WO2024171511A1 - Blast furnace operation method - Google Patents

Blast furnace operation method Download PDF

Info

Publication number
WO2024171511A1
WO2024171511A1 PCT/JP2023/036755 JP2023036755W WO2024171511A1 WO 2024171511 A1 WO2024171511 A1 WO 2024171511A1 JP 2023036755 W JP2023036755 W JP 2023036755W WO 2024171511 A1 WO2024171511 A1 WO 2024171511A1
Authority
WO
WIPO (PCT)
Prior art keywords
blast furnace
gas
coke
oxygen
reducing agent
Prior art date
Application number
PCT/JP2023/036755
Other languages
French (fr)
Japanese (ja)
Inventor
泰佑 四谷
雄基 川尻
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Publication of WO2024171511A1 publication Critical patent/WO2024171511A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B5/00Making pig-iron in the blast furnace

Definitions

  • the present invention relates to a method for operating a blast furnace that can reduce the reducing agent ratio during blast furnace operation.
  • iron-based raw materials and coke are charged in layers from the top of the furnace, and hot air (high-temperature air) and reducing agents such as pulverized coal are blown in from tuyeres at the bottom of the furnace.
  • hot air high-temperature air
  • reducing agents such as pulverized coal
  • reducing agents such as coke and pulverized coal are used to reduce the iron source in the furnace.
  • the total weight of reducing agents required to produce one ton of pig iron is called the reducing agent ratio. If the reducing agent ratio can be reduced, CO2 emissions from the blast furnace and the production costs of pig iron can be reduced. Therefore, reducing the reducing agent ratio is an important issue in blast furnace operation, and many technical developments have been carried out.
  • Patent Document 1 and Patent Document 2 there is a technique for reducing the reducing agent ratio by using highly reactive coke.
  • Ferro coke is well known as a representative example of highly reactive coke.
  • Ferro coke is produced by mixing coal with iron ore powder and carbonizing it, and the Fe contained within the coke acts as a catalyst for the gasification reaction of the coke, increasing its reactivity.
  • Patent Document 3, Patent Document 4, and Non-Patent Document 1 state that the reducing agent ratio can be reduced by using ferro coke.
  • Blast furnaces which emit large amounts of CO2 , are no exception.
  • Patent Document 5 a blast furnace in which an oxygen-containing gas with a concentration close to 100% is blown from the tuyere as a blast gas and methane is blown in as a reducing agent is being considered.
  • This blast furnace is different from conventional general blast furnaces in that a high-concentration oxygen-containing gas is blown from the tuyere instead of hot air, and a large amount of methane is blown in instead of pulverized coal as a reducing agent from the tuyere, and the operating conditions have changed significantly.
  • Patent Document 6 discloses that when injecting a large amount of hydrogen-containing gas, including hydrogen gas, into a blast furnace, it is effective to reduce the reactivity of the coke in order to suppress the endothermic heat caused by the gasification reaction of the coke.
  • Patent Document 6 targets blast furnaces that blow hot air with a high nitrogen gas concentration from the tuyeres. Therefore, there was no knowledge about the reactivity of coke suitable for reducing the reducing agent ratio for blast furnaces that blow oxygen-containing gas with a concentration close to 100% as the blowing gas from the tuyeres and blow hydrocarbon-based reducing materials containing a lot of hydrogen other than pulverized coal from the tuyeres.
  • the object of the present invention is to solve the above problems and propose a method of operating a blast furnace that can reduce the reducing agent ratio by using coke with appropriate reactivity in a so-called oxygen blast furnace, which blows oxygen-containing gas with a concentration of 80 vol.% or more from the tuyere as the blast gas.
  • the blast furnace operation method of the present invention was developed to solve the above-mentioned problems, and is a method of operating a blast furnace in which iron-based raw materials and coke are charged in layers from the top of the blast furnace, and an oxygen-containing gas and a reducing agent containing a hydrocarbon gas are injected into the inside of the blast furnace from the tuyere of the blast furnace, characterized in that when the oxygen concentration of the oxygen-containing gas is 80 vol% or more, the coke has a reactivity index CRI of 35 or less.
  • the hydrocarbon gas is a gas of hydrogen and/or a compound containing hydrogen; This is believed to be a more preferable solution.
  • the blast furnace operation method of the present invention when oxygen-containing gas with a concentration of 80 vol.% or more is blown from the tuyere as the blast gas, it is possible to realize blast furnace operation with a reduced reducing agent ratio by using coke with an appropriate reactivity having a reactivity index CRI of 35 or less.
  • 1 is a graph showing the relationship between CRI and reducing agent ratio in a blast furnace according to the present invention. 1 is a graph showing the relationship between CRI and consumed C for the amount of smelting reduction and the amount of coke gasified in a blast furnace according to the present invention.
  • iron-based raw materials and coke are charged in layers from the top of the blast furnace, an oxygen-containing gas with a concentration of 80 vol.% or more is blown from the tuyere of the blast furnace as a blast gas, and a reducing agent containing a hydrocarbon gas is blown in from the tuyere.
  • the blast furnace operating method of the present invention uses oxygen-containing gas as the blast gas, rather than hot air.
  • hot air air heated to about 1200°C
  • the flame temperature in the raceway is unlikely to reach a high temperature because the combustion gas contains about 50 vol% nitrogen, which does not contribute to the combustion reaction. Therefore, when a reducing material containing a large amount of hydrocarbon gas is blown into the blast furnace, the tuyere temperature drops and operational problems occur.
  • the blast furnace operation method of the present invention by using an oxygen-containing gas as the blast gas, it is possible to suppress the inclusion of nitrogen gas that does not contribute to the combustion reaction, and it is therefore possible to raise the tuyere tip temperature to a sufficient level.
  • the temperature of the flame in the raceway can be made higher than when hot air is used.
  • the oxygen concentration in the oxygen-containing gas is 80 vol% or more. If the oxygen concentration in the oxygen-containing gas is low, a sufficient tuyere temperature cannot be ensured when a large amount of hydrocarbon gas is blown in, and there is a risk of operational trouble. Therefore, the oxygen concentration in the oxygen-containing gas needs to be 80 vol% or more, preferably 90 vol% or more, and more preferably 95 vol% or more. The oxygen concentration may be 100 vol%.
  • the remaining gas other than oxygen in the oxygen-containing gas may contain, for example, nitrogen, carbon dioxide, argon, water vapor, etc.
  • the concentration in the oxygen-containing gas is preferably low, and the concentration of water vapor per 1 Nm3 of oxygen-containing gas is preferably 10 g/ Nm3 or less, more preferably 5 g/ Nm3 or less.
  • the hydrocarbon gas is preferably a gas containing hydrogen and/or a compound containing hydrogen.
  • it may be methane, ethane, propane, ethylene, propylene, methanol, ethanol, etc.
  • It may also be a gas that contains at least a portion of these gases, such as natural gas, city gas, coke oven gas, etc., supplied from an external source.
  • It may also be a regenerated gas produced using blast furnace gas.
  • it may be a regenerated methane gas obtained by reacting carbon monoxide and/or carbon dioxide contained in blast furnace gas with hydrogen by the method described in Patent Document 5.
  • reducing agents such as pulverized coal, waste plastics, and reducing gases such as carbon monoxide gas may be used together with the hydrocarbon gas.
  • the amount of the other reducing agents injected into the blast furnace is preferably 20 wt% or less of the total amount of reducing agents injected including the hydrocarbon gas.
  • the unit "kg/t" is the amount of other reducing agents injected into the blast furnace when producing 1 ton of molten iron.
  • they may be introduced into the hydrocarbon gas supply section together.
  • pulverized coal or waste plastics it is preferable to provide a separate reducing agent supply section (path) for circulating the pulverized coal or waste plastics, separate from the hydrocarbon gas supply section.
  • Non-Patent Document 2 The inventors used a two-dimensional blast furnace numerical model considering reactions, heat transfer, and material flow as shown in Non-Patent Document 2 to investigate the change in reducing agent ratio when operating a blast furnace using coke with different reactivity so that the molten iron temperature and iron production rate were constant.
  • CRI Coke Reaction Index
  • CRI Carbon Reaction Index
  • Methane was used as the hydrocarbon reducing agent, and a study was conducted with a methane ratio of 148 kg/t.
  • the reactivity of the coke is preferably as low as possible from the viewpoint of reducing the reducing agent ratio, and furthermore, in order to keep the reducing agent ratio in blast furnace operation below a specified amount, the CRI is required to be below a certain level.
  • the blast furnace was operated by varying the CRI of the coke used under the operating parameters shown in Table 1 below, namely, pulverized coal ratio (0 kg/t), methane ratio (148 kg/t), oxygen-containing gas consumption rate (316-318 Nm3 /t), oxygen concentration in the oxygen-containing gas (100%), oxygen-containing gas temperature (25°C), and oxygen-containing gas moisture (0 g/ Nm3 ).
  • the operating parameters were set based on the results shown in Figure 1.
  • the coke rate was adjusted (331-342 kg/t) to obtain a pig iron production rate (2.2 t/day/ m3 ) and a molten iron temperature (1510°C).
  • Table 1 shows the results of operation of a blast furnace in which the oxygen concentration of the blast air from the tuyere is 100 vol% and methane, a hydrocarbon gas, is blown in from the tuyere.
  • the reducing agent ratio coke ratio + pulverized coal ratio + methane ratio.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacture Of Iron (AREA)

Abstract

Proposed is a blast furnace operation method through which the reduction material ratio can be decreased by using coke having suitable reactivity. The blast furnace operation method includes charging an iron-based raw material and coke through the top of a blast furnace in a layered manner, and blowing an oxygen-containing gas and a reduction material containing a hydrocarbon-based gas into the blast furnace through the tuyere of the blast furnace. When the oxygen concentration of the oxygen-containing gas is 80 vol% or higher, operation is performed using coke having a chemical reactivity index CRI of 35 or lower. The hydrocarbon-based gas is preferably hydrogen and/or a compound including hydrogen.

Description

高炉の操業方法Blast furnace operation method
 本発明は、高炉操業において還元材比を低減できる高炉の操業方法に関する。 The present invention relates to a method for operating a blast furnace that can reduce the reducing agent ratio during blast furnace operation.
 一般に、高炉では、炉頂から鉄系原料とコークスとを層状に装入し、炉下部の羽口から熱風(高温の空気)と、微粉炭を始めとする還元補助剤を吹き込む操業を行う。これにより、炉内を降下する鉄系原料を炉下部から上昇する還元ガスで還元することで、銑鉄を製造する。 Generally, in a blast furnace, iron-based raw materials and coke are charged in layers from the top of the furnace, and hot air (high-temperature air) and reducing agents such as pulverized coal are blown in from tuyeres at the bottom of the furnace. In this way, pig iron is produced by reducing the iron-based raw materials descending inside the furnace with the reducing gas rising from the bottom of the furnace.
 上記のように、高炉操業においては、炉内の鉄源を還元するためにコークスや微粉炭等の還元材が使用される。銑鉄1トンを製造するのに要した還元材の重量合計は還元材比と呼ばれる。還元材比を減らすことができれば、高炉からのCO排出量や銑鉄の製造コストを削減できるため、還元材比の低減は高炉操業の重要な課題であり、数多くの技術開発が行われてきた。 As described above, in blast furnace operation, reducing agents such as coke and pulverized coal are used to reduce the iron source in the furnace. The total weight of reducing agents required to produce one ton of pig iron is called the reducing agent ratio. If the reducing agent ratio can be reduced, CO2 emissions from the blast furnace and the production costs of pig iron can be reduced. Therefore, reducing the reducing agent ratio is an important issue in blast furnace operation, and many technical developments have been carried out.
 例えば、特許文献1や特許文献2に開示されているように、高反応性コークスを使用して還元材比を低減する技術がある。コークスの反応性が高いと、C+CO=2COで表されるコークスのガス化反応が低温から開始する。ガス化反応は大きな吸熱反応であるから、ガス化反応が低温から開始すると、高炉内の熱保存帯温度が低下する。これにより、FeO-Feの還元平衡点が還元ガス濃度の低い側へ移動する。その結果、炉内還元ガス濃度と還元平衡点還元ガス濃度との差が拡大して間接還元が促進されることで、溶融還元(反応式:FeO+C=Fe+CO)量が減少するため、還元材比が減少する。 For example, as disclosed in Patent Document 1 and Patent Document 2, there is a technique for reducing the reducing agent ratio by using highly reactive coke. When the reactivity of the coke is high, the gasification reaction of the coke, which is expressed by C+CO 2 =2CO, starts at a low temperature. Since the gasification reaction is a large endothermic reaction, when the gasification reaction starts at a low temperature, the thermal reserve zone temperature in the blast furnace decreases. This causes the reduction equilibrium point of FeO-Fe to move to the side with a lower reducing gas concentration. As a result, the difference between the reducing gas concentration in the furnace and the reducing gas concentration at the reduction equilibrium point increases, promoting indirect reduction, and thus reducing the amount of smelting reduction (reaction formula: FeO+C=Fe+CO), and thus reducing the reducing agent ratio.
 高反応性コークスの代表として、フェロコークスがよく知られている。フェロコークスは、石炭に鉄鉱石粉を混ぜて乾留し製造したコークスであり、コークス中に内包されたFeがコークスのガス化反応の触媒となることで反応性を高める。特許文献3、特許文献4および非特許文献1には、フェロコークスを使用することで還元材比を低減できる旨が記載されている。 Ferro coke is well known as a representative example of highly reactive coke. Ferro coke is produced by mixing coal with iron ore powder and carbonizing it, and the Fe contained within the coke acts as a catalyst for the gasification reaction of the coke, increasing its reactivity. Patent Document 3, Patent Document 4, and Non-Patent Document 1 state that the reducing agent ratio can be reduced by using ferro coke.
 ところで、近年、カーボンニュートラル社会の実現に向け、鉄鋼業界全体でCO排出量を大幅に削減する技術の開発が進められている。COを大量に排出する高炉も例外ではなく、例えば、特許文献5に示されるような、羽口から送風ガスとして濃度が100%に近い酸素含有ガスを送風し、還元材としてメタンを吹き込む形態の高炉が検討されている。この高炉は、羽口から熱風ではなく高濃度酸素含有ガスを送風し、かつ、羽口から還元材として微粉炭ではなくメタンを大量に吹き込む点が従来の一般的な高炉とは異なっており、操業条件が大きく変化している。 In recent years, the steel industry as a whole has been developing technologies to significantly reduce CO2 emissions in order to realize a carbon-neutral society. Blast furnaces, which emit large amounts of CO2 , are no exception. For example, as shown in Patent Document 5, a blast furnace in which an oxygen-containing gas with a concentration close to 100% is blown from the tuyere as a blast gas and methane is blown in as a reducing agent is being considered. This blast furnace is different from conventional general blast furnaces in that a high-concentration oxygen-containing gas is blown from the tuyere instead of hot air, and a large amount of methane is blown in instead of pulverized coal as a reducing agent from the tuyere, and the operating conditions have changed significantly.
特開2006-206982号公報JP 2006-206982 A 特開2007-231326号公報JP 2007-231326 A 特開2011-162845号公報JP 2011-162845 A 特開2012-140691号公報JP 2012-140691 A 国際公開第2021/106578号International Publication No. 2021/106578 特開2022-149214号JP 2022-149214 A
 フェロコークスに代表される高反応性コークスを使用して還元材比を低減させる高炉の操業方法は、羽口から熱風と微粉炭を主とする還元材を吹き込む従来の一般的な高炉に対して有効であることが知られている。しかし一方で、特許文献5に示されるような、羽口から送風ガスとして濃度が100%に近い酸素含有ガスを送風し、かつ、羽口から微粉炭以外の水素を多く含む炭化水素系還元材を吹き込む高炉に対しては、詳細な検討が行われていない。そのため、そのような高炉において高反応性コークスを使用した場合に、従来の一般的な高炉と同様の還元材比低減効果が得られるかは明らかではなく、また還元材比低減に適したコークスの反応性についても明らかではない。  It is known that the method of operating a blast furnace to reduce the reducing agent ratio by using a highly reactive coke such as ferrocoke is effective for conventional general blast furnaces in which hot air and reducing agents mainly consisting of pulverized coal are blown in from the tuyere. However, no detailed study has been conducted on blast furnaces in which an oxygen-containing gas with a concentration close to 100% is blown in from the tuyere as the blast gas, and a hydrogen-rich hydrocarbon-based reducing agent other than pulverized coal is blown in from the tuyere, as shown in Patent Document 5. Therefore, it is not clear whether the use of highly reactive coke in such a blast furnace will achieve the same reducing agent ratio reduction effect as that of a conventional general blast furnace, and the reactivity of the coke suitable for reducing the reducing agent ratio is also not clear.
 この点で、例えば特許文献6では、水素ガスを含む水素含有ガスを大量に高炉に吹き込む際には、コークスのガス化反応による吸熱を抑制させるためにコークスの反応性を低下させることが有効であると開示されている。しかしながら、特許文献6が対象としているのは羽口から窒素ガス濃度の高い熱風を送風する高炉である。そのため、羽口から送風ガスとして濃度が100%に近い酸素含有ガスを送風し、かつ、羽口から微粉炭以外の水素を多く含む炭化水素系還元材を吹き込む高炉に対しては、還元材比低減に適したコークスの反応性についての知見がなかった。 In this regard, for example, Patent Document 6 discloses that when injecting a large amount of hydrogen-containing gas, including hydrogen gas, into a blast furnace, it is effective to reduce the reactivity of the coke in order to suppress the endothermic heat caused by the gasification reaction of the coke. However, Patent Document 6 targets blast furnaces that blow hot air with a high nitrogen gas concentration from the tuyeres. Therefore, there was no knowledge about the reactivity of coke suitable for reducing the reducing agent ratio for blast furnaces that blow oxygen-containing gas with a concentration close to 100% as the blowing gas from the tuyeres and blow hydrocarbon-based reducing materials containing a lot of hydrogen other than pulverized coal from the tuyeres.
 本発明の目的は、上記の問題点を解決し、羽口から送風ガスとして濃度が80vol%以上の酸素含有ガスを送風するいわゆる酸素高炉において、適切な反応性のコークスを使用することにより、還元材比を低減することができる高炉の操業方法を提案することにある。 The object of the present invention is to solve the above problems and propose a method of operating a blast furnace that can reduce the reducing agent ratio by using coke with appropriate reactivity in a so-called oxygen blast furnace, which blows oxygen-containing gas with a concentration of 80 vol.% or more from the tuyere as the blast gas.
 本発明の高炉操業方法は、前述の課題を解決すべく開発されたものであり、高炉の炉頂から、鉄系原料およびコークスを層状に装入し、高炉の羽口から、酸素含有ガスと炭化水素系ガスを含む還元材とを前記高炉の内部に吹込む高炉の操業方法であって、前記酸素含有ガスの酸素濃度が80vol%以上であった場合、前記コークスとして反応性指数CRIが35以下のコークスを用いて操業することを特徴とする、高炉の操業方法である。 The blast furnace operation method of the present invention was developed to solve the above-mentioned problems, and is a method of operating a blast furnace in which iron-based raw materials and coke are charged in layers from the top of the blast furnace, and an oxygen-containing gas and a reducing agent containing a hydrocarbon gas are injected into the inside of the blast furnace from the tuyere of the blast furnace, characterized in that when the oxygen concentration of the oxygen-containing gas is 80 vol% or more, the coke has a reactivity index CRI of 35 or less.
 なお、前記のように構成される本発明に係る高炉の操業方法においては、
(1)前記炭化水素系ガスは、水素および/または水素を含む化合物のガスであること、
がより好ましい解決手段となるものと考えられる。
In the method for operating a blast furnace according to the present invention configured as described above,
(1) The hydrocarbon gas is a gas of hydrogen and/or a compound containing hydrogen;
This is believed to be a more preferable solution.
 本発明の高炉の操業方法によれば、羽口から送風ガスとして濃度が80vol%以上の酸素含有ガスを送風する場合、反応性指数CRIが35以下の適切な反応性のコークスを使用することで、還元材比を低減させる高炉操業を実現することができる。 According to the blast furnace operation method of the present invention, when oxygen-containing gas with a concentration of 80 vol.% or more is blown from the tuyere as the blast gas, it is possible to realize blast furnace operation with a reduced reducing agent ratio by using coke with an appropriate reactivity having a reactivity index CRI of 35 or less.
本発明に係る高炉において、CRIと還元材比との関係を示すグラフである。1 is a graph showing the relationship between CRI and reducing agent ratio in a blast furnace according to the present invention. 本発明に係る高炉における溶融還元量とコークスのガス化量とについて、CRIと消費Cとの関係を示すグラフである。1 is a graph showing the relationship between CRI and consumed C for the amount of smelting reduction and the amount of coke gasified in a blast furnace according to the present invention.
 以下、本発明の実施の形態について具体的に説明する。なお、以下の実施形態は、本発明の技術的思想を具体化するための装置や方法を例示するものであり、構成を下記のものに特定するものでない。すなわち、本発明の技術的思想は、特許請求の範囲に記載された技術的範囲内において、種々の変更を加えることができる。 Below, the embodiments of the present invention are specifically described. Note that the following embodiments are intended to exemplify devices and methods for embodying the technical ideas of the present invention, and are not intended to specify the configurations as described below. In other words, the technical ideas of the present invention can be modified in various ways within the technical scope described in the claims.
 まず、本実施形態に係る高炉の操業方法について説明する。本実施形態に係る高炉の操業方法では、高炉の炉頂から、鉄系原料およびコークスを層状に装入し、高炉の羽口から送風ガスとして濃度が80vol%以上の酸素含有ガスを送風し、羽口から炭化水素系ガスを含む還元材を吹き込む。 First, the method of operating a blast furnace according to this embodiment will be described. In the method of operating a blast furnace according to this embodiment, iron-based raw materials and coke are charged in layers from the top of the blast furnace, an oxygen-containing gas with a concentration of 80 vol.% or more is blown from the tuyere of the blast furnace as a blast gas, and a reducing agent containing a hydrocarbon gas is blown in from the tuyere.
 ここで、本発明の高炉の操業方法は、熱風ではなく、酸素含有ガスを送風ガスとして用いる。送風ガスとして、熱風(1200℃程度に加熱した空気)を使用する場合、燃焼ガス中に燃焼反応に寄与しない50vol%程度の窒素が含まれるため、レースウェイにおける火炎の温度は高温となり難い。そのため、高炉内に多量の炭化水素系ガスを含む還元材を吹き込むと、羽口先温度が低下し操業トラブルが生じる。 Here, the blast furnace operating method of the present invention uses oxygen-containing gas as the blast gas, rather than hot air. When hot air (air heated to about 1200°C) is used as the blast gas, the flame temperature in the raceway is unlikely to reach a high temperature because the combustion gas contains about 50 vol% nitrogen, which does not contribute to the combustion reaction. Therefore, when a reducing material containing a large amount of hydrocarbon gas is blown into the blast furnace, the tuyere temperature drops and operational problems occur.
 一方、本発明の高炉の操業方法では、送風ガスとして酸素含有ガスを使用することにより、燃焼反応に寄与しない窒素ガスの混入を抑制できるので、羽口先温度を十分な温度まで昇温することが可能となる。すなわち、レースウェイにおける火炎の温度を、熱風を使用する場合と比べて高温とすることができる。 On the other hand, in the blast furnace operation method of the present invention, by using an oxygen-containing gas as the blast gas, it is possible to suppress the inclusion of nitrogen gas that does not contribute to the combustion reaction, and it is therefore possible to raise the tuyere tip temperature to a sufficient level. In other words, the temperature of the flame in the raceway can be made higher than when hot air is used.
 酸素含有ガスにおける酸素濃度は、80vol%以上とする。酸素含有ガスにおける酸素濃度が低いと、多量の炭化水素系ガスを吹き込む場合に十分な羽口先温度を確保できず、操業トラブルが生じる恐れがある。そのため、酸素含有ガスにおける酸素濃度は80vol%以上が必要で、好ましくは90vol%以上、さらに好ましくは95vol%以上である。酸素濃度は100vol%であってもよい。なお、酸素含有ガス中の酸素以外の残部ガスとしては、例えば、窒素や二酸化炭素、アルゴン、水蒸気等が含まれていてもよい。水蒸気は羽口先温度を低下させるため、酸素含有ガス中の濃度は低い方がよく、酸素含有ガス1Nm当たりの水蒸気の濃度は、好ましくは10g/Nm以下、さらに好ましくは5g/Nm以下とするのが好ましい。 The oxygen concentration in the oxygen-containing gas is 80 vol% or more. If the oxygen concentration in the oxygen-containing gas is low, a sufficient tuyere temperature cannot be ensured when a large amount of hydrocarbon gas is blown in, and there is a risk of operational trouble. Therefore, the oxygen concentration in the oxygen-containing gas needs to be 80 vol% or more, preferably 90 vol% or more, and more preferably 95 vol% or more. The oxygen concentration may be 100 vol%. In addition, the remaining gas other than oxygen in the oxygen-containing gas may contain, for example, nitrogen, carbon dioxide, argon, water vapor, etc. Since water vapor lowers the tuyere temperature, the concentration in the oxygen-containing gas is preferably low, and the concentration of water vapor per 1 Nm3 of oxygen-containing gas is preferably 10 g/ Nm3 or less, more preferably 5 g/ Nm3 or less.
 炭化水素系ガスは、水素および/または水素を含む化合物を含むガスであることが好ましい。例えば、メタン、エタン、プロパン、エチレン、プロピレン、メタノール、エタノール等であってよい。また、これらのガスを一部でも含み構成されるガス、例えば外部から供給される天然ガス、都市ガス、コークス炉ガス等であってよい。さらに、高炉ガスを利用して生成された再生ガスであってよい。例えば、特許文献5に記載の方法により、高炉ガスに含まれる一酸化炭素および/または二酸化炭素と水素とを反応させて得た再生メタンガスであってよい。再生ガスを炭化水素系ガスとして利用することで、COの排出量を大幅に減少させることができる。 The hydrocarbon gas is preferably a gas containing hydrogen and/or a compound containing hydrogen. For example, it may be methane, ethane, propane, ethylene, propylene, methanol, ethanol, etc. It may also be a gas that contains at least a portion of these gases, such as natural gas, city gas, coke oven gas, etc., supplied from an external source. It may also be a regenerated gas produced using blast furnace gas. For example, it may be a regenerated methane gas obtained by reacting carbon monoxide and/or carbon dioxide contained in blast furnace gas with hydrogen by the method described in Patent Document 5. By using the regenerated gas as a hydrocarbon gas, it is possible to significantly reduce CO 2 emissions.
 また、その他の吹込み還元材、例えば、微粉炭や廃プラスチック、一酸化炭素ガス等の還元ガスを、炭化水素系ガスと一緒に使用してもよい。なお、その他の吹込み還元材の高炉内への吹込み量は、炭化水素系ガスを含む吹込み還元材の合計量に対して20wt%以下とすることが好ましい。ここで、「kg/t」という単位は、溶銑1tを製造する際に高炉内へ吹込むその他の吹込み還元材の量である。その他の吹込み還元材を使用する場合、炭化水素系ガス供給部に、その他の吹込み還元材も一緒に導入してもよい。また、その他の吹込み還元材として、微粉炭や廃プラスチックを用いる場合には、炭化水素系ガス供給部とは別に、微粉炭や廃プラスチックを流通させる別の還元材供給部(路)を設けることが好ましい。 Furthermore, other reducing agents such as pulverized coal, waste plastics, and reducing gases such as carbon monoxide gas may be used together with the hydrocarbon gas. The amount of the other reducing agents injected into the blast furnace is preferably 20 wt% or less of the total amount of reducing agents injected including the hydrocarbon gas. Here, the unit "kg/t" is the amount of other reducing agents injected into the blast furnace when producing 1 ton of molten iron. When other reducing agents are used, they may be introduced into the hydrocarbon gas supply section together. When pulverized coal or waste plastics are used as the other reducing agents, it is preferable to provide a separate reducing agent supply section (path) for circulating the pulverized coal or waste plastics, separate from the hydrocarbon gas supply section.
 発明者らは、非特許文献2に示される反応、伝熱、物質流れを考慮した2次元高炉数値モデルを用いて、反応性の異なるコークスを使用し、溶銑温度、出銑量が一定となるように高炉を操業した際の還元材比の変化を調査した。 The inventors used a two-dimensional blast furnace numerical model considering reactions, heat transfer, and material flow as shown in Non-Patent Document 2 to investigate the change in reducing agent ratio when operating a blast furnace using coke with different reactivity so that the molten iron temperature and iron production rate were constant.
 コークスの反応性には、実際の操業管理指標としても用いられているCRI(Coke  Reaction Index)を採用し、検討を行った。CRIは以下のようにして求める。すなわち、20±1mmの大きさ(粒度)に調整されたコークス200gを、ガス組成:CO(100mol%)、反応温度1100℃ 、反応時間2時間の条件で反応させる。ついで、反応後試料の質量を測定し、(反応前質量-反応後質量)/反応前質量×100を求める。これをCRIとする。 For the reactivity of coke, CRI (Coke Reaction Index), which is also used as an actual operational management index, was adopted and examined. CRI is calculated as follows. That is, 200 g of coke adjusted to a size (particle size) of 20±1 mm is reacted under the conditions of gas composition: CO 2 (100 mol%), reaction temperature of 1100° C., and reaction time of 2 hours. Next, the mass of the sample after the reaction is measured to calculate (mass before reaction−mass after reaction)/mass before reaction×100. This is defined as CRI.
 炭化水素系還元材にはメタンを採用し、メタン比148kg/tでの検討を行った。 Methane was used as the hydrocarbon reducing agent, and a study was conducted with a methane ratio of 148 kg/t.
 上記高炉数値モデルの計算結果によると、羽口から、羽口から送風ガスとして濃度が100vol%の酸素含有ガスを送風し、メタンを吹き込む高炉では、CRIが低いほど還元材比が減少した(図1参照)。したがって、従来の一般的な高炉で好ましいとされていた高反応性コークスは、本発明に係る高炉では還元材比低減に不利である。逆に、還元材比低減には低反応性コークスが有利である。ここで、図1に示すグラフにおいて、還元材比485kg/t以下のグラフの傾きは、還元材比487kg/t以上のグラフの傾きより、急峻となっている。そこで、本発明では、還元材比が485kg/t以下を目標とした。 According to the calculation results of the blast furnace numerical model, in a blast furnace in which an oxygen-containing gas with a concentration of 100 vol% is blown from the tuyere as the blast gas and methane is blown in, the lower the CRI, the lower the reducing agent ratio (see Figure 1). Therefore, high reactivity coke, which was considered preferable in conventional blast furnaces, is disadvantageous for reducing the reducing agent ratio in the blast furnace of the present invention. Conversely, low reactivity coke is advantageous for reducing the reducing agent ratio. Here, in the graph shown in Figure 1, the slope of the graph for reducing agent ratios of 485 kg/t or less is steeper than the slope of the graph for reducing agent ratios of 487 kg/t or more. Therefore, in the present invention, a reducing agent ratio of 485 kg/t or less is targeted.
 これは、次のような理由によるものである。羽口から送風ガスとして濃度が100vol%の酸素含有ガスを送風し、水素を多く含む炭化水素系還元材を大量に吹き込むことにより炉内の水素濃度が上昇する。さらに、送風の窒素レス化により還元ガス濃度が相対的に高くなる。これにより、還元効率が向上し溶融還元量が減少するため、コークスの反応性が下がると、溶融還元量の増加以上にコークスガス化量が減少し、還元材比が減少する(図2参照)。溶融還元とコークスガス化はともに大きな吸熱反応であり、還元材比を増加させる要因である。 This is due to the following reasons. By blowing in a large amount of hydrogen-rich hydrocarbon reducing agent and blowing in an oxygen-containing gas with a concentration of 100 vol.% from the tuyere as the blast gas, the hydrogen concentration in the furnace increases. Furthermore, the nitrogen-free blast gas makes the reducing gas concentration relatively high. As a result, the reduction efficiency improves and the amount of smelting reduction decreases, so if the reactivity of the coke decreases, the amount of coke gasification decreases more than the increase in the amount of smelting reduction, and the reducing agent ratio decreases (see Figure 2). Both smelting reduction and coke gasification are large endothermic reactions, and are factors that increase the reducing agent ratio.
 以上より、羽口から送風ガスとして濃度が80vol%以上の酸素含有ガスを送風し、羽口から炭化水素系ガスを含む還元材を吹き込む高炉においては、還元材比低減の観点からコークスの反応性はなるべく低い方が良く、さらに高炉操業における還元材比を所定量以下とするため、CRIが一定以下であることが要求される。 From the above, in a blast furnace where oxygen-containing gas with a concentration of 80 vol.% or more is blown from the tuyere as the blast gas and a reducing agent containing a hydrocarbon gas is blown from the tuyere, the reactivity of the coke is preferably as low as possible from the viewpoint of reducing the reducing agent ratio, and furthermore, in order to keep the reducing agent ratio in blast furnace operation below a specified amount, the CRI is required to be below a certain level.
 以下の表1に示す、微粉炭比(0kg/t)、メタン比(148kg/t)、酸素含有ガス原単位(316~318Nm/t)、酸素含有ガス中の酸素濃度(100%)、酸素含有ガス温度(25℃)、酸素含有ガス湿分(0g/Nm)の操業諸元のもとで、用いるコークスのCRIを変化させて、高炉の操業を行った。なお、上記の操業諸元は図1の結果に基づいて設定した。出銑比(2.2t/day/m)および溶銑温度(1510℃)が得られるよう、コークス比を調整した(331~342kg/t)。 The blast furnace was operated by varying the CRI of the coke used under the operating parameters shown in Table 1 below, namely, pulverized coal ratio (0 kg/t), methane ratio (148 kg/t), oxygen-containing gas consumption rate (316-318 Nm3 /t), oxygen concentration in the oxygen-containing gas (100%), oxygen-containing gas temperature (25°C), and oxygen-containing gas moisture (0 g/ Nm3 ). The operating parameters were set based on the results shown in Figure 1. The coke rate was adjusted (331-342 kg/t) to obtain a pig iron production rate (2.2 t/day/ m3 ) and a molten iron temperature (1510°C).
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1の結果から以下のことが分かった。まず、羽口からの送風の酸素濃度が100vol%であり、羽口から炭化水素系ガスであるメタンを吹き込む高炉の操業結果である表1において、還元材比(コークス比+微粉炭比+メタン比)に着目した。その結果、表1の各例において、目標とする還元材比485kg/t以下を、発明例1-1(還元材比479kg/t)、発明例1-2(還元材比481kg/t)、発明例1-3(還元材比483kg/t)が満たしていることがわかった。一方、比較例1-1(還元材比487kg/t)、比較例1-2(還元材比489kg/t)、比較例1-3(還元材比490kg/t)は、目標とする還元材比485kg/t以下を満たしていないことがわかった。図1および上記結果から、本発明では、CRIを35以下とする必要があることがわかった。 The results in Table 1 reveal the following. First, in Table 1, which shows the results of operation of a blast furnace in which the oxygen concentration of the blast air from the tuyere is 100 vol% and methane, a hydrocarbon gas, is blown in from the tuyere, attention was focused on the reducing agent ratio (coke ratio + pulverized coal ratio + methane ratio). As a result, it was found that in each example in Table 1, invention example 1-1 (reducing agent ratio 479 kg/t), invention example 1-2 (reducing agent ratio 481 kg/t), and invention example 1-3 (reducing agent ratio 483 kg/t) meet the target reducing agent ratio of 485 kg/t or less. On the other hand, it was found that comparative example 1-1 (reducing agent ratio 487 kg/t), comparative example 1-2 (reducing agent ratio 489 kg/t), and comparative example 1-3 (reducing agent ratio 490 kg/t) do not meet the target reducing agent ratio of 485 kg/t or less. From FIG. 1 and the above results, it was found that in the present invention, the CRI needs to be 35 or less.

Claims (2)

  1.  高炉の炉頂から、鉄系原料およびコークスを層状に装入し、高炉の羽口から、酸素含有ガスと炭化水素系ガスを含む還元材とを前記高炉の内部に吹込む高炉の操業方法であって、前記酸素含有ガスの酸素濃度が80vol%以上であった場合、前記コークスとして反応性指数CRIが35以下のコークスを用いて操業することを特徴とする、高炉の操業方法。 A method of operating a blast furnace in which iron-based raw materials and coke are charged in layers from the top of the blast furnace, and an oxygen-containing gas and a reducing agent containing a hydrocarbon gas are blown into the interior of the blast furnace from the tuyere of the blast furnace, characterized in that when the oxygen concentration of the oxygen-containing gas is 80 vol% or more, the coke has a reactivity index CRI of 35 or less.
  2.  前記炭化水素系ガスは、水素および/または水素を含む化合物のガスであることを特徴とする、請求項1に記載の高炉の操業方法。 The method for operating a blast furnace according to claim 1, characterized in that the hydrocarbon gas is hydrogen and/or a gas of a compound containing hydrogen.
PCT/JP2023/036755 2023-02-14 2023-10-10 Blast furnace operation method WO2024171511A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2023-020829 2023-02-14
JP2023020829 2023-02-14

Publications (1)

Publication Number Publication Date
WO2024171511A1 true WO2024171511A1 (en) 2024-08-22

Family

ID=92421058

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/036755 WO2024171511A1 (en) 2023-02-14 2023-10-10 Blast furnace operation method

Country Status (2)

Country Link
TW (1) TW202432841A (en)
WO (1) WO2024171511A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08188808A (en) * 1995-01-06 1996-07-23 Nippon Steel Corp Method for operating blast furnace
JPH09170008A (en) * 1995-12-19 1997-06-30 Nippon Steel Corp Operation method for blowing large amount of pulverized coat in blast furnace
WO2021106578A1 (en) * 2019-11-25 2021-06-03 Jfeスチール株式会社 Blast furnace operation method and blast furnace ancillary equipment
JP2022149214A (en) * 2021-03-25 2022-10-06 日本製鉄株式会社 Blast furnace operation method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08188808A (en) * 1995-01-06 1996-07-23 Nippon Steel Corp Method for operating blast furnace
JPH09170008A (en) * 1995-12-19 1997-06-30 Nippon Steel Corp Operation method for blowing large amount of pulverized coat in blast furnace
WO2021106578A1 (en) * 2019-11-25 2021-06-03 Jfeスチール株式会社 Blast furnace operation method and blast furnace ancillary equipment
JP2022149214A (en) * 2021-03-25 2022-10-06 日本製鉄株式会社 Blast furnace operation method

Also Published As

Publication number Publication date
TW202432841A (en) 2024-08-16

Similar Documents

Publication Publication Date Title
US6986800B2 (en) Method and apparatus for improved use of primary energy sources in integrated steel plants
AU2011309835B2 (en) Method and apparatus for producing direct reduced iron utilizing a source of reducing gas comprising hydrogen and carbon monoxide
CA2715525C (en) Method for the melting of pig iron with the recirculation of blast furnace gas and with the addition of hydrocarbons
JP2009221547A (en) Method for operating blast furnace
KR102664149B1 (en) Method for Operating a Blast Furnace
CN108138058A (en) The manufacturing method of the gasification process of carbonaceous fuel, the operating method of iron-smelter and gasifying gas
WO2024171511A1 (en) Blast furnace operation method
SE438160B (en) METHOD OF REDUCING METAL ORE
LU500699B1 (en) Method for operating a shaft furnace plant
KR20240068674A (en) Method for producing direct reduced iron for iron and steel plants
WO2022243723A1 (en) Operating method of a network of plants
KR20230138002A (en) Off-gas recovery from direct reduction process
JP2020045508A (en) Operation method of blast furnace
US7238222B2 (en) Thermal synthesis production of steel
WO2024135695A1 (en) Reduced iron production method
US3620699A (en) Reducing gas generation
WO2024135696A1 (en) Method for producing reduced iron
WO2023162389A1 (en) Method for reducing fine iron ore
WO2024135698A1 (en) Reduced iron manufacturing method
RU2802414C1 (en) Method of operation of blast furnace and auxiliary assembly of blast furnace
WO2024135852A1 (en) Reduced iron production method
US20240240275A1 (en) Method for manufacturing direct reduced iron and dri manufacturing equipment
AU2022442457A1 (en) Method of reducing iron ore powder
Htet Reaction mechanisms of natural gas in the HIsarna alternative ironmaking process
CN115478122A (en) Ammonia-rich raw fuel for blast furnace iron making and blast furnace iron making method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23922845

Country of ref document: EP

Kind code of ref document: A1