WO2024169183A1 - Association and mapping between beam sets - Google Patents

Association and mapping between beam sets Download PDF

Info

Publication number
WO2024169183A1
WO2024169183A1 PCT/CN2023/120847 CN2023120847W WO2024169183A1 WO 2024169183 A1 WO2024169183 A1 WO 2024169183A1 CN 2023120847 W CN2023120847 W CN 2023120847W WO 2024169183 A1 WO2024169183 A1 WO 2024169183A1
Authority
WO
WIPO (PCT)
Prior art keywords
csi
resource
beam set
configuration
indicative information
Prior art date
Application number
PCT/CN2023/120847
Other languages
French (fr)
Inventor
Yinghao ZHANG
Bingchao LIU
Jianfeng Wang
Original Assignee
Lenovo (Beijing) Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lenovo (Beijing) Limited filed Critical Lenovo (Beijing) Limited
Priority to PCT/CN2023/120847 priority Critical patent/WO2024169183A1/en
Publication of WO2024169183A1 publication Critical patent/WO2024169183A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • H04B7/06952Selecting one or more beams from a plurality of beams, e.g. beam training, management or sweeping
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition

Definitions

  • the present disclosure relates to wireless communications, and more specifically to a user equipment (UE) , a network entity, a processor for wireless communication, methods, and a computer readable medium for association and mapping between beam sets.
  • UE user equipment
  • a wireless communications system may include one or multiple network communication devices, such as base stations, which may be otherwise known as an eNodeB (eNB) , a next-generation NodeB (gNB) , or other suitable terminology.
  • Each network communication devices such as a base station may support wireless communications for one or multiple user communication devices, which may be otherwise known as user equipment (UE) , or other suitable terminology.
  • the wireless communications system may support wireless communications with one or multiple user communication devices by utilizing resources of the wireless communication system (e.g., time resources (e.g., symbols, slots, subframes, frames, or the like) or frequency resources (e.g., subcarriers, carriers) .
  • the wireless communications system may support wireless communications across various radio access technologies including third generation (3G) radio access technology, fourth generation (4G) radio access technology, fifth generation (5G) radio access technology, among other suitable radio access technologies beyond 5G (e.g., sixth generation (6G) ) .
  • 3G third generation
  • 4G fourth generation
  • 5G fifth generation
  • 6G sixth generation
  • AI/ML Artificial intelligence or machine learning
  • BM-case1 spatial beam prediction
  • BM-case2 temporal beam prediction
  • AI/ML on beam management can be classified into two categories according to which side deploys AI/ML model, i.e., network (NW) -side AI/ML model and UE-side AI/ML model.
  • NW network
  • a beam set (Set B) is measured and then the measurement results are inputted to a AI/ML model predicting another beam set (Set A) , where Set B is a subset of the Set A or different from the Set A.
  • LCM Life cycle management
  • multiple AI/ML models with different combinations of Set A/Set B may be supported at UE. Usage of the multiple AI/ML models may be controlled by UE.
  • variable Set B patterns may be supported by an AI/ML model for model generalization under different scenarios. Thus, the understanding of a valid combination of Set B and Set A and a valid Set B pattern should be aligned by NW and UE.
  • the present disclosure relates to a UE, a network entity, a processor for wireless communication, methods, and a computer readable medium for reporting of beam measurements.
  • Embodiments of the disclosure can align a combination of a measured beam set (Set B) and a reported beam set (Set A) and a valid pattern of the measured beam set between NW and UE in a simple and effective manner.
  • a UE comprises a processor; and a transceiver coupled to the processor, wherein the processor is configured to: receive, via the transceiver and from a network entity, a channel state information (CSI) reporting configuration corresponding to a first beam set and associated with a CSI resource configuration, and indicative information indicating a second beam set associated with the CSI resource configuration; receive, via the transceiver and from the network entity, CSI reference signals (CSI-RSs) or synchronization signal/PBCH bocks (SSBs) for the second beam set based on the CSI resource configuration and the indicative information; and transmit, via the transceiver and to the network entity, a beam report for the first beam set based on measurements of the CSI RSs or SSBs and the CSI reporting configuration.
  • CSI channel state information
  • a network entity comprising: a processor; and a transceiver coupled to the processor, wherein the processor is configured to: transmit, via the transceiver and to a user equipment (UE) , a channel state information (CSI) reporting configuration corresponding to a first beam set and associated with a CSI resource configuration, and indicative information indicating a second beam set associated with the CSI resource configuration; transmit, via the transceiver and to the UE, CSI reference signals (CSI RSs) or Synchronization Signal/PBCH Blocks (SSBs) for the second beam set based on the CSI resource configuration and the indicative information; and receive, via the transceiver and from the UE, a beam report for the first beam set based on measurements of the CSI RSs or SSBs by the UE and the CSI reporting configuration.
  • CSI channel state information
  • a processor for wireless communication comprise at least one memory; and a controller coupled with the at least one memory and configured to cause the controller to: receive, at a user equipment (UE) and from a network entity, a channel state information (CSI) reporting configuration corresponding to a first beam set and associated with a CSI resource configuration, and indicative information indicating a second beam set associated with the CSI resource configuration; receive, from the network entity, CSI reference signals (CSI RSs) or synchronization signal/PBCH blocks (SSBs) for the second beam set based on the CSI resource configuration and the indicative information; and transmit, to the network entity, a beam report for the first beam set based on measurements of the CSI RSs or SSBs and the CSI reporting configuration.
  • CSI channel state information
  • a user equipment UE
  • the method comprising: receiving, from a network entity, a channel state information (CSI) reporting configuration corresponding to a first beam set and associated with a CSI resource configuration, and indicative information indicating a second beam set associated with the CSI resource configuration; receiving, from the network entity, CSI reference signals (CSI RSs) or synchronization signal/PBCH blocks (SSBs) for the second beam set based on the CSI resource configuration and the indicative information; and transmitting, to the network entity, a beam report for the first beam set based on measurements of the CSI RSs or SSBs and the CSI reporting configuration.
  • CSI channel state information
  • a network entity comprising: transmitting, to a user equipment (UE) , a channel state information (CSI) reporting configuration corresponding to a first beam set and associated with a CSI resource configuration, and indicative information indicating a second beam set associated with the CSI resource configuration; transmitting, to the UE, CSI reference signals (CSI RSs) or synchronization signal/PBCH blocks (SSBs) for the second beam set based on the CSI resource configuration and the indicative information; and receiving, from the UE, a beam report for the first beam set based on measurements of the CSI RSs or SSBs by the UE and the CSI reporting configuration.
  • CSI channel state information
  • a computer readable medium having instructions stored thereon, the instructions, when executed by a processor of an apparatus, causing the apparatus to perform the method according to the third or the fourth aspect of the disclosure.
  • radio resource control (RRC) parameters of the CSI reporting configuration or RRC parameters of the CSI resource configuration may comprise an indication of the first beam set.
  • the indication of the first beam set may comprise one of: an identifier of the first beam set; or an identifier of a non-zero-power (NZP) CSI-RS resource set for the first beam.
  • NZP non-zero-power
  • the indicative information may indicate CSI-RS resources, a CSI-RS resource set, or a CSI-SSB resource set for the second beam set.
  • the CSI-RS resources may be elements of a CSI-RS resource set of the CSI-RS resource configuration.
  • the indicative information may comprise at least one of: an identifier of the CSI-RS resource set; a resource indicator indicative of CSI-RS resources of the CSI-RS resource set; transmission control indicator (TCI) states for the CSI-RS resources; beam identifiers of the second beam set.
  • TCI transmission control indicator
  • the CSI resource configuration may comprise at least one CSI-RS resource sets or CSI-SSB resource sets, and the indicative information indicates a CSI-RS resource set or a CSI-SSB resource set for the second beam set among at least one CSI-RS resource sets or CSI-SSB resource sets.
  • the indicative information may further indicate the CSI reporting configuration corresponding to the first beam set.
  • the CSI resource configuration may comprise a single CSI-RS resource set for the second beam set, and the indicative information comprises an update of the single CSI-RS resource set.
  • a CSI-RS resource set of the CSI-RS resource configuration may correspond to the first beam set, and may comprise: a resource list defining basic parameters for each of CSI-RS resources of the CSI-RS resource set; and a resource pool defining time domain and frequency domain resource mappings of at least a portion of the CSI-RS resources of the CSI-RS resource set, and wherein the indicative information indicates resources selected based on the resource list and the resource pool for the second beam set.
  • an entry of the resource list may comprise at least one of the following: a resource identifier indicating a CSI-RS resource corresponding to a beam within the first beam set; a periodicity indicating periodicity for the CSI-RS resource; scrambling identifier of the CSI-RS resource; a power control offset indicating a power offset of a physical downlink shared channel (PDSCH) resource element (RE) to a CSI-RS RE; and a power control offset for secondary synchronization signal (SSS) indicating a power offset of CSI-RS RE to SSS RE.
  • PDSCH physical downlink shared channel
  • RE resource element
  • SSS secondary synchronization signal
  • an entry of the resource pool may define time domain and frequency domain resource mappings of a CSI-RS resource, and may comprise at least one of the following: a resource mapping identifier indicating frequency domain allocation within a physical resource block (PRB) of a CSI-RS resource; a time offset of the CSI-RS resource within a period indicating time domain allocation within the PRB of the CSI-RS resource; a code division multiplexing (CDM) type of the CSI-RS resource; a number of ports for the CSI-RS resource; a density of the CSI-RS resource measured in one of RE, port, or PRB; or an indication for wideband or partial band CSI-RS.
  • PRB physical resource block
  • CDM code division multiplexing
  • the indicative information may comprise at least one of the following: a serving cell ID indicating a cell applying the indicative information; a bandwidth part (BWP) ID indicating a BWP applying the indicative information; a resource set ID indicating the CSI-RS resource set of the CSI-RS resource configuration; a first bitmap indicating at least one entry within the resource list in the CSI-RS resource set; and a second bitmap indicating the at least one entry within the resource pool.
  • BWP bandwidth part
  • the indicative information may be received via an RRC configuration or reconfiguration, or medium access control (MAC) control element (MAC CE) signaling.
  • MAC medium access control
  • a time gap between the last symbol for transmission of hybrid automatic repeat request (HARQ) -ACK information corresponding to the RRC reconfiguration or MAC CE signaling and the first symbol for CSI-RS transmission may be larger than a time requirement for the UE to obtain the indicative information.
  • HARQ hybrid automatic repeat request
  • the UE may transmit the beam report for the first beam set by: predicting CSI-RS measurements for the first beam set based on measurements of the CSI RSs for the second beam set; and transmitting the beam report for the first beam set based on the CSI reporting configuration and the predicted CSI-RS measurements.
  • the beam report may comprise one of the following: at least one CRI-RS resource indicator (CRIs) within a CSI-RS resource set corresponding to the first beam set; or at least one beam identifier within the first beam set.
  • CRI-RS resource indicator CRI-RS resource indicator
  • FIG. 1 illustrates an example of a wireless communications system in which some embodiments of the present disclosure can be implemented.
  • FIG. 2 illustrates an example of a process flow of beam reporting based on association and mapping between beam sets in accordance with some example embodiments of the present disclosure.
  • FIG. 3 illustrates a schematic diagram of an example of association and mapping between beam sets in accordance with some example embodiments of the present disclosure.
  • FIG. 4 illustrates an example of indicative information for a measured beam set in accordance with some example embodiments of the present disclosure.
  • FIG. 5 illustrates a schematic diagram of another example of association and mapping between the beam sets in accordance with some example embodiments of the present disclosure.
  • FIG. 6 illustrates a schematic diagram of a further example of association and mapping between the beam sets in accordance with some example embodiments of the present disclosure.
  • FIG. 7 illustrates a further example of the indicative information for the measured beam set in accordance with some example embodiments of the present disclosure.
  • FIG. 8 illustrates a schematic diagram of a process for generating a beam report based on information indicating variable pattern of a measured beam set in accordance with some example embodiments of the present disclosure.
  • FIG. 9 illustrates an example of a device that is suitable for implementing some embodiments of the present disclosure.
  • FIG. 10 illustrates an example of a processor that is suitable for implementing some embodiments of the present disclosure.
  • FIG. 11 illustrates a flowchart of a method that performed by a user equipment in accordance with aspects of the present disclosure.
  • FIG. 12 illustrates a flowchart of a method that performed by a network entity in accordance with aspects of the present disclosure.
  • references in the present disclosure to “one embodiment, ” “an example embodiment, ” “an embodiment, ” “some embodiments, ” and the like indicate that the embodiment (s) described may include a particular feature, structure, or characteristic, but it is not necessary that every embodiment includes the particular feature, structure, or characteristic. Moreover, such phrases do not necessarily refer to the same embodiment (s) . Further, when a particular feature, structure, or characteristic is described in connection with an embodiment, it is submitted that it is within the knowledge of one skilled in the art to affect such feature, structure, or characteristic in connection with other embodiments whether or not explicitly described.
  • first and second may be used herein to describe various elements, these elements should not be limited by these terms. These terms are only used to distinguish one element from another element. For example, a first element could also be termed as a second element, and similarly, a second element could also be termed as a first element, without departing from the scope of embodiments.
  • the term “and/or” includes any and all combinations of one or more of the listed terms. In some examples, values, procedures, or apparatuses are referred to as “best, ” “lowest, ” “highest, ” “minimum, ” “maximum, ” or the like. It will be appreciated that such descriptions are intended to indicate that a selection among many used functional alternatives can be made, and such selections need not be better, smaller, higher, or otherwise preferable to other selections.
  • the term “includes” and its variants are to be read as open terms that mean “includes, but is not limited to. ”
  • the term “based on” is to be read as “based at least in part on. ”
  • the term “one embodiment” and “an embodiment” are to be read as “at least one embodiment. ”
  • the term “another embodiment” is to be read as “at least one other embodiment. ”
  • the use of an expression such as “A and/or B” can mean either “only A” or “only B” or “both A and B. ”
  • Other definitions, explicit and implicit, may be included below.
  • AI/ML models for beam management may be classified into two categories according to which side deploys the AI/ML models, i.e., NW-side AI/ML model and UE-side AI/ML model.
  • a beam set (Set B) is measured and then the measurement results are inputted to a AI/ML model predicting another beam set (Set A) , where Set B is a subset of Set A or different from Set A.
  • Set A a beam set
  • Set A predicting another beam set
  • Set B is a subset of Set A or different from Set A.
  • Set B is a subset of Set A or different from Set A.
  • UE-side AI/ML model multiple AI/ML models with different combinations of Set A and Set B may be supported in a UE. Usage of the multiple AI/ML models may be controlled by UE.
  • variable Set B pattern may be supported by an AI/ML model for model generalization under different scenarios.
  • Set B refers to a set of beams measured at UE or NW and that the term “Set A” refers to a set of beams predicted and reported based on measurements of set B for beam management, for example, by use of an AI/ML, where the Set B may be a subset of the Set A or different from the Set A.
  • each beam of the Set B may be configured by a channel state information-reference signal (CSI-RS) resource, or a synchronization signal/physical broadcast channel (SSB) resource.
  • CSI-RS channel state information-reference signal
  • SSB synchronization signal/physical broadcast channel
  • UE may receive channel state information (CSI) reporting configuration for beam reporting of AI model inference output, where the CSI reporting configuration is linked with a CSI resource configuration for at least one first beam set, and a second beam set is associated with the CSI reporting configuration through an indicative information.
  • CSI channel state information
  • the indicative information may be included in a radio resource control (RRC) (re) configuration which is used to link the CSI reporting configuration or the CSI resource configuration for the first beam set with the second beam set.
  • RRC radio resource control
  • the CSI resource configuration may reuse legacy Rel-17 CSI resource setting, CSI-ResourceConfig.
  • the CSI resource configuration associated with the CSI reporting configuration for the first beam set (Set A) may contain a non-zero-power (NZP) CSI-RS resource set which is used for beam measurement of the second beam set (Set B) with variable beam patterns, and another indicative information shall be further transmitted to UE for identifying the beam within the second beam set, where the indicative information shall contain the resource indicator of indicating N CSI-RS resources of the CSI-RS resource set, N transmission control indicator (TCI) state IDs for the N CSI-RS resources and N Tx beam identifiers corresponding to the N CSI-RS resources, so that UE has knowledge of CSI-RS resources to be transmitted actually, the Tx beam of each CSI-RS resource and the corresponding Rx beam.
  • NZP non-zero-power
  • TCI transmission control indicator
  • the predicted results may be reported through the CRIs corresponding to the predicted top-K beams or identifiers of the predicted top-K beams within the first beam set.
  • the indicative information may indicate CSI-RS resources for the second beam set from the CSI resource configuration for the first beam set.
  • a new CSI-RS resource set may be introduced to achieve more flexible CSI-RS resource configuration for beam measurement.
  • the new CSI-RS resource set may contain two parts about CSI-RS resources, one defines a list of basic parameters for CSI-RS resource, and the other one defines a list of resource mapping for CSI-RS resource. The former is for a larger beam set, and the latter is for a smaller beam set which may be a subset of the larger beam set.
  • CSI-RS resources for the second beam set may be selected from the CSI resource configuration for the first beam set and indicated to UE through medium access control (MAC) control element (MAC CE) signalling.
  • MAC medium access control
  • MAC CE medium access control control element
  • the UE would report predicted layer 1 reference signal receive powers (L1-RSRPs) corresponding to the predicted top-K beams.
  • L1-RSRPs layer 1 reference signal receive powers
  • a Tx beam is represented by a CSI-RS resource used for beam management or a SSB resource and corresponds to a downlink spatial domain transmission filter for a base station (e.g. gNB) in the disclosure; and a Rx beam corresponds to a downlink spatial domain reception filter, which may be indicated by a quasi-co-location (QCL) information contained in a TCI state.
  • QCL quasi-co-location
  • FIG. 1 illustrates an example of a wireless communications system 100 in which some embodiments of the present disclosure can be implemented.
  • the wireless communications system 100 may include one or more network entities 102 (also referred to as network equipment (NE) ) , one or more UEs 104, a core network 106, and a packet data network 108.
  • the wireless communications system 100 may support various radio access technologies.
  • the wireless communications system 100 may be a 4G network, such as an LTE network or an LTE-Advanced (LTE-A) network.
  • LTE-A LTE-Advanced
  • the wireless communications system 100 may be a 5G network, such as an NR network.
  • the wireless communications system 100 may be a combination of a 4G network and a 5G network, or other suitable radio access technology including Institute of Electrical and Electronics Engineers (IEEE) 802.11 (Wi-Fi) , IEEE 802.16 (WiMAX) , IEEE 802.20.
  • IEEE Institute of Electrical and Electronics Engineers
  • Wi-Fi Wi-Fi
  • WiMAX IEEE 802.16
  • IEEE 802.20 The wireless communications system 100 may support radio access technologies beyond 5G. Additionally, the wireless communications system 100 may support technologies, such as time division multiple access (TDMA) , frequency division multiple access (FDMA) , or code division multiple access (CDMA) , etc.
  • TDMA time division multiple access
  • FDMA frequency division multiple access
  • CDMA code division multiple access
  • the one or more network entities 102 may be dispersed throughout a geographic region to form the wireless communications system 100.
  • One or more of the network entities 102 described herein may be or include or may be referred to as a network node, a base station, a network element, a radio access network (RAN) , a base transceiver station, an access point, a NodeB, an eNodeB (eNB) , a next-generation NodeB (gNB) , or other suitable terminology.
  • a network entity 102 and a UE 104 may communicate via a communication link 110, which may be a wireless or wired connection.
  • a network entity 102 and a UE 104 may perform wireless communication (e.g., receive signaling, transmit signaling) over a Uu interface.
  • a network entity 102 in form of a satellite can directly communicate to UE 104 using NR/LTE Uu interface.
  • the satellite may be a transparent satellite or a regenerative satellite.
  • a base station on earth may communicate with a UE via the satellite.
  • the base station may be on board and directly communicate with the UE.
  • a network entity 102 may provide a geographic coverage area 112 for which the network entity 102 may support services (e.g., voice, video, packet data, messaging, broadcast, etc. ) for one or more UEs 104 within the geographic coverage area 112.
  • a network entity 102 and a UE 104 may support wireless communication of signals related to services (e.g., voice, video, packet data, messaging, broadcast, etc. ) according to one or multiple radio access technologies.
  • a network entity 102 may be moveable, for example, a satellite associated with a non-terrestrial network.
  • different geographic coverage areas 112 associated with the same or different radio access technologies may overlap, but the different geographic coverage areas 112 may be associated with different network entities 102.
  • Information and signals described herein may be represented using any of a variety of different technologies and techniques.
  • data, instructions, commands, information, signals, bits, symbols, and chips that may be referenced throughout the description may be represented by voltages, currents, electromagnetic waves, magnetic fields or particles, optical fields or particles, or any combination thereof.
  • the one or more UEs 104 may be dispersed throughout a geographic region of the wireless communications system 100.
  • a UE 104 may include or may be referred to as a mobile device, a wireless device, a remote device, a remote unit, a handheld device, or a subscriber device, or some other suitable terminology.
  • the UE 104 may be referred to as a unit, a station, a terminal, or a client, among other examples.
  • the UE 104 may be referred to as an Internet-of-Things (IoT) device, an Internet-of-Everything (IoE) device, or machine-type communication (MTC) device, among other examples.
  • IoT Internet-of-Things
  • IoE Internet-of-Everything
  • MTC machine-type communication
  • a UE 104 may be stationary in the wireless communications system 100.
  • a UE 104 may be mobile in the wireless communications system 100.
  • the one or more UEs 104 may be devices in different forms or having different capabilities. Some examples of UEs 104 are illustrated in FIG. 1.
  • a UE 104 may be capable of communicating with various types of devices, such as the network entities 102, other UEs 104, or network equipment (e.g., the core network 106, the packet data network 108, a relay device, an integrated access and backhaul (IAB) node, or another network equipment) , as shown in FIG. 1.
  • a UE 104 may support communication with other network entities 102 or UEs 104, which may act as relays in the wireless communications system 100.
  • a UE 104 may also be able to support wireless communication directly with other UEs 104 over a communication link 114.
  • a UE 104 may support wireless communication directly with another UE 104 over a device-to-device (D2D) communication link.
  • D2D device-to-device
  • the communication link 114 may be referred to as a sidelink.
  • a UE 104 may support wireless communication directly with another UE 104 over a PC5 interface.
  • a network entity 102 may support communications with the core network 106, or with another network entity 102, or both.
  • a network entity 102 may interface with the core network 106 through one or more backhaul links 116 (e.g., via an S1, N2, N2, or another network interface) .
  • the network entities 102 may communicate with each other over the backhaul links 116 (e.g., via an X2, Xn, or another network interface) .
  • the network entities 102 may communicate with each other directly (e.g., between the network entities 102) .
  • the network entities 102 may communicate with each other or indirectly (e.g., via the core network 106) .
  • one or more network entities 102 may include subcomponents, such as an access network entity, which may be an example of an access node controller (ANC) .
  • An ANC may communicate with the one or more UEs 104 through one or more other access network transmission entities, which may be referred to as a radio heads, smart radio heads, or transmission-reception points (TRPs) .
  • TRPs transmission-reception points
  • a network entity 102 may be configured in a disaggregated architecture, which may be configured to utilize a protocol stack physically or logically distributed among two or more network entities 102, such as an integrated access backhaul (IAB) network, an open RAN (O-RAN) (e.g., a network configuration sponsored by the O-RAN Alliance) , or a virtualized RAN (vRAN) (e.g., a cloud RAN (C-RAN) ) .
  • IAB integrated access backhaul
  • O-RAN open RAN
  • vRAN virtualized RAN
  • C-RAN cloud RAN
  • a network entity 102 may include one or more of a central unit (CU) , a distributed unit (DU) , a radio unit (RU) , a RAN Intelligent Controller (RIC) (e.g., a Near-Real Time RIC (Near-RT RIC) , a Non-Real Time RIC (Non-RT RIC) ) , a Service Management and Orchestration (SMO) system, or any combination thereof.
  • CU central unit
  • DU distributed unit
  • RU radio unit
  • RIC RAN Intelligent Controller
  • RIC e.g., a Near-Real Time RIC (Near-RT RIC) , a Non-Real Time RIC (Non-RT RIC)
  • SMO Service Management and Orchestration
  • An RU may also be referred to as a radio head, a smart radio head, a remote radio head (RRH) , a remote radio unit (RRU) , or a transmission reception point (TRP) .
  • One or more components of the network entities 102 in a disaggregated RAN architecture may be co-located, or one or more components of the network entities 102 may be located in distributed locations (e.g., separate physical locations) .
  • one or more network entities 102 of a disaggregated RAN architecture may be implemented as virtual units (e.g., a virtual CU (VCU) , a virtual DU (VDU) , a virtual RU (VRU) ) .
  • VCU virtual CU
  • VDU virtual DU
  • VRU virtual RU
  • Split of functionality between a CU, a DU, and an RU may be flexible and may support different functionalities depending upon which functions (e.g., network layer functions, protocol layer functions, baseband functions, radio frequency functions, and any combinations thereof) are performed at a CU, a DU, or an RU.
  • functions e.g., network layer functions, protocol layer functions, baseband functions, radio frequency functions, and any combinations thereof
  • a functional split of a protocol stack may be employed between a CU and a DU such that the CU may support one or more layers of the protocol stack and the DU may support one or more different layers of the protocol stack.
  • the CU may host upper protocol layer (e.g., a layer 3 (L3) , a layer 2 (L2) ) functionality and signaling (e.g., Radio Resource Control (RRC) , service data adaption protocol (SDAP) , Packet Data Convergence Protocol (PDCP) ) .
  • RRC Radio Resource Control
  • SDAP service data adaption protocol
  • PDCP Packet Data Convergence Protocol
  • the CU may be connected to one or more DUs or RUs, and the one or more DUs or RUs may host lower protocol layers, such as a layer 1 (L1) (e.g., physical (PHY) layer) or an L2 (e.g., radio link control (RLC) layer, medium access control (MAC) layer) functionality and signaling, and may each be at least partially controlled by the CU 160.
  • L1 e.g., physical (PHY) layer
  • L2 e.g., radio link control (RLC) layer, medium access
  • a functional split of the protocol stack may be employed between a DU and an RU such that the DU may support one or more layers of the protocol stack and the RU may support one or more different layers of the protocol stack.
  • the DU may support one or multiple different cells (e.g., via one or more RUs) .
  • a functional split between a CU and a DU, or between a DU and an RU may be within a protocol layer (e.g., some functions for a protocol layer may be performed by one of a CU, a DU, or an RU, while other functions of the protocol layer are performed by a different one of the CU, the DU, or the RU) .
  • a CU may be functionally split further into CU control plane (CU-CP) and CU user plane (CU-UP) functions.
  • a CU may be connected to one or more DUs via a midhaul communication link (e.g., F1, F1-c, F1-u)
  • a DU may be connected to one or more RUs via a fronthaul communication link (e.g., open fronthaul (FH) interface)
  • FH open fronthaul
  • a midhaul communication link or a fronthaul communication link may be implemented in accordance with an interface (e.g., a channel) between layers of a protocol stack supported by respective network entities 102 that are in communication via such communication links.
  • the core network 106 may support user authentication, access authorization, tracking, connectivity, and other access, routing, or mobility functions.
  • the core network 106 may be an evolved packet core (EPC) , or a 5G core (5GC) , which may include a control plane entity that manages access and mobility (e.g., a mobility management entity (MME) , an access and mobility management functions (AMF) ) and a user plane entity that routes packets or interconnects to external networks (e.g., a serving gateway (S-GW) , a Packet Data Network (PDN) gateway (P-GW) , or a user plane function (UPF) ) .
  • EPC evolved packet core
  • 5GC 5G core
  • MME mobility management entity
  • AMF access and mobility management functions
  • S-GW serving gateway
  • PDN gateway Packet Data Network gateway
  • UPF user plane function
  • control plane entity may manage non-access stratum (NAS) functions, such as mobility, authentication, and bearer management (e.g., data bearers, signal bearers, etc. ) for the one or more UEs 104 served by the one or more network entities 102 associated with the core network 106.
  • NAS non-access stratum
  • the core network 106 may communicate with the packet data network 108 over one or more backhaul links 116 (e.g., via an S1, N2, N2, or another network interface) .
  • the packet data network 108 may include an application server 118.
  • one or more UEs 104 may communicate with the application server 118.
  • a UE 104 may establish a session (e.g., a protocol data unit (PDU) session, or the like) with the core network 106 via a network entity 102.
  • the core network 106 may route traffic (e.g., control information, data, and the like) between the UE 104 and the application server 118 using the established session (e.g., the established PDU session) .
  • the PDU session may be an example of a logical connection between the UE 104 and the core network 106 (e.g., one or more network functions of the core network 106) .
  • the network entities 102 and the UEs 104 may use resources of the wireless communications system 100 (e.g., time resources (e.g., symbols, slots, subframes, frames, or the like) or frequency resources (e.g., subcarriers, carriers) ) to perform various operations (e.g., wireless communications) .
  • the network entities 102 and the UEs 104 may support different resource structures.
  • the network entities 102 and the UEs 104 may support different frame structures.
  • the network entities 102 and the UEs 104 may support a single frame structure.
  • the network entities 102 and the UEs 104 may support various frame structures (i.e., multiple frame structures) .
  • the network entities 102 and the UEs 104 may support various frame structures based on one or more numerologies.
  • One or more numerologies may be supported in the wireless communications system 100, and a numerology may include a subcarrier spacing and a cyclic prefix.
  • a time interval of a resource may be organized according to frames (also referred to as radio frames) .
  • Each frame may have a duration, for example, a 10 millisecond (ms) duration.
  • each frame may include multiple subframes.
  • each frame may include 10 subframes, and each subframe may have a duration, for example, a 1 ms duration.
  • each frame may have the same duration.
  • each subframe of a frame may have the same duration.
  • a time interval of a resource may be organized according to slots.
  • a subframe may include a number (e.g., quantity) of slots.
  • the number of slots in each subframe may also depend on the one or more numerologies supported in the wireless communications system 100.
  • Each slot may include a number (e.g., quantity) of symbols (e.g., OFDM symbols) .
  • the number (e.g., quantity) of slots for a subframe may depend on a numerology.
  • a slot For a normal cyclic prefix, a slot may include 14 symbols.
  • a slot For an extended cyclic prefix (e.g., applicable for 60 kHz subcarrier spacing) , a slot may include 12 symbols.
  • an electromagnetic (EM) spectrum may be split, based on frequency or wavelength, into various classes, frequency bands, frequency channels, etc.
  • the wireless communications system 100 may support one or multiple operating frequency bands, such as frequency range designations FR1 (410 MHz –7.125 GHz) , FR2 (24.25 GHz – 52.6 GHz) , FR3 (7.125 GHz –24.25 GHz) , FR4 (52.6 GHz –114.25 GHz) , FR4a or FR4-1 (52.6 GHz –71 GHz) , and FR5 (114.25 GHz –300 GHz) .
  • FR1 410 MHz –7.125 GHz
  • FR2 24.25 GHz – 52.6 GHz
  • FR3 7.125 GHz –24.25 GHz
  • FR4 (52.6 GHz –114.25 GHz)
  • FR4a or FR4-1 52.6 GHz –71 GHz
  • FR5 114.25 GHz
  • the network entities 102 and the UEs 104 may perform wireless communications over one or more of the operating frequency bands.
  • FR1 may be used by the network entities 102 and the UEs 104, among other equipment or devices for cellular communications traffic (e.g., control information, data) .
  • FR2 may be used by the network entities 102 and the UEs 104, among other equipment or devices for short-range, high data rate capabilities.
  • FR1 may be associated with one or multiple numerologies (e.g., at least three numerologies) .
  • FR2 may be associated with one or multiple numerologies (e.g., at least 2 numerologies) .
  • FIG. 2 illustrates an example of a process flow of beam reporting based on association and mapping between beam sets in accordance with some example embodiments of the present disclosure.
  • the process flow 200 may involve a UE 201 and a network entity (e.g. a base station) 202.
  • the process flow 200 may be applied to the wireless communications system 100 with reference to FIG. 1, for example, the UE 201 may be any of UEs 104, and the network entity 202 may be any of the network entities 102. It would be appreciated that the process flow 200 may be applied to other communication scenarios.
  • the network entity 202 may transmit, to the UE 201, a channel state information (CSI) reporting configuration corresponding to a first beam set and indicative information 215. Accordingly, at 220, the UE 201 may receive the CSI reporting configuration and the indicative information 215 from the network entity 202.
  • CSI channel state information
  • the CSI reporting configuration may be associated with a CSI resource configuration, and indicative information may indicate a second beam set associated with the CSI resource configuration.
  • the CSI reporting configuration and the indicative information 215 may be transmitted and received separately.
  • the UE 201 and the network entity 202 may align the association and mapping between the first beam set and the second beam set, which will described in detail with reference to FIGS. 3 to 8.
  • the network entity 202 may transmit CSI reference signals (CSI-RSs) or synchronization signal/PBCH blocks (SSBs) 235 for the second beam set based on the CSI resource configuration and the indicative information. Accordingly, at 240, the UE 201 may receive the CSI-RSs and the SSBs from the network entity 202. In some embodiments, the resources of the CSI-RSs or SSBs may be configured for the second beam set, each resource corresponding to a beam of the second beam set.
  • CSI-RSs CSI reference signals
  • SSBs synchronization signal/PBCH blocks
  • the UE 201 may measure the received CSI-RSs or SSBs. For example, the UE 201 may determine L1-RSRSP for each beam of the second beam set. In some embodiments, the UE 201 may be configured with an AI/ML model for predicting measurements of the first beam set. The AI/ML model may receive the measurement of the second beam set as input and generate measurements of the first beam set as output.
  • the UE 201 may transmit, to the network entity 202, a beam report 265 for the first beam set based on measurements of the CSI RSs or SSBs and the CSI reporting configuration. Accordingly, at 270, the network entity 202 receives the beam report 265 for the first beam set. In some embodiments, the UE 201 may predict CSI-RS measurements for the first beam set based on measurements of the CSI RSs for the second beam set, and transmit the beam report 265 for the first beam set based on the CSI reporting configuration and the predicted CSI-RS measurements. For example, the UE 201 may report the predicted result in the beam report 265 corresponding to the CSI reporting configuration.
  • the beam report 265 may include CSI-RS Resource Indicator (CRIs) or beam identifier (s) within the first beam set corresponding to the predicted top-K (a positive integer) beams and the corresponding L1-RSRPs.
  • CRIs CSI-RS Resource Indicator
  • s beam identifier
  • the first beam set may be interchangeably referred as the Set A
  • the second beam set may be interchangeably referred as the Set B hereafter.
  • FIG. 3 illustrates a schematic diagram of an example of association and mapping between beam sets in accordance with some example embodiments of the present disclosure.
  • the UE 201 may be configured with the CSI reporting configuration 301 for beam report associated with an AI/ML model, where the CSI reporting configuration 301 is associated with a CSI resource configuration 302 for beam measurement and the CSI resource configuration 302 may contain a CSI-RS resource set 303, e.g., NZP CSI-RS Resource Set or CSI-synchronization signal/PBCH blocks (SSB) resource set.
  • CSI-RS resource set and CSI-RS are used in following.
  • the CSI reporting configuration 301 may be linked to a Set A through an indication 304 of the Set A, where the indication 304 of the Set A may be an identifier or index of the Set A or an identifier of a CSI-RS resource set corresponding to the Set A.
  • the indicator 304 may be configured in RRC parameters of the CSI reporting configuration 301 or RRC parameters of the CSI resource configuration 302 for Set B beam measurement.
  • the CSI resource configuration 302 may comprise at least one CSI-RS resource set 303 for the Set B.
  • the indicative information may indicate CSI-RS resources, a CSI-RS resource set, or a CSI-SSB resource set for the second beam set.
  • the UE may receive CSI-RSs for beam measurement based on the indicative information received at 220 in FIG. 2.
  • the indicative information may indicate the UE with CSI-RS resources for Set B beam measurement, and identifiers for identifying the beam of Set B, where the CSI-RS resources may be elements of the CSI-RS resource set corresponding the CSI-RS resource configuration.
  • the UE may determine the CSI-RS resources for the Set B among the possible Set Bs 305 based on the indicative information. Further, the measurements of the Set B 306 may be input to an AI/ML model 307 deployed at the UE, and predicted measurements of the Set A 308 are output from the model 307.
  • FIG. 4 illustrates an example of indicative information for a measured beam set in accordance with some example embodiments of the present disclosure.
  • the indicative information may comprise a CSI-RS resource set ID, a resource indicator of indicating N CSI-RS resources of the CSI-RS resource set, e.g., a number N means the first N CSI-RS resources of the set.
  • the indicative information may further comprise N TCI states for the selected N CSI-RS resources, where each TCI state is used to determine a Rx beam for reception and measurement of a CSI-RS; and N beam identifiers corresponding to the N CSI-RS resources for identifying the beams of Set B where each identifier indicates a Tx beam or a beam pair of Set B.
  • the indicative information may be configured by NW (e.g. the network entity 202) in RRC, e.g., introducing a new IE into the RRC parameter CSI-ResourceConfig, and may be updated by RRC reconfiguration or MAC CE.
  • NW e.g. the network entity 202
  • RRC e.g., introducing a new IE into the RRC parameter CSI-ResourceConfig
  • a CSI-RS resource set can be indicated by NW to be used for any possible Set B whose size is not larger than the size of the CSI-RS resource set.
  • the second indicative information may be transmitted based on UE request of Set B, e.g., UE may requests a Set B aligned with current active AI/ML model in UE for Set A prediction, then NW may transmit the indicative information to indicate the CSI-RS resources for the Set B.
  • the UE may receive CSI-RSs based on the indicative information for a default Set B beam measurement before receiving a MAC CE to update the indicative information for Set B beam measurement. Then the UE receives CSI-RSs for Set B beam measurement based on the latest indicative information.
  • the MAC CE may contain a CSI-RS resource set ID to indicate a CSI-RS resource set, a resource indicator to indicate that the first N CSI-RS resources are selected from the CSI-RS resource set for Set B, N TCI state IDs for the N CSI-RS resources and corresponding N Tx beam identifiers, as shown in FIG. 4.
  • the CSI-RS resource set may have three types of time behaviors, i.e., periodic, semi-persistent, and aperiodic.
  • the CSI-RS resource set may be configured by RRC and the associated indicative information may be configured by RRC as well.
  • the second indicative information may be updated by RRC reconfiguration or MAC CE.
  • the UE may determine the CSI-RS occasions and receive CSI-RSs for a default Set B beam measurement based on the RRC configuration, and if the indicative information is updated by RRC reconfiguration or MAC CE, the UE may receive CSI-RSs for a Set B beam measurement based on the recently received indicative information.
  • the set may be activated by a MAC CE.
  • the UE may receive CSI-RS for a default Set B beam measurement based on the RRC configuration before receiving a RRC reconfiguration or a MAC CE to update the indicative information after the set is activated. If the second indicative information is updated by RRC reconfiguration or MAC CE, the UE may receive CSI-RS for a Set B beam measurement based on the recently received second indicative information.
  • the set may be triggered by downlink control information (DCI) , for example, DCI format 0-1/0-2) .
  • DCI downlink control information
  • the UE may receive CSI-RSs for a Set B beam measurement based on a recently received second indicative information.
  • a time requirement may need to be satisfied: the minimal time gap for the network entity 202 to transmit CSI-RSs based on the indicative information after transmitting the RRC reconfiguration or MAC CE carrying the indicative information.
  • the time gap is defined between the last symbol for the physical uplink control channel (PUCCH) transmission carrying the hybrid automatic repeat request (HARQ) -ACK information corresponding to the physical downlink control channel (PDSCH) carrying the RRC reconfiguration or MAC CE and the first symbol for the CSI-RS transmission.
  • the time gap may be required to be larger than a time requirement for the UE to obtain the indicative information from the network entity 202.
  • the UE may assume that N CSI-RSs are transmitted in the first N CSI-RS resources of the CSI-RS resource set and the Rx beam for receiving CSI-RS is determined by the TCI state indicated for each CSI-RS resource, where Tx beam is associated with the Tx beam identifier and Rx beam is determined by the TCI state corresponding to the Tx beam identifier.
  • the reason to indicate the Tx beam is for the UE to determine the AI/ML model input data format. For example, in first resource of the N CSI-RS resources, the measured L1-RSRP corresponds to the Tx beam with first beam identifier and the Rx beam defined by QCL type D RS indicated in first TCI state.
  • all measured L1-RSRPs of Set B can be obtained by UE, and UE has knowledge of Tx-Rx beam pair of these measured L1-RSRPs. Further UE predicts the top-K beams within the Set A based on the measurement results by an AI/ML model whose output aligns with the Set A.
  • the UE may report the top-K beams within the Set A in a beam report corresponding to the CSI report setting.
  • the content of the beam report may include CRIs of CSI-RS resources within the CSI-RS resource set corresponding to the Set A, or identifier of beam within the Set A, e.g., relative beam ID within the Set. Additionally, the beam report may also include predicted RSRPs corresponding to the top-K beams.
  • FIG. 5 illustrates a schematic diagram of another example of association and mapping between the beam sets in accordance with some example embodiments of the present disclosure.
  • Each CSI-RS or CSI-SSB resource set is associated with a Set B.
  • CSI-RS resource set is used in following.
  • the CSI reporting configuration is linked to a Set A through an indication 504 of Set A, which may be an identifier of the Set A or an identifier of a CSI-RS resource set corresponding to the Set A.
  • the indication 504 of the Set A may be configured in RRC parameters of the CSI reporting configuration 501 or RRC parameters of the CSI-RS resource setting 502 for Set B beam measurement, as shown in FIG. 5.
  • the Set A linked with the CSI reporting configuration 501 is associated with a single Set B.
  • the indicative information may comprise an update of the single CSI-RS resource set.
  • a new Set B may be associated with the Set A.
  • UE may be further indicated with a CSI-RS resource set among the Y CSI-RS resource sets for beam measurement of a Set B.
  • the indicative information may comprise CSI reporting configuration ID and CSI-RS resource set ID.
  • the indicative information may be carried by MAC CE signalling.
  • the indicative information may be transmitted based on UE request of Set B, e.g., UE requests a Set B aligned with current active AI/ML model in UE for Set A prediction, then NW transmits the indication to indicate the CSI-RS resources for the Set B.
  • the UE may be indicated with a CSI-RS reporting configuration corresponding to a Set A.
  • the indicative information may comprise an identifier of the CSI reporting configuration.
  • the CSI-RS resource set may have three types of time behaviors, i.e., periodic, semi-persistent, and aperiodic.
  • periodic CSI-RS resource set the UE may determine the CSI-RS occasions and receives CSI-RSs for a default Set B beam measurement based on the RRC configuration. If the indicative information is updated via RRC reconfiguration or MAC CE, the UE updates knowledge of CSI-RSs for a new Set B.
  • the set is activated by a MAC CE.
  • the UE may receive CSI-RSs for a default Set B beam measurement based on the RRC configuration after the set is activated.
  • the UE may update knowledge of CSI-RS set for a new Set B.
  • the UE receives and measures CSI-RSs of the updated set.
  • the set is triggered by DCI (e.g., DCI format 0-1/0-2) .
  • DCI e.g., DCI format 0-1/0-2
  • the UE receives CSI-RS for a Set B beam measurement based on a recently received indicative information.
  • the UE may receive CSI-RS for Set B beam measurement based on the recently indicated CSI-RS resource set.
  • a time requirement (T proce ) may need to be satisfied: the minimal time requirement for the network entity to transmit CSI-RS based on indicative information after transmitting the RRC reconfiguration or MAC CE carrying with the indicative information.
  • a time gap defined between the last symbol for the PUCCH transmission carry the HARQ-ACK information corresponding to the PDSCH carry the RRC reconfiguration or MAC CE and the first symbol for the CSI-RS transmission should be larger than the time requirement for the UE to obtain the indicative information.
  • the UE measures beams transmitted by NW with CSI-RS resources of the CSI-RS resource set and obtains measurement results of the Set B. Further, UE may predict the top-K beams within the Set A based on the measurement results by an AI/ML model whose output aligns with the Set A. UE may report the top-K beams within the Set A in a beam report corresponding to the CSI report setting.
  • the beam report may comprise CRIs of CSI-RS resources within the CSI-RS resource set corresponding to the Set A, or identifier of beam within the Set A, e.g., relative beam ID within the Set A.
  • the beam report may also include corresponding predicted RSRP.
  • FIG. 6 illustrates a schematic diagram of a further example of association and mapping between the beam sets in accordance with some example embodiments of the present disclosure.
  • the UE may receive a CSI reporting configuration 601 for beam reporting of AI model inference output.
  • the CSI reporting configuration 602 is linked with a CSI resource configuration 602, where the CSI resource configuration 602 consists of one CSI-RS resource set 603.
  • the CSI-RS resource set 603 is configured with a resource list 604 for basic parameters of CSI-RS resource, which is associated with a Set A, and a resource pool 605 for time domain and frequency domain resource mapping of a CSI-RS resource, which is associated with a Set B.
  • the Set B may be a subset of the Set A.
  • the CSI-RS resource set 603 has a CSI-RS resource set ID.
  • the resource list 604 defines basic parameters for each of CSI-RS resources of the CSI-RS resource set.
  • an entry of the resource list 604 may comprises a resource identifier indicating a CSI-RS resource corresponding to a beam within the Set A, a periodicity indicating periodicity for the CSI-RS resource, a scrambling identifier of the CSI-RS, a power control offset indicating a power offset of PDSCH resource element (RE) to CSI-RS RE, and a power control offset for secondary synchronization signal (SSS) indicating a power offset of CSI-RS RE to SSS RE.
  • TCI state for all CSI-RS of the set may be included in the basic resource parameters, e.g., each entry of the resource list 604 contains a TCI state ID.
  • the resource pool 605 may define time domain and frequency domain resource mappings of at least a portion of the CSI-RS resources of the CSI-RS resource set 603.
  • an entry of the resource pool 605 may defines orthogonal frequency division multiplexing (OFDM) symbol location (s) in a slot and subcarrier occupancy in physical resource block (PRB) of the CSI-RS resource.
  • OFDM orthogonal frequency division multiplexing
  • An entry may comprise resource mapping identifier (RM ID) indicating frequency domain allocation within a PRB of a CSI-RS resource, a time offset of the CSI-RS within a period, the time domain allocation within a PRB of a CSI-RS resource (e.g., a value indicating the first OFDM symbol in PRB for the CSI-RS resource) , a code division multiplexing (CDM) type of the CSI-RS resource, a number of ports for the CSI-RS, a density of the CSI-RS resource measured in RE, port, or PRB, and indication for wideband or partial band CSI-RS.
  • RM ID resource mapping identifier
  • the UE may further receive an indicative information of CSI-RS resources for beam measurement of the Set B.
  • the indicative information is used to select a few CSI-RS resources from the CSI resource configuration 602.
  • the indicative information may be configured in RRC, e.g., introducing a new IE into the RRC parameter CSI-ResourceConfig, and be updated by RRC reconfiguration or MAC CE.
  • FIG. 7 illustrates a further example of the indicative information for the measured beam set in accordance with some example embodiments of the present disclosure.
  • the indicative information may include a serving cell ID indicating the cell applying the indicative information, a bandwidth part (BWP) indicating the BWP applying the indicative information, a CSI-RS resource set ID indicating a CSI-RS resource set, a first bitmap (RS0, RS1...RSn-1) indicating at least one entry within the resource list 604 in the corresponding CSI-RS resource set, and a second bitmap (RS0, RM1...RMm-1) indicating at least one entry within the resource pool 605.
  • UE may receive the indicative information transmitted from the bases station through MAC CE to indicate m CSI-RS resources from n CSI-RS resources of the set, and corresponding resource mapping.
  • the indicative information may be transmitted based on UE request for the Set B.
  • the UE may request a Set B aligned with current active AI/ML model deployed at UE for Set A prediction, and then the network entity transmits the indicative information to indicate the CSI-RS resources for the Set B.
  • the CSI-RS resource set may have three types of time behaviours, i.e., periodic, semi-persistent, and aperiodic.
  • FIG. 8 illustrates a schematic diagram of a process for generating a beam report based on information indicating variable pattern of a measured beam set in accordance with some example embodiments of the present disclosure.
  • a variable pattern of the Set B may be defined in a MAC CE carrying the indicative information as shown in FIG. 7.
  • the UE may determine basic parameters of the CSI-RS resources and time domain and frequency domain resource mapping of the CSI-RS resources in DL BWP with the BWP ID in serving cell with the Serving cell ID based on the received indicative information.
  • the MAC CE may activate the CSI-RS resources in the meantime, for example, for semi-persistent CSI-RS resources.
  • the UE may assume that CSI-RSs are transmitted by NW in these CSI-RS resources for Set B beam measurement, and may receive CSI-RSs based on the CSI-RS resources for Set B beam measurement and obtain the measurement results for the Set B. Based on the measurement results for the Set B, the UE predicts the top-K beams within the Set A through an AI/ML model whose output are aligned with the Set A.
  • the UE may report CRIs corresponding to CSI-RS resources of the CSI-RS resource set 603 in a beam report associated with the CSI reporting configuration.
  • the CSI-RS resources are associated with the predicted top-K beams within Set A.
  • the content of the beam report may also include corresponding predicted RSRP.
  • the CSI-RS resources can be configured flexibly to adjust the variable Set B pattern.
  • the CSI-RS transmission duration for Set B beam measurement can be reduced through a common resource pool (e.g. resource pool 605) for CSI-RS associated with Set B.
  • a combination of a measured beam set and a reported beam set and a valid pattern of the measured beam set between NW and UE can be aligned in a simple and effective manner.
  • FIG. 9 illustrates an example of a device that is suitable for implementing some embodiments of the present disclosure.
  • the device may be an example of a UE 104 or network entity 102 as described herein.
  • the device 900 may support wireless communication with one or more network entities 102, UEs 104, or any combination thereof.
  • the device 900 may include components for bi-directional communications including components for transmitting and receiving communications, such as a processor 902, a memory 904, a transceiver 906, and, optionally, an I/O controller 908. These components may be in electronic communication or otherwise coupled (e.g., operatively, communicatively, functionally, electronically, electrically) via one or more interfaces (e.g., buses) .
  • the processor 902, the memory 904, the transceiver 906, or various combinations thereof or various components thereof may be examples of means for performing various aspects of the present disclosure as described herein.
  • the processor 902, the memory 904, the transceiver 906, or various combinations or components thereof may support a method for performing one or more of the operations described herein.
  • the processor 902, the memory 904, the transceiver 906, or various combinations or components thereof may be implemented in hardware (e.g., in communications management circuitry) .
  • the hardware may include a processor, a digital signal processor (DSP) , an application-specific integrated circuit (ASIC) , a field-programmable gate array (FPGA) or other programmable logic device, a discrete gate or transistor logic, discrete hardware components, or any combination thereof configured as or otherwise supporting a means for performing the functions described in the present disclosure.
  • the processor 902 and the memory 904 coupled with the processor 902 may be configured to perform one or more of the functions described herein (e.g., executing, by the processor 902, instructions stored in the memory 904) .
  • the processor 902 may support wireless communication at the device 900 in accordance with examples as disclosed herein.
  • the device may be an example of a UE 104.
  • the processor 902 may be configured to operable to support means for receiving, from a network entity, a channel state information (CSI) reporting configuration corresponding to a first beam set and associated with a CSI resource configuration, and indicative information indicating a second beam set associated with the CSI resource configuration; means for receiving, from a network entity, a channel state information (CSI) reporting configuration corresponding to a first beam set and associated with a CSI resource configuration, and indicative information indicating a second beam set associated with the CSI resource configuration; and means for transmitting, to the network entity, a beam report for the first beam set based on measurements of the CSI RSs or SSBs and the CSI reporting configuration.
  • CSI channel state information
  • the device may be an example of a network entity 102, e.g. a network entity.
  • the processor 902 may be configured to operable to support means for transmitting, to a user equipment (UE) , a channel state information (CSI) reporting configuration corresponding to a first beam set and associated with a CSI resource configuration, and indicative information indicating a second beam set associated with the CSI resource configuration; means for transmitting, to the UE, CSI reference signals (CSI RSs) or synchronization signal/PBCH blocks (SSBs) for the second beam set based on the CSI resource configuration and the indicative information; and means for receiving, from the UE, a beam report for the first beam set based on measurements of the CSI RSs or SSBs by the UE and the CSI reporting configuration.
  • CSI channel state information
  • the processor 902 may include an intelligent hardware device (e.g., a general-purpose processor, a DSP, a CPU, a microcontroller, an ASIC, an FPGA, a programmable logic device, a discrete gate or transistor logic component, a discrete hardware component, or any combination thereof) .
  • the processor 902 may be configured to operate a memory array using a memory controller.
  • a memory controller may be integrated into the processor 902.
  • the processor 902 may be configured to execute computer-readable instructions stored in a memory (e.g., the memory 904) to cause the device 900 to perform various functions of the present disclosure.
  • the memory 904 may include random access memory (RAM) and read-only memory (ROM) .
  • the memory 904 may store computer-readable, computer-executable code including instructions that, when executed by the processor 902 cause the device 900 to perform various functions described herein.
  • the code may be stored in a non-transitory computer-readable medium such as system memory or another type of memory.
  • the code may not be directly executable by the processor 902 but may cause a computer (e.g., when compiled and executed) to perform functions described herein.
  • the memory 904 may include, among other things, a basic I/O system (BIOS) which may control basic hardware or software operation such as the interaction with peripheral components or devices.
  • BIOS basic I/O system
  • the I/O controller 908 may manage input and output signals for the device 900.
  • the I/O controller 908 may also manage peripherals not integrated into the device 900.
  • the I/O controller 908 may represent a physical connection or port to an external peripheral.
  • the I/O controller 908 may utilize an operating system such as or another known operating system.
  • the I/O controller 908 may be implemented as part of a processor, such as the processor 906.
  • a user may interact with the device 900 via the I/O controller 908 or via hardware components controlled by the I/O controller 908.
  • the device 900 may include a single antenna 810. However, in some other implementations, the device 900 may have more than one antenna 810 (i.e., multiple antennas) , including multiple antenna panels or antenna arrays, which may be capable of concurrently transmitting or receiving multiple wireless transmissions.
  • the transceiver 906 may communicate bi-directionally, via the one or more antennas 810, wired, or wireless links as described herein.
  • the transceiver 906 may represent a wireless transceiver and may communicate bi-directionally with another wireless transceiver.
  • the transceiver 906 may also include a modem to modulate the packets, to provide the modulated packets to one or more antennas 810 for transmission, and to demodulate packets received from the one or more antennas 810.
  • the transceiver 906 may include one or more transmit chains, one or more receive chains, or a combination thereof.
  • a transmit chain may be configured to generate and transmit signals (e.g., control information, data, packets) .
  • the transmit chain may include at least one modulator for modulating data onto a carrier signal, preparing the signal for transmission over a wireless medium.
  • the at least one modulator may be configured to support one or more techniques such as amplitude modulation (AM) , frequency modulation (FM) , or digital modulation schemes like phase-shift keying (PSK) or quadrature amplitude modulation (QAM) .
  • the transmit chain may also include at least one power amplifier configured to amplify the modulated signal to an appropriate power level suitable for transmission over the wireless medium.
  • the transmit chain may also include one or more antennas 810 for transmitting the amplified signal into the air or wireless medium.
  • a receive chain may be configured to receive signals (e.g., control information, data, packets) over a wireless medium.
  • the receive chain may include one or more antennas 810 for receive the signal over the air or wireless medium.
  • the receive chain may include at least one amplifier (e.g., a low-noise amplifier (LNA) ) configured to amplify the received signal.
  • the receive chain may include at least one demodulator configured to demodulate the receive signal and obtain the transmitted data by reversing the modulation technique applied during transmission of the signal.
  • the receive chain may include at least one decoder for decoding the processing the demodulated signal to receive the transmitted data.
  • FIG. 10 illustrates an example of a processor 1000 is suitable for implementing some embodiments of the present disclosure.
  • the processor 1000 may be an example of a processor configured to perform various operations in accordance with examples as described herein.
  • the processor 1000 may include a controller 1002 configured to perform various operations in accordance with examples as described herein.
  • the processor 1000 may optionally include at least one memory 1004. Additionally, or alternatively, the processor 1000 may optionally include one or more arithmetic-logic units (ALUs) 1006.
  • ALUs arithmetic-logic units
  • One or more of these components may be in electronic communication or otherwise coupled (e.g., operatively, communicatively, functionally, electronically, electrically) via one or more interfaces (e.g., buses) .
  • the processor 1000 may be a processor chipset and include a protocol stack (e.g., a software stack) executed by the processor chipset to perform various operations (e.g., receiving, obtaining, retrieving, transmitting, outputting, forwarding, storing, determining, identifying, accessing, writing, reading) in accordance with examples as described herein.
  • a protocol stack e.g., a software stack
  • operations e.g., receiving, obtaining, retrieving, transmitting, outputting, forwarding, storing, determining, identifying, accessing, writing, reading
  • the processor chipset may include one or more cores, one or more caches (e.g., memory local to or included in the processor chipset (e.g., the processor 1000) or other memory (e.g., random access memory (RAM) , read-only memory (ROM) , dynamic RAM (DRAM) , synchronous dynamic RAM (SDRAM) , static RAM (SRAM) , ferroelectric RAM (FeRAM) , magnetic RAM (MRAM) , resistive RAM (RRAM) , flash memory, phase change memory (PCM) , and others) .
  • RAM random access memory
  • ROM read-only memory
  • DRAM dynamic RAM
  • SDRAM synchronous dynamic RAM
  • SRAM static RAM
  • FeRAM ferroelectric RAM
  • MRAM magnetic RAM
  • RRAM resistive RAM
  • PCM phase change memory
  • the controller 1002 may be configured to manage and coordinate various operations (e.g., signaling, receiving, obtaining, retrieving, transmitting, outputting, forwarding, storing, determining, identifying, accessing, writing, reading) of the processor 1000 to cause the processor 1000 to support various operations in accordance with examples as described herein.
  • the controller 1002 may operate as a control unit of the processor 1000, generating control signals that manage the operation of various components of the processor 1000. These control signals include enabling or disabling functional units, selecting data paths, initiating memory access, and coordinating timing of operations.
  • the controller 1002 may be configured to fetch (e.g., obtain, retrieve, receive) instructions from the memory 1004 and determine subsequent instruction (s) to be executed to cause the processor 1000 to support various operations in accordance with examples as described herein.
  • the controller 1002 may be configured to track memory address of instructions associated with the memory 1004.
  • the controller 1002 may be configured to decode instructions to determine the operation to be performed and the operands involved.
  • the controller 1002 may be configured to interpret the instruction and determine control signals to be output to other components of the processor 1000 to cause the processor 1000 to support various operations in accordance with examples as described herein.
  • the controller 1002 may be configured to manage flow of data within the processor 1000.
  • the controller 1002 may be configured to control transfer of data between registers, arithmetic logic units (ALUs) , and other functional units of the processor 1000.
  • ALUs arithmetic logic units
  • the memory 1004 may include one or more caches (e.g., memory local to or included in the processor 1000 or other memory, such RAM, ROM, DRAM, SDRAM, SRAM, MRAM, flash memory, etc. In some implementation, the memory 1004 may reside within or on a processor chipset (e.g., local to the processor 1000) . In some other implementations, the memory 1004 may reside external to the processor chipset (e.g., remote to the processor 1000) .
  • caches e.g., memory local to or included in the processor 1000 or other memory, such RAM, ROM, DRAM, SDRAM, SRAM, MRAM, flash memory, etc.
  • the memory 1004 may reside within or on a processor chipset (e.g., local to the processor 1000) . In some other implementations, the memory 1004 may reside external to the processor chipset (e.g., remote to the processor 1000) .
  • the memory 1004 may store computer-readable, computer-executable code including instructions that, when executed by the processor 1000, cause the processor 1000 to perform various functions described herein.
  • the code may be stored in a non-transitory computer-readable medium such as system memory or another type of memory.
  • the controller 1002 and/or the processor 1000 may be configured to execute computer-readable instructions stored in the memory 1004 to cause the processor 1000 to perform various functions (e.g., functions or tasks supporting transmit power prioritization) .
  • the processor 1000 and/or the controller 1002 may be coupled with or to the memory 1004, the processor 1000, the controller 1002, and the memory 1004 may be configured to perform various functions described herein.
  • the processor 1000 may include multiple processors and the memory 1004 may include multiple memories. One or more of the multiple processors may be coupled with one or more of the multiple memories, which may, individually or collectively, be configured to perform various functions herein.
  • the one or more ALUs 1006 may be configured to support various operations in accordance with examples as described herein.
  • the one or more ALUs 1006 may reside within or on a processor chipset (e.g., the processor 1000) .
  • the one or more ALUs 1006 may reside external to the processor chipset (e.g., the processor 1000) .
  • One or more ALUs 1006 may perform one or more computations such as addition, subtraction, multiplication, and division on data.
  • one or more ALUs 1006 may receive input operands and an operation code, which determines an operation to be executed.
  • One or more ALUs 1006 be configured with a variety of logical and arithmetic circuits, including adders, subtractors, shifters, and logic gates, to process and manipulate the data according to the operation. Additionally, or alternatively, the one or more ALUs 1006 may support logical operations such as AND, OR, exclusive-OR (XOR) , not-OR (NOR) , and not-AND (NAND) , enabling the one or more ALUs 1006 to handle conditional operations, comparisons, and bitwise operations.
  • logical operations such as AND, OR, exclusive-OR (XOR) , not-OR (NOR) , and not-AND (NAND) , enabling the one or more ALUs 1006 to handle conditional operations, comparisons, and bitwise operations.
  • the processor 1000 may support wireless communication in accordance with examples as disclosed herein.
  • the processor 1000 may implemented at a UE 104.
  • the processor 1000 may be configured to operable to support means for receiving, from a network entity, a channel state information (CSI) reporting configuration corresponding to a first beam set and associated with a CSI resource configuration, and indicative information indicating a second beam set associated with the CSI resource configuration; means for receiving, from a network entity, a channel state information (CSI) reporting configuration corresponding to a first beam set and associated with a CSI resource configuration, and indicative information indicating a second beam set associated with the CSI resource configuration; and means for transmitting, to the network entity, a beam report for the first beam set based on measurements of the CSI RSs or SSBs and the CSI reporting configuration.
  • CSI channel state information
  • the processor 1000 may implemented at a network entity 102, e.g. a base station.
  • the processor 1000 may be configured to operable to support means for transmitting, to a user equipment (UE) , a channel state information (CSI) reporting configuration corresponding to a first beam set and associated with a CSI resource configuration, and indicative information indicating a second beam set associated with the CSI resource configuration; means for transmitting, to the UE, CSI reference signals (CSI RSs) or synchronization signal/PBCH blocks (SSBs) for the second beam set based on the CSI resource configuration and the indicative information; and means for receiving, from the UE, a beam report for the first beam set based on measurements of the CSI RSs or SSBs by the UE and the CSI reporting configuration.
  • CSI channel state information
  • FIG. 11 illustrates a flowchart of a method 1100 performed by a UE in accordance with aspects of the present disclosure.
  • the operations of the method 1100 may be implemented by a device or its components as described herein.
  • the operations of the method 1100 may be performed by a UE 104 as described herein.
  • the device may execute a set of instructions to control the function elements of the device to perform the described functions. Additionally, or alternatively, the device may perform aspects of the described functions using special-purpose hardware.
  • the method may include receiving, from a network entity, a channel state information (CSI) reporting configuration corresponding to a first beam set and associated with a CSI resource configuration, and indicative information indicating a second beam set associated with the CSI resource configuration.
  • CSI channel state information
  • the operations of 1110 may be performed in accordance with examples as described herein. In some implementations, aspects of the operations of 1110 may be performed by a UE 104 as described with reference to FIG. 1.
  • the method may include receiving, from the network entity, CSI reference signals (CSI RSs) or synchronization signal/PBCH blocks (SSBs) for the second beam set based on the CSI resource configuration and the indicative information.
  • CSI RSs CSI reference signals
  • SSBs synchronization signal/PBCH blocks
  • the operations of 1120 may be performed in accordance with examples as described herein. In some implementations, aspects of the operations of 1120 may be performed by a UE 104 as described with reference to FIG. 1.
  • the method may include transmitting, to the network entity, a beam report for the first beam set based on measurements of the CSI RSs or SSBs and the CSI reporting configuration.
  • the operations of 1130 may be performed in accordance with examples as described herein. In some implementations, aspects of the operations of 1130 may be performed by a UE 104 as described with reference to FIG. 1.
  • FIG. 12 illustrates a flowchart of a method 1200 performed by a network entity in accordance with aspects of the present disclosure.
  • the operations of the method 1200 may be implemented by a device or its components as described herein.
  • the operations of the method 1200 may be performed by a network entity 102 as described herein.
  • the device may execute a set of instructions to control the function elements of the device to perform the described functions. Additionally, or alternatively, the device may perform aspects of the described functions using special-purpose hardware.
  • the method may include transmitting, to a user equipment (UE) , a channel state information (CSI) reporting configuration corresponding to a first beam set and associated with a CSI resource configuration, and indicative information indicating a second beam set associated with the CSI resource configuration.
  • CSI channel state information
  • the operations of 1210 may be performed in accordance with examples as described herein. In some implementations, aspects of the operations of 1210 may be performed by a network entity 102 as described with reference to FIG. 1.
  • the method may include transmitting, to a user equipment (UE) , a channel state information (CSI) reporting configuration corresponding to a first beam set and associated with a CSI resource configuration, and indicative information indicating a second beam set associated with the CSI resource configuration.
  • CSI channel state information
  • the operations of 1210 may be performed in accordance with examples as described herein. In some implementations, aspects of the operations of 1210 may be performed by a network entity 102 as described with reference to FIG. 1.
  • the method may include transmitting, to the UE, CSI reference signals (CSI RSs) or synchronization signal/PBCH blocks (SSBs) for the second beam set based on the CSI resource configuration and the indicative information.
  • CSI RSs CSI reference signals
  • SSBs synchronization signal/PBCH blocks
  • the operations of 1220 may be performed in accordance with examples as described herein. In some implementations, aspects of the operations of 1220 may be performed by a network entity 102 as described with reference to FIG. 1.
  • the method may include receiving, from the UE, a beam report for the first beam set based on measurements of the CSI RSs or SSBs by the UE and the CSI reporting configuration.
  • the operations of 1230 may be performed in accordance with examples as described herein. In some implementations, aspects of the operations of 1230 may be performed by a network entity 102 as described with reference to FIG. 1.
  • a general-purpose processor may be a microprocessor, but in the alternative, the processor may be any processor, controller, microcontroller, or state machine.
  • a processor may also be implemented as a combination of computing devices (e.g., a combination of a DSP and a microprocessor, multiple microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration.
  • the functions described herein may be implemented in hardware, software executed by a processor, firmware, or any combination thereof. If implemented in software executed by a processor, the functions may be stored on or transmitted over as one or more instructions or code on a computer-readable medium. Other examples and implementations are within the scope of the disclosure and appended claims. For example, due to the nature of software, functions described herein may be implemented using software executed by a processor, hardware, firmware, hardwiring, or combinations of any of these. Features implementing functions may also be physically located at various positions, including being distributed such that portions of functions are implemented at different physical locations.
  • Computer-readable media includes both non-transitory computer storage media and communication media including any medium that facilitates transfer of a computer program from one place to another.
  • a non-transitory storage medium may be any available medium that may be accessed by a general-purpose or special-purpose computer.
  • non-transitory computer-readable media may include RAM, ROM, electrically erasable programmable ROM (EEPROM) , flash memory, compact disk (CD) ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other non-transitory medium that may be used to carry or store desired program code means in the form of instructions or data structures and that may be accessed by a general-purpose or special-purpose computer, or a general-purpose or special-purpose processor.
  • an article “a” before an element is unrestricted and understood to refer to “at least one” of those elements or “one or more” of those elements.
  • the terms “a, ” “at least one, ” “one or more, ” and “at least one of one or more” may be interchangeable.
  • a list of items indicates an inclusive list such that, for example, a list of at least one of A, B, or C means A or B or C or AB or AC or BC or ABC (i.e., A and B and C) .
  • the phrase “based on” shall not be construed as a reference to a closed set of conditions. For example, an example step that is described as “based on condition A” may be based on both a condition A and a condition B without departing from the scope of the present disclosure.
  • the phrase “based on” shall be construed in the same manner as the phrase “based at least in part on.
  • a “set” may include one or more elements.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

Various aspects of the present disclosure relate to a UE, a processor for wireless communication, a network entity, methods, and a computer readable medium for association and mapping between beam sets. The UE receives a CSI reporting configuration corresponding to a first beam set and associated with a CSI resource configuration, and indicative information indicating a second beam set associated with the CSI resource configuration. The UE further receives CSI RSs or SSBs for the second beam set based on the CSI resource configuration and the indicative information. The UE transmits a beam report for the first beam set. In this way, a combination of a measured beam set and a reported beam set and a valid pattern of the measured beam set between network and UE can be aligned in a simple and effective manner.

Description

ASSOCIATION AND MAPPING BETWEEN BEAM SETS TECHNICAL FIELD
The present disclosure relates to wireless communications, and more specifically to a user equipment (UE) , a network entity, a processor for wireless communication, methods, and a computer readable medium for association and mapping between beam sets.
BACKGROUND
A wireless communications system may include one or multiple network communication devices, such as base stations, which may be otherwise known as an eNodeB (eNB) , a next-generation NodeB (gNB) , or other suitable terminology. Each network communication devices, such as a base station may support wireless communications for one or multiple user communication devices, which may be otherwise known as user equipment (UE) , or other suitable terminology. The wireless communications system may support wireless communications with one or multiple user communication devices by utilizing resources of the wireless communication system (e.g., time resources (e.g., symbols, slots, subframes, frames, or the like) or frequency resources (e.g., subcarriers, carriers) . Additionally, the wireless communications system may support wireless communications across various radio access technologies including third generation (3G) radio access technology, fourth generation (4G) radio access technology, fifth generation (5G) radio access technology, among other suitable radio access technologies beyond 5G (e.g., sixth generation (6G) ) .
Artificial intelligence or machine learning (AI/ML) on beam management have been discussed in 3GPP work group in terms of spatial beam prediction (BM-case1) and temporal beam prediction (BM-case2) . AI/ML on beam management can be classified into two categories according to which side deploys AI/ML model, i.e., network (NW) -side AI/ML model and UE-side AI/ML model. In AI/ML based beam management, a beam set (Set B) is measured and then the measurement results are inputted to a AI/ML model predicting another beam set (Set A) , where Set B is a subset of the Set A or different from the Set A. Life cycle management (LCM) manages AI/ML model in entire life cycle which is performed based on functionality or model. Whatever the LCM of AI/ML model is based on functionality or model, for UE-side  AI/ML model, multiple AI/ML models with different combinations of Set A/Set B may be supported at UE. Usage of the multiple AI/ML models may be controlled by UE. In other hand, variable Set B patterns may be supported by an AI/ML model for model generalization under different scenarios. Thus, the understanding of a valid combination of Set B and Set A and a valid Set B pattern should be aligned by NW and UE.
SUMMARY
The present disclosure relates to a UE, a network entity, a processor for wireless communication, methods, and a computer readable medium for reporting of beam measurements. Embodiments of the disclosure can align a combination of a measured beam set (Set B) and a reported beam set (Set A) and a valid pattern of the measured beam set between NW and UE in a simple and effective manner.
In a first aspect, there is provided a UE. The UE comprises a processor; and a transceiver coupled to the processor, wherein the processor is configured to: receive, via the transceiver and from a network entity, a channel state information (CSI) reporting configuration corresponding to a first beam set and associated with a CSI resource configuration, and indicative information indicating a second beam set associated with the CSI resource configuration; receive, via the transceiver and from the network entity, CSI reference signals (CSI-RSs) or synchronization signal/PBCH bocks (SSBs) for the second beam set based on the CSI resource configuration and the indicative information; and transmit, via the transceiver and to the network entity, a beam report for the first beam set based on measurements of the CSI RSs or SSBs and the CSI reporting configuration.
In a second aspect, there is provided a network entity, comprising: a processor; and a transceiver coupled to the processor, wherein the processor is configured to: transmit, via the transceiver and to a user equipment (UE) , a channel state information (CSI) reporting configuration corresponding to a first beam set and associated with a CSI resource configuration, and indicative information indicating a second beam set associated with the CSI resource configuration; transmit, via the transceiver and to the UE, CSI reference signals (CSI RSs) or Synchronization Signal/PBCH Blocks (SSBs) for the second beam set based on the CSI resource configuration and the indicative information; and receive, via the transceiver and from  the UE, a beam report for the first beam set based on measurements of the CSI RSs or SSBs by the UE and the CSI reporting configuration.
In a third aspect, there is provided a processor for wireless communication. The a processor comprise at least one memory; and a controller coupled with the at least one memory and configured to cause the controller to: receive, at a user equipment (UE) and from a network entity, a channel state information (CSI) reporting configuration corresponding to a first beam set and associated with a CSI resource configuration, and indicative information indicating a second beam set associated with the CSI resource configuration; receive, from the network entity, CSI reference signals (CSI RSs) or synchronization signal/PBCH blocks (SSBs) for the second beam set based on the CSI resource configuration and the indicative information; and transmit, to the network entity, a beam report for the first beam set based on measurements of the CSI RSs or SSBs and the CSI reporting configuration.
In a fourth aspect, there is provided method performed by a user equipment (UE) , the method comprising: receiving, from a network entity, a channel state information (CSI) reporting configuration corresponding to a first beam set and associated with a CSI resource configuration, and indicative information indicating a second beam set associated with the CSI resource configuration; receiving, from the network entity, CSI reference signals (CSI RSs) or synchronization signal/PBCH blocks (SSBs) for the second beam set based on the CSI resource configuration and the indicative information; and transmitting, to the network entity, a beam report for the first beam set based on measurements of the CSI RSs or SSBs and the CSI reporting configuration.
In a fifth aspect, there is provided method performed by a network entity, the method comprising: transmitting, to a user equipment (UE) , a channel state information (CSI) reporting configuration corresponding to a first beam set and associated with a CSI resource configuration, and indicative information indicating a second beam set associated with the CSI resource configuration; transmitting, to the UE, CSI reference signals (CSI RSs) or synchronization signal/PBCH blocks (SSBs) for the second beam set based on the CSI resource configuration and the indicative information; and receiving, from the UE, a beam report for the first beam set based on measurements of the CSI RSs or SSBs by the UE and the CSI reporting configuration.
In a sixth aspect, there is provided a computer readable medium having instructions stored thereon, the instructions, when executed by a processor of an apparatus, causing the apparatus to perform the method according to the third or the fourth aspect of the disclosure.
In some implementations of the methods, the UE and the network entity described herein, radio resource control (RRC) parameters of the CSI reporting configuration or RRC parameters of the CSI resource configuration may comprise an indication of the first beam set.
In some implementations of the methods, the UE and the network entity described herein, the indication of the first beam set may comprise one of: an identifier of the first beam set; or an identifier of a non-zero-power (NZP) CSI-RS resource set for the first beam.
In some implementations of the methods, the UE and the network entity described herein, the indicative information may indicate CSI-RS resources, a CSI-RS resource set, or a CSI-SSB resource set for the second beam set.
In some implementations of the methods, the UE and the network entity described herein, the CSI-RS resources may be elements of a CSI-RS resource set of the CSI-RS resource configuration.
In some implementations of the methods, the UE and the network entity described herein, the indicative information may comprise at least one of: an identifier of the CSI-RS resource set; a resource indicator indicative of CSI-RS resources of the CSI-RS resource set; transmission control indicator (TCI) states for the CSI-RS resources; beam identifiers of the second beam set.
In some implementations of the methods, the UE and the network entity described herein, the CSI resource configuration may comprise at least one CSI-RS resource sets or CSI-SSB resource sets, and the indicative information indicates a CSI-RS resource set or a CSI-SSB resource set for the second beam set among at least one CSI-RS resource sets or CSI-SSB resource sets.
In some implementations of the methods, the UE and the network entity described herein, the indicative information may further indicate the CSI reporting configuration corresponding to the first beam set.
In some implementations of the methods, the UE and the network entity described herein, the CSI resource configuration may comprise a single CSI-RS resource set for the second beam set, and the indicative information comprises an update of the single CSI-RS resource set.
In some implementations of the methods, the UE and the network entity described herein, a CSI-RS resource set of the CSI-RS resource configuration may correspond to the first beam set, and may comprise: a resource list defining basic parameters for each of CSI-RS resources of the CSI-RS resource set; and a resource pool defining time domain and frequency domain resource mappings of at least a portion of the CSI-RS resources of the CSI-RS resource set, and wherein the indicative information indicates resources selected based on the resource list and the resource pool for the second beam set.
In some implementations of the methods, the UE and the network entity described herein, an entry of the resource list may comprise at least one of the following: a resource identifier indicating a CSI-RS resource corresponding to a beam within the first beam set; a periodicity indicating periodicity for the CSI-RS resource; scrambling identifier of the CSI-RS resource; a power control offset indicating a power offset of a physical downlink shared channel (PDSCH) resource element (RE) to a CSI-RS RE; and a power control offset for secondary synchronization signal (SSS) indicating a power offset of CSI-RS RE to SSS RE.
In some implementations of the methods, the UE and the network entity described herein, an entry of the resource pool may define time domain and frequency domain resource mappings of a CSI-RS resource, and may comprise at least one of the following: a resource mapping identifier indicating frequency domain allocation within a physical resource block (PRB) of a CSI-RS resource; a time offset of the CSI-RS resource within a period indicating time domain allocation within the PRB of the CSI-RS resource; a code division multiplexing (CDM) type of the CSI-RS resource; a number of ports for the CSI-RS resource; a density of the CSI-RS resource measured in one of RE, port, or PRB; or an indication for wideband or partial band CSI-RS.
In some implementations of the methods, the UE and the network entity described herein, the indicative information may comprise at least one of the following: a serving cell ID indicating a cell applying the indicative information; a bandwidth part  (BWP) ID indicating a BWP applying the indicative information; a resource set ID indicating the CSI-RS resource set of the CSI-RS resource configuration; a first bitmap indicating at least one entry within the resource list in the CSI-RS resource set; and a second bitmap indicating the at least one entry within the resource pool.
In some implementations of the methods, the UE and the network entity described herein, the indicative information may be received via an RRC configuration or reconfiguration, or medium access control (MAC) control element (MAC CE) signaling.
In some implementations of the methods, the UE and the network entity described herein, a time gap between the last symbol for transmission of hybrid automatic repeat request (HARQ) -ACK information corresponding to the RRC reconfiguration or MAC CE signaling and the first symbol for CSI-RS transmission may be larger than a time requirement for the UE to obtain the indicative information.
In some implementations of the methods, the UE and the network entity described herein, the UE may transmit the beam report for the first beam set by: predicting CSI-RS measurements for the first beam set based on measurements of the CSI RSs for the second beam set; and transmitting the beam report for the first beam set based on the CSI reporting configuration and the predicted CSI-RS measurements.
In some implementations of the methods, the UE and the network entity described herein, the beam report may comprise one of the following: at least one CRI-RS resource indicator (CRIs) within a CSI-RS resource set corresponding to the first beam set; or at least one beam identifier within the first beam set.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 illustrates an example of a wireless communications system in which some embodiments of the present disclosure can be implemented.
FIG. 2 illustrates an example of a process flow of beam reporting based on association and mapping between beam sets in accordance with some example embodiments of the present disclosure.
FIG. 3 illustrates a schematic diagram of an example of association and mapping between beam sets in accordance with some example embodiments of the present disclosure.
FIG. 4 illustrates an example of indicative information for a measured beam set in accordance with some example embodiments of the present disclosure.
FIG. 5 illustrates a schematic diagram of another example of association and mapping between the beam sets in accordance with some example embodiments of the present disclosure.
FIG. 6 illustrates a schematic diagram of a further example of association and mapping between the beam sets in accordance with some example embodiments of the present disclosure.
FIG. 7 illustrates a further example of the indicative information for the measured beam set in accordance with some example embodiments of the present disclosure.
FIG. 8 illustrates a schematic diagram of a process for generating a beam report based on information indicating variable pattern of a measured beam set in accordance with some example embodiments of the present disclosure.
FIG. 9 illustrates an example of a device that is suitable for implementing some embodiments of the present disclosure.
FIG. 10 illustrates an example of a processor that is suitable for implementing some embodiments of the present disclosure.
FIG. 11 illustrates a flowchart of a method that performed by a user equipment in accordance with aspects of the present disclosure.
FIG. 12 illustrates a flowchart of a method that performed by a network entity in accordance with aspects of the present disclosure.
Throughout the drawings, the same or similar reference numerals represent the same or similar elements.
DETAILED DESCRIPTION
Principles of the present disclosure will now be described with reference to some embodiments. It is to be understood that these embodiments are described only for the purpose of illustration and help those skilled in the art to understand and implement the present disclosure, without suggesting any limitation as to the scope of the  disclosure. The disclosure described herein can be implemented in various manners other than the ones described below. In the following description and claims, unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skills in the art to which this disclosure belongs.
References in the present disclosure to “one embodiment, ” “an example embodiment, ” “an embodiment, ” “some embodiments, ” and the like indicate that the embodiment (s) described may include a particular feature, structure, or characteristic, but it is not necessary that every embodiment includes the particular feature, structure, or characteristic. Moreover, such phrases do not necessarily refer to the same embodiment (s) . Further, when a particular feature, structure, or characteristic is described in connection with an embodiment, it is submitted that it is within the knowledge of one skilled in the art to affect such feature, structure, or characteristic in connection with other embodiments whether or not explicitly described.
It shall be understood that although the terms “first” and “second” or the like may be used herein to describe various elements, these elements should not be limited by these terms. These terms are only used to distinguish one element from another element. For example, a first element could also be termed as a second element, and similarly, a second element could also be termed as a first element, without departing from the scope of embodiments. As used herein, the term “and/or” includes any and all combinations of one or more of the listed terms. In some examples, values, procedures, or apparatuses are referred to as “best, ” “lowest, ” “highest, ” “minimum, ” “maximum, ” or the like. It will be appreciated that such descriptions are intended to indicate that a selection among many used functional alternatives can be made, and such selections need not be better, smaller, higher, or otherwise preferable to other selections.
The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of embodiments. As used herein, the singular forms “a, ” “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms “comprises, ” “comprising, ” “has, ” “having, ” “includes” and/or “including, ” when used herein, specify the presence of stated features, elements, components and/or the like, but do not preclude the presence or addition of one or more other features,  elements, components and/or combinations thereof. For example, the term “includes” and its variants are to be read as open terms that mean “includes, but is not limited to. ” The term “based on” is to be read as “based at least in part on. ” The term “one embodiment” and “an embodiment” are to be read as “at least one embodiment. ” The term “another embodiment” is to be read as “at least one other embodiment. ” The use of an expression such as “A and/or B” can mean either “only A” or “only B” or “both A and B. ” Other definitions, explicit and implicit, may be included below.
AI/ML models for beam management may be classified into two categories according to which side deploys the AI/ML models, i.e., NW-side AI/ML model and UE-side AI/ML model. In AI/ML based beam management, a beam set (Set B) is measured and then the measurement results are inputted to a AI/ML model predicting another beam set (Set A) , where Set B is a subset of Set A or different from Set A. For UE-side AI/ML model, multiple AI/ML models with different combinations of Set A and Set B may be supported in a UE. Usage of the multiple AI/ML models may be controlled by UE. In other hand, variable Set B pattern may be supported by an AI/ML model for model generalization under different scenarios. Thus, the understanding of valid Set B and Set A combination and valid Set B pattern needs to be aligned by NW and UE.
Note that throughout the present disclosure the term “Set B” refers to a set of beams measured at UE or NW and that the term “Set A” refers to a set of beams predicted and reported based on measurements of set B for beam management, for example, by use of an AI/ML, where the Set B may be a subset of the Set A or different from the Set A. Also note that each beam of the Set B may be configured by a channel state information-reference signal (CSI-RS) resource, or a synchronization signal/physical broadcast channel (SSB) resource.
Solutions are proposed to solve the issue mentioned above. According to embodiments of the disclosure, UE may receive channel state information (CSI) reporting configuration for beam reporting of AI model inference output, where the CSI reporting configuration is linked with a CSI resource configuration for at least one first beam set, and a second beam set is associated with the CSI reporting configuration through an indicative information.
In some embodiments, the indicative information may be included in a radio resource control (RRC) (re) configuration which is used to link the CSI reporting configuration or the CSI resource configuration for the first beam set with the second beam set. The CSI resource configuration may reuse legacy Rel-17 CSI resource setting, CSI-ResourceConfig. The CSI resource configuration associated with the CSI reporting configuration for the first beam set (Set A) may contain a non-zero-power (NZP) CSI-RS resource set which is used for beam measurement of the second beam set (Set B) with variable beam patterns, and another indicative information shall be further transmitted to UE for identifying the beam within the second beam set, where the indicative information shall contain the resource indicator of indicating N CSI-RS resources of the CSI-RS resource set, N transmission control indicator (TCI) state IDs for the N CSI-RS resources and N Tx beam identifiers corresponding to the N CSI-RS resources, so that UE has knowledge of CSI-RS resources to be transmitted actually, the Tx beam of each CSI-RS resource and the corresponding Rx beam. Alternatively, the CSI resource configuration associated with the CSI reporting configuration for the first beam set (Set A) may contain Y>=1 NZP CSI-RS resource sets which corresponds to Y possible second beam sets to be measured (Set B) , respectively and a set among the Y beam sets used for beam measurement may be indicated further by NW. After AI/ML model inference, the predicted results may be reported through the CRIs corresponding to the predicted top-K beams or identifiers of the predicted top-K beams within the first beam set.
In some embodiments, the indicative information may indicate CSI-RS resources for the second beam set from the CSI resource configuration for the first beam set. A new CSI-RS resource set may be introduced to achieve more flexible CSI-RS resource configuration for beam measurement. The new CSI-RS resource set may contain two parts about CSI-RS resources, one defines a list of basic parameters for CSI-RS resource, and the other one defines a list of resource mapping for CSI-RS resource. The former is for a larger beam set, and the latter is for a smaller beam set which may be a subset of the larger beam set. In this case, CSI-RS resources for the second beam set (Set B) may be selected from the CSI resource configuration for the first beam set and indicated to UE through medium access control (MAC) control element (MAC CE) signalling. Assuming a CSI-RS resource set is configured for the first beam set, partial CSI-RS resources within the CSI-RS resource set would be  indicated to the UE and the UE shall assume that CSI-RSs are transmitted with these indicated resources only. The CSI-RS resource set is defined by the new CSI-RS resource set mentioned above. After AI/ML model inference, the UE would report the predicted result in a beam report corresponding to the CSI reporting configuration, including the CRIs corresponding to the predicted top-K beams.
In some embodiments, after AI/ML model inference, the UE would report predicted layer 1 reference signal receive powers (L1-RSRPs) corresponding to the predicted top-K beams.
Note that a Tx beam is represented by a CSI-RS resource used for beam management or a SSB resource and corresponds to a downlink spatial domain transmission filter for a base station (e.g. gNB) in the disclosure; and a Rx beam corresponds to a downlink spatial domain reception filter, which may be indicated by a quasi-co-location (QCL) information contained in a TCI state.
Aspects of the present disclosure are described in the context of a wireless communications system. FIG. 1 illustrates an example of a wireless communications system 100 in which some embodiments of the present disclosure can be implemented. The wireless communications system 100 may include one or more network entities 102 (also referred to as network equipment (NE) ) , one or more UEs 104, a core network 106, and a packet data network 108. The wireless communications system 100 may support various radio access technologies. In some implementations, the wireless communications system 100 may be a 4G network, such as an LTE network or an LTE-Advanced (LTE-A) network. In some other implementations, the wireless communications system 100 may be a 5G network, such as an NR network. In other implementations, the wireless communications system 100 may be a combination of a 4G network and a 5G network, or other suitable radio access technology including Institute of Electrical and Electronics Engineers (IEEE) 802.11 (Wi-Fi) , IEEE 802.16 (WiMAX) , IEEE 802.20. The wireless communications system 100 may support radio access technologies beyond 5G. Additionally, the wireless communications system 100 may support technologies, such as time division multiple access (TDMA) , frequency division multiple access (FDMA) , or code division multiple access (CDMA) , etc.
The one or more network entities 102 may be dispersed throughout a geographic region to form the wireless communications system 100. One or more of the  network entities 102 described herein may be or include or may be referred to as a network node, a base station, a network element, a radio access network (RAN) , a base transceiver station, an access point, a NodeB, an eNodeB (eNB) , a next-generation NodeB (gNB) , or other suitable terminology. A network entity 102 and a UE 104 may communicate via a communication link 110, which may be a wireless or wired connection. For example, a network entity 102 and a UE 104 may perform wireless communication (e.g., receive signaling, transmit signaling) over a Uu interface. In a 3GPP non-terrestrial network (NTN) , a network entity 102 in form of a satellite can directly communicate to UE 104 using NR/LTE Uu interface. The satellite may be a transparent satellite or a regenerative satellite. For NTN with a transparent satellite, a base station on earth may communicate with a UE via the satellite. For NTN with a regenerative satellite, the base station may be on board and directly communicate with the UE.
A network entity 102 may provide a geographic coverage area 112 for which the network entity 102 may support services (e.g., voice, video, packet data, messaging, broadcast, etc. ) for one or more UEs 104 within the geographic coverage area 112. For example, a network entity 102 and a UE 104 may support wireless communication of signals related to services (e.g., voice, video, packet data, messaging, broadcast, etc. ) according to one or multiple radio access technologies. In some implementations, a network entity 102 may be moveable, for example, a satellite associated with a non-terrestrial network. In some implementations, different geographic coverage areas 112 associated with the same or different radio access technologies may overlap, but the different geographic coverage areas 112 may be associated with different network entities 102. Information and signals described herein may be represented using any of a variety of different technologies and techniques. For example, data, instructions, commands, information, signals, bits, symbols, and chips that may be referenced throughout the description may be represented by voltages, currents, electromagnetic waves, magnetic fields or particles, optical fields or particles, or any combination thereof.
The one or more UEs 104 may be dispersed throughout a geographic region of the wireless communications system 100. A UE 104 may include or may be referred to as a mobile device, a wireless device, a remote device, a remote unit, a handheld device, or a subscriber device, or some other suitable terminology. In some  implementations, the UE 104 may be referred to as a unit, a station, a terminal, or a client, among other examples. Additionally, or alternatively, the UE 104 may be referred to as an Internet-of-Things (IoT) device, an Internet-of-Everything (IoE) device, or machine-type communication (MTC) device, among other examples. In some implementations, a UE 104 may be stationary in the wireless communications system 100. In some other implementations, a UE 104 may be mobile in the wireless communications system 100.
The one or more UEs 104 may be devices in different forms or having different capabilities. Some examples of UEs 104 are illustrated in FIG. 1. A UE 104 may be capable of communicating with various types of devices, such as the network entities 102, other UEs 104, or network equipment (e.g., the core network 106, the packet data network 108, a relay device, an integrated access and backhaul (IAB) node, or another network equipment) , as shown in FIG. 1. Additionally, or alternatively, a UE 104 may support communication with other network entities 102 or UEs 104, which may act as relays in the wireless communications system 100.
A UE 104 may also be able to support wireless communication directly with other UEs 104 over a communication link 114. For example, a UE 104 may support wireless communication directly with another UE 104 over a device-to-device (D2D) communication link. In some implementations, such as vehicle-to-vehicle (V2V) deployments, vehicle-to-everything (V2X) deployments, or cellular-V2X deployments, the communication link 114 may be referred to as a sidelink. For example, a UE 104 may support wireless communication directly with another UE 104 over a PC5 interface.
A network entity 102 may support communications with the core network 106, or with another network entity 102, or both. For example, a network entity 102 may interface with the core network 106 through one or more backhaul links 116 (e.g., via an S1, N2, N2, or another network interface) . The network entities 102 may communicate with each other over the backhaul links 116 (e.g., via an X2, Xn, or another network interface) . In some implementations, the network entities 102 may communicate with each other directly (e.g., between the network entities 102) . In some other implementations, the network entities 102 may communicate with each other or indirectly (e.g., via the core network 106) . In some implementations, one or more network entities 102 may include subcomponents, such as an access network entity,  which may be an example of an access node controller (ANC) . An ANC may communicate with the one or more UEs 104 through one or more other access network transmission entities, which may be referred to as a radio heads, smart radio heads, or transmission-reception points (TRPs) .
In some implementations, a network entity 102 may be configured in a disaggregated architecture, which may be configured to utilize a protocol stack physically or logically distributed among two or more network entities 102, such as an integrated access backhaul (IAB) network, an open RAN (O-RAN) (e.g., a network configuration sponsored by the O-RAN Alliance) , or a virtualized RAN (vRAN) (e.g., a cloud RAN (C-RAN) ) . For example, a network entity 102 may include one or more of a central unit (CU) , a distributed unit (DU) , a radio unit (RU) , a RAN Intelligent Controller (RIC) (e.g., a Near-Real Time RIC (Near-RT RIC) , a Non-Real Time RIC (Non-RT RIC) ) , a Service Management and Orchestration (SMO) system, or any combination thereof.
An RU may also be referred to as a radio head, a smart radio head, a remote radio head (RRH) , a remote radio unit (RRU) , or a transmission reception point (TRP) . One or more components of the network entities 102 in a disaggregated RAN architecture may be co-located, or one or more components of the network entities 102 may be located in distributed locations (e.g., separate physical locations) . In some implementations, one or more network entities 102 of a disaggregated RAN architecture may be implemented as virtual units (e.g., a virtual CU (VCU) , a virtual DU (VDU) , a virtual RU (VRU) ) .
Split of functionality between a CU, a DU, and an RU may be flexible and may support different functionalities depending upon which functions (e.g., network layer functions, protocol layer functions, baseband functions, radio frequency functions, and any combinations thereof) are performed at a CU, a DU, or an RU. For example, a functional split of a protocol stack may be employed between a CU and a DU such that the CU may support one or more layers of the protocol stack and the DU may support one or more different layers of the protocol stack. In some implementations, the CU may host upper protocol layer (e.g., a layer 3 (L3) , a layer 2 (L2) ) functionality and signaling (e.g., Radio Resource Control (RRC) , service data adaption protocol (SDAP) , Packet Data Convergence Protocol (PDCP) ) . The CU may be connected to one or more  DUs or RUs, and the one or more DUs or RUs may host lower protocol layers, such as a layer 1 (L1) (e.g., physical (PHY) layer) or an L2 (e.g., radio link control (RLC) layer, medium access control (MAC) layer) functionality and signaling, and may each be at least partially controlled by the CU 160.
Additionally, or alternatively, a functional split of the protocol stack may be employed between a DU and an RU such that the DU may support one or more layers of the protocol stack and the RU may support one or more different layers of the protocol stack. The DU may support one or multiple different cells (e.g., via one or more RUs) . In some implementations, a functional split between a CU and a DU, or between a DU and an RU may be within a protocol layer (e.g., some functions for a protocol layer may be performed by one of a CU, a DU, or an RU, while other functions of the protocol layer are performed by a different one of the CU, the DU, or the RU) .
A CU may be functionally split further into CU control plane (CU-CP) and CU user plane (CU-UP) functions. A CU may be connected to one or more DUs via a midhaul communication link (e.g., F1, F1-c, F1-u) , and a DU may be connected to one or more RUs via a fronthaul communication link (e.g., open fronthaul (FH) interface) . In some implementations, a midhaul communication link or a fronthaul communication link may be implemented in accordance with an interface (e.g., a channel) between layers of a protocol stack supported by respective network entities 102 that are in communication via such communication links.
The core network 106 may support user authentication, access authorization, tracking, connectivity, and other access, routing, or mobility functions. The core network 106 may be an evolved packet core (EPC) , or a 5G core (5GC) , which may include a control plane entity that manages access and mobility (e.g., a mobility management entity (MME) , an access and mobility management functions (AMF) ) and a user plane entity that routes packets or interconnects to external networks (e.g., a serving gateway (S-GW) , a Packet Data Network (PDN) gateway (P-GW) , or a user plane function (UPF) ) . In some implementations, the control plane entity may manage non-access stratum (NAS) functions, such as mobility, authentication, and bearer management (e.g., data bearers, signal bearers, etc. ) for the one or more UEs 104 served by the one or more network entities 102 associated with the core network 106.
The core network 106 may communicate with the packet data network 108 over one or more backhaul links 116 (e.g., via an S1, N2, N2, or another network interface) . The packet data network 108 may include an application server 118. In some implementations, one or more UEs 104 may communicate with the application server 118. A UE 104 may establish a session (e.g., a protocol data unit (PDU) session, or the like) with the core network 106 via a network entity 102. The core network 106 may route traffic (e.g., control information, data, and the like) between the UE 104 and the application server 118 using the established session (e.g., the established PDU session) . The PDU session may be an example of a logical connection between the UE 104 and the core network 106 (e.g., one or more network functions of the core network 106) .
In the wireless communications system 100, the network entities 102 and the UEs 104 may use resources of the wireless communications system 100 (e.g., time resources (e.g., symbols, slots, subframes, frames, or the like) or frequency resources (e.g., subcarriers, carriers) ) to perform various operations (e.g., wireless communications) . In some implementations, the network entities 102 and the UEs 104 may support different resource structures. For example, the network entities 102 and the UEs 104 may support different frame structures. In some implementations, such as in 4G, the network entities 102 and the UEs 104 may support a single frame structure. In some other implementations, such as in 5G and among other suitable radio access technologies, the network entities 102 and the UEs 104 may support various frame structures (i.e., multiple frame structures) . The network entities 102 and the UEs 104 may support various frame structures based on one or more numerologies.
One or more numerologies may be supported in the wireless communications system 100, and a numerology may include a subcarrier spacing and a cyclic prefix. A first numerology (e.g., μ=0) may be associated with a first subcarrier spacing (e.g., 15 kHz) and a normal cyclic prefix. In some implementations, the first numerology (e.g., μ=0) associated with the first subcarrier spacing (e.g., 15 kHz) may utilize one slot per subframe. A second numerology (e.g., μ=1) may be associated with a second subcarrier spacing (e.g., 30 kHz) and a normal cyclic prefix. A third numerology (e.g., μ=2) may be associated with a third subcarrier spacing (e.g., 60 kHz) and a normal cyclic prefix or an extended cyclic prefix. A fourth numerology (e.g., μ=3) may be associated with a fourth subcarrier spacing (e.g., 120 kHz) and a normal cyclic prefix. A  fifth numerology (e.g., μ=4) may be associated with a fifth subcarrier spacing (e.g., 240 kHz) and a normal cyclic prefix.
A time interval of a resource (e.g., a communication resource) may be organized according to frames (also referred to as radio frames) . Each frame may have a duration, for example, a 10 millisecond (ms) duration. In some implementations, each frame may include multiple subframes. For example, each frame may include 10 subframes, and each subframe may have a duration, for example, a 1 ms duration. In some implementations, each frame may have the same duration. In some implementations, each subframe of a frame may have the same duration.
Additionally or alternatively, a time interval of a resource (e.g., a communication resource) may be organized according to slots. For example, a subframe may include a number (e.g., quantity) of slots. The number of slots in each subframe may also depend on the one or more numerologies supported in the wireless communications system 100. For instance, the first, second, third, fourth, and fifth numerologies (i.e., μ=0, μ=1, μ=2, μ=3, μ=4) associated with respective subcarrier spacings of 15 kHz, 30 kHz, 60 kHz, 120 kHz, and 240 kHz may utilize a single slot per subframe, two slots per subframe, four slots per subframe, eight slots per subframe, and 16 slots per subframe, respectively. Each slot may include a number (e.g., quantity) of symbols (e.g., OFDM symbols) . In some implementations, the number (e.g., quantity) of slots for a subframe may depend on a numerology. For a normal cyclic prefix, a slot may include 14 symbols. For an extended cyclic prefix (e.g., applicable for 60 kHz subcarrier spacing) , a slot may include 12 symbols. The relationship between the number of symbols per slot, the number of slots per subframe, and the number of slots per frame for a normal cyclic prefix and an extended cyclic prefix may depend on a numerology. It should be understood that reference to a first numerology (e.g., μ=0) associated with a first subcarrier spacing (e.g., 15 kHz) may be used interchangeably between subframes and slots.
In the wireless communications system 100, an electromagnetic (EM) spectrum may be split, based on frequency or wavelength, into various classes, frequency bands, frequency channels, etc. By way of example, the wireless communications system 100 may support one or multiple operating frequency bands, such as frequency range designations FR1 (410 MHz –7.125 GHz) , FR2 (24.25 GHz – 52.6 GHz) , FR3 (7.125 GHz –24.25 GHz) , FR4 (52.6 GHz –114.25 GHz) , FR4a or FR4-1 (52.6 GHz –71 GHz) , and FR5 (114.25 GHz –300 GHz) . In some implementations, the network entities 102 and the UEs 104 may perform wireless communications over one or more of the operating frequency bands. In some implementations, FR1 may be used by the network entities 102 and the UEs 104, among other equipment or devices for cellular communications traffic (e.g., control information, data) . In some implementations, FR2 may be used by the network entities 102 and the UEs 104, among other equipment or devices for short-range, high data rate capabilities.
FR1 may be associated with one or multiple numerologies (e.g., at least three numerologies) . For example, FR1 may be associated with a first numerology (e.g., μ=0) , which includes 15 kHz subcarrier spacing; a second numerology (e.g., μ=1) , which includes 30 kHz subcarrier spacing; and a third numerology (e.g., μ=2) , which includes 60 kHz subcarrier spacing. FR2 may be associated with one or multiple numerologies (e.g., at least 2 numerologies) . For example, FR2 may be associated with a third numerology (e.g., μ=2) , which includes 60 kHz subcarrier spacing; and a fourth numerology (e.g., μ=3) , which includes 120 kHz subcarrier spacing.
FIG. 2 illustrates an example of a process flow of beam reporting based on association and mapping between beam sets in accordance with some example embodiments of the present disclosure. The process flow 200 may involve a UE 201 and a network entity (e.g. a base station) 202. The process flow 200 may be applied to the wireless communications system 100 with reference to FIG. 1, for example, the UE 201 may be any of UEs 104, and the network entity 202 may be any of the network entities 102. It would be appreciated that the process flow 200 may be applied to other communication scenarios.
At 210, the network entity 202 may transmit, to the UE 201, a channel state information (CSI) reporting configuration corresponding to a first beam set and indicative information 215. Accordingly, at 220, the UE 201 may receive the CSI reporting configuration and the indicative information 215 from the network entity 202.
The CSI reporting configuration may be associated with a CSI resource configuration, and indicative information may indicate a second beam set associated with the CSI resource configuration. The CSI reporting configuration and the indicative information 215 may be transmitted and received separately. Based on the CSI reporting  configuration and the indicative information, the UE 201 and the network entity 202 may align the association and mapping between the first beam set and the second beam set, which will described in detail with reference to FIGS. 3 to 8.
At 230, the network entity 202 may transmit CSI reference signals (CSI-RSs) or synchronization signal/PBCH blocks (SSBs) 235 for the second beam set based on the CSI resource configuration and the indicative information. Accordingly, at 240, the UE 201 may receive the CSI-RSs and the SSBs from the network entity 202. In some embodiments, the resources of the CSI-RSs or SSBs may be configured for the second beam set, each resource corresponding to a beam of the second beam set.
At 250, the UE 201 may measure the received CSI-RSs or SSBs. For example, the UE 201 may determine L1-RSRSP for each beam of the second beam set. In some embodiments, the UE 201 may be configured with an AI/ML model for predicting measurements of the first beam set. The AI/ML model may receive the measurement of the second beam set as input and generate measurements of the first beam set as output.
At 260, the UE 201 may transmit, to the network entity 202, a beam report 265 for the first beam set based on measurements of the CSI RSs or SSBs and the CSI reporting configuration. Accordingly, at 270, the network entity 202 receives the beam report 265 for the first beam set. In some embodiments, the UE 201 may predict CSI-RS measurements for the first beam set based on measurements of the CSI RSs for the second beam set, and transmit the beam report 265 for the first beam set based on the CSI reporting configuration and the predicted CSI-RS measurements. For example, the UE 201 may report the predicted result in the beam report 265 corresponding to the CSI reporting configuration. The beam report 265 may include CSI-RS Resource Indicator (CRIs) or beam identifier (s) within the first beam set corresponding to the predicted top-K (a positive integer) beams and the corresponding L1-RSRPs. For better understanding, the first beam set may be interchangeably referred as the Set A, and the second beam set may be interchangeably referred as the Set B hereafter.
FIG. 3 illustrates a schematic diagram of an example of association and mapping between beam sets in accordance with some example embodiments of the present disclosure. The UE 201 may be configured with the CSI reporting configuration 301 for beam report associated with an AI/ML model, where the CSI reporting  configuration 301 is associated with a CSI resource configuration 302 for beam measurement and the CSI resource configuration 302 may contain a CSI-RS resource set 303, e.g., NZP CSI-RS Resource Set or CSI-synchronization signal/PBCH blocks (SSB) resource set. For simplified description, CSI-RS resource set and CSI-RS are used in following.
The CSI reporting configuration 301 may be linked to a Set A through an indication 304 of the Set A, where the indication 304 of the Set A may be an identifier or index of the Set A or an identifier of a CSI-RS resource set corresponding to the Set A. The indicator 304 may be configured in RRC parameters of the CSI reporting configuration 301 or RRC parameters of the CSI resource configuration 302 for Set B beam measurement. The CSI resource configuration 302 may comprise at least one CSI-RS resource set 303 for the Set B. In some embodiments, the indicative information may indicate CSI-RS resources, a CSI-RS resource set, or a CSI-SSB resource set for the second beam set.
The UE may receive CSI-RSs for beam measurement based on the indicative information received at 220 in FIG. 2. The indicative information may indicate the UE with CSI-RS resources for Set B beam measurement, and identifiers for identifying the beam of Set B, where the CSI-RS resources may be elements of the CSI-RS resource set corresponding the CSI-RS resource configuration. The UE may determine the CSI-RS resources for the Set B among the possible Set Bs 305 based on the indicative information. Further, the measurements of the Set B 306 may be input to an AI/ML model 307 deployed at the UE, and predicted measurements of the Set A 308 are output from the model 307.
FIG. 4 illustrates an example of indicative information for a measured beam set in accordance with some example embodiments of the present disclosure. As shown, the indicative information may comprise a CSI-RS resource set ID, a resource indicator of indicating N CSI-RS resources of the CSI-RS resource set, e.g., a number N means the first N CSI-RS resources of the set. The indicative information may further comprise N TCI states for the selected N CSI-RS resources, where each TCI state is used to determine a Rx beam for reception and measurement of a CSI-RS; and N beam identifiers corresponding to the N CSI-RS resources for identifying the beams of Set B where each identifier indicates a Tx beam or a beam pair of Set B.
The indicative information may be configured by NW (e.g. the network entity 202) in RRC, e.g., introducing a new IE into the RRC parameter CSI-ResourceConfig, and may be updated by RRC reconfiguration or MAC CE. With the indicative information, a CSI-RS resource set can be indicated by NW to be used for any possible Set B whose size is not larger than the size of the CSI-RS resource set.
The second indicative information may be transmitted based on UE request of Set B, e.g., UE may requests a Set B aligned with current active AI/ML model in UE for Set A prediction, then NW may transmit the indicative information to indicate the CSI-RS resources for the Set B.
For example, a CSI-RS resource set may contain M (a positive integer) CSI-RS resources for measuring at most M beams and Set B may contain N (<=M) beams for AI model input, and the indicative information is configured in RRC for a default Set B and is associated with the CSI-RS resource set. The UE may receive CSI-RSs based on the indicative information for a default Set B beam measurement before receiving a MAC CE to update the indicative information for Set B beam measurement. Then the UE receives CSI-RSs for Set B beam measurement based on the latest indicative information. In detail, the MAC CE may contain a CSI-RS resource set ID to indicate a CSI-RS resource set, a resource indicator to indicate that the first N CSI-RS resources are selected from the CSI-RS resource set for Set B, N TCI state IDs for the N CSI-RS resources and corresponding N Tx beam identifiers, as shown in FIG. 4.
The CSI-RS resource set may have three types of time behaviors, i.e., periodic, semi-persistent, and aperiodic. For the three types of CSI-RS resource set, the CSI-RS resource set may be configured by RRC and the associated indicative information may be configured by RRC as well. In some embodiments, the second indicative information may be updated by RRC reconfiguration or MAC CE.
For periodic CSI-RS resource set, the UE may determine the CSI-RS occasions and receive CSI-RSs for a default Set B beam measurement based on the RRC configuration, and if the indicative information is updated by RRC reconfiguration or MAC CE, the UE may receive CSI-RSs for a Set B beam measurement based on the recently received indicative information.
For semi-persistent CSI-RS resource set, the set may be activated by a MAC CE.The UE may receive CSI-RS for a default Set B beam measurement based on the  RRC configuration before receiving a RRC reconfiguration or a MAC CE to update the indicative information after the set is activated. If the second indicative information is updated by RRC reconfiguration or MAC CE, the UE may receive CSI-RS for a Set B beam measurement based on the recently received second indicative information.
For aperiodic CSI-RS resource set, the set may be triggered by downlink control information (DCI) , for example, DCI format 0-1/0-2) . After the set is triggered, the UE may receive CSI-RSs for a Set B beam measurement based on a recently received second indicative information.
For the three types of CSI-RS resource set, a time requirement (Tproce) may need to be satisfied: the minimal time gap for the network entity 202 to transmit CSI-RSs based on the indicative information after transmitting the RRC reconfiguration or MAC CE carrying the indicative information. The time gap is defined between the last symbol for the physical uplink control channel (PUCCH) transmission carrying the hybrid automatic repeat request (HARQ) -ACK information corresponding to the physical downlink control channel (PDSCH) carrying the RRC reconfiguration or MAC CE and the first symbol for the CSI-RS transmission. The time gap may be required to be larger than a time requirement for the UE to obtain the indicative information from the network entity 202.
In some embodiments, the UE may assume that N CSI-RSs are transmitted in the first N CSI-RS resources of the CSI-RS resource set and the Rx beam for receiving CSI-RS is determined by the TCI state indicated for each CSI-RS resource, where Tx beam is associated with the Tx beam identifier and Rx beam is determined by the TCI state corresponding to the Tx beam identifier. The reason to indicate the Tx beam is for the UE to determine the AI/ML model input data format. For example, in first resource of the N CSI-RS resources, the measured L1-RSRP corresponds to the Tx beam with first beam identifier and the Rx beam defined by QCL type D RS indicated in first TCI state. Thus, all measured L1-RSRPs of Set B can be obtained by UE, and UE has knowledge of Tx-Rx beam pair of these measured L1-RSRPs. Further UE predicts the top-K beams within the Set A based on the measurement results by an AI/ML model whose output aligns with the Set A.
In some embodiments, the UE may report the top-K beams within the Set A in a beam report corresponding to the CSI report setting. The content of the beam report  may include CRIs of CSI-RS resources within the CSI-RS resource set corresponding to the Set A, or identifier of beam within the Set A, e.g., relative beam ID within the Set. Additionally, the beam report may also include predicted RSRPs corresponding to the top-K beams.
FIG. 5 illustrates a schematic diagram of another example of association and mapping between the beam sets in accordance with some example embodiments of the present disclosure. For model inference, the UE may be configured with CSI reporting configuration (s) 501 for beam reporting, where the CSI reporting configuration (s) may be associated with a CSI resource configuration 502 for Set B beam measurement and the CSI resource configuration 502 may contain Y>=1 CSI resource set (s) , for example, resource sets 503-1, 503-2, 503-3, and 503-4 (individually or collectively referred as “503” ) , such as NZP CSI-RS resource set or CSI-SSB resource set. Each CSI-RS or CSI-SSB resource set is associated with a Set B. For simplified description, CSI-RS resource set is used in following.
The CSI reporting configuration is linked to a Set A through an indication 504 of Set A, which may be an identifier of the Set A or an identifier of a CSI-RS resource set corresponding to the Set A. The indication 504 of the Set A may be configured in RRC parameters of the CSI reporting configuration 501 or RRC parameters of the CSI-RS resource setting 502 for Set B beam measurement, as shown in FIG. 5.
For Y=1, that is the CSI resource configuration comprises a single CSI-RS resource set for the second beam set, the Set A linked with the CSI reporting configuration 501 is associated with a single Set B. In this case, the indicative information may comprise an update of the single CSI-RS resource set. For example, by RRC reconfiguring a new CSI-RS resource set for the CSI reporting configuration, a new Set B may be associated with the Set A.
For Y>1, UE may be further indicated with a CSI-RS resource set among the Y CSI-RS resource sets for beam measurement of a Set B. The indicative information may comprise CSI reporting configuration ID and CSI-RS resource set ID. The indicative information may be carried by MAC CE signalling. The indicative information may be transmitted based on UE request of Set B, e.g., UE requests a Set B  aligned with current active AI/ML model in UE for Set A prediction, then NW transmits the indication to indicate the CSI-RS resources for the Set B.
In addition, the UE may be indicated with a CSI-RS reporting configuration corresponding to a Set A. For example, the indicative information may comprise an identifier of the CSI reporting configuration.
Similarly, the CSI-RS resource set may have three types of time behaviors, i.e., periodic, semi-persistent, and aperiodic. For periodic CSI-RS resource set, the UE may determine the CSI-RS occasions and receives CSI-RSs for a default Set B beam measurement based on the RRC configuration. If the indicative information is updated via RRC reconfiguration or MAC CE, the UE updates knowledge of CSI-RSs for a new Set B.
For semi-persistent CSI-RS resource set, the set is activated by a MAC CE. The UE may receive CSI-RSs for a default Set B beam measurement based on the RRC configuration after the set is activated. Upon reception of the indicative information, the UE may update knowledge of CSI-RS set for a new Set B. After activation by MAC CE, the UE receives and measures CSI-RSs of the updated set.
For aperiodic CSI-RS resource set, the set is triggered by DCI (e.g., DCI format 0-1/0-2) . After triggering the set, the UE receives CSI-RS for a Set B beam measurement based on a recently received indicative information.
The UE may receive CSI-RS for Set B beam measurement based on the recently indicated CSI-RS resource set. For the three types of CSI-RS resource set, a time requirement (Tproce) may need to be satisfied: the minimal time requirement for the network entity to transmit CSI-RS based on indicative information after transmitting the RRC reconfiguration or MAC CE carrying with the indicative information. A time gap defined between the last symbol for the PUCCH transmission carry the HARQ-ACK information corresponding to the PDSCH carry the RRC reconfiguration or MAC CE and the first symbol for the CSI-RS transmission should be larger than the time requirement for the UE to obtain the indicative information.
Then the UE measures beams transmitted by NW with CSI-RS resources of the CSI-RS resource set and obtains measurement results of the Set B. Further, UE may predict the top-K beams within the Set A based on the measurement results by an  AI/ML model whose output aligns with the Set A. UE may report the top-K beams within the Set A in a beam report corresponding to the CSI report setting. The beam report may comprise CRIs of CSI-RS resources within the CSI-RS resource set corresponding to the Set A, or identifier of beam within the Set A, e.g., relative beam ID within the Set A. The beam report may also include corresponding predicted RSRP.
FIG. 6 illustrates a schematic diagram of a further example of association and mapping between the beam sets in accordance with some example embodiments of the present disclosure. The UE may receive a CSI reporting configuration 601 for beam reporting of AI model inference output. The CSI reporting configuration 602 is linked with a CSI resource configuration 602, where the CSI resource configuration 602 consists of one CSI-RS resource set 603.
As shown, the CSI-RS resource set 603 is configured with a resource list 604 for basic parameters of CSI-RS resource, which is associated with a Set A, and a resource pool 605 for time domain and frequency domain resource mapping of a CSI-RS resource, which is associated with a Set B. In some embodiments, the Set B may be a subset of the Set A. In addition, the CSI-RS resource set 603 has a CSI-RS resource set ID.
The resource list 604 defines basic parameters for each of CSI-RS resources of the CSI-RS resource set. In some embodiments, an entry of the resource list 604 may comprises a resource identifier indicating a CSI-RS resource corresponding to a beam within the Set A, a periodicity indicating periodicity for the CSI-RS resource, a scrambling identifier of the CSI-RS, a power control offset indicating a power offset of PDSCH resource element (RE) to CSI-RS RE, and a power control offset for secondary synchronization signal (SSS) indicating a power offset of CSI-RS RE to SSS RE. In addition, TCI state for all CSI-RS of the set may be included in the basic resource parameters, e.g., each entry of the resource list 604 contains a TCI state ID.
The resource pool 605 may define time domain and frequency domain resource mappings of at least a portion of the CSI-RS resources of the CSI-RS resource set 603. In some embodiments, an entry of the resource pool 605 may defines orthogonal frequency division multiplexing (OFDM) symbol location (s) in a slot and subcarrier occupancy in physical resource block (PRB) of the CSI-RS resource. An entry may comprise resource mapping identifier (RM ID) indicating frequency domain  allocation within a PRB of a CSI-RS resource, a time offset of the CSI-RS within a period, the time domain allocation within a PRB of a CSI-RS resource (e.g., a value indicating the first OFDM symbol in PRB for the CSI-RS resource) , a code division multiplexing (CDM) type of the CSI-RS resource, a number of ports for the CSI-RS, a density of the CSI-RS resource measured in RE, port, or PRB, and indication for wideband or partial band CSI-RS.
The UE may further receive an indicative information of CSI-RS resources for beam measurement of the Set B. The indicative information is used to select a few CSI-RS resources from the CSI resource configuration 602. The indicative information may be configured in RRC, e.g., introducing a new IE into the RRC parameter CSI-ResourceConfig, and be updated by RRC reconfiguration or MAC CE.
FIG. 7 illustrates a further example of the indicative information for the measured beam set in accordance with some example embodiments of the present disclosure. As shown in FIG. 7, the indicative information may include a serving cell ID indicating the cell applying the indicative information, a bandwidth part (BWP) indicating the BWP applying the indicative information, a CSI-RS resource set ID indicating a CSI-RS resource set, a first bitmap (RS0, RS1…RSn-1) indicating at least one entry within the resource list 604 in the corresponding CSI-RS resource set, and a second bitmap (RS0, RM1…RMm-1) indicating at least one entry within the resource pool 605. For example, UE may receive the indicative information transmitted from the bases station through MAC CE to indicate m CSI-RS resources from n CSI-RS resources of the set, and corresponding resource mapping.
In some embodiments, the indicative information may be transmitted based on UE request for the Set B. For example, the UE may request a Set B aligned with current active AI/ML model deployed at UE for Set A prediction, and then the network entity transmits the indicative information to indicate the CSI-RS resources for the Set B. Similarly, the CSI-RS resource set may have three types of time behaviours, i.e., periodic, semi-persistent, and aperiodic.
FIG. 8 illustrates a schematic diagram of a process for generating a beam report based on information indicating variable pattern of a measured beam set in accordance with some example embodiments of the present disclosure. A variable  pattern of the Set B may be defined in a MAC CE carrying the indicative information as shown in FIG. 7.
Upon reception of the MAC CE, the UE may determine basic parameters of the CSI-RS resources and time domain and frequency domain resource mapping of the CSI-RS resources in DL BWP with the BWP ID in serving cell with the Serving cell ID based on the received indicative information. The MAC CE may activate the CSI-RS resources in the meantime, for example, for semi-persistent CSI-RS resources.
The UE may assume that CSI-RSs are transmitted by NW in these CSI-RS resources for Set B beam measurement, and may receive CSI-RSs based on the CSI-RS resources for Set B beam measurement and obtain the measurement results for the Set B. Based on the measurement results for the Set B, the UE predicts the top-K beams within the Set A through an AI/ML model whose output are aligned with the Set A.
The UE may report CRIs corresponding to CSI-RS resources of the CSI-RS resource set 603 in a beam report associated with the CSI reporting configuration. The CSI-RS resources are associated with the predicted top-K beams within Set A. The content of the beam report may also include corresponding predicted RSRP.
In this way, the CSI-RS resources can be configured flexibly to adjust the variable Set B pattern. In addition, the CSI-RS transmission duration for Set B beam measurement can be reduced through a common resource pool (e.g. resource pool 605) for CSI-RS associated with Set B.
According to some embodiments discussed with reference to FIGS. 2 to 8, a combination of a measured beam set and a reported beam set and a valid pattern of the measured beam set between NW and UE can be aligned in a simple and effective manner.
FIG. 9 illustrates an example of a device that is suitable for implementing some embodiments of the present disclosure. The device may be an example of a UE 104 or network entity 102 as described herein. The device 900 may support wireless communication with one or more network entities 102, UEs 104, or any combination thereof. The device 900 may include components for bi-directional communications including components for transmitting and receiving communications, such as a processor 902, a memory 904, a transceiver 906, and, optionally, an I/O controller 908.  These components may be in electronic communication or otherwise coupled (e.g., operatively, communicatively, functionally, electronically, electrically) via one or more interfaces (e.g., buses) .
The processor 902, the memory 904, the transceiver 906, or various combinations thereof or various components thereof may be examples of means for performing various aspects of the present disclosure as described herein. For example, the processor 902, the memory 904, the transceiver 906, or various combinations or components thereof may support a method for performing one or more of the operations described herein.
In some implementations, the processor 902, the memory 904, the transceiver 906, or various combinations or components thereof may be implemented in hardware (e.g., in communications management circuitry) . The hardware may include a processor, a digital signal processor (DSP) , an application-specific integrated circuit (ASIC) , a field-programmable gate array (FPGA) or other programmable logic device, a discrete gate or transistor logic, discrete hardware components, or any combination thereof configured as or otherwise supporting a means for performing the functions described in the present disclosure. In some implementations, the processor 902 and the memory 904 coupled with the processor 902 may be configured to perform one or more of the functions described herein (e.g., executing, by the processor 902, instructions stored in the memory 904) .
For example, the processor 902 may support wireless communication at the device 900 in accordance with examples as disclosed herein. The device may be an example of a UE 104. In this case, the processor 902 may be configured to operable to support means for receiving, from a network entity, a channel state information (CSI) reporting configuration corresponding to a first beam set and associated with a CSI resource configuration, and indicative information indicating a second beam set associated with the CSI resource configuration; means for receiving, from a network entity, a channel state information (CSI) reporting configuration corresponding to a first beam set and associated with a CSI resource configuration, and indicative information indicating a second beam set associated with the CSI resource configuration; and means for transmitting, to the network entity, a beam report for the first beam set based on measurements of the CSI RSs or SSBs and the CSI reporting configuration.
The device may be an example of a network entity 102, e.g. a network entity. In this case, the processor 902 may be configured to operable to support means for transmitting, to a user equipment (UE) , a channel state information (CSI) reporting configuration corresponding to a first beam set and associated with a CSI resource configuration, and indicative information indicating a second beam set associated with the CSI resource configuration; means for transmitting, to the UE, CSI reference signals (CSI RSs) or synchronization signal/PBCH blocks (SSBs) for the second beam set based on the CSI resource configuration and the indicative information; and means for receiving, from the UE, a beam report for the first beam set based on measurements of the CSI RSs or SSBs by the UE and the CSI reporting configuration.
The processor 902 may include an intelligent hardware device (e.g., a general-purpose processor, a DSP, a CPU, a microcontroller, an ASIC, an FPGA, a programmable logic device, a discrete gate or transistor logic component, a discrete hardware component, or any combination thereof) . In some implementations, the processor 902 may be configured to operate a memory array using a memory controller. In some other implementations, a memory controller may be integrated into the processor 902. The processor 902 may be configured to execute computer-readable instructions stored in a memory (e.g., the memory 904) to cause the device 900 to perform various functions of the present disclosure.
The memory 904 may include random access memory (RAM) and read-only memory (ROM) . The memory 904 may store computer-readable, computer-executable code including instructions that, when executed by the processor 902 cause the device 900 to perform various functions described herein. The code may be stored in a non-transitory computer-readable medium such as system memory or another type of memory. In some implementations, the code may not be directly executable by the processor 902 but may cause a computer (e.g., when compiled and executed) to perform functions described herein. In some implementations, the memory 904 may include, among other things, a basic I/O system (BIOS) which may control basic hardware or software operation such as the interaction with peripheral components or devices.
The I/O controller 908 may manage input and output signals for the device 900. The I/O controller 908 may also manage peripherals not integrated into the device 900. In some implementations, the I/O controller 908 may represent a physical  connection or port to an external peripheral. In some implementations, the I/O controller 908 may utilize an operating system such as or another known operating system. In some implementations, the I/O controller 908 may be implemented as part of a processor, such as the processor 906. In some implementations, a user may interact with the device 900 via the I/O controller 908 or via hardware components controlled by the I/O controller 908.
In some implementations, the device 900 may include a single antenna 810. However, in some other implementations, the device 900 may have more than one antenna 810 (i.e., multiple antennas) , including multiple antenna panels or antenna arrays, which may be capable of concurrently transmitting or receiving multiple wireless transmissions. The transceiver 906 may communicate bi-directionally, via the one or more antennas 810, wired, or wireless links as described herein. For example, the transceiver 906 may represent a wireless transceiver and may communicate bi-directionally with another wireless transceiver. The transceiver 906 may also include a modem to modulate the packets, to provide the modulated packets to one or more antennas 810 for transmission, and to demodulate packets received from the one or more antennas 810. The transceiver 906 may include one or more transmit chains, one or more receive chains, or a combination thereof.
A transmit chain may be configured to generate and transmit signals (e.g., control information, data, packets) . The transmit chain may include at least one modulator for modulating data onto a carrier signal, preparing the signal for transmission over a wireless medium. The at least one modulator may be configured to support one or more techniques such as amplitude modulation (AM) , frequency modulation (FM) , or digital modulation schemes like phase-shift keying (PSK) or quadrature amplitude modulation (QAM) . The transmit chain may also include at least one power amplifier configured to amplify the modulated signal to an appropriate power level suitable for transmission over the wireless medium. The transmit chain may also include one or more antennas 810 for transmitting the amplified signal into the air or wireless medium.
A receive chain may be configured to receive signals (e.g., control information, data, packets) over a wireless medium. For example, the receive chain may  include one or more antennas 810 for receive the signal over the air or wireless medium. The receive chain may include at least one amplifier (e.g., a low-noise amplifier (LNA) ) configured to amplify the received signal. The receive chain may include at least one demodulator configured to demodulate the receive signal and obtain the transmitted data by reversing the modulation technique applied during transmission of the signal. The receive chain may include at least one decoder for decoding the processing the demodulated signal to receive the transmitted data.
FIG. 10 illustrates an example of a processor 1000 is suitable for implementing some embodiments of the present disclosure. The processor 1000 may be an example of a processor configured to perform various operations in accordance with examples as described herein. The processor 1000 may include a controller 1002 configured to perform various operations in accordance with examples as described herein. The processor 1000 may optionally include at least one memory 1004. Additionally, or alternatively, the processor 1000 may optionally include one or more arithmetic-logic units (ALUs) 1006. One or more of these components may be in electronic communication or otherwise coupled (e.g., operatively, communicatively, functionally, electronically, electrically) via one or more interfaces (e.g., buses) .
The processor 1000 may be a processor chipset and include a protocol stack (e.g., a software stack) executed by the processor chipset to perform various operations (e.g., receiving, obtaining, retrieving, transmitting, outputting, forwarding, storing, determining, identifying, accessing, writing, reading) in accordance with examples as described herein. The processor chipset may include one or more cores, one or more caches (e.g., memory local to or included in the processor chipset (e.g., the processor 1000) or other memory (e.g., random access memory (RAM) , read-only memory (ROM) , dynamic RAM (DRAM) , synchronous dynamic RAM (SDRAM) , static RAM (SRAM) , ferroelectric RAM (FeRAM) , magnetic RAM (MRAM) , resistive RAM (RRAM) , flash memory, phase change memory (PCM) , and others) .
The controller 1002 may be configured to manage and coordinate various operations (e.g., signaling, receiving, obtaining, retrieving, transmitting, outputting, forwarding, storing, determining, identifying, accessing, writing, reading) of the processor 1000 to cause the processor 1000 to support various operations in accordance with examples as described herein. For example, the controller 1002 may operate as a  control unit of the processor 1000, generating control signals that manage the operation of various components of the processor 1000. These control signals include enabling or disabling functional units, selecting data paths, initiating memory access, and coordinating timing of operations.
The controller 1002 may be configured to fetch (e.g., obtain, retrieve, receive) instructions from the memory 1004 and determine subsequent instruction (s) to be executed to cause the processor 1000 to support various operations in accordance with examples as described herein. The controller 1002 may be configured to track memory address of instructions associated with the memory 1004. The controller 1002 may be configured to decode instructions to determine the operation to be performed and the operands involved. For example, the controller 1002 may be configured to interpret the instruction and determine control signals to be output to other components of the processor 1000 to cause the processor 1000 to support various operations in accordance with examples as described herein. Additionally, or alternatively, the controller 1002 may be configured to manage flow of data within the processor 1000. The controller 1002 may be configured to control transfer of data between registers, arithmetic logic units (ALUs) , and other functional units of the processor 1000.
The memory 1004 may include one or more caches (e.g., memory local to or included in the processor 1000 or other memory, such RAM, ROM, DRAM, SDRAM, SRAM, MRAM, flash memory, etc. In some implementation, the memory 1004 may reside within or on a processor chipset (e.g., local to the processor 1000) . In some other implementations, the memory 1004 may reside external to the processor chipset (e.g., remote to the processor 1000) .
The memory 1004 may store computer-readable, computer-executable code including instructions that, when executed by the processor 1000, cause the processor 1000 to perform various functions described herein. The code may be stored in a non-transitory computer-readable medium such as system memory or another type of memory. The controller 1002 and/or the processor 1000 may be configured to execute computer-readable instructions stored in the memory 1004 to cause the processor 1000 to perform various functions (e.g., functions or tasks supporting transmit power prioritization) . For example, the processor 1000 and/or the controller 1002 may be coupled with or to the memory 1004, the processor 1000, the controller 1002, and the  memory 1004 may be configured to perform various functions described herein. In some examples, the processor 1000 may include multiple processors and the memory 1004 may include multiple memories. One or more of the multiple processors may be coupled with one or more of the multiple memories, which may, individually or collectively, be configured to perform various functions herein.
The one or more ALUs 1006 may be configured to support various operations in accordance with examples as described herein. In some implementation, the one or more ALUs 1006 may reside within or on a processor chipset (e.g., the processor 1000) . In some other implementations, the one or more ALUs 1006 may reside external to the processor chipset (e.g., the processor 1000) . One or more ALUs 1006 may perform one or more computations such as addition, subtraction, multiplication, and division on data. For example, one or more ALUs 1006 may receive input operands and an operation code, which determines an operation to be executed. One or more ALUs 1006 be configured with a variety of logical and arithmetic circuits, including adders, subtractors, shifters, and logic gates, to process and manipulate the data according to the operation. Additionally, or alternatively, the one or more ALUs 1006 may support logical operations such as AND, OR, exclusive-OR (XOR) , not-OR (NOR) , and not-AND (NAND) , enabling the one or more ALUs 1006 to handle conditional operations, comparisons, and bitwise operations.
The processor 1000 may support wireless communication in accordance with examples as disclosed herein. The processor 1000may implemented at a UE 104. In this case, the processor 1000 may be configured to operable to support means for receiving, from a network entity, a channel state information (CSI) reporting configuration corresponding to a first beam set and associated with a CSI resource configuration, and indicative information indicating a second beam set associated with the CSI resource configuration; means for receiving, from a network entity, a channel state information (CSI) reporting configuration corresponding to a first beam set and associated with a CSI resource configuration, and indicative information indicating a second beam set associated with the CSI resource configuration; and means for transmitting, to the network entity, a beam report for the first beam set based on measurements of the CSI RSs or SSBs and the CSI reporting configuration.
The processor 1000may implemented at a network entity 102, e.g. a base station. In this case, the processor 1000 may be configured to operable to support means for transmitting, to a user equipment (UE) , a channel state information (CSI) reporting configuration corresponding to a first beam set and associated with a CSI resource configuration, and indicative information indicating a second beam set associated with the CSI resource configuration; means for transmitting, to the UE, CSI reference signals (CSI RSs) or synchronization signal/PBCH blocks (SSBs) for the second beam set based on the CSI resource configuration and the indicative information; and means for receiving, from the UE, a beam report for the first beam set based on measurements of the CSI RSs or SSBs by the UE and the CSI reporting configuration.
FIG. 11 illustrates a flowchart of a method 1100 performed by a UE in accordance with aspects of the present disclosure. The operations of the method 1100 may be implemented by a device or its components as described herein. For example, the operations of the method 1100 may be performed by a UE 104 as described herein. In some implementations, the device may execute a set of instructions to control the function elements of the device to perform the described functions. Additionally, or alternatively, the device may perform aspects of the described functions using special-purpose hardware.
At 1110, the method may include receiving, from a network entity, a channel state information (CSI) reporting configuration corresponding to a first beam set and associated with a CSI resource configuration, and indicative information indicating a second beam set associated with the CSI resource configuration. The operations of 1110 may be performed in accordance with examples as described herein. In some implementations, aspects of the operations of 1110 may be performed by a UE 104 as described with reference to FIG. 1.
At 1120, the method may include receiving, from the network entity, CSI reference signals (CSI RSs) or synchronization signal/PBCH blocks (SSBs) for the second beam set based on the CSI resource configuration and the indicative information. The operations of 1120 may be performed in accordance with examples as described herein. In some implementations, aspects of the operations of 1120 may be performed by a UE 104 as described with reference to FIG. 1.
At 1130, the method may include transmitting, to the network entity, a beam report for the first beam set based on measurements of the CSI RSs or SSBs and the CSI reporting configuration. The operations of 1130 may be performed in accordance with examples as described herein. In some implementations, aspects of the operations of 1130 may be performed by a UE 104 as described with reference to FIG. 1.
FIG. 12 illustrates a flowchart of a method 1200 performed by a network entity in accordance with aspects of the present disclosure. The operations of the method 1200 may be implemented by a device or its components as described herein. For example, the operations of the method 1200 may be performed by a network entity 102 as described herein. In some implementations, the device may execute a set of instructions to control the function elements of the device to perform the described functions. Additionally, or alternatively, the device may perform aspects of the described functions using special-purpose hardware.
At 1210, the method may include transmitting, to a user equipment (UE) , a channel state information (CSI) reporting configuration corresponding to a first beam set and associated with a CSI resource configuration, and indicative information indicating a second beam set associated with the CSI resource configuration. The operations of 1210 may be performed in accordance with examples as described herein. In some implementations, aspects of the operations of 1210 may be performed by a network entity 102 as described with reference to FIG. 1.
At 1210, the method may include transmitting, to a user equipment (UE) , a channel state information (CSI) reporting configuration corresponding to a first beam set and associated with a CSI resource configuration, and indicative information indicating a second beam set associated with the CSI resource configuration. The operations of 1210 may be performed in accordance with examples as described herein. In some implementations, aspects of the operations of 1210 may be performed by a network entity 102 as described with reference to FIG. 1.
At 1220, the method may include transmitting, to the UE, CSI reference signals (CSI RSs) or synchronization signal/PBCH blocks (SSBs) for the second beam set based on the CSI resource configuration and the indicative information. The operations of 1220 may be performed in accordance with examples as described herein.  In some implementations, aspects of the operations of 1220 may be performed by a network entity 102 as described with reference to FIG. 1.
At 1230, the method may include receiving, from the UE, a beam report for the first beam set based on measurements of the CSI RSs or SSBs by the UE and the CSI reporting configuration. The operations of 1230 may be performed in accordance with examples as described herein. In some implementations, aspects of the operations of 1230 may be performed by a network entity 102 as described with reference to FIG. 1.
It should be noted that the methods described herein describes possible implementations, and that the operations and the steps may be rearranged or otherwise modified and that other implementations are possible. Further, aspects from two or more of the methods may be combined.
The various illustrative blocks and components described in connection with the disclosure herein may be implemented or performed with a general-purpose processor, a DSP, an ASIC, a CPU, an FPGA or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described herein. A general-purpose processor may be a microprocessor, but in the alternative, the processor may be any processor, controller, microcontroller, or state machine. A processor may also be implemented as a combination of computing devices (e.g., a combination of a DSP and a microprocessor, multiple microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration.
The functions described herein may be implemented in hardware, software executed by a processor, firmware, or any combination thereof. If implemented in software executed by a processor, the functions may be stored on or transmitted over as one or more instructions or code on a computer-readable medium. Other examples and implementations are within the scope of the disclosure and appended claims. For example, due to the nature of software, functions described herein may be implemented using software executed by a processor, hardware, firmware, hardwiring, or combinations of any of these. Features implementing functions may also be physically located at various positions, including being distributed such that portions of functions are implemented at different physical locations.
Computer-readable media includes both non-transitory computer storage media and communication media including any medium that facilitates transfer of a computer program from one place to another. A non-transitory storage medium may be any available medium that may be accessed by a general-purpose or special-purpose computer. By way of example, non-transitory computer-readable media may include RAM, ROM, electrically erasable programmable ROM (EEPROM) , flash memory, compact disk (CD) ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other non-transitory medium that may be used to carry or store desired program code means in the form of instructions or data structures and that may be accessed by a general-purpose or special-purpose computer, or a general-purpose or special-purpose processor.
As used herein, including in the claims, an article “a” before an element is unrestricted and understood to refer to “at least one” of those elements or “one or more” of those elements. The terms “a, ” “at least one, ” “one or more, ” and “at least one of one or more” may be interchangeable. As used herein, including in the claims, “or” as used in a list of items (e.g., a list of items prefaced by a phrase such as “at least one of” or “one or more of” or “one or both of” ) indicates an inclusive list such that, for example, a list of at least one of A, B, or C means A or B or C or AB or AC or BC or ABC (i.e., A and B and C) . Also, as used herein, the phrase “based on” shall not be construed as a reference to a closed set of conditions. For example, an example step that is described as “based on condition A” may be based on both a condition A and a condition B without departing from the scope of the present disclosure. In other words, as used herein, the phrase “based on” shall be construed in the same manner as the phrase “based at least in part on. Further, as used herein, including in the claims, a “set” may include one or more elements.
The description herein is provided to enable a person having ordinary skill in the art to make or use the disclosure. Various modifications to the disclosure will be apparent to a person having ordinary skill in the art, and the generic principles defined herein may be applied to other variations without departing from the scope of the disclosure. Thus, the disclosure is not limited to the examples and designs described herein but is to be accorded the broadest scope consistent with the principles and novel features disclosed herein.

Claims (20)

  1. A user equipment (UE) comprising:
    a processor; and
    a transceiver coupled to the processor,
    wherein the processor is configured to:
    receive, via the transceiver and from a network entity, a channel state information (CSI) reporting configuration corresponding to a first beam set and associated with a CSI resource configuration, and indicative information indicating a second beam set associated with the CSI resource configuration;
    receive, via the transceiver and from the network entity, CSI reference signals (CSI-RSs) or synchronization signal/PBCH blocks (SSBs) for the second beam set based on the CSI resource configuration and the indicative information; and
    transmit, via the transceiver and to the network entity, a beam report for the first beam set based on measurements of the CSI RSs or SSBs and the CSI reporting configuration.
  2. The UE of claim 1, wherein radio resource control (RRC) parameters of the CSI reporting configuration or RRC parameters of the CSI resource configuration comprise an indication of the first beam set.
  3. The UE of claim 2, wherein the indication of the first beam set comprises one of:
    an identifier of the first beam set; or
    an identifier of a non-zero-power (NZP) CSI-RS resource set for the first beam.
  4. The UE of claim 1, wherein the indicative information indicates CSI-RS resources, a CSI-RS resource set, or a CSI-SSB resource set for the second beam set.
  5. The UE of claim 4, wherein the CSI-RS resources are elements of a CSI-RS resource set of the CSI-RS resource configuration.
  6. The UE of claim 5, wherein the indicative information comprises at least one of:
    an identifier of the CSI-RS resource set;
    a resource indicator indicative of CSI-RS resources of the CSI-RS resource set;
    transmission control indicator (TCI) states for the CSI-RS resources;
    beam identifiers of the second beam set.
  7. The UE of claim 4, wherein the CSI resource configuration comprises at least one CSI-RS resource sets or CSI-SSB resource sets, and the indicative information indicates a CSI-RS resource set or a CSI-SSB resource set for the second beam set among the at least one CSI-RS resource sets or CSI-SSB resource sets.
  8. The UE of claim 7, wherein the indicative information further indicates the CSI reporting configuration corresponding to the first beam set.
  9. The UE of claim 4, wherein the CSI resource configuration comprises a single CSI-RS resource set for the second beam set, and the indicative information comprises an update of the single CSI-RS resource set.
  10. The UE of claim 1, wherein a CSI-RS resource set of the CSI-RS resource configuration corresponds to the first beam set, and comprises:
    a resource list defining basic parameters for each of CSI-RS resources of the CSI-RS resource set; and
    a resource pool defining time domain and frequency domain resource mappings of at least a portion of the CSI-RS resources of the CSI-RS resource set, and
    wherein the indicative information indicates resources selected based on the resource list and the resource pool for the second beam set.
  11. The UE of claim 10, wherein an entry of the resource list comprises at least one of the following:
    a resource identifier indicating a CSI-RS resource corresponding to a beam within the first beam set;
    a periodicity indicating periodicity for the CSI-RS resource;
    a scrambling identifier of the CSI-RS resource;
    a power control offset indicating a power offset of a physical downlink shared channel (PDSCH) resource element (RE) to a CSI-RS RE; and
    a power control offset for secondary synchronization signal (SSS) indicating a  power offset of CSI-RS RE to SSS RE.
  12. The UE of claim 10, wherein an entry of the resource pool defines time domain and frequency domain resource mappings of a CSI-RS resource, and comprises at least one of the following:
    a resource mapping identifier indicating frequency domain allocation within a physical resource block (PRB) of a CSI-RS resource;
    a time offset of the CSI-RS resource within a period indicating time domain allocation within the PRB of the CSI-RS resource;
    a code division multiplexing (CDM) type of the CSI-RS resource;
    a number of ports for the CSI-RS resource;
    a density of the CSI-RS resource measured in one of RE, port, or PRB; or
    an indication for wideband or partial band CSI-RS.
  13. The UE of claim 11, wherein the indicative information comprises at least one of the following:
    a serving cell ID indicating a cell applying the indicative information;
    a bandwidth part (BWP) ID indicating a BWP applying the indicative information;
    a resource set ID indicating the CSI-RS resource set of the CSI-RS resource configuration;
    a first bitmap indicating at least one entry within the resource list in the CSI-RS resource set; and
    a second bitmap indicating the at least one entry within the resource pool.
  14. The UE of claim 1, wherein the indicative information is received via an RRC configuration or reconfiguration, or medium access control (MAC) control element (MAC CE) signaling.
  15. The UE of claim 1, wherein a time gap between the last symbol for transmission of hybrid automatic repeat request (HARQ) -ACK information corresponding to the RRC reconfiguration or MAC CE signaling and the first symbol for CSI-RS transmission is larger than a time requirement for the UE to obtain the indicative information.
  16. The UE of claim 1, wherein the processor is configured to transmit the beam report for the first beam set by:
    predicting CSI-RS measurements for the first beam set based on measurements of the CSI RSs for the second beam set; and
    transmitting the beam report for the first beam set based on the CSI reporting configuration and the predicted CSI-RS measurements.
  17. The UE of claim 1, wherein the beam report comprises one of the following:
    at least one CRI-RS resource indicator (CRIs) within a CSI-RS resource set corresponding to the first beam set; or
    at least one beam identifier within the first beam set.
  18. A network entity, comprising:
    a processor; and
    a transceiver coupled to the processor,
    wherein the processor is configured to:
    transmit, via the transceiver and to a user equipment (UE) , a channel state information (CSI) reporting configuration corresponding to a first beam set and associated with a CSI resource configuration, and indicative information indicating a second beam set associated with the CSI resource configuration;
    transmit, via the transceiver and to the UE, CSI reference signals (CSI RSs) or Synchronization Signal/PBCH Blocks (SSBs) for the second beam set based on the CSI resource configuration and the indicative information; and
    receive, via the transceiver and from the UE, a beam report for the first beam set based on measurements of the CSI RSs or SSBs by the UE and the CSI reporting configuration.
  19. A processor for wireless communication, comprising:
    at least one memory; and
    a controller coupled with the at least one memory and configured to cause the controller to:
    receive, at a user equipment (UE) and from a network entity, a channel  state information (CSI) reporting configuration corresponding to a first beam set and associated with a CSI resource configuration, and indicative information indicating a second beam set associated with the CSI resource configuration;
    receive, from the network entity, CSI reference signals (CSI RSs) or synchronization signal/PBCH blocks (SSBs) for the second beam set based on the CSI resource configuration and the indicative information; and
    transmit, to the network entity, a beam report for the first beam set based on measurements of the CSI RSs or SSBs and the CSI reporting configuration.
  20. A method performed by a user equipment (UE) , the method comprising:
    receiving, from a network entity, a channel state information (CSI) reporting configuration corresponding to a first beam set and associated with a CSI resource configuration, and indicative information indicating a second beam set associated with the CSI resource configuration;
    receiving, from the network entity, CSI reference signals (CSI RSs) or synchronization signal/PBCH blocks (SSBs) for the second beam set based on the CSI resource configuration and the indicative information; and
    transmitting, to the network entity, a beam report for the first beam set based on measurements of the CSI RSs or SSBs and the CSI reporting configuration.
PCT/CN2023/120847 2023-09-22 2023-09-22 Association and mapping between beam sets WO2024169183A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2023/120847 WO2024169183A1 (en) 2023-09-22 2023-09-22 Association and mapping between beam sets

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2023/120847 WO2024169183A1 (en) 2023-09-22 2023-09-22 Association and mapping between beam sets

Publications (1)

Publication Number Publication Date
WO2024169183A1 true WO2024169183A1 (en) 2024-08-22

Family

ID=92422163

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/120847 WO2024169183A1 (en) 2023-09-22 2023-09-22 Association and mapping between beam sets

Country Status (1)

Country Link
WO (1) WO2024169183A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114390580A (en) * 2020-10-20 2022-04-22 维沃移动通信有限公司 Beam reporting method, beam information determining method and related equipment
WO2022152832A1 (en) * 2021-01-14 2022-07-21 Telefonaktiebolaget Lm Ericsson (Publ) Enhancements for beam group reporting in multi-trp scenarios
WO2023098346A1 (en) * 2021-11-30 2023-06-08 华为技术有限公司 Method for transmitting information, and communication apparatus
CN116325852A (en) * 2020-10-02 2023-06-23 苹果公司 Beam management in multi-TRP operation

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116325852A (en) * 2020-10-02 2023-06-23 苹果公司 Beam management in multi-TRP operation
CN114390580A (en) * 2020-10-20 2022-04-22 维沃移动通信有限公司 Beam reporting method, beam information determining method and related equipment
WO2022152832A1 (en) * 2021-01-14 2022-07-21 Telefonaktiebolaget Lm Ericsson (Publ) Enhancements for beam group reporting in multi-trp scenarios
WO2023098346A1 (en) * 2021-11-30 2023-06-08 华为技术有限公司 Method for transmitting information, and communication apparatus

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
NOKIA, NOKIA SHANGHAI BELL: "AI/ML Data collection", 3GPP DRAFT; R2-2305146, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. Incheon, South Korea; 20230522 - 20230526, 12 May 2023 (2023-05-12), FR, XP052390192 *

Similar Documents

Publication Publication Date Title
WO2024169183A1 (en) Association and mapping between beam sets
WO2024119859A1 (en) Reporting of beam measurements
WO2024160063A1 (en) Event driven beam reporting for unified tci
WO2024213187A1 (en) Indication of network side additional condition
WO2024113888A1 (en) Resource selection for sidelink transmission
WO2024221979A1 (en) Channel state information reporting
WO2024093428A1 (en) Mechanism for cho with candidate scgs
WO2024087755A1 (en) Multiple psfch transmissions on an unlicensed spectrum
WO2024103852A1 (en) Nes specific cho mechanism
WO2024093600A1 (en) Height dependent measurment
WO2024169259A1 (en) Channel state information prediction
WO2024093337A1 (en) Devices and methods of communication
WO2024179093A1 (en) Assisted federated learning
WO2024207740A1 (en) Layer 1 or layer 2 triggered mobility
WO2024212641A1 (en) Time domain rrm prediction
WO2024159801A1 (en) Sidelink reference signal framework
WO2024093397A1 (en) Pdcp duplication for slrb
WO2024119886A1 (en) Multiple puschs and multiple pdschs bundle transmssion
WO2024187813A1 (en) Mechanism for handling sensing collision
WO2024212567A1 (en) Prach preamble transmission triggered by cell switch command
WO2024152593A1 (en) Method and apparatus of supporting beam failure recovery
WO2024093345A1 (en) Ue trajectory prediction provision
WO2024179017A1 (en) Method and apparatus of supporting spatial adaption
WO2024109163A1 (en) Differential rsrp based performance monitoring for ai/ml model or functionality
WO2024087762A1 (en) Sl wus resource (pre) configuration

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23922302

Country of ref document: EP

Kind code of ref document: A1