性官能基を有した官能性ブロック共重合体を使用せず、実施例1と同様の手順で、EP樹脂100質量部に対して、非共有結合性官能基を持たないSISを16質量部、DICYを7質量部、AAを1質量部、CaCO3を21.9質量部(混合物全体を100質量部としたときの15質量部)配合し、得られた液状混合物を接着剤とした。
[Comparative Example 9]
In Comparative Example 9, a functional block copolymer having a non-covalent functional group was not used, and the same procedure as in Example 1 was used to mix 16 parts by mass of SIS having no non-covalent functional group, 7 parts by mass of DICY, 1 part by mass of AA, and 21.9 parts by mass of CaCO3 (15 parts by mass when the total mixture is 100 parts by mass) with 100 parts by mass of EP resin, and the resulting liquid mixture was used as an adhesive.
 [比較例10]
 比較例10では、非共有結合性官能基を有した官能性ブロック共重合体を使用せず、実施例1と同様の手順で、EP樹脂100質量部に対して、非共有結合性官能基を持たないSISを19質量部、DICYを7質量部、AAを1質量部、CaCO3を22.4質量部(混合物全体を100質量部としたときの15質量部)配合し、得られた液状混合物を接着剤とした。
[Comparative Example 10]
In Comparative Example 10, a functional block copolymer having a non-covalent functional group was not used, and the same procedure as in Example 1 was used to mix 19 parts by mass of SIS having no non-covalent functional group, 7 parts by mass of DICY, 1 part by mass of AA, and 22.4 parts by mass of CaCO3 (15 parts by mass when the entire mixture is 100 parts by mass) with 100 parts by mass of EP resin, and the resulting liquid mixture was used as an adhesive.
 [比較例11]
 比較例11では、非共有結合性官能基を有した官能性ブロック共重合体を使用せず、実施例1と同様の手順で、EP樹脂100質量部に対して、非共有結合性官能基を持たないSISを26質量部、DICYを7質量部、AAを1質量部、CaCO3を23.6質量部(混合物全体を100質量部としたときの15質量部)配合し、得られた液状混合物を接着剤とした。
[Comparative Example 11]
In Comparative Example 11, a functional block copolymer having a non-covalent functional group was not used, and the same procedure as in Example 1 was used to mix 26 parts by mass of SIS having no non-covalent functional group, 7 parts by mass of DICY, 1 part by mass of AA, and 23.6 parts by mass of CaCO3 (15 parts by mass when the entire mixture is 100 parts by mass) with 100 parts by mass of EP resin, and the resulting liquid mixture was used as an adhesive.
 [比較例12]
 比較例12では、非共有結合性官能基を有した官能性ブロック共重合体を使用せず、実施例1と同様の手順で、EP樹脂100質量部に対して、非共有結合性官能基を持たないSISを28質量部、DICYを7質量部、AAを1質量部、CaCO3を24.0質量部(混合物全体を100質量部としたときの15質量部)配合し、得られた液状混合物を接着剤とした。
[Comparative Example 12]
In Comparative Example 12, a functional block copolymer having a non-covalent functional group was not used, and the same procedure as in Example 1 was used to mix 28 parts by mass of SIS having no non-covalent functional group, 7 parts by mass of DICY, 1 part by mass of AA, and 24.0 parts by mass of CaCO3 (15 parts by mass when the entire mixture is 100 parts by mass) with 100 parts by mass of EP resin, and the resulting liquid mixture was used as an adhesive.
 [比較例13]
比較例13では、非共有結合性官能基を有した官能性ブロック共重合体を使用せず、実施例26と同様の手順で、EP樹脂100質量部に対して、非共有結合性官能基を持たないSISを3000質量部、DICYを7質量部、AAを1質量部配合し、得られた膜状混合物を接着剤とした。
[Comparative Example 13]
In Comparative Example 13, a functional block copolymer having a non-covalent functional group was not used, and the same procedure as in Example 26 was used to mix 3,000 parts by mass of SIS having no non-covalent functional group, 7 parts by mass of DICY, and 1 part by mass of AA with 100 parts by mass of EP resin, and the resulting film-like mixture was used as an adhesive.
 ここで、非共有結合性官能基として水素結合性官能基を有するh-SISを含有したエポキシ系接着剤組成物の代表として実施例24、非共有結合性官能基を持たないSISを含有したエポキシ系接着剤組成物の代表として比較例10、及びEP樹脂以外のポリマーを使用していないエポキシ系接着剤組成物の代表として比較例6に関して、接着剤硬化物を調製し、フーリエ変換赤外分光法(FT-IR)により接着剤硬化物中の水素結合の形成、動的粘弾性測定により緩和挙動の確認、そして透過型電子顕微鏡(TEM)によりナノ構造の観察を行った。 Here, for Example 24, which is a representative epoxy adhesive composition containing h-SIS that has a hydrogen-bonding functional group as a non-covalent functional group, Comparative Example 10, which is a representative epoxy adhesive composition containing SIS that does not have a non-covalent functional group, and Comparative Example 6, which is a representative epoxy adhesive composition that does not use a polymer other than EP resin, adhesive cured products were prepared, and the formation of hydrogen bonds in the adhesive cured products was confirmed by Fourier transform infrared spectroscopy (FT-IR), the relaxation behavior was confirmed by dynamic viscoelasticity measurement, and the nanostructure was observed by transmission electron microscope (TEM).
(FT-IR)
 実施例24、比較例6、及び比較例10の液状接着剤を臭化カリウム(KBr)プレートに挟んで170℃に加熱したオーブンに移し、50分後にオーブンから取り出すことにより、加熱硬化したFT-IR測定用の試料を得た。また、対照試料としてh-SIS-3、及びSISの膜をTHF溶媒を用いてKBrプレート上に調製した。FT-IR測定はFT/IR-6100(JASCO製)を用いて、室温で測定し、積算回数は1024回とした。
 得られた実施例24、比較例6、比較例10の加熱硬化試料、SIS、及びh-SIS-3のFT-IRスペクトルを図6にそれぞれ実線、点線、破線、一点鎖線、二点鎖線で示す。h-SIS-3のスペクトルでは、水素結合を形成したカルボキシ基のC=O伸縮振動に由来する(図6中の矢印で示した)吸収が1707cm-1に見られ、h-SIS-3を含有する実施例24のスペクトルのみが、水素結合を形成したカルボキシ基のC=O伸縮振動に由来する吸収を示したことから、実施例24の硬化試料で水素結合が形成しており、一方で非共有結合性官能基を持たないSISを用いた比較例10やEP樹脂以外のポリマーを使用しなかった比較例6のサンプルでは、カルボキシ基由来の水素結合が存在しないことを確認した。
(FT-IR)
The liquid adhesives of Example 24, Comparative Example 6, and Comparative Example 10 were sandwiched between potassium bromide (KBr) plates, transferred to an oven heated to 170°C, and removed from the oven after 50 minutes to obtain heat-cured samples for FT-IR measurement. In addition, as control samples, films of h-SIS-3 and SIS were prepared on KBr plates using THF solvent. FT-IR measurement was performed at room temperature using an FT/IR-6100 (manufactured by JASCO), with an accumulated number of 1024 times.
The FT-IR spectra of the obtained heat-cured samples of Example 24, Comparative Example 6, and Comparative Example 10, SIS, and h-SIS-3 are shown in Figure 6 by solid lines, dotted lines, dashed lines, one-dot chain lines, and two-dot chain lines, respectively. In the spectrum of h-SIS-3, absorption due to the C=O stretching vibration of the carboxy group that formed a hydrogen bond (indicated by the arrow in Figure 6) was observed at 1707 cm -1 , and only the spectrum of Example 24 containing h-SIS-3 showed absorption due to the C=O stretching vibration of the carboxy group that formed a hydrogen bond. Therefore, it was confirmed that hydrogen bonds were formed in the cured sample of Example 24, while no hydrogen bonds derived from carboxy groups were present in the samples of Comparative Example 10 using SIS that does not have a non-covalent functional group and Comparative Example 6 using no polymer other than EP resin.
(動的粘弾性測定)
 実施例24、比較例6、及び比較例10の液状接着剤をシリコーン製の型(幅約4.5m×長さ約350mm×厚さ約2mm)に移し、60℃で脱泡後に170℃に加熱したオーブンに移し、50分後にオーブンから取り出すことにより加熱硬化した試験片を得た。また、対照試料としてh-SIS-3、及びSISの膜をTHF溶媒を用いた溶液キャスト法により調製した。得られた試験片を用い、Rheogel E4000(ユービーエム製)を用いて、周波数10Hz、歪み0.1%、冶具間距離20mm、温度範囲-100~300℃、昇温速度10℃/minの条件で引張動的粘弾性測定を行った。
 得られた損失正接(tanδ)のデータを図7に示す。EP樹脂以外のポリマーを使用しなかった比較例6の試料では、-50℃と170℃付近にそれぞれ非常にブロードなピークと大きなピークが見られ、それぞれEP樹脂のβ緩和とTgに由来するピークと考えられる。また、非共有結合性官能基を持たないSISを含有する比較例10の試料では、-50℃付近に比較的大きなピークが見られた。SISでも-50℃付近に大きなピークが見られたことからそのピークはSISのIブロックのTgに由来するピークであると考えられる。水素結合性官能基を有するh-SISを含有する実施例24の試料では、h-IブロックのTgに由来するピークが比較例10のものに対して高温までテーリング(ピークトップは-40℃)していた。h-SIS-3では、約8℃に水素結合の緩和に由来するピークが見られることから、実施例24の試料でのピークは、EP樹脂のβ緩和とh-IブロックのTg、及びh-Iブロック中の水素結合の緩和に由来するピークが重なっていると考えられる。室温付近の26℃におけるtanδの値は、比較例6の試料では0.022であるのに対し、比較例10の試料では0.029と大きくなっており、柔らかいゴム状成分であるIブロックが存在することで応力緩和能がいくらか高まっていることを示唆している。また、実施例24の試料の26℃におけるtanδ値は、0.033と比較例10の値よりも大きく、これは水素結合の緩和に由来するものと考えられ、h-SIS-3を含有させるとSISを含有させた場合よりも高い応力分散能を示すことを示唆している。
(Dynamic viscoelasticity measurement)
The liquid adhesives of Example 24, Comparative Example 6, and Comparative Example 10 were transferred to a silicone mold (width about 4.5 m × length about 350 mm × thickness about 2 mm), degassed at 60 ° C, transferred to an oven heated to 170 ° C, and removed from the oven after 50 minutes to obtain heat-cured test specimens. In addition, as control samples, h-SIS-3 and SIS films were prepared by a solution casting method using THF solvent. Using the obtained test specimens, tensile dynamic viscoelasticity measurements were performed using Rheogel E4000 (manufactured by UBM) under the conditions of a frequency of 10 Hz, a strain of 0.1%, a jig distance of 20 mm, a temperature range of -100 to 300 ° C, and a heating rate of 10 ° C / min.
The data of the loss tangent (tan δ) obtained is shown in FIG. 7. In the sample of Comparative Example 6, which did not use any polymer other than EP resin, a very broad peak and a large peak were observed near -50°C and 170°C, respectively, which are considered to be peaks derived from β relaxation and Tg of the EP resin, respectively. In addition, in the sample of Comparative Example 10, which contains SIS having no non-covalent functional group, a relatively large peak was observed near -50°C. Since a large peak was also observed in the SIS near -50°C, the peak is considered to be a peak derived from the Tg of the I block of the SIS. In the sample of Example 24, which contains h-SIS having a hydrogen-bonding functional group, the peak derived from the Tg of the h-I block tailed up to a high temperature (peak top was -40°C) compared to that of Comparative Example 10. In h-SIS-3, a peak derived from relaxation of hydrogen bonds was observed at about 8°C, so the peak in the sample of Example 24 is considered to be an overlap of peaks derived from β relaxation of the EP resin, Tg of the h-I block, and relaxation of hydrogen bonds in the h-I block. The tan δ value at 26°C near room temperature was 0.022 for the sample of Comparative Example 6, whereas it was 0.029 for the sample of Comparative Example 10, suggesting that the presence of the I block, which is a soft rubber-like component, somewhat increased the stress relaxation ability. The tan δ value at 26°C for the sample of Example 24 was 0.033, which was larger than that of Comparative Example 10, and this is believed to be due to the relaxation of hydrogen bonds, suggesting that the inclusion of h-SIS-3 exhibits a higher stress dispersion ability than the inclusion of SIS.
(TEM観察)
 ブロック共重合体を含有する実施例24、及び比較例10のサンプルを170℃に加熱したオーブンに移し、50分後にオーブンから取り出すことにより加熱硬化した試験片を得た。また、対照試料としてh-SIS-3、及びSISの膜をTHF溶媒を用いた溶液キャスト法により調製し、エポキシ樹脂中に包埋した。これらのサンプルについて、ミクロトーム法により厚さ80nm程度の超薄切片を作製した。TEM像のコントラストを強くするために、四酸化オスミウム蒸気により一晩染色を行った。JEM-1400Flash(JEOL製)を用いて、加速電圧100kVでTEM観察を行った。
 SIS、h-SIS-3、比較例10、及び実施例24の接着剤硬化物のTEM像をそれぞれ図8(a)、図8(b)、図8(c)、及び図8(d)に示す。四酸化オスミウム蒸気による染色を行っているため、Iまたはh-Iブロックの相が暗く、Sブロック及びEP樹脂の相が明るく見えている。図8(a)及び図8(b)では、暗い連続相上に球または柱状の明るい微細な相(10~20nm程度)が見られ、SISやh-SIS-3は、Iまたはh-Iのマトリックス中にSブロックの孤立ミクロドメイン(柱もしくは球)が存在するナノ相分離構造を形成していることがわかった。図8(c)では暗い連続相と明るい島状の微細な相に加え、数十~数百nmオーダーの球状のドメインが多数見られた。図8(a)の明るい微細な相と比べて明るい島状の微細な相が若干大きく見えており、ポリスチレンはEP樹脂と相溶することから、SブロックとEP樹脂が混合した微細な相がIブロックのマトリックス中に浮いている構造となっていると考えられる。一方、SISに対して大量のEP樹脂が存在することからSブロックと混ざりきれなかったEP樹脂も存在するはずで、これが数十~数百nmオーダーの球状のドメインとして見えていると考えられる。図8(d)でも図8(c)と同様に暗い連続相と明るい島状の微細な相(10~20nm程度)に加え、数十~数百nmオーダーのドメインが多数見られたが、一方で図8(c)と比べてそのドメインのサイズは大きかった。これは水素結合性官能基を有するh-SIS-3では水素結合の効果でh-Iブロックが凝集しやすくなっており、その効果でSブロックと混ざりきれなかったEP樹脂の割合が大きくなったためと考えられる。
(TEM Observation)
The samples of Example 24 and Comparative Example 10 containing the block copolymer were transferred to an oven heated to 170°C, and after 50 minutes, they were removed from the oven to obtain heat-cured test pieces. In addition, as control samples, h-SIS-3 and SIS films were prepared by a solution casting method using THF solvent and embedded in epoxy resin. Ultrathin sections of about 80 nm thick were prepared from these samples by a microtome method. In order to enhance the contrast of the TEM image, the samples were stained overnight with osmium tetroxide vapor. TEM observation was performed using a JEM-1400Flash (manufactured by JEOL) at an accelerating voltage of 100 kV.
TEM images of the adhesive cured products of SIS, h-SIS-3, Comparative Example 10, and Example 24 are shown in Figures 8(a), 8(b), 8(c), and 8(d), respectively. Because staining was performed with osmium tetroxide vapor, the I or h-I block phase appears dark, and the S block and EP resin phase appear bright. In Figures 8(a) and 8(b), bright spherical or columnar fine phases (about 10 to 20 nm) are seen on the dark continuous phase, and it was found that SIS and h-SIS-3 form a nanophase separation structure in which isolated microdomains (columns or spheres) of the S block exist in the I or h-I matrix. In Figure 8(c), in addition to the dark continuous phase and the bright island-like fine phase, many spherical domains of the order of tens to hundreds of nm were seen. The bright island-like fine phase appears slightly larger than the bright fine phase in Figure 8(a), and since polystyrene is compatible with EP resin, it is considered that the fine phase of the S block and EP resin mixed is floating in the matrix of the I block. On the other hand, since there is a large amount of EP resin compared to SIS, there must be EP resin that has not been mixed with the S block, and it is considered that this is seen as a spherical domain of the order of tens to hundreds of nanometers. In Figure 8(d), in addition to the dark continuous phase and the bright island-like fine phase (about 10 to 20 nm), as in Figure 8(c), many domains of the order of tens to hundreds of nanometers were seen, but the size of the domains was larger than that in Figure 8(c). This is considered to be because in h-SIS-3, which has hydrogen-bonding functional groups, the h-I block is easily aggregated due to the effect of hydrogen bonds, and the proportion of EP resin that has not been mixed with the S block increased due to this effect.
(示差走査熱量測定(DSC))
 実施例15~19、実施例21~25、比較例6~11の接着剤硬化物、及びSIS、h-SIS-2、h-SIS-3に関してTgを評価するためにDSC測定を行った。接着剤硬化物については、各サンプルを170℃に加熱したオーブンに移し、50分後にオーブンから取り出すことにより接着剤硬化物を得た。各試料をアルミニウム製のパンに入れ、DSC Q2000(TA Instruments製)を用いて、窒素ガス流速50min/mL、昇温速度10℃/min、温度範囲-80~230℃でDSC測定を行った。
Differential Scanning Calorimetry (DSC)
DSC measurements were performed to evaluate the Tg of the cured adhesives of Examples 15 to 19, Examples 21 to 25, and Comparative Examples 6 to 11, as well as SIS, h-SIS-2, and h-SIS-3. The cured adhesives were obtained by transferring each sample to an oven heated to 170°C and removing it from the oven after 50 minutes. Each sample was placed in an aluminum pan and DSC measurements were performed using a DSC Q2000 (manufactured by TA Instruments) at a nitrogen gas flow rate of 50 min/mL, a heating rate of 10°C/min, and a temperature range of -80 to 230°C.
 図9(a)にSISと、比較例6の接着剤硬化物と、SISを含有する比較例7~11の接着剤硬化物、図9(b)にh-SIS-2と、h-SIS-2を含有する実施例15~19の接着剤硬化物、図9(c)にh-SIS-3と、h-SIS-3を含有する実施例21~25の接着剤硬化物のDSCサーモグラムを示す。サーモグラム中の白抜き矢印(▽)はゴム状成分、黒矢印(▼)はEP樹脂に由来するTgの位置を表しており、Tgの値は下記の表3にまとめてある。SISやh-SISを15質量部以上配合した試料では、Iやh-Iブロックに由来するTgが-60~-50℃付近に見られた。これはIやh-IブロックはEP樹脂と非相溶であるためと考えられる。SISやh-SISを15質量部未満配合した試料では、Iやh-Iブロックに由来するTgが見られなかったが、これは試料中のIやh-Iブロックの割合が少なく、サーモグラムにおけるステップを検出できなかったためと考えられ、このようなことはブロック共重合体試料のDSC測定ではよく観測される。また、SISやh-SISの含有量が増えるに連れてIやh-Iブロックに由来するTgが少し高くなる傾向が見られ、これはIまたはh-IブロックとEP樹脂との界面でわずかに溶解したり、反応が生じたりすることで分子運動性が少し低下したためと考えられが、その影響はわずかである。EP樹脂に由来する150℃付近のTgはSISやh-SISの含有量にかかわらずほとんど変化していないことから、SISやh-SISを含むことによる接着剤の耐熱性はほとんど低下していないことがわかった。これは、Iまたはh-IブロックはEP樹脂と非相溶であり、EP樹脂と相溶するSブロック(Tgは約100℃)の量は全体に対して3%以下と少なく、EP樹脂のTgに対する影響が小さかったためと考えられる。 DSC thermograms are shown in Fig. 9(a) for SIS, the cured adhesive of Comparative Example 6, and the cured adhesives of Comparative Examples 7 to 11 containing SIS, in Fig. 9(b) for h-SIS-2 and the cured adhesives of Examples 15 to 19 containing h-SIS-2, and in Fig. 9(c) for h-SIS-3 and the cured adhesives of Examples 21 to 25 containing h-SIS-3. The white arrows (▽) in the thermograms indicate the position of the T g derived from the rubber-like component, and the black arrows (▼) indicate the position of the T g derived from the EP resin, and the values of T g are summarized in Table 3 below. In samples containing 15 parts by mass or more of SIS or h-SIS, the T g derived from the I and h-I blocks was observed around -60 to -50°C. This is thought to be because the I and h-I blocks are incompatible with the EP resin. In the samples containing less than 15 parts by mass of SIS or h-SIS, no T g derived from the I or h-I block was observed, but this is believed to be because the proportion of I or h-I block in the sample was so small that a step in the thermogram could not be detected, and this is often observed in DSC measurements of block copolymer samples. In addition, as the content of SIS or h-SIS increased, the T g derived from the I or h-I block tended to become slightly higher, which is believed to be due to a slight decrease in molecular mobility caused by slight dissolution or reaction at the interface between the I or h-I block and the EP resin, but the effect was slight. The T g at around 150°C derived from the EP resin hardly changed regardless of the content of SIS or h-SIS, so it was found that the heat resistance of the adhesive was hardly decreased by the inclusion of SIS or h-SIS. This is believed to be because the I or h-I block is incompatible with the EP resin, and the amount of the S block ( Tg of about 100°C) which is compatible with the EP resin is small, at less than 3% of the total, and therefore the effect on the Tg of the EP resin is small.
 各配合で作製した実施例及び比較例の各エポキシ系接着剤組成物について、接着剤硬化物の剪断引張試験、T形剥離試験、及び耐衝撃試験を実施し、また、弾性率を測定した。
(剪断引張試験)
 液状の接着剤(実施例1~実施例5、実施例9~実施例13、実施例15~実施例25、比較例1~比較例3、及び比較例6~比較例12)については、それをスペーサーのガラスビーズ(約0.2mm)とともに厚さ1.6mm、幅25mm、長さ100mmのSPC270製の基材2枚の間に塗布して挟み、クリップで固定した。このとき接着面積は約25mm×12.5mmとなるようにした。続いて、作製した試料を170℃に加熱したオーブンに移し、50分後にオーブンから取り出すことにより接着剤組成物が加熱硬化し基材間が接着された試験片を得た。そして、得られた試験片について剪断引張試験を行った。このときの測定装置には島津製作所製のAGS-X、10kNロードセル、空気式平面形つかみ具を用い、つかみ具の空気圧0.40MPa、室温、引張速度50mm/minにて剪断引張試験を行った。
For each of the epoxy adhesive compositions of the Examples and Comparative Examples prepared with each formulation, a shear tensile test, a T-peel test, and an impact resistance test were carried out on the cured adhesive material, and the elastic modulus was also measured.
(Shear Tensile Test)
The liquid adhesive (Examples 1 to 5, 9 to 13, 15 to 25, Comparative Examples 1 to 3, and 6 to 12) was applied between two substrates made of SPC270 with a thickness of 1.6 mm, width of 25 mm, and length of 100 mm together with glass beads (about 0.2 mm) as a spacer, sandwiched, and fixed with a clip. The adhesive area was about 25 mm x 12.5 mm. The prepared sample was then transferred to an oven heated to 170°C, and after 50 minutes, it was removed from the oven to obtain a test piece in which the adhesive composition was heat-cured and the substrates were bonded. Then, a shear tensile test was performed on the obtained test piece. The measurement device used was Shimadzu Corporation's AGS-X, 10 kN load cell, and pneumatic flat-type gripper, and the shear tensile test was performed at an air pressure of 0.40 MPa, room temperature, and a tensile speed of 50 mm/min.
 膜状の接着剤組成物(実施例6~実施例8、実施例14、実施例26、比較例4~比較例5、及び比較例13)については、約25mm×12.5mmの大きさに切り取り、スペーサーのガラスビーズ(約0.2mm)とともに厚さ1.6mm、幅25mm、長さ100mmのSPC270製基材2枚の間に挟み、クリップで固定した(接着面積は約25mm×12.5mm)。続いて、作製した試料を170℃に加熱したオーブンに移し、50分後にオーブンから取り出すことにより、混合膜(膜状の接着剤組成物)が加熱硬化し基材間が接着された試験片を得た。得られた試験片については、上記と同じ条件で剪断引張試験を行った。
 各試料について3回ずつ試験を行ったときの平均値を下記の表1乃至表4に示す。
The film-like adhesive composition (Examples 6 to 8, 14, 26, Comparative Examples 4 to 5, and 13) was cut to a size of about 25 mm x 12.5 mm, sandwiched between two SPC270 substrates with a thickness of 1.6 mm, width of 25 mm, and length of 100 mm together with spacer glass beads (about 0.2 mm), and fixed with clips (adhesive area is about 25 mm x 12.5 mm). The prepared sample was then transferred to an oven heated to 170°C, and removed from the oven after 50 minutes, whereby the mixed film (film-like adhesive composition) was heat-cured to obtain a test piece in which the substrates were bonded together. The obtained test piece was subjected to a shear tensile test under the same conditions as above.
The test was performed three times for each sample, and the average values are shown in Tables 1 to 4 below.
(T形剥離試験)
 T形剥離試験は、JIS K6854-3(1999)のT形剥離接着強さ試験法に準拠して測定した。
 液状の接着剤(実施例1~実施例5、実施例9~実施例13、実施例15~実施例25、実施例27~実施例31、比較例1~比較例3、及び比較例6~比較例12)については、それをスペーサーのガラスビーズ(約0.2mm)とともに厚さ0.8mm、幅25mm、長さ150mmの被接着面を有するSPC270製のT形剥離試験用基材2枚の間に塗布して挟み、クリップで固定した。続いて、作製した試料を170℃に加熱したオーブンに移し、50分後にオーブンから取り出すことにより接着剤組成物が加熱硬化し基材間が接着された試験片を得た。そして、得られた試験片についてT形剥離試験を行った。このときの測定装置には島津製作所製のAGS-X、500Nロードセル、空気式平面形つかみ具を用い、つかみ具の空気圧0.40MPa、室温、引張速度200mm/minにてT形剥離試験を行った。
(T-peel test)
The T-peel test was performed in accordance with the T-peel adhesion strength test method of JIS K6854-3 (1999).
The liquid adhesive (Examples 1 to 5, 9 to 13, 15 to 25, 27 to 31, Comparative Examples 1 to 3, and 6 to 12) was applied between two T-peel test substrates made of SPC270 with a thickness of 0.8 mm, a width of 25 mm, and a length of 150 mm together with spacer glass beads (about 0.2 mm), and was fixed with a clip. The prepared sample was then transferred to an oven heated to 170°C, and after 50 minutes, it was removed from the oven to obtain a test piece in which the adhesive composition was heated and cured, and the substrates were bonded together. The obtained test piece was then subjected to a T-peel test. The measurement device used was Shimadzu Corporation's AGS-X, 500N load cell, and air-operated flat gripper, and the T-peel test was performed at an air pressure of 0.40 MPa, room temperature, and a tensile speed of 200 mm/min.
 膜状の接着剤組成物(実施例6~実施例8、実施例14、実施例26、比較例4~比較例5、比較例13)については、約25mm×150mmの大きさに切り取り、スペーサーのガラスビーズ(約0.2mm)とともに厚さ0.8mm、幅25mm、長さ150mmの被接着面を有するSPC270製のT形剥離試験用基材2枚の間に挟み、クリップで固定した。続いて、作製した試料を170℃に加熱したオーブンに移し、50分後にオーブンから取り出すことにより、混合膜(膜状の接着剤組成物)が加熱硬化し基材間が接着された試験片を得た。得られた試験片については上記と同じ条件でT形剥離試験を行った。 The film-like adhesive composition (Examples 6 to 8, 14, 26, Comparative Examples 4 to 5, and 13) was cut to a size of approximately 25 mm x 150 mm, and sandwiched between two SPC270 T-peel test substrates with an adherend surface of 0.8 mm thickness, 25 mm width, and 150 mm length together with spacer glass beads (approximately 0.2 mm), and secured with clips. The prepared sample was then transferred to an oven heated to 170°C, and removed from the oven after 50 minutes, resulting in a test specimen in which the mixed film (film-like adhesive composition) was heat-cured and the substrates were bonded together. The obtained test specimen was subjected to a T-peel test under the same conditions as above.
 各試料について3回ずつ試験を行ったときの下記の平均値を表1乃至表4に示す。
 また、ブロック共重合体を持たない比較例6、SISを含有する比較例7~12、官能性ブロック共重合体を含有する実施例15~25及び実施例26~31に関して、接着剤中のブロック共重合体の重量分率に対する剥離接着強度のプロットを図10に示す。
The test was performed three times for each sample, and the average values are shown in Tables 1 to 4.
Also shown in FIG. 10 are plots of peel adhesion strength versus weight fraction of block copolymer in the adhesive for Comparative Example 6, which has no block copolymer, Comparative Examples 7-12, which contain SIS, and Examples 15-25 and 26-31, which contain functional block copolymers.
(耐衝撃試験)
 耐衝撃試験は、JIS K6865に準拠する衝撃条件下における動的割裂抵抗性試験(くさび衝撃法)により測定した。
 液状の接着剤(実施例1~実施例5、実施例9~実施例13、実施例15~~実施例25、実施例27~実施例31、比較例1~比較例3、及び比較例6~比較例11)については、それを、スペーサーのガラスビーズ(約0.2mm)とともに厚さ0.8mm、幅25mm、長さ150mmの被接着面を有するSPC270製の動的割裂抵抗性試験基材である冷間圧延用鋼板2枚の間に塗布して挟み、クリップで固定した(接着面積は約25mm×12.5mm)。続いて、作製した試料を170℃に加熱したオーブンに移し、60分後にオーブンから取り出すことにより、加熱硬化した混合膜で基材間が接着された対称くさび試験片を得た。そして、高速引張試験機(島津製作所製)を用いて、室温(20℃程度)、試験速度2m/sの条件で対称くさび試験片に対し試験用くさび(焼入れ鋼製)で割裂させるような負荷を与える衝撃試験を実施して、試験時全変位(ストローク)中の25~90%の範囲での試験力(強度)(kN)を測定し、平均強度(kN)を試験片の幅(mm)で除して衝撃強度を算出した。
(Impact resistance test)
The impact resistance test was performed by a dynamic split resistance test (wedge impact method) under impact conditions in accordance with JIS K6865.
The liquid adhesive (Examples 1 to 5, 9 to 13, 15 to 25, 27 to 31, Comparative Examples 1 to 3, and Comparative Examples 6 to 11) was applied to two cold-rolled steel plates made of SPC270, which were dynamic splitting resistance test substrates, and had a thickness of 0.8 mm, a width of 25 mm, and a length of 150 mm, together with spacer glass beads (about 0.2 mm), and was fixed with a clip (adhesive area is about 25 mm x 12.5 mm). The prepared sample was then transferred to an oven heated to 170°C, and removed from the oven after 60 minutes to obtain a symmetrical wedge test piece in which the substrates were bonded with a heat-cured mixed film. Then, using a high speed tensile testing machine (manufactured by Shimadzu Corporation), an impact test was carried out in which a load was applied to the symmetrical wedge test piece with a test wedge (made of hardened steel) so as to split it at room temperature (approximately 20°C) and a test speed of 2 m/s. The test force (strength) (kN) was measured in the range of 25 to 90% of the total displacement (stroke) during the test, and the impact strength was calculated by dividing the average strength (kN) by the width (mm) of the test piece.
 膜状の接着剤組成物(実施例6~実施例8、実施例14、実施例26、比較例4~比較例5、及び比較例13)については、約25mm×150mmの大きさに切り取り、スペーサーのガラスビーズ(約0.2mm)とともに厚さ0.8mm、幅25mm、長さ150mmの被接着面を有するSPC270製の動的割裂抵抗性試験基材である冷間圧延用鋼板2枚の間に挟み、クリップで固定した(接着面積は約25mm×12.5mm)。その後は、上述と同様にして、試験片を作成して衝撃試験を実施した。 The film-like adhesive compositions (Examples 6 to 8, 14, 26, Comparative Examples 4 to 5, and 13) were cut to a size of approximately 25 mm x 150 mm, and together with spacer glass beads (approximately 0.2 mm), were sandwiched between two cold-rolled steel plates made of SPC270, which were dynamic splitting resistance test substrates and had an adhesive surface of 0.8 mm thickness, 25 mm width, and 150 mm length, and secured in place with clips (adhesive area approximately 25 mm x 12.5 mm). Test pieces were then prepared in the same manner as above and impact tests were carried out.
 耐衝撃試験の結果は以下の表1乃至表4に示した通りである。なお、表1乃至表4に示す値は、各試料について2回もしくは3回ずつ試験を行ったときの平均値である。また、ブロック共重合体を持たない比較例6、SISを含有する比較例7~11、官能性ブロック共重合体を含有する実施例15~19、実施例21~25及び実施例26~31に関して、接着剤中のブロック共重合体の重量分率に対する衝撃強度のプロットを図11に示す。
 これら実施例及び比較例の配合組成及び各種試験の結果をまとめて以下の表1乃至表4に示す。
The results of the impact resistance tests are shown in Tables 1 to 4 below. The values shown in Tables 1 to 4 are the average values when the test was performed two or three times for each sample. Figure 11 shows plots of impact strength versus weight fraction of block copolymer in the adhesive for Comparative Example 6 which does not have a block copolymer, Comparative Examples 7 to 11 which contain SIS, and Examples 15 to 19, 21 to 25, and 26 to 31 which contain functional block copolymers.
The compounding compositions and the results of various tests of these Examples and Comparative Examples are shown in Tables 1 to 4 below.
Figure JPOXMLDOC01-appb-T000001
 
Figure JPOXMLDOC01-appb-T000001
 
Figure JPOXMLDOC01-appb-T000002
 
Figure JPOXMLDOC01-appb-T000002
 
Figure JPOXMLDOC01-appb-T000003
 
Figure JPOXMLDOC01-appb-T000003
 
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表1に示すように、官能性ブロック共重合体を配合せずに、EP樹脂、潜在性硬化剤のDICY、及び硬化促進剤のDCMUのみからなる比較例1では、剪断試験における剪断引張強度が19.4MPaであり、T形剥離試験における剥離強度が48.5N/25mmであり、耐衝撃試験における耐衝撃強度が1.1kN/mであった。 As shown in Table 1, in Comparative Example 1, which does not contain a functional block copolymer and is composed only of EP resin, the latent hardener DICY, and the hardening accelerator DCMU, the shear tensile strength in the shear test was 19.4 MPa, the peel strength in the T-peel test was 48.5 N/25 mm, and the impact strength in the impact resistance test was 1.1 kN/m.
 これに対し、官能性ブロック共重合体を配合した液状の接着剤の実施例1~5及び実施例9~13では、剪断強度が良好であることに加え、剥離強度や耐衝撃強度に優れ比較例1よりも剥離強度や耐衝撃性が向上しているものであった。これは、実施例1~5及び実施例9~13では、何れも、比較例1より弾性率が極めて高いものであることから、h-SIS中のSブロックがEP樹脂と相溶するもh-SIS中のゴム状ポリマーであるh-IブロックはEP樹脂と相溶せず、h-SIS中のSブロックがEP樹脂と相溶することによりEP樹脂中にh-Iブロックが分散して、EP樹脂の加熱硬化後もh-Iブロックはゴムとして機能し、h-Iブロックによる伸び、柔軟性や弾性率の付与により、エポキシ樹脂が強靭化されたためと考えられる。 In contrast, in Examples 1 to 5 and Examples 9 to 13, which are liquid adhesives containing functional block copolymers, in addition to having good shear strength, they also had excellent peel strength and impact strength, and their peel strength and impact resistance were improved compared to Comparative Example 1. This is because Examples 1 to 5 and Examples 9 to 13 all had an extremely higher elastic modulus than Comparative Example 1, and therefore while the S block in h-SIS was compatible with the EP resin, the h-I block, which is a rubber-like polymer in h-SIS, was not compatible with the EP resin, and the compatibility of the S block in h-SIS with the EP resin caused the h-I block to disperse in the EP resin, and the h-I block continued to function as rubber even after the EP resin was heat-cured, and the h-I block provided elongation, flexibility and elastic modulus, thereby toughening the epoxy resin.
 即ち、鎖状につながる官能性ポリイソプレンブロックの両端にポリスチレンブロックが重合しているポリスチレン-官能性ポリイソプレン-ポリスチレンブロック共重合体(h-SISやi-SIS)の単体では、図2(b)や図3(b)に示すように、室温(常温)では、ポリスチレンブロック(ハードセグメント)と、官能性ポリイソプレンブロック(ソフトセグメント)が熱力学的に相溶せず(独立して混じり合わず)、ポリスチレン部は凝集してポリスチレンドメインを形成しミクロ相分離構造をとる、つまりは、ポリスチレン部のガラス転移温度(Tg)が室温より高い温度であることによりガラス状にあり、その硬いポリスチレン部が集合、凝集しドメインを形成することにより官能性ポリイソプレン部を物理架橋する擬似架橋点を形成する。 That is, in the case of a simple polystyrene-functional polyisoprene-polystyrene block copolymer (h-SIS or i-SIS) in which polystyrene blocks are polymerized at both ends of a chain-like functional polyisoprene block, as shown in Figures 2(b) and 3(b), at room temperature (normal temperature), the polystyrene block (hard segment) and the functional polyisoprene block (soft segment) are thermodynamically incompatible (do not mix independently), and the polystyrene portions aggregate to form polystyrene domains and have a microphase separation structure; in other words, the glass transition temperature ( Tg ) of the polystyrene portions is higher than room temperature, so they are in a glassy state, and the hard polystyrene portions gather and aggregate to form domains, thereby forming pseudo-crosslinking points that physically crosslink the functional polyisoprene portions.
 これに対し、エポキシ樹脂と硬化剤とポリスチレン-官能性ポリイソプレン-ポリスチレンブロック共重合体等を混合したエポキシ系接着剤組成物からなる接着剤硬化物では、図2(c)や図3(c)に示すように、室温(常温)で、ポリスチレン-官能性ポリイソプレン-ポリスチレンブロック共重合体のポリスチレン部がエポキシ樹脂と相溶性があることにより、ポリスチレン部が集合、凝集して擬似架橋点を形成することなく、官能性ポリイソプレン部がエポキシ樹脂中に分散して、ゴム状の官能性ポリイソプレン部の働きで柔軟性、伸びや弾性率が付与されるものと考えられる。更に、図8のTEM像にみられるようにSブロックと混ざっていないEP樹脂の球状ドメインが、マイクロメートル以下の数十~数百nmオーダーで比較的均質に分散していることからも、エポキシ樹脂の強靭化が図られるものと推察される。
 これより、エポキシ樹脂硬化物が強靭化され、弾性率や、剥離強度や、耐衝撃性が向上しているものと推測される。
In contrast, in the case of a cured adhesive consisting of an epoxy adhesive composition made by mixing an epoxy resin, a curing agent, and a polystyrene-functionalized polyisoprene-polystyrene block copolymer, etc., as shown in Figure 2(c) and Figure 3(c), at room temperature (normal temperature), the polystyrene part of the polystyrene-functionalized polyisoprene-polystyrene block copolymer is compatible with the epoxy resin, so that the polystyrene parts do not aggregate or coagulate to form pseudo-crosslinking points, and the functionalized polyisoprene parts are dispersed in the epoxy resin, and flexibility, elongation, and elastic modulus are imparted by the action of the rubber-like functionalized polyisoprene parts. Furthermore, as seen in the TEM image in Figure 8, the spherical domains of the EP resin that are not mixed with the S block are dispersed relatively uniformly on the order of several tens to several hundreds of nanometers, which is less than a micrometer, and therefore it is presumed that the epoxy resin is toughened.
It is presumed that this results in the toughening of the cured epoxy resin, improving its elastic modulus, peel strength and impact resistance.
 更に、実施例1~5及び実施例9~13の接着剤においては、非共有結合性官能基を有する官能性ブロック共重合体(h-SIS、i-SIS)に替えて、非共有結合性官能基を有さないブロック共重合体(SIS)を配合した比較例2の接着剤と比べても、何れも、剥離強度や耐衝撃強度に優れていた。 Furthermore, the adhesives of Examples 1 to 5 and Examples 9 to 13 all had superior peel strength and impact strength when compared to the adhesive of Comparative Example 2, which contained a block copolymer (SIS) without non-covalent functional groups instead of a functional block copolymer (h-SIS, i-SIS) with non-covalent functional groups.
 これは、非共有結合性官能基を有する官能性ブロック共重合体(h-SIS、iーSIS)においては、図2(c)や図3(c)に示すように、分子間や分子内で水素結合性官能基やイオン結合性官能基といった非共有結合性官能基同士が非共有結合し、その非共有結合が解離や再結合が自在なものであるから、非共有結合による可逆的な擬似架橋点・物理架橋点、即ち、分子間や分子内で動的な結合能が付与され、外力が加えられたときにはその結合が切断されエネルギを分散することにより、即ち、応力を分散できることにより、高い強靭性を発揮するものと思われる。 In functional block copolymers (h-SIS, i-SIS) with non-covalent functional groups, as shown in Figures 2(c) and 3(c), non-covalent functional groups such as hydrogen-bonding functional groups and ionic-bonding functional groups are non-covalently bonded between molecules and within molecules, and these non-covalent bonds can be freely dissociated and recombined. This gives them reversible pseudo-crosslinking points and physical crosslinking points, i.e., dynamic bonding ability between molecules and within molecules, and when an external force is applied, these bonds are cut and energy is dispersed, i.e., stress can be dispersed, which is thought to result in high toughness.
 また、膜状の接着剤の実施例6~8や実施例14においても、実施例1~5及び実施例9~13と同様、比較例3~5よりも剥離強度や耐衝撃強度の向上がみられた。
 なお、膜状の接着剤において、液状の接着剤と比較して剪断強度が低いのは、膜状の接着剤では液状の接着剤に比べ相対的にエポキシ樹脂量が少なくなっているためである。
Furthermore, in the film-like adhesives of Examples 6 to 8 and Example 14, as in Examples 1 to 5 and Examples 9 to 13, improvements in peel strength and impact strength were observed compared to Comparative Examples 3 to 5.
The shear strength of a film-type adhesive is lower than that of a liquid-type adhesive because the amount of epoxy resin in a film-type adhesive is relatively smaller than that in a liquid-type adhesive.
 実施例1~5と実施例6~8との比較や、実施例9~13と実施例14との比較から、好ましくは、エポキシ樹脂100質量部に対し、官能性ブロック共重合体(h-SIS、i-SIS)が3質量部以上、20質量部以下の範囲内とした液状の接着剤組成物であれば、剪断強度を維持したまま、耐衝撃性や剥離強度の向上を可能とする。こうした液状の接着剤組成物は、自動車の構造用接着剤等の用途にも好適である。
 なお、本発明者らの実験研究によれば、官能性ポリイソプレンブロック(h-Iブロック、i-Iブロック)等の官能性ブロック共重合体における非共有結合性官能基を有するゴム状ポリマーの含有率が高いほど、換言すれば、エポキシ樹脂と相溶するポリマーであるポリスチレンブロック(Sブロック)の含有率が小さいほど、耐衝撃性等が向上することを確認している。
From a comparison of Examples 1 to 5 with Examples 6 to 8, and a comparison of Examples 9 to 13 with Example 14, it is found that a liquid adhesive composition in which the functional block copolymer (h-SIS, i-SIS) is preferably in the range of 3 parts by mass or more and 20 parts by mass or less per 100 parts by mass of epoxy resin can improve impact resistance and peel strength while maintaining shear strength. Such a liquid adhesive composition is also suitable for applications such as an automotive structural adhesive.
According to experimental research by the present inventors, it has been confirmed that the higher the content of rubber-like polymer having a non-covalent functional group in a functional block copolymer such as a functional polyisoprene block (h-I block, i-I block), in other words, the lower the content of a polystyrene block (S block), which is a polymer compatible with epoxy resins, the more improved the impact resistance and the like.
 表4に示すように、官能性ブロック共重合体を配合せずに、EP樹脂、潜在性硬化剤のDICY、硬化促進剤のAA、及び添加剤のCaCO3からなる比較例6では、剪断試験における剪断引張強度が23MPa、T形剥離試験における剥離強度が45N/25mm、耐衝撃試験における耐衝撃強度が0.62kN/mであった。 As shown in Table 4, in Comparative Example 6, which did not contain a functional block copolymer and consisted of EP resin, the latent curing agent DICY, the curing accelerator AA, and the additive CaCO3 , the shear tensile strength in the shear test was 23 MPa, the peel strength in the T-peel test was 45 N/25 mm, and the impact strength in the impact resistance test was 0.62 kN/m.
 これに対し、官能性ブロック共重合体を配合した液状の接着剤の実施例15~25及び実施例27~31では、剪断強度が良好であることに加え、比較例6よりも剥離強度や耐衝撃強度に優れていた。これは、h-SIS中のSブロックがEP樹脂と相溶するもh-SIS中のゴム状ポリマーであるh-IブロックはEP樹脂と相溶せず、h-SIS中のSブロックがEP樹脂と相溶することによりEP樹脂中にh-Iブロックが分散して、EP樹脂の加熱硬化後もh-Iブロックはゴムとして機能し、h-Iブロックによる伸び、柔軟性を付与しているだけでなく、図8のTEM像にみられるようにSブロックと混ざっていないEP樹脂の球状ドメインが、マイクロメートル以下の数十~数百nmオーダーで比較的均質に分散しており、エポキシ樹脂が強靭化されたためと考えられる。 In contrast, in Examples 15-25 and 27-31, which are liquid adhesives containing functional block copolymers, in addition to having good shear strength, they also had superior peel strength and impact strength to Comparative Example 6. This is thought to be because, although the S block in h-SIS is compatible with EP resin, the h-I block, which is a rubber-like polymer in h-SIS, is not compatible with EP resin, and the S block in h-SIS is compatible with EP resin, so that the h-I block disperses in the EP resin, and even after the EP resin is heat-cured, the h-I block functions as rubber, not only imparting elongation and flexibility due to the h-I block, but also, as seen in the TEM image in Figure 8, the spherical domains of EP resin that are not mixed with the S block are dispersed relatively uniformly on the order of tens to hundreds of nanometers, which is less than a micrometer, and the epoxy resin is toughened.
 即ち、鎖状につながる官能性ポリイソプレンブロックの両端にポリスチレンブロックが重合しているポリスチレン-官能性ポリイソプレン-ポリスチレンブロック共重合体(h-SISやI-SIS)の単体では、図2(b)や図3(b)に示すように、室温(常温)では、ポリスチレンブロック(ハードセグメント)と、官能性ポリイソプレンブロック(ソフトセグメント)が熱力学的に相溶せず(独立して混じり合わず)、ポリスチレン部は凝集してポリスチレンドメインを形成しミクロ相分離構造をとる、つまりは、ポリスチレン部のガラス転移温度(Tg)が室温より高い温度であることによりガラス状にあり、その硬いポリスチレン部が集合、凝集しドメインを形成することにより官能性ポリイソプレン部を物理架橋する擬似架橋点を形成する。 That is, in the case of a simple polystyrene-functional polyisoprene-polystyrene block copolymer (h-SIS or I-SIS) in which polystyrene blocks are polymerized at both ends of a chain-like functional polyisoprene block, as shown in Figures 2(b) and 3(b), at room temperature (normal temperature), the polystyrene block (hard segment) and the functional polyisoprene block (soft segment) are thermodynamically incompatible (do not mix independently), and the polystyrene portions aggregate to form polystyrene domains and have a microphase separation structure; in other words, the glass transition temperature ( Tg ) of the polystyrene portions is higher than room temperature, so they are in a glassy state, and the hard polystyrene portions gather and aggregate to form domains, thereby forming pseudo-crosslinking points that physically crosslink the functional polyisoprene portions.
 これに対し、エポキシ樹脂と硬化剤とポリスチレン-官能性ポリイソプレン-ポリスチレンブロック共重合体等を混合したエポキシ系接着剤組成物からなる接着剤硬化物では、図2(c)や図3(c)に示すように、室温(常温)で、ポリスチレン-官能性ポリイソプレン-ポリスチレンブロック共重合体のポリスチレン部がエポキシ樹脂と相溶性があることにより、ポリスチレン部が集合、凝集して擬似架橋点を形成することなく、官能性ポリイソプレン部がエポキシ樹脂中に分散して、ゴム状の官能性ポリイソプレン部の働きで柔軟性、伸びや弾性率が付与されるものと考えられる。更に、図8のTEM像にみられるようにSブロックと混ざっていないEP樹脂の球状ドメインが、マイクロメートル以下の数十~数百nmオーダーで比較的均質に分散していることからも、エポキシ樹脂の強靭化が図られるものと推察される。
 これより、エポキシ樹脂硬化物が強靭化され、弾性率や、剥離強度や、耐衝撃性が向上しているものと推測される。
In contrast, in the case of a cured adhesive consisting of an epoxy adhesive composition made by mixing an epoxy resin, a curing agent, and a polystyrene-functionalized polyisoprene-polystyrene block copolymer, etc., as shown in Figure 2(c) and Figure 3(c), at room temperature (normal temperature), the polystyrene part of the polystyrene-functionalized polyisoprene-polystyrene block copolymer is compatible with the epoxy resin, so that the polystyrene parts do not aggregate or coagulate to form pseudo-crosslinking points, and the functionalized polyisoprene parts are dispersed in the epoxy resin, and flexibility, elongation, and elastic modulus are imparted by the action of the rubber-like functionalized polyisoprene parts. Furthermore, as seen in the TEM image in Figure 8, the spherical domains of the EP resin that are not mixed with the S block are dispersed relatively uniformly on the order of several tens to several hundreds of nanometers, which is less than a micrometer, and therefore it is presumed that the epoxy resin is toughened.
It is presumed that this results in the toughening of the cured epoxy resin, improving its elastic modulus, peel strength and impact resistance.
 更に、実施例15~25及び実施例27~31の接着剤においては、非共有結合性官能基を有する官能性ブロック共重合体(h-SIS)に替えて、非共有結合性官能基を有さないブロック共重合体(SIS)を配合した比較例7~12の接着剤と比べても、何れも、剥離強度や耐衝撃強度に優れていた。 Furthermore, the adhesives of Examples 15-25 and Examples 27-31 all had superior peel strength and impact strength when compared to the adhesives of Comparative Examples 7-12, which contained a block copolymer (SIS) without non-covalent functional groups instead of a functional block copolymer (h-SIS) with non-covalent functional groups.
 これは、非共有結合性官能基を有する官能性ブロック共重合体(h-SIS)においては、図2(c)や図3(c)に示すように、分子間や分子内で水素結合性官能基(非共有結合性官能基)同士が非共有結合し、その非共有結合が解離や再結合が自在なものであるから、非共有結合による可逆的な擬似架橋点・物理架橋点、即ち、分子間や分子内で動的な結合能が付与され、外力が加えられたときにはその結合が切断されエネルギを分散することにより、即ち、応力を分散できることにより、高い強靭性を発揮するものと思われる。 As shown in Figures 2(c) and 3(c), in functional block copolymers (h-SIS) having non-covalent functional groups, hydrogen-bonding functional groups (non-covalent functional groups) are non-covalently bonded between molecules and within molecules, and these non-covalent bonds can be freely dissociated and recombined. This gives rise to reversible pseudo-crosslinking points and physical crosslinking points, i.e., dynamic bonding ability between molecules and within molecules, and when an external force is applied, these bonds are broken, dispersing energy, i.e., dispersing stress, which is thought to result in high toughness.
 また、無水コハク酸ユニット導入率が約7.5mol%のh-SIS-4を含有する実施例27~31の接着剤は、無水コハク酸ユニット導入率が4.4mol%のh-SIS-3を含有する実施例21~25でそれぞれ対応する配合組成の接着剤と比べて、剥離強度や耐衝撃強度に優れる傾向があり、実施例21~25の接着剤も無水コハク酸ユニット導入率が2.1mol%のh-SIS-2を含有する実施例15~20でそれぞれ対応する配合組成の接着剤と比べて、剥離強度や耐衝撃強度に優れる傾向がみられた。これは、無水コハク酸ユニット導入率が大きいほど非共有結合による可逆的な擬似架橋点・物理架橋点の数が増え、応力分散能が高くなったためと考えられる。 In addition, the adhesives of Examples 27 to 31, which contain h-SIS-4 with a succinic anhydride unit introduction rate of approximately 7.5 mol%, tend to have superior peel strength and impact resistance compared to the adhesives of the corresponding formulations of Examples 21 to 25, which contain h-SIS-3 with a succinic anhydride unit introduction rate of 4.4 mol%, and the adhesives of Examples 21 to 25 also tend to have superior peel strength and impact resistance compared to the adhesives of the corresponding formulations of Examples 15 to 20, which contain h-SIS-2 with a succinic anhydride unit introduction rate of 2.1 mol%. This is thought to be because the greater the succinic anhydride unit introduction rate, the greater the number of reversible pseudo-crosslinking points and physical crosslinking points due to non-covalent bonds, resulting in higher stress dispersion ability.
 また、膜状の接着剤の実施例26においても、実施例15~25及び実施例27~31と同様、比較例6や比較例13の接着剤よりも剥離強度の向上がみられた。
 なお、実施例26において、比較例6と比較して剪断強度が低いのは、実施例26は、比較例6よりも相対的にエポキシ樹脂量が少なくなっているためである。
 因みに、本発明者らの実験研究によれば、ダンベル状7号形を用いたダンベル弾性率の測定により、上述の実施例では比較例よりも弾性率が高くなることを確認している。
Furthermore, in the film-like adhesive of Example 26, similar to Examples 15 to 25 and Examples 27 to 31, improved peel strength was observed compared to the adhesives of Comparative Examples 6 and 13.
The shear strength of Example 26 is lower than that of Comparative Example 6 because the amount of epoxy resin in Example 26 is relatively smaller than that in Comparative Example 6.
Incidentally, according to the experimental research of the present inventors, it has been confirmed that the elastic modulus of the dumbbell-shaped No. 7 is higher in the above-mentioned embodiment than in the comparative example by measuring the elastic modulus of the dumbbell-shaped No. 7.
 ここで、参考までに本発明者らは、エポキシ樹脂との相溶性に関し、以下の実験を行っている。
[参考例1]
 参考例1では、ガラス転移温度(Tg)が25℃以下であるゴム状ポリマーであるポリイソプレン(1,4構造リッチ、数平均分子量15万、以下、「PI」とも称する)と、ビスフェノールA型のエポキシ樹脂(プレポリマー)(以下、「EP樹脂」とも称する)との相溶性を確認した。
For reference, the present inventors have conducted the following experiment regarding compatibility with epoxy resins.
[Reference Example 1]
In Reference Example 1, the compatibility of polyisoprene (rich in 1,4 structure, number average molecular weight of 150,000, hereinafter also referred to as "PI"), a rubber-like polymer having a glass transition temperature ( Tg ) of 25°C or lower, with a bisphenol A type epoxy resin (prepolymer) (hereinafter also referred to as "EP resin") was confirmed.
 EP樹脂100質量部に対し、PIが11、43、100、233、900質量部となるようにPIとEP樹脂を秤りとり、PIとEP樹脂の共通良溶媒であるテトラヒドロフラン(THF)を加えて約10wt%の溶液を調製した。得られた溶液をカバーガラス上に約1~2滴滴下した。溶液を滴下したカバーガラスを40℃のホットプレート上に静置し、THFを蒸発させた。得られた試料の光学顕微鏡観察を行ったところ(図12参照)、いずれも数十~数百μm程度のマクロ相分離が見られ、PIとEP樹脂は非相溶であることが確認された。 PI and EP resin were weighed out so that the PI was 11, 43, 100, 233, and 900 parts by mass per 100 parts by mass of EP resin, and tetrahydrofuran (THF), a common good solvent for PI and EP resin, was added to prepare approximately 10 wt% solutions. Approximately 1 to 2 drops of the resulting solution were placed on a cover glass. The cover glass with the solution on it was placed on a hot plate at 40°C to evaporate the THF. When the obtained samples were observed under an optical microscope (see Figure 12), macrophase separation of several tens to several hundreds of μm was observed in all cases, confirming that the PI and EP resin were incompatible.
 [参考例2]
 参考例2では、ポリスチレン(Polymer Source Inc.製、製品番号P41847-S、数平均分子量1万1千、以下、「PS1」とも称する)とEP樹脂との相溶性を確認した。
 参考例1と同様にしてEP樹脂100質量部に対し、PS1が11、43、100、233、900質量部となるように混合物を調製し、光学顕微鏡観察を行ったところ、いずれも均質で相分離が見られなかったことから、PS1とEP樹脂は相溶することが確認された。
[Reference Example 2]
In Reference Example 2, the compatibility of polystyrene (manufactured by Polymer Source Inc., product number P41847-S, number average molecular weight 11,000, hereinafter also referred to as "PS1") with EP resin was confirmed.
In the same manner as in Reference Example 1, mixtures were prepared so that 11, 43, 100, 233, and 900 parts by mass of PS1 were contained per 100 parts by mass of EP resin, and when observed under an optical microscope, all of the mixtures were homogeneous and no phase separation was observed, confirming that PS1 and EP resin are compatible.
 [参考例3]
 参考例3では、ポリスチレン(Polymer Source Inc.製、製品番号P40440-S、数平均分子量1万7千、以下、「PS2」とも称する)とEP樹脂との相溶性を確認した。
 参考例1と同様にしてEP樹脂100質量部に対し、PS2が11、43、100、233、900質量部となるように混合物を調製し、光学顕微鏡観察を行ったところ、いずれも均質で相分離が見られなかったことから、PS2とEP樹脂も相溶することが確認された。
[Reference Example 3]
In Reference Example 3, the compatibility of polystyrene (manufactured by Polymer Source Inc., product number P40440-S, number average molecular weight 17,000, hereinafter also referred to as "PS2") with EP resin was confirmed.
In the same manner as in Reference Example 1, mixtures were prepared so that 11, 43, 100, 233, and 900 parts by mass of PS2 were contained per 100 parts by mass of EP resin, and when observed under an optical microscope, all of the mixtures were homogeneous and no phase separation was observed, confirming that PS2 and EP resin were also compatible.
[参考例4]
 参考例4では、ポリスチレン(Polymer Source Inc.製、製品番号P1507-S、数平均分子量2万4千、以下、「PS3」とも称する)とEP樹脂との相溶性を確認した。
 参考例1と同様にしてEP樹脂100質量部に対し、PS3が11、43、100、233、900質量部となるように混合物を調製し、光学顕微鏡観察を行ったところ、いずれも均質で相分離が見られなかったことから、PS3とEP樹脂も相溶することが確認された。
[Reference Example 4]
In Reference Example 4, the compatibility of polystyrene (manufactured by Polymer Source Inc., product number P1507-S, number average molecular weight 24,000, hereinafter also referred to as "PS3") with EP resin was confirmed.
In the same manner as in Reference Example 1, mixtures were prepared so that 11, 43, 100, 233, and 900 parts by mass of PS3 were used per 100 parts by mass of EP resin, and when observed under an optical microscope, all of the mixtures were homogeneous and no phase separation was observed, confirming that PS3 and EP resin were also compatible.
[参考例5]
 参考例5では、ポリスチレン(Polymer Source Inc.製、製品番号P40382-S、数平均分子量3万4千、以下、「PS4」とも称する)とEP樹脂との相溶性を確認した。
 参考例1と同様にしてEP樹脂100質量部に対し、PS4が11、43、100、233、900質量部となるように混合物を調製し、光学顕微鏡観察を行ったところ、いずれも均質で相分離が見られなかったことから、PS4とEP樹脂も相溶することが確認された。
[Reference Example 5]
In Reference Example 5, the compatibility of polystyrene (manufactured by Polymer Source Inc., product number P40382-S, number average molecular weight 34,000, hereinafter also referred to as "PS4") with EP resin was confirmed.
In the same manner as in Reference Example 1, mixtures were prepared so that 11, 43, 100, 233, and 900 parts by mass of PS4 were contained per 100 parts by mass of EP resin, and when observed under an optical microscope, all of the mixtures were homogeneous and no phase separation was observed, confirming that PS4 and EP resin were also compatible.
[参考例6]
 参考例6では、ポリブタジエン(数平均分子量3千、以下、「PB」とも称する)とEP樹脂との相溶性を確認した。
 参考例1と同様にしてEP樹脂100質量部に対し、PBが11、100、900質量部となるように混合物を調製し、光学顕微鏡観察を行ったところ。いずれも数十μm程度のマクロ相分離が見られ、PBとEP樹脂は非相溶であることが確認された。
[Reference Example 6]
In Reference Example 6, the compatibility of polybutadiene (number average molecular weight: 3,000, hereinafter also referred to as "PB") with EP resin was confirmed.
In the same manner as in Reference Example 1, mixtures were prepared so that 11, 100, and 900 parts by mass of PB were used per 100 parts by mass of EP resin, and the mixtures were observed under an optical microscope. Macrophase separation of several tens of μm was observed in all the mixtures, and it was confirmed that PB and EP resin were incompatible.
 以上の結果から、本実施の形態において、官能性ブロック共重合体におけるエポキシ樹脂と相溶するポリマーとは、エポキシ樹脂と高い親和性を有し、相が分離することなく混ざり合うものである。また、ガラス転移温度(Tg)が25℃以下であるゴム状ポリマーのポリイソプレンが、エポキシ樹脂と混ざり合うことなく相が分離してしまいエポキシ樹脂との相溶性を示さないことから、ポリイソプレン鎖に非共有結合性官能基を導入した官能性ポリイソプレンにおいても、エポキシ樹脂と非相溶であるものと推測できる。 From the above results, in the present embodiment, a polymer compatible with an epoxy resin in a functional block copolymer is one that has high affinity with the epoxy resin and mixes with it without phase separation. In addition, since polyisoprene, a rubber-like polymer with a glass transition temperature ( Tg ) of 25°C or less, does not mix with the epoxy resin and undergoes phase separation, and does not show compatibility with the epoxy resin, it can be inferred that even functional polyisoprene in which a non-covalent functional group has been introduced into the polyisoprene chain is incompatible with the epoxy resin.
 このように、エポキシ樹脂と、潜在性硬化剤と、エポキシ樹脂と非相溶でガラス転移温度(Tg)が25℃以下である非共有結合性官能基を有したゴム状ポリマー及びエポキシ樹脂と相溶するポリマーからなる官能性ブロック共重合体として、ポリスチレン-官能性ポリイソプレン-ポリスチレンブロック共重合体(h-SIS、i-SIS)といったスチレン系熱可塑性エラストマーとを含有した一液熱硬化型エポキシ系接着剤組成物によれば、室温(常温)下で官能性ブロック共重合体のポリスチレン部がエポキシ樹脂との相溶性が良好であることで、ポリスチレン部の凝集による擬似架橋点の形成が生じないことにより、ゴム状ポリマーの非共有結合性官能基を有した官能性ポリイソプレン部による柔軟性、伸びや弾性率の付与効果によって、エポキシ樹脂硬化物である接着剤硬化物が強靭化される。これより、剥離強度や耐衝撃強度が向上する。 In this way, according to a one-part thermosetting epoxy adhesive composition containing an epoxy resin, a latent curing agent, and a styrene-based thermoplastic elastomer such as polystyrene-functional polyisoprene-polystyrene block copolymer (h-SIS, i-SIS) as a functional block copolymer consisting of a rubber-like polymer incompatible with the epoxy resin and having a non-covalent functional group with a glass transition temperature (T g ) of 25° C. or less, and a polymer compatible with the epoxy resin, the polystyrene portion of the functional block copolymer has good compatibility with the epoxy resin at room temperature (normal temperature), and therefore no pseudo-crosslinking points are formed due to aggregation of the polystyrene portion, and the flexibility, elongation, and elastic modulus are imparted by the functional polyisoprene portion of the rubber-like polymer having a non-covalent functional group, thereby toughening the adhesive cured product, which is the epoxy resin cured product. As a result, peel strength and impact strength are improved.
 特に、ゴム状ポリマーが非共有結合性官能基を有することにより、分子間や分子内で水素結合性官能基やイオン結合性官能基といった非共有結合性官能基同士が解離や再結合が自在な非共有結合し、応力を分散できることにより、非共有結合性官能基を持たないゴム状ポリマーよりもより高い強靭性を発揮することができる。 In particular, rubber-like polymers that have non-covalent functional groups form non-covalent bonds between or within molecules, such as hydrogen-bonding functional groups or ionic-bonding functional groups, that can dissociate and recombine freely, allowing stress to be dispersed, resulting in greater toughness than rubber-like polymers that do not have non-covalent functional groups.
 したがって、接着剤が硬化する際の硬化収縮や熱収縮の内部応力を緩和でき、また、接着後の接着剤層と被着材間との熱膨張係数差による両者間の界面に生じる応力を緩和できるから、接着剤硬化物の耐久性を高めることが可能となる。 As a result, it is possible to reduce the internal stress caused by hardening shrinkage and thermal shrinkage when the adhesive hardens, and also to reduce the stress that occurs at the interface between the adhesive layer and the adherend due to the difference in thermal expansion coefficient between the two after bonding, thereby making it possible to increase the durability of the hardened adhesive.
 なお、上記実施例は一液熱硬化型エポキシ樹脂系であり一液性であれば、二液混合型のような計量、混合の作業性の手間やポットライフの制約がなく、品質もより安定する。更に、貯蔵、保管スペースをとらない。
 また、上記実施例においては、ポリスチレン-ポリイソプレン-ポリスチレンブロック共重合体(SIS)のポリイソプレン鎖に非共有結合性官能基を導入したポリスチレン-官能性ポリイソプレン-ポリスチレンブロック共重合体(h-SIS、i-SIS)の例で説明したが、本発明を実施する場合には、ポリスチレン-ポリエチレン・プロピレン-ポリスチレンブロック共重合体(SPES)のポリエチレン・プロピレン鎖に非共有結合性官能基を導入したポリスチレン-官能性ポリエチレン・プロピレン-ポリスチレンブロック共重合体や、ポリスチレン-ポリブタジエン-ポリスチレンブロック共重合体(SBS)のポリブタジエン鎖に非共有結合性官能基を導入したポリスチレン-官能性ポリブタジエン-ポリスチレンブロック共重合体や、ポリスチレン-ポリエチレン・ブチレン-ポリスチレンブロック共重合体(SEBS)のポリエチレン・ブチレン鎖に非共有結合性官能基を導入したポリスチレン-官能性ポリエチレン・ブチレン-ポリスチレンブロック共重合体や、ポリスチレンーポリイソブチレンーポリスチレンブロック共重合体(SIBS)のポリイソブチレン鎖に非共有結合性官能基を導入したポリスチレン-官能性ポリイソブチレン-ポリスチレンブロック共重合体等でも同様にエポキシ樹脂硬化物を強靭化できる。
The above examples are based on a one-liquid thermosetting epoxy resin, and the one-liquid type does not require the laborious measurement and mixing required for two-liquid mixing, does not have restrictions on pot life, and has more stable quality. Furthermore, it does not require storage space.
In the above examples, the polystyrene-functionalized polyisoprene-polystyrene block copolymer (h-SIS, i-SIS) was used as an example in which a non-covalent functional group was introduced into the polyisoprene chain of the polystyrene-polyisoprene-polystyrene block copolymer (SIS). However, in the case of implementing the present invention, it is also possible to use a polystyrene-functionalized polyethylene-propylene-polystyrene block copolymer (SPES) in which a non-covalent functional group was introduced into the polyethylene-propylene chain of the polystyrene-polybutadiene-polystyrene block copolymer (SBS). The epoxy resin cured material can also be toughened similarly with polystyrene-functionalized polybutadiene-polystyrene block copolymers in which a non-covalent bonding functional group has been introduced into the polybutadiene chain of polystyrene-polyethylene butylene-polystyrene block copolymer (SEBS), polystyrene-functionalized polyethylene butylene-polystyrene block copolymers in which a non-covalent bonding functional group has been introduced into the polyethylene butylene chain of polystyrene-polyisobutylene-polystyrene block copolymer (SIBS), and the like.
 以下、本発明の実施の形態に係る官能性ブロック共重合体含有エポキシ系接着剤組成物として、ポリスチレン-ポリエチレン・ブチレン-ポリスチレンブロック共重合体(SEBS)のポリエチレン・ブチレン鎖(水添ポリブタジエン鎖)に非共有結合性官能基を導入したポリスチレン-官能性ポリエチレン・ブチレン-ポリスチレンブロック共重合体(ポリスチレン-官能性水添ポリブタジエン-ポリスチレンブロック共重合体)の実施例についても説明する。 Below, as an example of a functional block copolymer-containing epoxy adhesive composition according to an embodiment of the present invention, an example of a polystyrene-functional polyethylene butylene-polystyrene block copolymer (polystyrene-functional hydrogenated polybutadiene-polystyrene block copolymer) in which a non-covalent functional group has been introduced into the polyethylene butylene chain (hydrogenated polybutadiene chain) of a polystyrene-polyethylene butylene-polystyrene block copolymer (SEBS) is also described.
[実施例32]
 実施例32では、エポキシ樹脂と非相溶でガラス転移温度(Tg)が25℃以下である非共有結合性官能基を有するゴム状ポリマー及びエポキシ樹脂と相溶するポリマーからなる官能性ブロック共重合体として、スチレン系熱可塑性エラストマーであるポリスチレン-ポリエチレン・ブチレン-ポリスチレンブロック共重合体(SEBS)に対し、そのポリエチレン・ブチレン鎖に非共有結合性官能基として水素結合性官能基が導入されたポリスチレン-官能性ポリエチレン・ブチレン-ポリスチレンブロック共重合体を用いた。
[Example 32]
In Example 32, a polystyrene-functionalized polyethylene butylene-polystyrene block copolymer in which a hydrogen-bonding functional group was introduced as a non-covalent functional group to the polyethylene butylene chain of polystyrene-polyethylene butylene-polystyrene block copolymer (SEBS), which is a styrene-based thermoplastic elastomer, was used as a functional block copolymer consisting of a rubber-like polymer having a non-covalent functional group that is incompatible with epoxy resins and has a glass transition temperature (T g ) of 25° C. or lower, and a polymer that is compatible with epoxy resins.
 具体的には、実施例32では、常温で空気中の水分子によって徐々に水素結合性官能基であるカルボン酸基を生じるポリスチレン-無水マレイン酸ユニット導入ポリ(エチレン-r-ブチレン)-ポリスチレンブロック共重合体(Aldrich製、無水マレイン酸ユニット含有率:約2wt%程度(カタログ値)、製品番号432431)に対して、無水マレイン酸ユニットのほぼ全てを開環してジカルボン酸の状態にしたポリスチレン-水素結合性官能基導入ポリ(エチレン-r-ブチレン)-ポリスチレンブロック共重合体(水素結合性官能基含有率は無水マレイン酸ユニット含有率の2倍となる、以下、「h-SEBS」とも称する)を用意し、これを用いて実施例1のときと同様にして、100質量部のEP樹脂に対して、7.4量部のh-SEBSを含む比較的均質な液状混合物を調製し、7質量部のDICYと、1質量部のAAと、20.0質量部のCaCO3とを配合し、よく混合することで得られた液状混合物を接着剤とした。 Specifically, in Example 32, a polystyrene-maleic anhydride unit-introduced poly(ethylene-r-butylene)-polystyrene block copolymer (manufactured by Aldrich, maleic anhydride unit content: about 2 wt% (catalog value), product number 432431) that gradually generates a carboxylic acid group, which is a hydrogen-bonding functional group, at room temperature due to water molecules in the air, was prepared by ring-opening almost all of the maleic anhydride units to form a dicarboxylic acid, and a polystyrene-hydrogen-bonding functional group-introduced poly(ethylene-r-butylene)-polystyrene block copolymer (the hydrogen-bonding functional group content is twice the maleic anhydride unit content, hereinafter also referred to as "h-SEBS") was prepared. Using this, a relatively homogeneous liquid mixture containing 7.4 parts of h-SEBS per 100 parts by mass of EP resin was prepared in the same manner as in Example 1, and 7 parts by mass of DICY, 1 part by mass of AA, and 20.0 parts by mass of CaCO 3 were blended and mixed well to obtain a liquid mixture to be used as an adhesive.
 なお、上述のh-SEBSは次のように合成することができる。10gのポリスチレン-無水マレイン酸ユニット導入ポリ(エチレン-r-ブチレン)-ポリスチレンブロック共重合体を89gのTHFに溶解し、1.6gの純水と9.1gのトリエチルアミンを加えて50℃で20時間撹拌する。その後、得られた溶液を、500mL以上のアセトニトリルに数滴の濃塩酸を混合した溶媒に滴下することでポリマーを精製・沈殿させ、吸引ろ過によりポリマーを回収し、40℃で真空乾燥を行うことでh-SEBSが得られる。 The above-mentioned h-SEBS can be synthesized as follows: 10 g of polystyrene-maleic anhydride unit-introduced poly(ethylene-r-butylene)-polystyrene block copolymer is dissolved in 89 g of THF, 1.6 g of pure water and 9.1 g of triethylamine are added, and the mixture is stirred at 50°C for 20 hours. The resulting solution is then dripped into a solvent of 500 mL or more of acetonitrile mixed with a few drops of concentrated hydrochloric acid to purify and precipitate the polymer, which is then recovered by suction filtration and vacuum dried at 40°C to obtain h-SEBS.
[実施例33]
 実施例33では、EP樹脂100質量部に対して、h-SEBSを17質量部、CaCO3を21.7質量部の配合とした以外は、実施例32と同様にして、h-SEBSとEP樹脂とDICYとAAとCaCO3とからなる液状混合物を作製し、これを接着剤とした。
[Example 33]
In Example 33, a liquid mixture containing h-SEBS, EP resin, DICY, AA, and CaCO3 was prepared in the same manner as in Example 32, except that 17 parts by mass of h-SEBS and 21.7 parts by mass of CaCO3 were blended relative to 100 parts by mass of EP resin, and this was used as an adhesive.
[実施例34]
 実施例34では、EP樹脂100質量部に対して、h-SEBSを21質量部、CaCO3を22.6質量部の配合とした以外は、実施例32と同様にして、h-SEBSとEP樹脂とDICYとAAとCaCO3とからなる液状混合物を作製し、これを接着剤とした。
[Example 34]
In Example 34, a liquid mixture containing h-SEBS, EP resin, DICY, AA, and CaCO3 was prepared in the same manner as in Example 32, except that 21 parts by mass of h-SEBS and 22.6 parts by mass of CaCO3 were blended relative to 100 parts by mass of EP resin, and this was used as an adhesive.
[実施例35]
 実施例35では、EP樹脂100質量部に対して、h-SEBSを27質量部、CaCO3を23.5質量部の配合とした以外は、実施例32と同様にして、h-SEBSとEP樹脂とDICYとAAとCaCO3とからなる液状混合物を作製し、これを接着剤とした。
[Example 35]
In Example 35, a liquid mixture containing h-SEBS, EP resin, DICY, AA, and CaCO3 was prepared in the same manner as in Example 32, except that 27 parts by mass of h-SEBS and 23.5 parts by mass of CaCO3 were blended relative to 100 parts by mass of EP resin, and this was used as an adhesive.
 また、比較例として、官能性ブロック共重合体であるh-SEBSに替えてブロック共重合体(SEBS)を配合した接着剤を作製した。
[比較例14]
 比較例14では、実施例32のときと同様にして100質量部のEP樹脂に対して、8.0質量部のポリスチレン-ポリ(エチレン-r-ブチレン)-ポリスチレンブロック共重合体(Aldrich製、製品番号200557、以下「SEBS」とも称する)を含む比較的均質な液状混合物を調製し、7質量部のDICYと、1質量部のAAと、20.0質量部のCaCO3とを配合し、よく混合することで、得られた液状混合物を接着剤とした。
As a comparative example, an adhesive was prepared in which a block copolymer (SEBS) was used in place of the functional block copolymer h-SEBS.
[Comparative Example 14]
In Comparative Example 14, a relatively homogeneous liquid mixture containing 8.0 parts by mass of polystyrene-poly(ethylene-r-butylene)-polystyrene block copolymer (manufactured by Aldrich, product number 200557, hereinafter also referred to as "SEBS") per 100 parts by mass of EP resin was prepared in the same manner as in Example 32, and 7 parts by mass of DICY, 1 part by mass of AA, and 20.0 parts by mass of CaCO3 were blended and thoroughly mixed to obtain an adhesive.
[比較例15]
 比較例15では、EP樹脂100質量部に対して、SEBSを17質量部、CaCO3を21.7質量部の配合とした以外は、比較例14と同様にして、SEBSとEP樹脂とDICYとAAとCaCO3とからなる液状混合物を作製し、これを接着剤とした。
[Comparative Example 15]
In Comparative Example 15, a liquid mixture consisting of SEBS, EP resin, DICY, AA, and CaCO3 was prepared in the same manner as in Comparative Example 14, except that 17 parts by mass of SEBS and 21.7 parts by mass of CaCO3 were blended relative to 100 parts by mass of EP resin, and this was used as an adhesive.
[比較例16]
 比較例16では、EP樹脂100質量部に対して、SEBSを22質量部、CaCO3を22.6質量部の配合とした以外は、比較例14と同様にして、SEBSとEP樹脂とDICYとAAとCaCO3とからなる液状混合物を作製し、これを接着剤とした。
[Comparative Example 16]
In Comparative Example 16, a liquid mixture consisting of SEBS, EP resin, DICY, AA, and CaCO3 was prepared in the same manner as in Comparative Example 14, except that 22 parts by mass of SEBS and 22.6 parts by mass of CaCO3 were blended relative to 100 parts by mass of EP resin, and this was used as an adhesive.
[比較例17]
 比較例17では、EP樹脂100質量部に対して、SEBSを26質量部、CaCO3を23.5質量部の配合とした以外は、比較例14と同様にして、SEBSとEP樹脂とDICYとAAとCaCO3とからなる液状混合物を作製し、これを接着剤とした。
[Comparative Example 17]
In Comparative Example 17, a liquid mixture consisting of SEBS, EP resin, DICY, AA, and CaCO3 was prepared in the same manner as in Comparative Example 14, except that 26 parts by mass of SEBS and 23.5 parts by mass of CaCO3 were blended relative to 100 parts by mass of EP resin, and this was used as an adhesive.
 そして、実施例32乃至実施例35、比較例14乃至比較例17についても、上述と同様にしてT形剥離試験、耐衝撃試験、及び剪断引張試験を実施した。
 これら実施例32乃至実施例35、比較例14乃至比較例17の配合組成及び各種の試験結果をまとめて以下の表5に示す。
For Examples 32 to 35 and Comparative Examples 14 to 17, the T-peel test, impact resistance test, and shear tensile test were carried out in the same manner as described above.
The compounding compositions and various test results of Examples 32 to 35 and Comparative Examples 14 to 17 are shown in Table 5 below.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 表5に示すように、官能性ブロック共重合体としてh-SEBSを配合した液状の接着剤である実施例32乃至実施例35においても、剪断強度が良好であることに加え、剥離強度及び耐衝撃強度に優れていた。
 これは、実施例32乃至実施例35では、h-SEBS中のSブロックがEP樹脂と相溶するもh-SEBS中のゴム状ポリマーであるh-EBブロックが分散して、EP樹脂の加熱硬化後もh-EBブロックはゴムとして機能し、h-EBブロックによる伸び、柔軟性や弾性率を付与し、エポキシ樹脂が強靭化されたためと考えられる。
As shown in Table 5, in Examples 32 to 35, which are liquid adhesives containing h-SEBS as a functional block copolymer, the shear strength was good and the peel strength and impact strength were also excellent.
This is believed to be because in Examples 32 to 35, the S block in the h-SEBS was compatible with the EP resin, but the h-EB block, which is a rubber-like polymer in the h-SEBS, was dispersed, and the h-EB block continued to function as rubber even after the EP resin was heat-cured, imparting elongation, flexibility, and elastic modulus to the epoxy resin, thereby toughening the epoxy resin.
 そして、実施例32乃至実施例35の接着剤では、非共有結合性官能基を有する官能性ブロック共重合体(h-SEBS)に替えて非共有結合性官能基を有さないブロック共重合体(SEBS)を配合した比較例14乃至比較例17の接着剤と比べても、剥離強度や耐衝撃強度の向上がみられた。
 上述したように、非共有結合性官能基を有する官能性ブロック共重合体(h-SEBS)においては、分子間や分子内で水素結合性官能基等の非共有結合性官能基同士が非共有結合し、その非共有結合で解離や再結合が自在なものであるから、非共有結合による可逆的な擬似架橋点・物理架橋点、即ち、分子間や分子内で動的な結合能が付与され、外力が加えられたときにはその結合が切断されエネルギを分散することにより、即ち、応力を分散できることにより、高い強靭性を発揮するものと思われる。
Furthermore, the adhesives of Examples 32 to 35 showed improved peel strength and impact strength when compared with the adhesives of Comparative Examples 14 to 17 in which a block copolymer without non-covalent functional groups (SEBS) was blended instead of the functional block copolymer with non-covalent functional groups (h-SEBS).
As described above, in the functional block copolymer having non-covalent functional groups (h-SEBS), non-covalent functional groups such as hydrogen-bonding functional groups are non-covalently bonded between molecules or within molecules, and these non-covalent bonds allow for free dissociation and recombination. Therefore, reversible pseudo-crosslinking points and physical crosslinking points due to non-covalent bonds are provided, i.e., dynamic bonding ability is imparted between molecules or within molecules, and when an external force is applied, the bonds are cut and energy is dispersed, i.e., stress can be dispersed, which is thought to result in high toughness.
 以上説明してきたように、上記実施の形態の官能性ブロック共重合体含有エポキシ系接着剤組成物は、エポキシ樹脂と、硬化剤と、エポキシ樹脂と非相溶でガラス転移温度(Tg)が25℃以下である非共有結合性官能基を有したゴム状ポリマー及びエポキシ樹脂と相溶するポリマーからなる官能性ブロック共重合体とを含有するものである。
 したがって、上記実施の形態の官能性ブロック共重合体含有エポキシ系接着剤組成物によれば、エポキシ樹脂による高い接着性が発揮され、また、官能性ブロック共重合体のエポキシ樹脂と相溶するポリマーがエポキシ樹脂との相溶性が良く、一方で非共有結合性官能基を有したゴム状ポリマーがエポキシ樹脂と相溶せずエポキシ樹脂中に分散することで、非共有結合性官能基を有したゴム状ポリマーによる伸び、柔軟性や、弾性率が発現される。特に、ゴム状ポリマーが非共有結合性官能基を有することにより、ポリマー鎖間で非共有結合性官能基同士が解離や再結合が自在な非共有結合し擬似架橋点・物理架橋点を形成するから、強靭性の向上を可能とする。
 よって、接着剤硬化物の強靭性の向上を可能とし、剥離強度や耐衝撃性が高く、耐久性の高い接着剤硬化物が得られる。
As described above, the functional block copolymer-containing epoxy adhesive composition of the above embodiment contains an epoxy resin, a curing agent, and a functional block copolymer consisting of a rubber-like polymer that is incompatible with the epoxy resin and has a non-covalent functional group and a glass transition temperature (T g ) of 25° C. or lower, and a polymer that is compatible with the epoxy resin.
Therefore, according to the epoxy adhesive composition containing a functional block copolymer of the above embodiment, high adhesiveness is exhibited by the epoxy resin, and the polymer compatible with the epoxy resin of the functional block copolymer has good compatibility with the epoxy resin, while the rubber-like polymer having a non-covalent functional group is incompatible with the epoxy resin and dispersed in the epoxy resin, thereby exhibiting the elongation, flexibility and elastic modulus due to the rubber-like polymer having a non-covalent functional group. In particular, since the rubber-like polymer has a non-covalent functional group, the non-covalent functional groups between the polymer chains form pseudo-crosslinking points and physical crosslinking points through non-covalent bonding that can be freely dissociated and recombined, making it possible to improve toughness.
This makes it possible to improve the toughness of the cured adhesive, resulting in a cured adhesive that has high peel strength, high impact resistance, and high durability.
 特に、上記実施の形態の官能性ブロック共重合体含有エポキシ系接着剤組成物において、非共有結合性官能基を有したゴム状ポリマー中の非共有結合性官能基が、水素結合性官能基及び/またはイオン結合性官能基であれば、安定して応力緩和性を向上でき、耐衝撃性の向上が可能である。 In particular, in the epoxy adhesive composition containing a functional block copolymer according to the above embodiment, if the non-covalent functional group in the rubber-like polymer having the non-covalent functional group is a hydrogen-bonding functional group and/or an ionic-bonding functional group, the stress relaxation property can be stably improved, and impact resistance can be improved.
 また、非共有結合性官能基を有したゴム状ポリマー中の非共有結合性官能基が、アミド基、イミド基、カルボキシル基、フェノール基、ピリジル基、イミダゾリル基、ピラゾリル基、ウレタン基、カルボキシレート基、ホスホネート基、スルホネート基、アンモニウム基、ピリジニウム基、イミダゾリウム基、またはピラゾリウム基の何れか1種以上であれば官能性ブロック共重合体の製造が比較的容易で歩留まりが良好なものであることにより低コスト化できる。 In addition, if the non-covalent functional group in the rubber-like polymer having a non-covalent functional group is one or more of amide groups, imide groups, carboxyl groups, phenol groups, pyridyl groups, imidazolyl groups, pyrazolyl groups, urethane groups, carboxylate groups, phosphonate groups, sulfonate groups, ammonium groups, pyridinium groups, imidazolium groups, and pyrazolium groups, the production of the functional block copolymer is relatively easy and the yield is good, which allows for low costs.
 更に、非共有結合性官能基を有したゴム状ポリマー中の非共有結合性官能基の導入率が、非共有結合性官能基を有したゴム状ポリマーを構成するモノマーユニット100mol%に対して、1mol%以上、30mol%以下の範囲内であれば、強靭性の向上を安定的に確保できる。 Furthermore, if the introduction rate of the non-covalent functional group in the rubber-like polymer having the non-covalent functional group is within the range of 1 mol% or more and 30 mol% or less relative to 100 mol% of the monomer units constituting the rubber-like polymer having the non-covalent functional group, the improvement in toughness can be stably ensured.
 そして、官能性ブロック共重合体中の非共有結合性官能基を有したゴム状ポリマーが、イソプレン、ブタジエン、水素添加イソプレン、または、水素添加ブタジエンのモノマーユニットを含有し、ブロック共重合体のエポキシ樹脂と相溶するポリマーが、スチレン骨格、メタクリル骨格、アクリル骨格、または、エーテル骨格を有するモノマーユニットを含有するものであれば、ゴム弾性、耐熱老化性、耐候性等の特性の向上を可能とする。 Furthermore, if the rubber-like polymer having a non-covalent functional group in the functional block copolymer contains a monomer unit of isoprene, butadiene, hydrogenated isoprene, or hydrogenated butadiene, and the polymer compatible with the epoxy resin in the block copolymer contains a monomer unit having a styrene skeleton, a methacrylic skeleton, an acrylic skeleton, or an ether skeleton, it is possible to improve properties such as rubber elasticity, heat aging resistance, and weather resistance.
 中でも、官能性ブロック共重合体が、ポリイソプレンに非共有結合性官能基が導入されてなる官能性ポリイソプレンを含有する官能性スチレン系熱可塑性エラストマー、ポリブタジエンに非共有結合性官能基が導入されてなる官能性ポリブタジエンを含有する官能性スチレン系熱可塑性エラストマー、水添ポリイソプレンに非共有結合性官能基が導入されてなる官能性水添ポリイソプレンを含有する官能性スチレン系熱可塑性エラストマー、または水添ポリブタジエンに非共有結合性官能基が導入されてなる官能性水添ポリブタジエンを含有する官能性スチレン系熱可塑性エラストマーであれば、低コスト化が可能で、また、伸び、柔軟性や弾性率に優れることにより、強靭性を向上でき、剥離強度や耐衝撃強度を向上できる。 Among them, if the functional block copolymer is a functional styrene-based thermoplastic elastomer containing a functional polyisoprene obtained by introducing a non-covalent functional group into polyisoprene, a functional styrene-based thermoplastic elastomer containing a functional polybutadiene obtained by introducing a non-covalent functional group into polybutadiene, a functional styrene-based thermoplastic elastomer containing a functional hydrogenated polyisoprene obtained by introducing a non-covalent functional group into hydrogenated polyisoprene, or a functional styrene-based thermoplastic elastomer containing a functional hydrogenated polybutadiene obtained by introducing a non-covalent functional group into hydrogenated polybutadiene, it is possible to reduce costs, and since it has excellent elongation, flexibility, and elastic modulus, it is possible to improve toughness, peel strength, and impact strength.
 また、官能性ブロック共重合体の非共有結合性官能基を有したゴム状ポリマーがエポキシ樹脂100質量部に対し、0.5質量部以上、3000質量部以下の範囲内の含有であれば、強靭性をより高くでき、耐久性をより向上できる。よって、異種材の接着に適用する場合でも、信頼性の高い接着強度が得られる。 Furthermore, if the rubber-like polymer having non-covalent functional groups of the functional block copolymer is contained in a range of 0.5 parts by mass or more and 3,000 parts by mass or less per 100 parts by mass of epoxy resin, the toughness can be increased and durability can be improved. Therefore, even when applied to bonding dissimilar materials, highly reliable adhesive strength can be obtained.
 更に、官能性ブロック共重合体中のエポキシ樹脂と相溶するポリマーの含有量が3質量%以上、80質量%以下の範囲内であれば、エポキシ樹脂と相溶性を向上でき均質に混合できるから、接着剤硬化物の安定した特性が得られる。 Furthermore, if the content of the polymer compatible with the epoxy resin in the functional block copolymer is within the range of 3% by mass or more and 80% by mass or less, compatibility with the epoxy resin can be improved and the mixture can be homogeneously mixed, resulting in stable properties of the cured adhesive.
 加えて、官能性ブロック共重合体のエポキシ樹脂と相溶するポリマーの数平均分子量が1000以上、50000以下の範囲内のものであることによっても、エポキシ樹脂と相溶性を向上でき均質に混合できることで、接着剤硬化物の安定した特性が得られる。 In addition, by having the number average molecular weight of the polymer that is compatible with the epoxy resin of the functional block copolymer be in the range of 1,000 or more and 50,000 or less, compatibility with the epoxy resin can be improved and the mixture can be mixed homogeneously, resulting in stable properties of the cured adhesive.
 また、官能性ブロック共重合体が、エポキシ樹脂100質量部に対し、1質量部以上、3500質量部以下、より好ましくは、0.8質量部以上、280質量部以下、更に好ましくは、1質量部以上、2500質量部以下の範囲内の配合でれば、良好な塗布性と強靭性向上との両立を可能とする。
 そして、上記実施の形態のエポキシ系接着剤組成物において、ジシアンジアミド等の潜在性硬化剤の配合量が、好ましくは、エポキシ樹脂100質量部に対し、1質量部以上、20質量部以下、より好ましくは、5質量部以上、10質量部以下の範囲内であれば、塗布性や耐水性を損なうことなくエポキシ樹脂を硬化できる。
Furthermore, when the functional block copolymer is blended in an amount within the range of 1 part by mass or more and 3,500 parts by mass or less, more preferably 0.8 parts by mass or more and 280 parts by mass or less, and even more preferably 1 part by mass or more and 2,500 parts by mass or less, relative to 100 parts by mass of the epoxy resin, it becomes possible to achieve both good coatability and improved toughness.
In the epoxy adhesive composition of the above embodiment, so long as the amount of the latent curing agent such as dicyandiamide is preferably within the range of 1 part by mass or more and 20 parts by mass or less, and more preferably 5 parts by mass or more and 10 parts by mass or less, per 100 parts by mass of the epoxy resin, the epoxy resin can be cured without impairing the coatability or water resistance.
 また、上記実施例のブロック共重合体含有エポキシ系接着剤組成物は、エポキシ樹脂と、硬化剤と、ポリイソプレン鎖に非共有結合性官能基が導入されてなるポリスチレン-官能性ポリイソプレン-ポリスチレンブロック共重合体(h-SISやi-SIS)とを含有するものである。したがって、上記実施例のエポキシ系接着剤組成物によれば、エポキシ樹脂による高い接着性が発揮され、また、ポリスチレン-官能性ポリイソプレン-ポリスチレンブロック共重合体(h-SISやiーSIS)による伸び、柔軟性や弾性率が付与される。よって、接着剤硬化物の強靭性の向上を可能とし、耐久性の高い接着剤硬化物が得られる。 The block copolymer-containing epoxy adhesive composition of the above example contains an epoxy resin, a curing agent, and a polystyrene-functional polyisoprene-polystyrene block copolymer (h-SIS or i-SIS) in which a non-covalent functional group has been introduced into the polyisoprene chain. Therefore, the epoxy adhesive composition of the above example exhibits high adhesiveness due to the epoxy resin, and also provides elongation, flexibility, and elasticity due to the polystyrene-functional polyisoprene-polystyrene block copolymer (h-SIS or i-SIS). This makes it possible to improve the toughness of the adhesive cured product, and to obtain a highly durable adhesive cured product.
 即ち、ポリスチレン-官能性ポリイソプレン-ポリスチレンブロック共重合体(h-SISやi-SIS)のポリスチレン部がエポキシ樹脂と相溶性があることにより、ポリスチレン部とエポキシ樹脂の相溶化により、エポキシ樹脂中に官能性ポリイソプレン部が微分散化し、官能性ポリイソプレン部による伸び、柔軟性や弾性率により、強靭性が付与される。 In other words, the polystyrene portion of polystyrene-functionalized polyisoprene-polystyrene block copolymers (h-SIS and i-SIS) is compatible with epoxy resin, and the compatibility between the polystyrene portion and epoxy resin causes the functionalized polyisoprene portion to be finely dispersed in the epoxy resin, and the elongation, flexibility, and elastic modulus of the functionalized polyisoprene portion impart toughness.
 特に、上記実施例では、水素結合性官能基であるアミド基やカルボキシル基や、イオン結合性官能基であるカルボキシレート基といった非共有結合性官能基を有したゴム状ポリマー中の非共有結合性官能基が、ポリマー鎖間で非共有結合性官能基同士が解離や再結合が自在な非共有結合し擬似架橋点・物理架橋点を形成するから、強靭性の向上を可能とする。 In particular, in the above examples, the non-covalent functional groups in the rubber-like polymer, which have non-covalent functional groups such as amide groups and carboxyl groups that are hydrogen-bonding functional groups, and carboxylate groups that are ionic-bonding functional groups, form pseudo-crosslinking points and physical crosslinking points between the polymer chains through non-covalent bonds that can freely dissociate and recombine, making it possible to improve toughness.
 よって、硬化収縮時や熱収縮時の内部応力や、接着後の接着剤層と被着材間との熱膨張係数差による両者間の界面に生じる応力を緩和できる。つまり、ポリスチレン-官能性ポリイソプレン-ポリスチレンブロック共重合体(h-SISやi-SIS)の配合による応力の分散、強靭性の向上によって、剥離接着強度や衝撃接着強度といった接着強度が向上する。よって、強靭性があり耐久性の高い接着硬化物となる。 This allows for the mitigation of internal stresses that occur during hardening shrinkage or thermal shrinkage, as well as stresses that occur at the interface between the adhesive layer and the adherend after bonding due to differences in the thermal expansion coefficient between the two. In other words, the incorporation of polystyrene-functional polyisoprene-polystyrene block copolymers (h-SIS and i-SIS) improves stress dispersion and toughness, thereby improving adhesive strength such as peel adhesion strength and impact adhesion strength. This results in a tough, durable cured adhesive product.
 そして、こうしたポリスチレン-官能性ポリイソプレン-ポリスチレンブロック共重合体(h-SISやi-SIS)は、エポキシ樹脂本来の特性(例えば、接着性、耐熱性、温度特性等)を損なうことなく、官能性ポリイソプレンの配合量による靭性の向上効果が高いものである。また、エポキシ樹脂の本来の耐熱性は維持されることで耐用温度域も広いものである。更に、ポリスチレン-官能性ポリイソプレン-ポリスチレンブロック共重合体(h-SISやiーSIS)を作製するときの原料となるポリスチレン-ポリイソプレン-ポリスチレンブロック共重合体(SIS)では、その重合制御が可能で、スチレンやイソプレンの含有量制御により所望とする伸び、柔軟性や弾性率の特性を得ることも可能である。 These polystyrene-functionalized polyisoprene-polystyrene block copolymers (h-SIS and i-SIS) have a high effect of improving toughness due to the amount of functionalized polyisoprene blended, without impairing the inherent properties of epoxy resins (e.g., adhesion, heat resistance, temperature properties, etc.). In addition, the inherent heat resistance of epoxy resins is maintained, so the usable temperature range is also wide. Furthermore, with polystyrene-polyisoprene-polystyrene block copolymers (SIS), which are the raw materials used to produce polystyrene-functionalized polyisoprene-polystyrene block copolymers (h-SIS and i-SIS), it is possible to control the polymerization, and it is also possible to obtain the desired elongation, flexibility, and elastic modulus properties by controlling the amount of styrene and isoprene contained.
 また、エポキシ樹脂と、硬化剤と、水添ポリイソプレン鎖に非共有結合性官能基が導入されてなるポリスチレン-官能性水添ポリイソプレン-ポリスチレンブロック共重合体とを含有するブロック共重合体含有エポキシ系接着剤組成物についても同様である。
 更に、エポキシ樹脂と、硬化剤と、ポリブタジエン鎖に非共有結合性官能基が導入されてなるポリスチレン-官能性ポリブタジエン-ポリスチレンブロック共重合体または水添ポリブタジエン鎖に非共有結合性官能基が導入されてなるポリスチレン-官能性水添ポリブタジエン-ポリスチレンブロック共重合体とを含有するブロック共重合体含有エポキシ系接着剤組成物についても同様である。
The same applies to a block copolymer-containing epoxy adhesive composition that contains an epoxy resin, a curing agent, and a polystyrene-functional hydrogenated polyisoprene-polystyrene block copolymer in which a non-covalent functional group has been introduced into the hydrogenated polyisoprene chain.
The same is true for a block copolymer-containing epoxy adhesive composition that contains an epoxy resin, a curing agent, and a polystyrene-functional polybutadiene-polystyrene block copolymer in which a non-covalent functional group has been introduced into the polybutadiene chain, or a polystyrene-functional hydrogenated polybutadiene-polystyrene block copolymer in which a non-covalent functional group has been introduced into the hydrogenated polybutadiene chain.
 ところで、上記の説明は、エポキシ樹脂と、硬化剤と、エポキシ樹脂と非相溶でガラス転移温度(Tg)が25℃以下である非共有結合性官能基を有したゴム状ポリマー及びエポキシ樹脂と相溶するポリマーからなる官能性ブロック共重合体とを含有する接着剤組成物の製造方法であって、少なくともエポキシ樹脂と官能性ブロック共重合体とを溶媒に加え混合する混合工程と、溶媒を除去する溶媒除去工程とを具備する官能性ブロック共重合体含有エポキシ系接着剤組成物の製造方法の発明と捉えることもできる。 The above description can also be understood as an invention of a method for producing an adhesive composition containing an epoxy resin, a curing agent, and a functional block copolymer consisting of a rubber-like polymer that is incompatible with the epoxy resin and has a non-covalent functional group and a glass transition temperature ( Tg ) of 25°C or lower, and a polymer that is compatible with the epoxy resin, the method comprising at least a mixing step of adding the epoxy resin and the functional block copolymer to a solvent and mixing them, and a solvent removal step of removing the solvent.
 上記実施の形態の官能性ブロック共重合体含有エポキシ系接着剤組成物の製造方法によれば、得られた接着剤組成物は、エポキシ樹脂と、硬化剤と、エポキシ樹脂と非相溶でガラス転移温度(Tg)が25℃以下である非共有結合性官能基を有したゴム状ポリマー及びエポキシ樹脂と相溶するポリマーからなる官能性ブロック共重合体とを含有することにより、エポキシ樹脂による高い接着性が発揮され、また、官能性ブロック共重合体のエポキシ樹脂と相溶するポリマーがエポキシ樹脂との相溶性が良く、一方で非共有結合性官能基を有したゴム状ポリマーがエポキシ樹脂と相溶せずエポキシ樹脂中に分散することで、非共有結合性官能基を有した系ゴム状ポリマーによる伸び、柔軟性や、弾性率が発揮される。
 特に、ゴム状ポリマーが非共有結合性官能基を有することにより、ポリマー鎖間で非共有結合性官能基同士が解離や再結合が自在な非共有結合し擬似架橋点・物理架橋点を形成するから、強靭性の向上を可能とする。
 よって、接着剤硬化物の強靭性の向上を可能とし、剥離強度や耐衝撃性が高く、耐久性の高い接着剤硬化物が得られる。
According to the manufacturing method of the functional block copolymer-containing epoxy adhesive composition of the above embodiment, the obtained adhesive composition contains an epoxy resin, a curing agent, and a functional block copolymer consisting of a rubber-like polymer having a non-covalent functional group that is incompatible with the epoxy resin and has a glass transition temperature (T g ) of 25° C. or lower, and a polymer that is compatible with the epoxy resin, thereby exhibiting high adhesiveness due to the epoxy resin, and further, the polymer that is compatible with the epoxy resin in the functional block copolymer has good compatibility with the epoxy resin, while the rubber-like polymer having a non-covalent functional group is incompatible with the epoxy resin and is dispersed in the epoxy resin, thereby exhibiting elongation, flexibility and elastic modulus due to the rubber-like polymer having a non-covalent functional group.
In particular, when a rubber-like polymer has non-covalent functional groups, the non-covalent functional groups between polymer chains form non-covalent bonds that can freely dissociate and recombine, forming pseudo-crosslinking points and physical crosslinking points, thereby enabling the toughness to be improved.
This makes it possible to improve the toughness of the cured adhesive, resulting in a cured adhesive that has high peel strength, high impact resistance, and high durability.
 特に、上記実施の形態のエポキシ系接着剤組成物の製造方法によれば、エポキシ樹脂と、エポキシ樹脂と非相溶でガラス転移温度(Tg)が25℃以下である非共有結合性官能基を有したゴム状ポリマー及びエポキシ樹脂と相溶するポリマーからなる官能性ブロック共重合体とを材料劣化を生じることなく短時間で容易に均一に混合、分散でき、取扱いやすいものとなる。 In particular, according to the method for producing an epoxy adhesive composition of the above embodiment, an epoxy resin, a rubber-like polymer having a non-covalent functional group that is incompatible with the epoxy resin and has a glass transition temperature ( Tg ) of 25°C or lower, and a functional block copolymer comprising a polymer that is compatible with the epoxy resin, can be easily and uniformly mixed and dispersed in a short time without causing deterioration of the materials, making the composition easy to handle.
 更に、上記の説明は、エポキシ樹脂と、硬化剤と、エポキシ樹脂と非相溶でガラス転移温度(Tg)が25℃以下である非共有結合性官能基を有したゴム状ポリマー及びエポキシ樹脂と相溶するポリマーからなるブロック共重合体とを含有するエポキシ系接着剤組成物が硬化してなる官能性ブロック共重合体含有エポキシ系接着剤硬化物の発明と捉えることもできる。
 上記実施の形態の官能性ブロック共重合体含有エポキシ系接着剤硬化物によれば、エポキシ樹脂と、硬化剤と、エポキシ樹脂と非相溶でガラス転移温度(Tg)が25℃以下である非共有結合性官能基を有したゴム状ポリマー及びエポキシ樹脂と相溶するポリマーからなる官能性ブロック共重合体とを含有することにより、エポキシ樹脂による高い接着性が発揮され、また、官能性ブロック共重合体のエポキシ樹脂と相溶するポリマーがエポキシ樹脂との相溶性が良いが良く、一方で非共有結合性官能基を有したゴム状ポリマーがエポキシ樹脂と相溶せずエポキシ樹脂中に分散することで、非共有結合性官能基を有したゴム状ポリマーによる伸び、柔軟性や、弾性率が発揮される。
 特に、ゴム状ポリマーが非共有結合性官能基を有することにより、ポリマー鎖間で非共有結合性官能基同士が解離や再結合が自在な非共有結合し擬似架橋点・物理架橋点を形成するから、強靭性の向上を可能とする。
 よって、接着剤硬化物の強靭性の向上を可能とし、剥離強度や耐衝撃性が高く、耐久性の高いものとなる。
Furthermore, the above description can also be understood as an invention of a cured epoxy adhesive containing functional block copolymer obtained by curing an epoxy adhesive composition containing an epoxy resin, a curing agent, and a block copolymer consisting of a rubber-like polymer that is incompatible with the epoxy resin and has a non-covalent functional group and a glass transition temperature (T g ) of 25° C. or lower, and a polymer that is compatible with the epoxy resin.
According to the cured epoxy adhesive containing functional block copolymer of the above embodiment, by containing an epoxy resin, a curing agent, and a functional block copolymer consisting of a rubber-like polymer having a non-covalent functional group that is incompatible with the epoxy resin and has a glass transition temperature (T g ) of 25° C. or lower, and a polymer that is compatible with the epoxy resin, high adhesiveness is exhibited by the epoxy resin, and further, the polymer that is compatible with the epoxy resin of the functional block copolymer has good compatibility with the epoxy resin, while the rubber-like polymer having a non-covalent functional group is incompatible with the epoxy resin and is dispersed in the epoxy resin, thereby exhibiting the elongation, flexibility and elastic modulus of the rubber-like polymer having a non-covalent functional group.
In particular, when a rubber-like polymer has non-covalent functional groups, the non-covalent functional groups between polymer chains form non-covalent bonds that can freely dissociate and recombine, forming pseudo-crosslinking points and physical crosslinking points, thereby enabling the toughness to be improved.
This makes it possible to improve the toughness of the cured adhesive, resulting in a product with high peel strength, impact resistance, and durability.
 こうした本発明の官能性ブロック共重合体含有エポキシ系接着剤組成物は、自動車、新幹線、電車等の車両、土木、建築、エレクトロニクス、航空機、宇宙産業分野等の構造部材(例えば、金属材料、プラスチック等の有機・高分子材料、コンクリート等の無機材料等からなる)に対する接着剤としての他、医療用、一般事務用、電子材料用の接着剤(例えば、ビルドアップ基板等の電子機器の基板の層間接着剤、ダイボンディング剤、アンダーフィル等の半導体用接着剤、BGA補強用アンダーフィル、異方性導電性フィルム(ACF)、異方性導電性ペースト(ACP)等の実装用接着剤等)としても利用可能で広い分野に適用可能である。また、接着剤としての用途に限らず、エポキシ樹脂組成物として一般用途向けの物品、例えば、塗料、コーティング剤、成形材料(シート、フィルム、FRP等を含む)、絶縁材料(プリント基板、電線被覆等を含む)、封止剤(例えば、コンデンサ、トランジスタ、ダイオード、発光ダイオード、IC、LSI用等のポッティング、ディッピング、トランスファーモールド封止、IC、LSI類のCOB、COF、TAB用等といったポッティング封止、フリップチップ用等のアンダーフィル、QFP、BGA、CSP等のICパッケージ類実装時の封止)等に適用することも可能である。 The functional block copolymer-containing epoxy adhesive composition of the present invention can be used as an adhesive for structural components (e.g., made of metal materials, organic/polymeric materials such as plastics, inorganic materials such as concrete, etc.) in vehicles such as automobiles, bullet trains, and electric trains, in civil engineering, architecture, electronics, aircraft, and the aerospace industry, as well as for medical, general office, and electronic material adhesives (e.g., interlayer adhesives for electronic device substrates such as build-up substrates, die bonding agents, semiconductor adhesives such as underfills, underfills for reinforcing BGAs, and mounting adhesives such as anisotropic conductive films (ACFs) and anisotropic conductive pastes (ACPs)), and can be applied in a wide range of fields. In addition to its use as an adhesive, the epoxy resin composition can also be used in general-purpose articles, such as paints, coatings, molding materials (including sheets, films, FRP, etc.), insulating materials (including printed circuit boards, wire coatings, etc.), and sealants (for example, potting, dipping, and transfer mold sealing for capacitors, transistors, diodes, light-emitting diodes, ICs, and LSIs, potting sealing for COB, COF, and TAB for ICs and LSIs, underfill for flip chips, and sealing for mounting IC packages such as QFP, BGA, and CSP).
 中でも、エポキシ樹脂と非相溶でガラス転移温度(Tg)が25℃以下である非共有結合性官能基を有したゴム状ポリマー及びエポキシ樹脂と相溶するポリマーからなるブロック共重合体の配合による強靭化によって、自動車や航空機等の車体のドア、フード等のヘミング部へ用いるヘミング用接着剤や構造用接着剤に好適に使用できる。特に、エポキシ樹脂は材料強度や接着性も高く、官能性ブロック共重合体の配合による強靭化により接着剤硬化物の耐久性、耐衝撃性も高いことから、高い剥離強度等の接着強度が要求される構造用接着剤にも好適である。また、耐衝撃性が向上することにより安全性の向上、耐疲労性の効果も期待できる。その他、風力発電羽根や、積層板、封止材、絶縁材の電子材料や、例えば、工業用、自転車等で使用される複合材料の用途にも適用できる。 Among them, by toughening by blending a rubber-like polymer having a non-covalent functional group that is incompatible with epoxy resin and has a glass transition temperature (T g ) of 25° C. or less and a block copolymer consisting of a polymer compatible with epoxy resin, epoxy resin can be suitably used as a hemming adhesive or structural adhesive for use in hemming parts such as doors and hoods of car bodies of automobiles and aircraft. In particular, epoxy resins have high material strength and adhesiveness, and the durability and impact resistance of the adhesive cured product are also high due to the toughening by blending the functional block copolymer, so that they are also suitable for structural adhesives that require high adhesive strength such as peel strength. In addition, the improved impact resistance can be expected to improve safety and fatigue resistance. In addition, it can be applied to wind power generation blades, laminates, sealing materials, electronic materials such as insulating materials, and composite materials used in industrial applications, bicycles, etc.
 本発明を実施する場合には、官能性ブロック共重合体含有エポキシ系接着剤組成物のその他の部分の組成、成分、配合量、製造方法等については、上記実施の形態に限定されるものではない。更に、本発明の実施の形態及び実施例で挙げている数値は、その全てが臨界値を示すものではなく、ある数値は実施に好適な好適値を示すものであるから、上記数値を若干変更してもその実施を否定するものではない。                                                                              When implementing the present invention, the composition, ingredients, blending amounts, manufacturing method, etc. of other parts of the functional block copolymer-containing epoxy adhesive composition are not limited to the above embodiment. Furthermore, the numerical values given in the embodiment and examples of the present invention do not all indicate critical values, and some numerical values indicate suitable values suitable for implementation, so slight changes to the above numerical values do not negate the implementation.   ...

Claims (14)

  1.  エポキシ樹脂と、硬化剤と、前記エポキシ樹脂と非相溶でガラス転移温度が25℃以下である非共有結合性官能基を有したゴム状ポリマー及び前記エポキシ樹脂と相溶するポリマーからなる官能性ブロック共重合体とを含有することを特徴とする官能性ブロック共重合体含有エポキシ系接着剤組成物。 An epoxy adhesive composition containing a functional block copolymer, characterized by containing an epoxy resin, a curing agent, and a rubber-like polymer having a non-covalent functional group that is incompatible with the epoxy resin and has a glass transition temperature of 25°C or less, and a functional block copolymer consisting of a polymer that is compatible with the epoxy resin.
  2.  前記官能性ブロック共重合体中の前記非共有結合性官能基を有したゴム状ポリマー中の前記非共有結合性官能基は、水素結合性官能基及び/またはイオン結合性官能基であることを特徴とする請求項1に記載の官能性ブロック共重合体含有エポキシ系接着剤組成物。 The epoxy adhesive composition containing a functional block copolymer according to claim 1, characterized in that the non-covalent functional group in the rubber-like polymer having the non-covalent functional group in the functional block copolymer is a hydrogen-bonding functional group and/or an ionic-bonding functional group.
  3.  前記官能性ブロック共重合体中の前記非共有結合性官能基を有したゴム状ポリマー中の前記非共有結合性官能基は、アミド基、イミド基、カルボキシル基、フェノール基、ピリジル基、イミダゾリル基、ピラゾリル基、ウレタン基、カルボキシレート基、ホスホネート基、スルホネート基、アンモニウム基、ピリジニウム基、イミダゾリウム基、またはピラゾリウム基の何れか1種以上であることを特徴とする請求項1に記載の官能性ブロック共重合体含有エポキシ系接着剤組成物。 The epoxy adhesive composition containing a functional block copolymer according to claim 1, characterized in that the non-covalent functional group in the rubber-like polymer having the non-covalent functional group in the functional block copolymer is one or more of an amide group, an imide group, a carboxyl group, a phenol group, a pyridyl group, an imidazolyl group, a pyrazolyl group, a urethane group, a carboxylate group, a phosphonate group, a sulfonate group, an ammonium group, a pyridinium group, an imidazolium group, or a pyrazolium group.
  4.  前記官能性ブロック共重合体中の前記非共有結合性官能基を有したゴム状ポリマーは、イソプレン、ブタジエン、水素添加イソプレン、または水素添加ブタジエンのモノマーユニットを含有し、
     前記官能性ブロック共重合体中の前記エポキシ樹脂と相溶するポリマーは、スチレン骨格、メタクリル骨格、アクリル骨格、またはエーテル骨格を有するモノマーユニットを含有することを特徴とする請求項1に記載の官能性ブロック共重合体含有エポキシ系接着剤組成物。
    the rubbery polymer having non-covalently bondable functional groups in the functional block copolymer contains monomer units of isoprene, butadiene, hydrogenated isoprene, or hydrogenated butadiene;
    2. The epoxy adhesive composition according to claim 1, wherein the polymer in the functional block copolymer that is compatible with the epoxy resin contains a monomer unit having a styrene skeleton, a methacrylic skeleton, an acrylic skeleton, or an ether skeleton.
  5.  前記官能性ブロック共重合体中の前記非共有結合性官能基を有したゴム状ポリマー中の前記非共有結合性官能基の導入率が、前記非共有結合性官能基を有したゴム状ポリマーを構成するモノマーユニット100mol%に対して1mol%以上、30mol%以下の範囲内であることを特徴とする請求項1に記載の官能性ブロック共重合体含有エポキシ系接着剤組成物。 The epoxy adhesive composition containing a functional block copolymer according to claim 1, characterized in that the introduction rate of the non-covalent functional group in the rubber-like polymer having the non-covalent functional group in the functional block copolymer is within the range of 1 mol% or more and 30 mol% or less with respect to 100 mol% of the monomer units constituting the rubber-like polymer having the non-covalent functional group.
  6.  前記官能性ブロック共重合体中の前記非共有結合性官能基を有したゴム状ポリマーは、前記エポキシ樹脂100質量部に対し、0.5質量部以上、3000質量部以下の範囲内で含有することを特徴とする請求項1に記載の官能性ブロック共重合体含有エポキシ系接着剤組成物。 The epoxy adhesive composition containing a functional block copolymer according to claim 1, characterized in that the rubber-like polymer having a non-covalent functional group in the functional block copolymer is contained in an amount within the range of 0.5 parts by mass or more and 3,000 parts by mass or less per 100 parts by mass of the epoxy resin.
  7.  前記官能性ブロック共重合体中の前記エポキシ樹脂と相溶するポリマーの含有量は3質量%以上、80質量%以下の範囲内であることを特徴とする請求項1に記載の官能性ブロック共重合体含有エポキシ系接着剤組成物。 The epoxy adhesive composition containing a functional block copolymer according to claim 1, characterized in that the content of the polymer compatible with the epoxy resin in the functional block copolymer is in the range of 3% by mass or more and 80% by mass or less.
  8.  前記官能性ブロック共重合体中の前記エポキシ樹脂と相溶するポリマーは、その数平均分子量が1000以上、50000以下の範囲内のものであることを特徴とする請求項1に記載の官能性ブロック共重合体含有エポキシ系接着剤組成物。 The epoxy adhesive composition containing a functional block copolymer according to claim 1, characterized in that the polymer in the functional block copolymer that is compatible with the epoxy resin has a number average molecular weight in the range of 1,000 or more and 50,000 or less.
  9.  前記官能性ブロック共重合体は、前記エポキシ樹脂100質量部に対し、1質量部以上、3500質量部以下の範囲内の配合であることを特徴とする請求項1に記載の官能性ブロック共重合体含有エポキシ系接着剤組成物。 The epoxy adhesive composition containing a functional block copolymer according to claim 1, characterized in that the functional block copolymer is blended in an amount ranging from 1 part by mass to 3,500 parts by mass per 100 parts by mass of the epoxy resin.
  10.  前記官能性ブロック共重合体は、ポリイソプレンに前記非共有結合性官能基が導入されてなる官能性ポリイソプレン、ポリブタジエンに前記非共有結合性官能基が導入されてなる官能性ポリブタジエン、水添ポリイソプレンに前記非共有結合性官能基が導入されてなる官能性水添ポリイソプレン、または水添ポリブタジエンに前記非共有結合性官能基が導入されてなる官能性水添ポリブタジエンの何れかを含有する官能性スチレン系熱可塑性エラストマーであることを特徴とする請求項1に記載の官能性ブロック共重合体含有エポキシ系接着剤組成物。 The functional block copolymer-containing epoxy adhesive composition according to claim 1, characterized in that the functional block copolymer is a functional styrene-based thermoplastic elastomer containing any one of functional polyisoprene obtained by introducing the non-covalent functional group into polyisoprene, functional polybutadiene obtained by introducing the non-covalent functional group into polybutadiene, functional hydrogenated polyisoprene obtained by introducing the non-covalent functional group into hydrogenated polyisoprene, and functional hydrogenated polybutadiene obtained by introducing the non-covalent functional group into hydrogenated polybutadiene.
  11.  エポキシ樹脂と、硬化剤と、ポリイソプレン鎖に非共有結合性官能基が導入されてなるポリスチレン-官能性ポリイソプレン-ポリスチレンブロック共重合体または水添ポリイソプレン鎖に非共有結合性官能基が導入されてなるポリスチレン-官能性水添ポリイソプレン-ポリスチレンブロック共重合体とを含有することを特徴とする官能性ブロック共重合体含有エポキシ系接着剤組成物。 An epoxy adhesive composition containing a functional block copolymer, characterized by containing an epoxy resin, a curing agent, and a polystyrene-functional polyisoprene-polystyrene block copolymer in which a non-covalent functional group has been introduced into the polyisoprene chain, or a polystyrene-functional hydrogenated polyisoprene-polystyrene block copolymer in which a non-covalent functional group has been introduced into the hydrogenated polyisoprene chain.
  12.  エポキシ樹脂と、硬化剤と、ポリブタジエン鎖に非共有結合性官能基が導入されてなるポリスチレン-官能性ポリブタジエン-ポリスチレンブロック共重合体または水添ポリブタジエン鎖に非共有結合性官能基が導入されてなるポリスチレン-官能性水添ポリブタジエン-ポリスチレンブロック共重合体とを含有することを特徴とする官能性ブロック共重合体含有エポキシ系接着剤組成物。 An epoxy adhesive composition containing a functional block copolymer, characterized by containing an epoxy resin, a curing agent, and a polystyrene-functional polybutadiene-polystyrene block copolymer in which a non-covalent functional group has been introduced into the polybutadiene chain, or a polystyrene-functional hydrogenated polybutadiene-polystyrene block copolymer in which a non-covalent functional group has been introduced into the hydrogenated polybutadiene chain.
  13.  エポキシ樹脂と、硬化剤と、前記エポキシ樹脂と非相溶でガラス転移温度が25℃以下である非共有結合性官能基を有したゴム状ポリマー及び前記エポキシ樹脂と相溶するポリマーからなる官能性ブロック共重合体とを含有する官能性ブロック共重合体含有エポキシ系接着剤組成物の製造方法であって、
     少なくとも前記エポキシ樹脂及び前記官能性ブロック共重合体を溶媒と混合する混合工程と、
     前記溶媒を除去する溶媒除去工程と
     を具備することを特徴とする官能性ブロック共重合体含有エポキシ系接着剤組成物の製造方法。
    A method for producing an epoxy adhesive composition containing a functional block copolymer, the method comprising: an epoxy resin; a curing agent; and a functional block copolymer comprising a rubber-like polymer that is incompatible with the epoxy resin and has a non-covalent functional group and a glass transition temperature of 25° C. or less; and a polymer that is compatible with the epoxy resin, the method comprising the steps of:
    a mixing step of mixing at least the epoxy resin and the functional block copolymer with a solvent;
    and a solvent removal step of removing the solvent.
  14.  エポキシ樹脂と、硬化剤と、前記エポキシ樹脂と非相溶でガラス転移温度が25℃以下である非共有結合性官能基を有したゴム状ポリマー及び前記エポキシ樹脂と相溶するポリマーからなる官能性ブロック共重合体とを含有する官能性ブロック共重合体含有エポキシ系接着剤組成物が硬化してなることを特徴とする官能性ブロック共重合体含有エポキシ系接着剤硬化物。 A cured product of a functional block copolymer-containing epoxy adhesive, which is obtained by curing a functional block copolymer-containing epoxy adhesive composition containing an epoxy resin, a curing agent, and a functional block copolymer consisting of a rubber-like polymer that is incompatible with the epoxy resin and has a non-covalent functional group with a glass transition temperature of 25°C or less, and a polymer that is compatible with the epoxy resin.
PCT/JP2024/006923 2023-02-27 2024-02-27 Epoxy-based adhesive composition containing functional block copolymer, method for producing same, and cured product of epoxy-based adhesive containing functional block copolymer WO2024181393A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2023028452 2023-02-27
JP2023-028452 2023-02-27

Publications (1)

Publication Number Publication Date
WO2024181393A1 true WO2024181393A1 (en) 2024-09-06

Family

ID=92590655

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2024/006923 WO2024181393A1 (en) 2023-02-27 2024-02-27 Epoxy-based adhesive composition containing functional block copolymer, method for producing same, and cured product of epoxy-based adhesive containing functional block copolymer

Country Status (1)

Country Link
WO (1) WO2024181393A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57149369A (en) * 1981-03-11 1982-09-14 Asahi Chem Ind Co Ltd Novel adhesive
JPS57149370A (en) * 1981-03-11 1982-09-14 Asahi Chem Ind Co Ltd Epoxy resin-base adhesive
JP2009127031A (en) * 2007-11-28 2009-06-11 Shin Etsu Chem Co Ltd Adhesive composition, cover lay film using the same, and adhesive sheet
JP2014091770A (en) * 2012-11-01 2014-05-19 Toyo Ink Sc Holdings Co Ltd Polyurethane adhesive for a battery packaging material, battery packaging material, battery container, and battery
JP2014201642A (en) * 2013-04-03 2014-10-27 日立化成株式会社 Resin composition, and resin film for printed wiring board and production method of the same
JP2016089099A (en) * 2014-11-07 2016-05-23 国立大学法人名古屋大学 Non-covalent elastomer
JP2016121349A (en) * 2014-12-25 2016-07-07 ユニチカ株式会社 Semi-aromatic polyamide film
WO2019216241A1 (en) * 2018-05-07 2019-11-14 日本ゼオン株式会社 Block copolymer composition having ionic group and film
JP2022076304A (en) * 2020-11-09 2022-05-19 Psジャパン株式会社 Styrenic resin composition and sheet

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57149369A (en) * 1981-03-11 1982-09-14 Asahi Chem Ind Co Ltd Novel adhesive
JPS57149370A (en) * 1981-03-11 1982-09-14 Asahi Chem Ind Co Ltd Epoxy resin-base adhesive
JP2009127031A (en) * 2007-11-28 2009-06-11 Shin Etsu Chem Co Ltd Adhesive composition, cover lay film using the same, and adhesive sheet
JP2014091770A (en) * 2012-11-01 2014-05-19 Toyo Ink Sc Holdings Co Ltd Polyurethane adhesive for a battery packaging material, battery packaging material, battery container, and battery
JP2014201642A (en) * 2013-04-03 2014-10-27 日立化成株式会社 Resin composition, and resin film for printed wiring board and production method of the same
JP2016089099A (en) * 2014-11-07 2016-05-23 国立大学法人名古屋大学 Non-covalent elastomer
JP2016121349A (en) * 2014-12-25 2016-07-07 ユニチカ株式会社 Semi-aromatic polyamide film
WO2019216241A1 (en) * 2018-05-07 2019-11-14 日本ゼオン株式会社 Block copolymer composition having ionic group and film
JP2022076304A (en) * 2020-11-09 2022-05-19 Psジャパン株式会社 Styrenic resin composition and sheet

Similar Documents

Publication Publication Date Title
ES2748241T3 (en) Curable resin composition containing fine polymer particles that has improved storage stability
EP3281965B1 (en) Polymer fine particle-containing curable resin composition having improved bonding strength against impact peeling
TWI652303B (en) Core-shell polymer-containing epoxy resin composition, hardened product thereof, and manufacturing method thereof
US6884854B2 (en) Composition of epoxy resin, low glass transition temperature copolymer, latent hardener and carboxy-terminated polyamide and/or polyamide
RU2389743C2 (en) Epoxide resins hardened by amphiphilic bloc-copolymers, and powder coatings made from said epoxide resins
JP2008519885A (en) Epoxy resins modified with amphiphilic block copolymers and adhesives made therefrom
JP6767758B2 (en) Polymer fine particle-containing curable resin composition with improved storage stability and adhesiveness
WO2016159223A1 (en) Curable epoxy resin composition exhibiting excellent thixotropy
TW201922894A (en) Modified liquid diene-based rubber
JP2018518554A (en) One-component curable adhesive composition and use thereof
JP2015532354A (en) Polymer particle dispersion using polyol
WO2005100431A2 (en) Polycarboxy-functionalized prepolymers
JPWO2020067044A1 (en) Curable epoxy resin composition and laminate using it
US20230295416A1 (en) One-part curable resin composition and adhesive
JP2011137092A (en) Curable composition
WO2024181393A1 (en) Epoxy-based adhesive composition containing functional block copolymer, method for producing same, and cured product of epoxy-based adhesive containing functional block copolymer
JP7531354B2 (en) Epoxy resin composition and adhesive
JP2023032370A (en) epoxy resin composition
JP2002003699A (en) Epoxy resin composition, method of manufacturing the same and hardened matter of epoxy resin
WO2024128025A1 (en) Block-copolymer-containing epoxy- based adhesive composition, production method therefor, and cured object of block-copolymer-containing epoxy-based adhesive
JP7547031B2 (en) Epoxy resin composition and adhesive
JP2015533385A (en) Polymer particle dispersion using epoxy curing agent
JP3941938B2 (en) Epoxy resin composition
CN117813360A (en) Adhesive composition and method for producing adhesive composition
JP3941937B2 (en) Epoxy resin composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 24763873

Country of ref document: EP

Kind code of ref document: A1