WO2024166951A1 - Nanoparticles for hydrated electron generation, for halogen-containing organic material decomposition, and for photochromic materials - Google Patents

Nanoparticles for hydrated electron generation, for halogen-containing organic material decomposition, and for photochromic materials Download PDF

Info

Publication number
WO2024166951A1
WO2024166951A1 PCT/JP2024/004156 JP2024004156W WO2024166951A1 WO 2024166951 A1 WO2024166951 A1 WO 2024166951A1 JP 2024004156 W JP2024004156 W JP 2024004156W WO 2024166951 A1 WO2024166951 A1 WO 2024166951A1
Authority
WO
WIPO (PCT)
Prior art keywords
nanoparticles
carbon atoms
halogen
formula
solution
Prior art date
Application number
PCT/JP2024/004156
Other languages
French (fr)
Japanese (ja)
Inventor
洋一 小林
佑蔵 有馬
Original Assignee
学校法人立命館
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 学校法人立命館 filed Critical 学校法人立命館
Publication of WO2024166951A1 publication Critical patent/WO2024166951A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62DCHEMICAL MEANS FOR EXTINGUISHING FIRES OR FOR COMBATING OR PROTECTING AGAINST HARMFUL CHEMICAL AGENTS; CHEMICAL MATERIALS FOR USE IN BREATHING APPARATUS
    • A62D3/00Processes for making harmful chemical substances harmless or less harmful, by effecting a chemical change in the substances
    • A62D3/10Processes for making harmful chemical substances harmless or less harmful, by effecting a chemical change in the substances by subjecting to electric or wave energy or particle or ionizing radiation
    • A62D3/15Processes for making harmful chemical substances harmless or less harmful, by effecting a chemical change in the substances by subjecting to electric or wave energy or particle or ionizing radiation to particle radiation, e.g. electron beam radiation
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62DCHEMICAL MEANS FOR EXTINGUISHING FIRES OR FOR COMBATING OR PROTECTING AGAINST HARMFUL CHEMICAL AGENTS; CHEMICAL MATERIALS FOR USE IN BREATHING APPARATUS
    • A62D3/00Processes for making harmful chemical substances harmless or less harmful, by effecting a chemical change in the substances
    • A62D3/10Processes for making harmful chemical substances harmless or less harmful, by effecting a chemical change in the substances by subjecting to electric or wave energy or particle or ionizing radiation
    • A62D3/17Processes for making harmful chemical substances harmless or less harmful, by effecting a chemical change in the substances by subjecting to electric or wave energy or particle or ionizing radiation to electromagnetic radiation, e.g. emitted by a laser
    • A62D3/176Ultraviolet radiations, i.e. radiation having a wavelength of about 3nm to 400nm
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62DCHEMICAL MEANS FOR EXTINGUISHING FIRES OR FOR COMBATING OR PROTECTING AGAINST HARMFUL CHEMICAL AGENTS; CHEMICAL MATERIALS FOR USE IN BREATHING APPARATUS
    • A62D3/00Processes for making harmful chemical substances harmless or less harmful, by effecting a chemical change in the substances
    • A62D3/30Processes for making harmful chemical substances harmless or less harmful, by effecting a chemical change in the substances by reacting with chemical agents
    • A62D3/34Dehalogenation using reactive chemical agents able to degrade
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/26Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24
    • B01J31/28Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24 of the platinum group metals, iron group metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • B01J35/45Nanoparticles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G11/00Compounds of cadmium
    • C01G11/02Sulfides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C309/00Sulfonic acids; Halides, esters, or anhydrides thereof
    • C07C309/01Sulfonic acids
    • C07C309/02Sulfonic acids having sulfo groups bound to acyclic carbon atoms
    • C07C309/03Sulfonic acids having sulfo groups bound to acyclic carbon atoms of an acyclic saturated carbon skeleton
    • C07C309/17Sulfonic acids having sulfo groups bound to acyclic carbon atoms of an acyclic saturated carbon skeleton containing carboxyl groups bound to the carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F1/00Compounds containing elements of Groups 1 or 11 of the Periodic Table
    • C07F1/08Copper compounds
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62DCHEMICAL MEANS FOR EXTINGUISHING FIRES OR FOR COMBATING OR PROTECTING AGAINST HARMFUL CHEMICAL AGENTS; CHEMICAL MATERIALS FOR USE IN BREATHING APPARATUS
    • A62D2101/00Harmful chemical substances made harmless, or less harmful, by effecting chemical change
    • A62D2101/20Organic substances
    • A62D2101/22Organic substances containing halogen

Definitions

  • the present invention relates to nanoparticles for generating hydrated electrons, for decomposing halogen-containing organic materials, or for photochromic materials, and to dispersions containing such nanoparticles.
  • Hydrated electrons have a high reduction potential (-2.9 V vs. NHE (standard hydrogen electrode)) similar to that of alkali metals, and a long enough lifespan (approximately 1 ⁇ s) to cause intermolecular reactions, and therefore have been attracting attention in recent years in various chemical reaction fields, such as the decomposition reactions of persistent halogen-based substances and the fixation of nitrogen or carbon dioxide.
  • NHE standard hydrogen electrode
  • Non-Patent Document 1 the generation of hydrated electrons requires high-energy, large, and very expensive light sources such as femtosecond pulse lasers and vacuum ultraviolet light irradiation devices.
  • Non-Patent Document 2 Generation of hydrated electrons using a relatively low-intensity light source has also been reported, but rare metals such as iridium catalysts are used, and considering the cost and sustainability, it is difficult to put it into practical use as an industrial technology (see Non-Patent Document 2). Therefore, a method capable of generating hydrated electrons using a more versatile material is desired.
  • a more versatile material is preferably usable for decomposing halogen-containing organic materials.
  • such a more versatile material is preferably usable as a photochromic material. Such a more versatile material is of great academic and industrial interest.
  • the inventors have conducted intensive research to solve the above-mentioned problems, and as a result have found that certain nanoparticles do not contain rare metals such as iridium, are less expensive and more sustainable (lower country risk), and are more versatile, and that using these specific nanoparticles, hydrated electrons can be generated using a lower energy, smaller, and less expensive light source, thereby solving the above-mentioned problems. Based on this knowledge, the inventors have conducted further research and have completed the present invention. Furthermore, they have also found that these specific nanoparticles can be used as photochromic materials, and are therefore more versatile.
  • the following general formula (1) CdX (1) [In formula (1), X represents a Group 16 element.]
  • R 21 represents an organic group having 1 to 20 carbon atoms which may be substituted with NH 2 or OH
  • R 22 represents H or an organic group having 1 to 6 carbon atoms.
  • the nanoparticles include particles having an organic ligand represented by the following formula: 2.
  • the nanoparticles include particles having an organic ligand represented by the formula: 3. The nanoparticles according to 1 above, wherein R 21 represents an organic group having 1 to 6 carbon atoms, and R 22 represents H.
  • a doping ratio of the transition metal to Cd in the formula (1) or (1′) is 0.01 to 10.0 mol %.
  • a method for generating hydrated electrons using the nanoparticles for generating hydrated electrons according to any one of 1, 3 to 7 citing 1 above, and 11. 13.
  • a method for decomposing halogen-containing organic materials comprising using the nanoparticles for decomposing halogen-containing organic materials according to any one of 1, 3 to 7, and 11 which cite 1 above. 15.
  • a method for decomposing a halogen-containing organic material comprising irradiating the nanoparticles for decomposing a halogen-containing organic material according to any one of 1, 3 to 7, and 11 reciting 1 above with visible light or ultraviolet light to cleave the halogen-carbon bond of the halogen-containing organic material.
  • hydrated electrons can be generated using a lower energy, smaller, and cheaper light source, and the nanoparticles do not contain rare metals such as iridium, are less expensive, more sustainable (lower country risk), and more versatile.
  • a method for decomposing fluorine-containing compounds can be provided, and photochromic materials can also be provided.
  • FIG. 1 shows the UV-visible absorption spectrum of the MPA-coordinated Cu-doped CdS nanocrystals of Example 1.
  • FIG. 2 shows the FTIR absorption spectrum of the MPA-coordinated Cu-doped CdS nanocrystals of Example 1.
  • FIG. 3 shows the XRD spectrum of the MPA-coordinated Cu-doped CdS nanocrystals of Example 1.
  • FIG. 4 shows the results of 19 FNMR measurement of the MPA-coordinated Cu-doped CdS nanocrystals+PFOS of Example 1 before and after irradiation with visible light.
  • FIG. 1 shows the UV-visible absorption spectrum of the MPA-coordinated Cu-doped CdS nanocrystals of Example 1.
  • FIG. 2 shows the FTIR absorption spectrum of the MPA-coordinated Cu-doped CdS nanocrystals of Example 1.
  • FIG. 3 shows the XRD spectrum of the MPA-coordinated Cu
  • FIG. 5 shows the results of 19 FNMR measurement of the MPA-coordinated Cu-doped CdS nanocrystals+PFOS of Example 1 before and after irradiation with visible light.
  • FIG. 6 shows the results of 19 FNMR measurement of the MPA-coordinated Cu-doped CdS nanocrystals+PTFE of Example 2 before and after irradiation with visible light.
  • FIG. 7 shows the UV-visible absorption spectrum of the MPA-coordinated CdS nanocrystals of Example 3.
  • FIG. 8 shows the FTIR absorption spectrum of the MPA-coordinated CdS nanocrystals of Example 3.
  • FIG. 9 shows the XRD spectrum of the MPA-coordinated CdS nanocrystals of Example 3.
  • FIG. 10 shows the results of 19 FNMR measurement of the MPA-coordinated CdS nanocrystals+PFOS of Example 3 before and after irradiation with visible light.
  • FIG. 11 shows the FTIR absorption spectrum of the Cu-doped CdS nanocrystals of Comparative Example 1.
  • FIG. 12 shows the XRD spectrum of the Cu-doped CdS nanocrystals of Comparative Example 1.
  • FIG. 13 shows the results of 19 F NMR measurement of the Cu-doped CdS nanocrystals+PFOS of Comparative Example 1 before and after irradiation with visible light.
  • the present invention provides a method for producing a method for manufacturing a semiconductor device comprising the steps of: The following general formula (1) CdX (1) [In formula (1), X represents a Group 16 element.]
  • the surface of the particle represented by the following general formula (2) -SR 21 -COOR 22 (2) [In formula (2), R 21 represents an organic group having 1 to 20 carbon atoms which may be substituted with NH 2 or OH, and R 22 represents H or an organic group having 1 to 6 carbon atoms.] and providing nanoparticles, including particles having an organic ligand represented by The nanoparticles can be preferably used for generating hydrated electrons, for decomposing halogen-containing organic materials, or for photochromic materials.
  • the nanoparticles of one embodiment of the present invention are represented by the following general formula (1): CdX (1)
  • X represents a Group 16 element.
  • X represents a group 16 element.
  • at least one selected from O, S, Se, and Te can be exemplified as X, and at least one selected from O, S, Se, and Te is preferable.
  • O and S are more preferable because they are abundant resources on earth and have higher chemical stability.
  • X may be a single type alone or a combination of two or more types.
  • the nanoparticles of the above embodiments of the present invention may be doped and/or adsorbed with a transition metal.
  • a part of Cd in the particle core represented by CdX is replaced with the transition metal.
  • the nanoparticles are adsorbed with a transition metal, the transition metal is adsorbed to the surface of the particle core represented by CdX.
  • the nanoparticles may be doped with a transition metal, may have a transition metal adsorbed, or may be doped with a transition metal and have a transition metal adsorbed.
  • transition metals are not particularly limited as long as the nanoparticles targeted by the present invention can be obtained, but examples include manganese, cobalt, nickel, iron, chromium, copper, aluminum, molybdenum, vanadium, titanium, zirconium, niobium, silver, bismuth, and indium.
  • copper and manganese are preferred, and copper is more preferred, because they have an ionic radius close to that of cadmium and are easy to trap holes.
  • the transition metals may be used alone or in combination of two or more kinds.
  • the doping rate of the transition metal is preferably 0.01 mol % or more, more preferably 0.1 mol % or more, even more preferably 0.5 mol % or more, and even more preferably 1.0 mol % or more, with the total number of moles of Cd element and transition metal element being 100 mol %.
  • the doping rate of the transition metal is preferably 30.0 mol % or less, more preferably 20.0 mol % or less, and even more preferably 10.0 mol % or less, with the total number of moles of Cd element and transition metal element being 100 mol %.
  • the doping rate of the transition metal is within the above-mentioned range, the generation of hydrated electrons and the decomposition of the fluorine-containing material can be more efficiently carried out.
  • the doping rate can be obtained by performing X-ray fluorescence analysis on the nanoparticles.
  • the adsorption amount of the transition metal is preferably 0.01 mol % or more, more preferably 0.1 mol % or more, even more preferably 0.5 mol % or more, and even more preferably 1.0 mol % or more, with the total number of moles of Cd element being 100 mol %.
  • the adsorption amount of the transition metal is preferably 30.0 mol % or less, more preferably 20.0 mol % or less, and even more preferably 15.0 mol % or less, with the total number of moles of Cd element being 100 mol %.
  • the adsorption of the transition metal is not particularly limited as long as the nanoparticles targeted by the present invention can be obtained, but it is sufficient that the transition metal is adsorbed to the surface of the core of the particle represented by CdX, and preferably is physically adsorbed.
  • the form of physical adsorption is not necessarily clear, but an example is one in which the transition metal is adsorbed to the surface of the core of the particle represented by CdX by electrical action such as van der Waals forces.
  • the nanoparticles according to the above embodiment of the present invention have a surface having a compound represented by the following general formula (2): -SR 21 -COOR 22 (2)
  • R 21 represents an organic group having 1 to 20 carbon atoms which may be substituted with NH 2 or OH
  • R 22 represents H or an organic group having 1 to 6 carbon atoms.
  • the present invention includes particles having an organic ligand represented by the formula:
  • R21 represents an organic group having 1 to 20 carbon atoms which may be substituted with NH2 or OH.
  • the organic group having 1 to 20 carbon atoms is not limited, and examples thereof include an aliphatic hydrocarbon group, an aromatic hydrocarbon group, and an alicyclic hydrocarbon group.
  • the aliphatic hydrocarbon group include linear hydrocarbon groups, branched hydrocarbon groups, alicyclic hydrocarbon groups, etc. Linear hydrocarbon groups and branched hydrocarbon groups are more preferred because they enable more efficient generation of hydrated electrons and decomposition of fluorine-containing materials.
  • the organic group having 1 to 20 carbon atoms may be substituted with NH2 or OH. There may be at least one NH2 or OH, and it is preferable that there is only one. As long as the nanoparticles targeted by the present invention can be obtained, R21 may contain elements such as nitrogen, sulfur, and oxygen in addition to the nitrogen or oxygen contained in NH2 or OH.
  • the number of carbon atoms in R 21 is preferably 1 or more.
  • the number of carbon atoms in R 21 is preferably 20 or less, more preferably 12 or less, and even more preferably 6 or less. Since the generation of hydrated electrons and the decomposition of the fluorine-containing material can be more efficiently performed, the number of carbon atoms in R 21 is more preferably within the above-mentioned range.
  • the number of carbon atoms in R 21 is more preferably 1 to 3.
  • R 22 represents H or an organic group having 1 to 6 carbon atoms.
  • the organic group having 1 to 6 carbon atoms is not limited, and examples thereof include an aliphatic hydrocarbon group, an aromatic hydrocarbon group, and an alicyclic hydrocarbon group.
  • the aliphatic hydrocarbon group include linear hydrocarbon groups, branched hydrocarbon groups, alicyclic hydrocarbon groups, etc. Linear hydrocarbon groups and branched hydrocarbon groups are more preferred because they can more efficiently generate hydrated electrons and decompose fluorine-containing materials.
  • the organic group having 1 to 6 carbon atoms may contain elements such as nitrogen, sulfur, oxygen, etc., as long as the nanoparticles targeted by the present invention can be obtained.
  • the carbon number of R 22 is preferably 1 or more.
  • the carbon number of R 22 is preferably 6 or less, more preferably 4 or less, and even more preferably 2 or less. Since the generation of hydrated electrons and the decomposition of the fluorine-containing material can be more efficiently performed, the carbon number of R 22 is more preferably within the above-mentioned range.
  • the carbon number of R 22 is more preferably 1 to 2.
  • R 21 represents an organic group having 1 to 6 carbon atoms and R 22 represents H.
  • the organic ligand represented by the above general formula (2) is more preferably represented by the following formula: -S-CH 2 -COOH, -S-C 2 H 4 -COOH -S-CH 2 -CH(NH 2 )-COOH, -S-CH 2 -CH(CH 3 )-COOH -S-CH 2 -COOCH 3 , -S-C 2 H 4 -COOCH 3
  • the present invention provides a method for producing a method for manufacturing a semiconductor device comprising the steps of: The following general formula (1'): CdX (1') [In formula (1'), X represents a Group 16 element.]
  • the present invention provides nanoparticles, including particles having organic ligands represented by the formula: The nanoparticles are preferably used for generating hydrated electrons, for decomposing halogen-containing organic materials, or for photochromic materials.
  • the nanoparticles are represented by the following general formula (1'): CdX (1') [In formula (1'), X represents a Group 16 element.]
  • the nanoparticles may be doped and/or adsorbed with a transition metal.
  • the description of X and the transition metal in the general formula (1) can be referred to. That is, the specific contents (e.g., examples, preferred ranges, doping rate, adsorption amount, etc.) of X and the transition metal in the general formula (1') are the same as the specific contents of X and the transition metal in the general formula (1).
  • the nanoparticles according to the above embodiment of the present invention have a surface having a compound represented by the following general formula (2'): -SR 21 -COOR 22 (2')
  • R 21 represents an organic group having 3 to 20 carbon atoms which may be substituted with NH 2 or OH
  • R 22 represents H
  • R 21 represents an organic group having 1 to 20 carbon atoms which may be substituted with NH 2 or OH
  • R 22 represents an organic group having 1 to 6 carbon atoms.
  • R 21 represents an organic group having 3 to 20 carbon atoms which may be substituted with NH 2 or OH
  • R 22 can represent H.
  • the organic group having 3 to 20 carbon atoms is not limited, and examples thereof include an aliphatic hydrocarbon group, an aromatic hydrocarbon group, and an alicyclic hydrocarbon group.
  • the aliphatic hydrocarbon group include linear hydrocarbon groups, branched hydrocarbon groups, alicyclic hydrocarbon groups, etc. Linear hydrocarbon groups and branched hydrocarbon groups are more preferred because they can more efficiently generate hydrated electrons and decompose fluorine-containing materials.
  • the organic group having 3 to 20 carbon atoms may be substituted with NH2 or OH. There may be at least one NH2 or OH, and it is preferable that there is only one. As long as the nanoparticles targeted by the present invention can be obtained, R21 may contain elements such as nitrogen, sulfur, and oxygen in addition to the nitrogen or oxygen contained in NH2 or OH.
  • the carbon number of R 21 is preferably 3 or more.
  • the carbon number of R 21 is preferably 20 or less, more preferably 12 or less, and even more preferably 6 or less. Since the generation of hydrated electrons and the decomposition of the fluorine-containing material can be more efficiently performed, the carbon number of R 21 is more preferably within the above-mentioned range.
  • the carbon number of R 21 is more preferably 3 to 6.
  • R 21 represents an organic group having 1 to 20 carbon atoms which may be substituted with NH 2 or OH
  • R 22 can represent an organic group having 1 to 6 carbon atoms.
  • the organic group having 1 to 20 carbon atoms of R 21 is not limited, and examples thereof include an aliphatic hydrocarbon group, an aromatic hydrocarbon group, and an alicyclic hydrocarbon group.
  • the aliphatic hydrocarbon group include linear hydrocarbon groups, branched hydrocarbon groups, alicyclic hydrocarbon groups, etc. Linear hydrocarbon groups and branched hydrocarbon groups are more preferred because they can more efficiently generate hydrated electrons and decompose fluorine-containing materials.
  • the organic group having 1 to 20 carbon atoms in R 21 may be substituted with NH 2 or OH. There may be at least one NH 2 or OH, and it is preferable that there is only one. As long as the nanoparticles targeted by the present invention can be obtained, R 21 may contain elements such as nitrogen, sulfur, and oxygen in addition to the nitrogen or oxygen contained in NH 2 or OH.
  • the number of carbon atoms in R 21 is preferably 1 or more.
  • the number of carbon atoms in R 21 is preferably 20 or less, more preferably 12 or less, and even more preferably 6 or less. Since the generation of hydrated electrons and the decomposition of the fluorine-containing material can be more efficiently performed, the number of carbon atoms in R 21 is more preferably within the above-mentioned range.
  • the number of carbon atoms in R 21 is more preferably 1 to 3.
  • the organic group having 1 to 6 carbon atoms for R 22 is not limited, and examples thereof include an aliphatic hydrocarbon group, an aromatic hydrocarbon group, and an alicyclic hydrocarbon group.
  • examples of the aliphatic hydrocarbon group include linear hydrocarbon groups, branched hydrocarbon groups, alicyclic hydrocarbon groups, etc. Linear hydrocarbon groups and branched hydrocarbon groups are more preferred because they can more efficiently generate hydrated electrons and decompose fluorine-containing materials.
  • the organic group having 1 to 6 carbon atoms may contain elements such as nitrogen, sulfur, oxygen, etc., as long as the nanoparticles targeted by the present invention can be obtained.
  • the carbon number of R 22 is preferably 1 or more.
  • the carbon number of R 22 is preferably 6 or less, more preferably 4 or less, and even more preferably 2 or less. Since the generation of hydrated electrons and the decomposition of the fluorine-containing material can be more efficiently performed, the carbon number of R 22 is more preferably within the above-mentioned range.
  • the carbon number of R 22 is more preferably 1 to 2.
  • the organic ligand represented by the above general formula (2') is more preferably represented by the following formula: -S-CH 2 -CH(CH 3 )-COOH -S-CH 2 -COOCH 3 , -S-C 2 H 4 -COOCH 3
  • the average particle size of the nanoparticles of the embodiment of the present invention is preferably 1 nm or more, more preferably 2 nm or more, and even more preferably 3 nm or more.
  • the average particle size of the nanoparticles of the embodiment of the present invention is preferably 100 nm or less, more preferably 60 nm or less, even more preferably 30 nm or less, and even more preferably 10 nm or less.
  • the average particle size of the nanoparticles is most preferably 3 nm or more and 10 nm or less.
  • the above-mentioned average particle size can be calculated based on the line width of the scattering peak measured using a horizontal sample type multipurpose X-ray diffraction device (e.g., Rigaku Corporation's Ultima IV).
  • a horizontal sample type multipurpose X-ray diffraction device e.g., Rigaku Corporation's Ultima IV.
  • a nanoparticle dispersion in which the above-mentioned nanoparticles are dispersed in a dispersion medium.
  • the dispersion medium is not particularly limited, but for example, water can be used, and an aqueous dispersion is preferable.
  • “disperse” may be “suspend,” and “dispersion” may be “suspension.”
  • the content of nanoparticles in the nanoparticle dispersion may be, for example, 0.005 to 30% by mass, preferably 0.01 to 30% by mass, preferably 0.02 to 30% by mass, preferably 0.05 to 30% by mass, may be 0.1 to 30% by mass, may be 0.3 to 20% by mass, may be 0.5 to 10% by mass, or may be 1.0 to 7.0% by mass, based on 100% by mass of the dispersion.
  • the upper limit of the content of nanoparticles may be 20% by mass, 10% by mass, 7.0% by mass, or 5.0% by mass.
  • the lower limit of the content of nanoparticles may be 0.3% by mass, 0.5% by mass, or 1.0% by mass.
  • the temperature of the nanoparticle dispersion is not particularly limited, but may be, for example, 0 to 70°C, preferably 0 to 60°C, more preferably 0 to 50°C, more preferably 0 to 40°C, and even more preferably 0 to 30°C.
  • the lower limit of the above temperature may be 10°C.
  • the nanoparticles of the embodiments of the present invention can be used to generate hydrated electrons, and the present invention can provide a method for generating hydrated electrons using such nanoparticles for generating hydrated electrons.
  • the present invention can provide a method for generating hydrated electrons, which comprises irradiating the above-mentioned nanoparticles for generating hydrated electrons with visible light or ultraviolet light.
  • the nanoparticles of the embodiments of the present invention can be used to decompose halogen-containing organic materials, and the present invention can provide a method for decomposing halogen-containing organic materials using such nanoparticles for decomposing halogen-containing organic materials.
  • the present invention also provides a method for decomposing a halogen-containing organic material, which comprises irradiating the above-mentioned nanoparticles for decomposing a halogen-containing organic material with visible light or ultraviolet light to cleave the halogen-carbon bond in the halogen-containing organic material.
  • the nanoparticles of the present invention can be used to produce photochromic materials. By using the nanoparticles of the present invention, it is possible to produce photochromic materials with a short reaction time for the photochromic reaction.
  • the nanoparticles of the present invention can be suitably used for photochromic materials.
  • Example 1 Synthesis of Cu-doped CdS nanocrystals coordinated with mercaptopropionic acid (MPA) and decomposition of perfluorooctane sulfonic acid (PFOS) (Synthesis)
  • MPA mercaptopropionic acid
  • PFOS perfluorooctane sulfonic acid
  • Figure 1 shows the ultraviolet-visible absorption spectrum of the nanocrystals of Example 1.
  • the particle size of the nanocrystals of Example 1 was calculated from the first exciton peak wavelength ( ⁇ nm) of the absorption spectrum of Figure 1 using the following formula:
  • the first exciton peak wavelength was 427.5 nm, and the particle size was determined to be 4.3 nm.
  • D (nm) (-6.6521 ⁇ 10 ⁇ 8 ) ⁇ 3 + (1.9557 ⁇ 10 ⁇ 4 ) ⁇ 2 ⁇ (9.2352 ⁇ 10 ⁇ 2) ⁇ + (13.29)
  • Example 2 shows the FTIR absorption spectrum of the nanocrystals of Example 1.
  • the measurement was performed by the KBr tablet method, with an accumulation count of 256 and a resolution of 0.5 cm ⁇ 1 . Since the S-H stretching vibration at 2500 cm -1 derived from MPA was not observed, there was no S-H bond, and since it is known that thiolate anions bind more strongly to semiconductor nanocrystals than carboxylate anions, it is believed that thiolate anions are coordinated to the nanoparticle surface.
  • the two peaks seen near 1560 cm -1 and 1400 cm -1 are assigned to the symmetric and asymmetric stretching vibrations of the carboxylate anion of MPA, respectively.
  • a broad peak was observed in the range of 2900 to 3600 cm -1 that is believed to be derived from hydrogen bonds between the carboxylate anion on the nanocrystal surface and surface-adsorbed water, etc.
  • Figure 3 shows the XRD spectrum of the nanocrystals of Example 1.
  • the number of integrations was 8, and it was found to be zinc blende type.
  • Decomposition Reaction 350 mg of the PFOS nanoparticle solution of Example 1 and 150 mg of the NMR standard solution were each transferred to an NMR sample tube, and 19 F NMR was measured (0 h).
  • the PFOS nanoparticle solution of Example 1 was transferred to a 1 cm cell and irradiated with visible light (405 nm, 0.89 W/ cm2 ) for 6 hours and 24 hours. After visible light irradiation, 350 mg of the PFOS nanoparticle solution of Example 1 was transferred to an NMR sample tube and 19F NMR was measured (6 h) and (24 h). 4 shows the results of 19F NMR measurements before and after visible light irradiation.
  • the peak integral value at 0 h was used as the reference value, and the dissociation rate of the CF bond was calculated from the integral value of the fluoride ion. It was 3% at 6 h and 58% at 24 h.
  • the number of integrations was 64, and the molar ratio of the nanocrystals and PFOS in Example 1 was 1:80.
  • Example 2 Decomposition of polytetrafluoroethylene (PTFE) by Cu-doped CdS nanocrystals coordinated with mercaptopropionic acid (MPA) (photodecomposition reaction) Solution Preparation 15 mg of the nanocrystals of Example 1 was weighed out and added to 2 mL of Milli-Q water. TEOA (100 mg, 0.67 mmol) and polytetrafluoroethylene (PTFE) (100 mg) were added to the solution to obtain a PTFE nanoparticle preparation solution.
  • MPA mercaptopropionic acid
  • Decomposition Reaction 350 mg of the PTFE nanoparticle solution of Example 2 and 150 mg of the NMR standard solution were each transferred to an NMR sample tube, and 19 F NMR was measured (0 h).
  • the PTFE nanoparticle solution of Example 2 was transferred to a 1 cm cell and irradiated with visible light (405 nm, 0.89 W/ cm2 ) for 18 hours and 42 hours. After visible light irradiation, 350 mg of the PTFE nanoparticle solution of Example 2 was transferred to an NMR sample tube and 19F NMR was measured (18 h) and (42 h).
  • FIG. 6 shows the results of 19F NMR measurements before and after visible light irradiation. It can be seen that F ions are generated over time.
  • Example 3 Synthesis of MPA-coordinated CdS nanocrystals and their use in decomposition of PFOS (Synthesis) A solid was obtained using the same method as the nanocrystal manufacturing method described in Example 1, except that Milli-Q containing MPA but not CuCl2.H2O was used instead of Milli-Q solution of CuCl2.H2O and MPA. From the structural identification below, it is considered to be the targeted CdS nanocrystal coordinated with MPA of Example 3.
  • Figure 7 shows the UV-visible absorption spectrum of the nanocrystals of Example 3.
  • the particle size of the nanocrystals of Example 3 was calculated from the absorption spectrum in Figure 7 using the formula described in Example 1.
  • the first exciton peak was 432 nm, and the particle size was determined to be 4.5 nm.
  • Figure 9 shows the XRD spectrum of the nanocrystals of Example 3. The number of integrations was 8, and it is clear that they are zinc blende type.
  • Comparative Example 1 Synthesis of Cu-doped CdS nanocrystals and their use in decomposition of PFOS (Synthesis)
  • 0.091 g (0.50 mmol) of CdCl2 was dissolved in 90 mL of Milli-Q water.
  • 0.4 mg (0.0025 mmol) of CuCl 2 ⁇ H 2 O was dissolved in 1 mL of Milli-Q water, the pH was adjusted to 11, and the solution was mixed with the above aqueous solution.
  • 11 shows the FTIR absorption spectrum of the nanocrystals of Comparative Example 1. The measurement was performed by the KBr tablet method, with an accumulation count of 256 and a resolution of 0.5 cm ⁇ 1 . 12 shows the XRD spectrum of the nanocrystals of Comparative Example 1. The number of integrations was 8, and it was found that the nanocrystals were of zinc blende type.
  • Decomposition Reaction 19 FNMR was measured (0 h), (6 h) and (24 h) using the method described in Example 1, except that the PFOS nanocrystal solution of Comparative Example 1 was used instead of the PFOS nanoparticle solution of Example 1.
  • 13 shows the results of 19F NMR measurements before and after irradiation with visible light. The peak integral value at 0 h was used as the reference value, and the dissociation rate of the CF bond was calculated from the integral value of the fluoride ion. It was 0.07% at 6 h and 2% at 24 h.
  • Example 4 Synthesis of MPA-coordinated CdS nanoparticles and decomposition of PFOS using the same 91.6 mg (0.50 mmol) of cadmium chloride (CdCl 2 ) and 99 mL of Milli-Q water were added to a 200 mL two-neck flask and stirred to obtain a solution. 132.6 mg (1.25 mmol) of MPA was added to this solution, and 3.5 g of 2 M NaOH solution was added to adjust the pH. After nitrogen bubbling for 30 minutes, the oil bath was set to 110° C., and the solution was heated to 100° C.
  • CdCl 2 cadmium chloride
  • Decomposition reaction 1 mL of the PFOS-nanoparticle preparation solution of Example 4 was placed in a 1 cm cell, and after nitrogen bubbling for 30 minutes, visible light (405 nm, 0.83 W/cm 2 ) was irradiated at 38° C. for a total of 1, 2, 4 or 8 hours. After the reaction, each solution of Example 4 was centrifuged (15,000 rpm, 3 minutes) and the supernatant was diluted 120 times. Ion chromatography measurement was performed to determine the fluoride ion concentration in the solution. The dissociation rate of the C—F bond was calculated from the peak area of the fluoride ion. The results are shown in Table 1.
  • Example 5 Repeated photodecomposition of PFOS using MPA-coordinated CdS nanoparticles A PFOS-nanoparticle prepared solution of Example 5 was obtained by preparing a solution similar to the PFOS-nanoparticle prepared solution of Example 4. Decomposition reaction: 1 mL of the PFOS-nanoparticle preparation solution of Example 5 was placed in a 1 cm cell, and after nitrogen bubbling for 30 minutes, it was irradiated with visible light (405 nm, 0.83 W/cm 2 ) at 38° C. for a total of 12 hours. The PFOS-nanoparticle preparation solution was centrifuged (15,000 pm, 3 minutes), and the supernatant was diluted 120-fold.
  • Ion chromatography measurement was performed to determine the fluoride ion concentration in the solution.
  • the repeated photolysis was carried out 12 times by adding the MPA-coordinated CdS nanoparticles recovered by centrifugation to 1 mL of the PFOS solution to prepare a PFOS-nanoparticle preparation solution.
  • the dissociation rate of the C—F bond (not the decomposition rate of PFOS) was calculated from the peak area of fluoride ions in ion chromatography, and the defluorination rates of the C—F bond from cycles 1 to 12 were calculated. The results are shown in Table 2.
  • Decomposition reaction 1 mL of the Nafion-nanoparticle preparation solution of Example 6 was placed in a 1 cm cell, and after nitrogen bubbling for 30 minutes, irradiation with visible light (405 nm, 0.83 W/cm 2 ) was started at 38° C. Four hours, 12 hours, and 24 hours after the start of irradiation, the Nafion-nanoparticle preparation solution was sampled and centrifuged (15,000 rpm, 3 minutes) and the supernatant was diluted 120 times. Ion chromatography measurement was performed to determine the fluoride ion concentration in the solution to obtain the defluorination rate. The decomposition results of Nafion are shown in Table 3.
  • the defluorination rate of Nafion is lower than that of PFOS, which is believed to be due to the fact that Nafion is a polymer and its main chain is PTFE.
  • Example 7 Photodegradation of PFOS using MPA-coordinated CdS nanoparticles (nanoparticle content)
  • the nanoparticle dispersion of Example 7 was produced using the same method as described in Example 4, using CdS nanocrystals coordinated with MPA synthesized in the same manner as in Example 3.
  • five types of nanoparticle dispersions were obtained with nanoparticle contents of 0.50 mass%, 0.33 mass%, 0.17 mass%, 0.08 mass%, and 0.04 mass%, assuming the nanoparticle dispersion to be 100 mass%. Each of them was subjected to a photodecomposition reaction of PFOS using the same method as described in Example 4 (light irradiation time: 4 hours). The results are shown in Table 4.
  • Example 8 Photodecomposition of PFOS using MPA-coordinated CdS nanoparticles (temperature) Two nanoparticle dispersions of Example 8 were obtained using the same method as that described in Example 4, using CdS nanocrystals coordinated with MPA synthesized using the same method as that described in Example 3. A photodecomposition reaction of PFOS was carried out for each nanoparticle dispersion (light irradiation time: hours). However, one of the two was subjected to the photodecomposition reaction at 38°C, and the other was subjected to photodecomposition at 23°C. The results are shown in Table 5.
  • hydrated electrons can be generated using a lower energy, smaller, and cheaper light source, and the nanoparticles do not contain rare metals such as iridium, are less expensive, more sustainable (lower country risk), and more versatile.
  • a method for decomposing fluorine-containing compounds can be provided, and photochromic materials and the like can also be provided.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Toxicology (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • General Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Nanotechnology (AREA)
  • Inorganic Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Electromagnetism (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biophysics (AREA)
  • Plasma & Fusion (AREA)
  • Catalysts (AREA)

Abstract

The present invention provides nanoparticles for hydrated electron generation, for halogen-containing organic material decomposition, or for photochromic materials comprising nanoparticles having an organic ligand represented by general formula (2): –S–R21–COOH (in formula (2), R21 represents a C1 to 20 organic group) on the surface of particles represented by general formula (1): CdX (in formula (1), X represents a group 16 element.).

Description

水和電子発生用、ハロゲン含有有機材料分解用、フォトクロミック材料用のナノ粒子Nanoparticles for generating hydrated electrons, decomposing halogen-containing organic materials, and photochromic materials
 本発明は、水和電子発生用、ハロゲン含有有機材料分解用、又はフォトクロミック材料用のナノ粒子、そのナノ粒子を含む分散体などに関する。 The present invention relates to nanoparticles for generating hydrated electrons, for decomposing halogen-containing organic materials, or for photochromic materials, and to dispersions containing such nanoparticles.
 水和電子は、アルカリ金属類と同程度の高い還元電位(-2.9V vs NHE(標準水素電極に対して))と、分子間反応を起こすために充分な長さの寿命(約1μs)とを有することから、難分解性のハロゲン系物質の分解反応、並びに窒素又は二酸化炭素の固定化などの、種々の化学反応分野で、近年注目されている。 Hydrated electrons have a high reduction potential (-2.9 V vs. NHE (standard hydrogen electrode)) similar to that of alkali metals, and a long enough lifespan (approximately 1 μs) to cause intermolecular reactions, and therefore have been attracting attention in recent years in various chemical reaction fields, such as the decomposition reactions of persistent halogen-based substances and the fixation of nitrogen or carbon dioxide.
 しかし、一般的に水和電子生成のために、フェムト秒パルスレーザー及び真空紫外光照射装置等の、高エネルギーで大型、かつ、非常に高価な光源が必要である(非特許文献1参照)。 However, in general, the generation of hydrated electrons requires high-energy, large, and very expensive light sources such as femtosecond pulse lasers and vacuum ultraviolet light irradiation devices (see Non-Patent Document 1).
 比較的低強度の光源による水和電子の生成も報告されているが、イリジウム触媒などのレアメタルが用いられており、コスト及び持続可能性等を考慮すれば産業技術として実用化することは困難である(非特許文献2参照)。
 従って、より汎用性に優れる材料で、水和電子を発生可能な方法が望まれる。
 そのようなより汎用性に優れる材料は、ハロゲン含有有機材料分解に利用できることが好ましい。また、そのようなより汎用性に優れる材料は、フォトクロミック材料に利用できることが好ましい。そのようなより汎用性に優れる材料は、学術的にも工業的にも非常に興味深い。
Generation of hydrated electrons using a relatively low-intensity light source has also been reported, but rare metals such as iridium catalysts are used, and considering the cost and sustainability, it is difficult to put it into practical use as an industrial technology (see Non-Patent Document 2).
Therefore, a method capable of generating hydrated electrons using a more versatile material is desired.
Such a more versatile material is preferably usable for decomposing halogen-containing organic materials. Also, such a more versatile material is preferably usable as a photochromic material. Such a more versatile material is of great academic and industrial interest.
J. Am. Chem. Soc. 2019, 141, 5, 2122‐2127.J. Am. Chem. Soc. 2019, 141, 5, 2122-2127.
 本発明は、より低エネルギーで、より小型、より安価な光源を用いて、水和電子を生成することができ、イリジウムなどのレアメタルを含まず、よりコストが安く及びより持続可能性に優れ(カントリーリスクがより低く)、より汎用性に優れる材料を用いる、水和電子の生成方法、並びにそのより汎用性に優れる材料を提供することを目的とする。更に、本発明は、その水和電子の生成方法を用いる、含フッ素化合物の分解方法を提供することを目的とする。また、本発明は、その汎用性に優れる材料を含む、フォトクロミック材料なども提供することを目的とする。 The present invention aims to provide a method for generating hydrated electrons that can generate hydrated electrons using a lower-energy, smaller, and less expensive light source, does not contain rare metals such as iridium, and uses a material that is less costly and more sustainable (lower country risk) and more versatile, as well as the more versatile material. Furthermore, the present invention aims to provide a method for decomposing fluorine-containing compounds that uses the method for generating hydrated electrons. The present invention also aims to provide photochromic materials and the like that include the more versatile material.
 本発明者らは上記課題を解決すべく鋭意研究を進めた結果、特定のナノ粒子は、イリジウムなどのレアメタルを含まず、よりコストが安く及びより持続可能性に優れ(カントリーリスクがより低く)、より汎用性に優れるにもかかわらず、その特定のナノ粒子を用いると、より低エネルギーで、より小型、より安価な光源を用いて、水和電子を生成することができ、上記課題を解決できることを見出した。本発明者らは、かかる知見に基づきさらに研究を重ね、本発明を完成するに至った。尚、その特定のナノ粒子は、フォトクロミック材料として利用することができることも見出し、汎用性に優れることも見出した。 The inventors have conducted intensive research to solve the above-mentioned problems, and as a result have found that certain nanoparticles do not contain rare metals such as iridium, are less expensive and more sustainable (lower country risk), and are more versatile, and that using these specific nanoparticles, hydrated electrons can be generated using a lower energy, smaller, and less expensive light source, thereby solving the above-mentioned problems. Based on this knowledge, the inventors have conducted further research and have completed the present invention. Furthermore, they have also found that these specific nanoparticles can be used as photochromic materials, and are therefore more versatile.
 本明細書は、下記の実施形態を含む。
 1.下記一般式(1)
 CdX (1)
[式(1)中、Xは、第16族元素を示す。]
で表される粒子の表面に、下記一般式(2)
 -S-R21-COOR22(2)
[式(2)中、R21は、NHもしくはOHで置換されていてもよい炭素数1~20の有機基を示し、R22は、Hもしくは炭素数1~6の有機基を示す。]
で表される有機配位子を有する、粒子を含む、水和電子発生用、ハロゲン含有有機材料分解用、又はフォトクロミック材料用のナノ粒子。
 2.下記一般式(1’)
 CdX (1’)
[式(1’)中、Xは、第16族元素を示す。]
で表される粒子の表面に、下記一般式(2’)
 -S-R21-COOR22(2’)
[式(2’)中、R21は、NHもしくはOHで置換されていてもよい炭素数3~20の有機基を示し、R22は、Hを示し、又は、R21は、NHもしくはOHで置換されていてもよい炭素数1~20の有機基を示し、R22は、炭素数1~6の有機基を示す。]
で表される有機配位子を有する、粒子を含む、ナノ粒子。
 3.R21は、炭素数1~6の有機基を示し、R22は、Hを示す、上記1に記載のナノ粒子。
 4.前記Xは、O、S、Se又はTeから選択される少なくとも1種である、上記1~3のいずれか1つに記載のナノ粒子。
 5.平均粒子径が1nm以上100nm以下である、上記1~4のいずれか1つに記載のナノ粒子。
 6.前記粒子に、遷移金属がドープ及び/又は吸着されている、上記1~5のいずれか1つに記載のナノ粒子。
 7.前記式(1)又は(1’)におけるCdに対する、前記遷移金属のドープ率が、0.01~10.0モル%である、上記6に記載のナノ粒子。
 8.上記1~7のいずれか1つに記載のナノ粒子が水に分散している、ナノ粒子水分散体。
 9.上記1~7のいずれか1つに記載のナノ粒子が分散媒に分散しているナノ粒子分散体であり、ナノ粒子分散体中のナノ粒子の含有量は、分散体を100質量%として、0.005~30質量%である、ナノ粒子分散体。
 10.上記8又は9に記載のナノ粒子分散体の温度は、0~70℃である、ナノ粒子分散体。
 11.水和電子発生用、ハロゲン含有有機材料分解用、又はフォトクロミック材料用の上記2、及び2を引用する4~7のいずれか1つに記載のナノ粒子
 12.上記1、1を引用する3~7、及び11のいずれか1つに記載の水和電子発生用ナノ粒子を使用する、水和電子発生方法。
 13.上記1、1を引用する3~7、及び11のいずれか1つに記載の水和電子発生用ナノ粒子に、可視光又は紫外光を照射することを含む、上記12に記載の水和電子発生方法。
 14.上記1、1を引用する3~7、及び11のいずれか1つに記載のハロゲン含有有機材料分解用ナノ粒子を使用する、ハロゲン含有有機材料分解方法。
 15.上記1、1を引用する3~7、及び11のいずれか1つに記載のハロゲン含有有機材料分解用ナノ粒子に、可視光又は紫外光を照射して、ハロゲン含有有機材料のハロゲン-炭素結合を切断することを含む、ハロゲン含有有機材料分解方法。
This specification includes the following embodiments.
1. The following general formula (1)
CdX (1)
[In formula (1), X represents a Group 16 element.]
The surface of the particle represented by the following general formula (2)
-SR 21 -COOR 22 (2)
[In formula (2), R 21 represents an organic group having 1 to 20 carbon atoms which may be substituted with NH 2 or OH, and R 22 represents H or an organic group having 1 to 6 carbon atoms.]
The nanoparticles include particles having an organic ligand represented by the following formula:
2. The following general formula (1'):
CdX (1')
[In formula (1'), X represents a Group 16 element.]
The surface of the particle represented by the following general formula (2')
-SR 21 -COOR 22 (2')
[In formula (2'), R 21 represents an organic group having 3 to 20 carbon atoms which may be substituted with NH 2 or OH, and R 22 represents H, or R 21 represents an organic group having 1 to 20 carbon atoms which may be substituted with NH 2 or OH, and R 22 represents an organic group having 1 to 6 carbon atoms.]
The nanoparticles include particles having an organic ligand represented by the formula:
3. The nanoparticles according to 1 above, wherein R 21 represents an organic group having 1 to 6 carbon atoms, and R 22 represents H.
4. The nanoparticles according to any one of 1 to 3 above, wherein X is at least one selected from the group consisting of O, S, Se and Te.
5. The nanoparticles according to any one of 1 to 4 above, having an average particle size of 1 nm or more and 100 nm or less.
6. The nanoparticles according to any one of claims 1 to 5, wherein the particles are doped and/or adsorbed with a transition metal.
7. The nanoparticles according to the above 6, wherein a doping ratio of the transition metal to Cd in the formula (1) or (1′) is 0.01 to 10.0 mol %.
8. A nanoparticle aqueous dispersion, in which the nanoparticles according to any one of 1 to 7 above are dispersed in water.
9. A nanoparticle dispersion in which the nanoparticles according to any one of 1 to 7 above are dispersed in a dispersion medium, the content of the nanoparticles in the nanoparticle dispersion being 0.005 to 30 mass % relative to 100 mass % of the dispersion.
10. The nanoparticle dispersion according to 8 or 9 above, wherein the temperature of the nanoparticle dispersion is 0 to 70° C.
11. The nanoparticles according to any one of 2 and 4 to 7 citing 2 above, for generating hydrated electrons, for decomposing halogen-containing organic materials, or for photochromic materials. 12. A method for generating hydrated electrons, using the nanoparticles for generating hydrated electrons according to any one of 1, 3 to 7 citing 1 above, and 11.
13. A method for generating hydrated electrons according to the above 12, comprising irradiating the nanoparticles for generating hydrated electrons according to any one of the above 1, 3 to 7, and 11 which cite 1 with visible light or ultraviolet light.
14. A method for decomposing halogen-containing organic materials, comprising using the nanoparticles for decomposing halogen-containing organic materials according to any one of 1, 3 to 7, and 11 which cite 1 above.
15. A method for decomposing a halogen-containing organic material, comprising irradiating the nanoparticles for decomposing a halogen-containing organic material according to any one of 1, 3 to 7, and 11 reciting 1 above with visible light or ultraviolet light to cleave the halogen-carbon bond of the halogen-containing organic material.
 本発明の実施形態のナノ粒子を用いると、より低エネルギーで、より小型、より安価な光源を用いて、水和電子を生成することができ、そのナノ粒子は、イリジウムなどのレアメタルを含まず、よりコストが安く及びより持続可能性に優れ(カントリーリスクがより低く)、より汎用性に優れる。更に、本発明の実施形態のナノ粒子を用いて、含フッ素化合物の分解方法を提供することができ、また、フォトクロミック材料なども提供することができる。 By using the nanoparticles of the embodiment of the present invention, hydrated electrons can be generated using a lower energy, smaller, and cheaper light source, and the nanoparticles do not contain rare metals such as iridium, are less expensive, more sustainable (lower country risk), and more versatile. Furthermore, by using the nanoparticles of the embodiment of the present invention, a method for decomposing fluorine-containing compounds can be provided, and photochromic materials can also be provided.
図1は、実施例1のMPA配位CuドープCdSナノ結晶の紫外可視吸収スペクトルを示す。FIG. 1 shows the UV-visible absorption spectrum of the MPA-coordinated Cu-doped CdS nanocrystals of Example 1. 図2は、実施例1のMPA配位CuドープCdSナノ結晶のFTIR吸収スペクトルを示す。FIG. 2 shows the FTIR absorption spectrum of the MPA-coordinated Cu-doped CdS nanocrystals of Example 1. 図3は、実施例1のMPA配位CuドープCdSナノ結晶のXRDスペクトルを示す。FIG. 3 shows the XRD spectrum of the MPA-coordinated Cu-doped CdS nanocrystals of Example 1. 図4は、実施例1のMPA配位CuドープCdSナノ結晶+PFOSに、可視光照射前後の19FNMR測定結果を示す。FIG. 4 shows the results of 19 FNMR measurement of the MPA-coordinated Cu-doped CdS nanocrystals+PFOS of Example 1 before and after irradiation with visible light. 図5は、実施例1のMPA配位CuドープCdSナノ結晶+PFOSに、可視光照射前後の19FNMR測定結果を示す。FIG. 5 shows the results of 19 FNMR measurement of the MPA-coordinated Cu-doped CdS nanocrystals+PFOS of Example 1 before and after irradiation with visible light. 図6は、実施例2のMPA配位CuドープCdSナノ結晶+PTFEに、可視光照射前後の19FNMR測定結果を示す。FIG. 6 shows the results of 19 FNMR measurement of the MPA-coordinated Cu-doped CdS nanocrystals+PTFE of Example 2 before and after irradiation with visible light. 図7は、実施例3のMPA配位CdSナノ結晶の紫外可視吸収スペクトルを示す。FIG. 7 shows the UV-visible absorption spectrum of the MPA-coordinated CdS nanocrystals of Example 3. 図8は、実施例3のMPA配位CdSナノ結晶のFTIR吸収スペクトルを示す。FIG. 8 shows the FTIR absorption spectrum of the MPA-coordinated CdS nanocrystals of Example 3. 図9は、実施例3のMPA配位CdSナノ結晶のXRDスペクトルを示す。FIG. 9 shows the XRD spectrum of the MPA-coordinated CdS nanocrystals of Example 3. 図10は、実施例3のMPA配位CdSナノ結晶+PFOSに、可視光照射前後の19FNMR測定結果を示す。FIG. 10 shows the results of 19 FNMR measurement of the MPA-coordinated CdS nanocrystals+PFOS of Example 3 before and after irradiation with visible light. 図11は、比較例1のCuドープCdSナノ結晶のFTIR吸収スペクトルを示す。FIG. 11 shows the FTIR absorption spectrum of the Cu-doped CdS nanocrystals of Comparative Example 1. 図12は、比較例1のCuドープCdSナノ結晶のXRDスペクトルを示す。FIG. 12 shows the XRD spectrum of the Cu-doped CdS nanocrystals of Comparative Example 1. 図13は、比較例1のCuドープCdSナノ結晶+PFOSに、可視光照射前後の19FNMR測定結果を示す。FIG. 13 shows the results of 19 F NMR measurement of the Cu-doped CdS nanocrystals+PFOS of Comparative Example 1 before and after irradiation with visible light.
 本発明は、一の要旨において、
 下記一般式(1)
 CdX (1)
[式(1)中、Xは、第16族元素を示す。]
で表される粒子の表面に、下記一般式(2)
 -S-R21-COOR22(2)
[式(2)中、R21は、NHもしくはOHで置換されていてもよい炭素数1~20の有機基を示し、R22は、Hもしくは炭素数1~6の有機基を示す。]
で表される有機配位子を有する、粒子を含む、ナノ粒子を提供し、
 そのナノ粒子は、水和電子発生用、ハロゲン含有有機材料分解用、又はフォトクロミック材料用として好ましく使用することができる。
In one aspect, the present invention provides a method for producing a method for manufacturing a semiconductor device comprising the steps of:
The following general formula (1)
CdX (1)
[In formula (1), X represents a Group 16 element.]
The surface of the particle represented by the following general formula (2)
-SR 21 -COOR 22 (2)
[In formula (2), R 21 represents an organic group having 1 to 20 carbon atoms which may be substituted with NH 2 or OH, and R 22 represents H or an organic group having 1 to 6 carbon atoms.]
and providing nanoparticles, including particles having an organic ligand represented by
The nanoparticles can be preferably used for generating hydrated electrons, for decomposing halogen-containing organic materials, or for photochromic materials.
 本発明の一の実施形態のナノ粒子は、下記一般式(1)
 CdX (1)
[式(1)中、Xは、第16族元素を示す。]
で示される。
 上記一般式(1)中、Xは、第16族元素を示す。具体的には、Xとして、O、S、Se、Teから選択される少なくも1種を例示することができ、O、S、Se、Teから選択される少なくとも1種が好ましい。地球に豊富にある資源であり、化学的な安定性がより高いという理由から、O、Sがより好ましい。Xは、一種単独でも、2種以上を組み合わせてもよい。
The nanoparticles of one embodiment of the present invention are represented by the following general formula (1):
CdX (1)
[In formula (1), X represents a Group 16 element.]
As shown in the figure.
In the above general formula (1), X represents a group 16 element. Specifically, at least one selected from O, S, Se, and Te can be exemplified as X, and at least one selected from O, S, Se, and Te is preferable. O and S are more preferable because they are abundant resources on earth and have higher chemical stability. X may be a single type alone or a combination of two or more types.
 本発明の上記実施形態のナノ粒子は、遷移金属がドープ及び/又は吸着されていてもよい。ナノ粒子は、遷移金属がドープされている場合、CdXで示される粒子核において、Cdの一部が遷移金属で置き換えられている。ナノ粒子は、遷移金属が吸着されている場合、CdXで示される粒子核の表面に、遷移金属が吸着している。ナノ粒子は、遷移金属がドープされていてもよいし、遷移金属が吸着されていてもよいし、又は、遷移金属がドープされ、かつ、遷移金属が吸着されていてもよい。 The nanoparticles of the above embodiments of the present invention may be doped and/or adsorbed with a transition metal. When the nanoparticles are doped with a transition metal, a part of Cd in the particle core represented by CdX is replaced with the transition metal. When the nanoparticles are adsorbed with a transition metal, the transition metal is adsorbed to the surface of the particle core represented by CdX. The nanoparticles may be doped with a transition metal, may have a transition metal adsorbed, or may be doped with a transition metal and have a transition metal adsorbed.
 そのような遷移金属は、本発明が目的とするナノ粒子を得られる限り特に限定されることはないが、例えば、マンガン、コバルト、ニッケル、鉄、クロム、銅、アルミニウム、モリブデン、バナジウム、チタン、ジルコニウム、ニオブ、銀、ビスマス、インジウムなどを例示することができる。遷移金属として、カドミウムのイオン半径に近く、また正孔をトラップしやすいという理由から、銅、マンガンが好ましく、銅がより好ましい。遷移金属は、1種単独でも、2種以上を組み合わせてもよい。 Such transition metals are not particularly limited as long as the nanoparticles targeted by the present invention can be obtained, but examples include manganese, cobalt, nickel, iron, chromium, copper, aluminum, molybdenum, vanadium, titanium, zirconium, niobium, silver, bismuth, and indium. As the transition metal, copper and manganese are preferred, and copper is more preferred, because they have an ionic radius close to that of cadmium and are easy to trap holes. The transition metals may be used alone or in combination of two or more kinds.
 遷移金属のドープ率は、Cd元素及び遷移金属元素のモル数の合計を100モル%として、0.01モル%以上であることが好ましく、0.1モル%以上であることがより好ましく、0.5モル%以上であることが更に好ましく、1.0モル%以上であることが更により好ましい。
 遷移金属のドープ率は、Cd元素及び遷移金属元素のモル数の合計を100モル%として、30.0モル%以下であることが好ましく、20.0モル%以下であることがより好ましく、10.0モル%以下であることが更に好ましい。
 遷移金属のドープ率が上述の数値範囲内である場合、水和電子の発生、フッ素含有材料の分解などをより効率的に行うことができる。
 上記ドープ率は、ナノ粒子について、X線蛍光分析を行うことで得ることができる。
The doping rate of the transition metal is preferably 0.01 mol % or more, more preferably 0.1 mol % or more, even more preferably 0.5 mol % or more, and even more preferably 1.0 mol % or more, with the total number of moles of Cd element and transition metal element being 100 mol %.
The doping rate of the transition metal is preferably 30.0 mol % or less, more preferably 20.0 mol % or less, and even more preferably 10.0 mol % or less, with the total number of moles of Cd element and transition metal element being 100 mol %.
When the doping rate of the transition metal is within the above-mentioned range, the generation of hydrated electrons and the decomposition of the fluorine-containing material can be more efficiently carried out.
The doping rate can be obtained by performing X-ray fluorescence analysis on the nanoparticles.
 遷移金属の吸着量は、Cd元素のモル数の合計を100モル%として、0.01モル%以上であることが好ましく、0.1モル%以上であることがより好ましく、0.5モル%以上であることが更に好ましく、1.0モル%以上であることが更により好ましい。
 遷移金属の吸着量は、Cd元素のモル数の合計を100モル%として、30.0モル%以下であることが好ましく、20.0モル%以下であることがより好ましく、15.0モル%以下であることが更に好ましい。
 遷移金属の吸着量が上述の数値範囲内である場合、水和電子の発生、フッ素含有材料の分解などをより効率的に行うことができる。
The adsorption amount of the transition metal is preferably 0.01 mol % or more, more preferably 0.1 mol % or more, even more preferably 0.5 mol % or more, and even more preferably 1.0 mol % or more, with the total number of moles of Cd element being 100 mol %.
The adsorption amount of the transition metal is preferably 30.0 mol % or less, more preferably 20.0 mol % or less, and even more preferably 15.0 mol % or less, with the total number of moles of Cd element being 100 mol %.
When the adsorption amount of the transition metal is within the above-mentioned numerical range, the generation of hydrated electrons and the decomposition of the fluorine-containing material can be carried out more efficiently.
 遷移金属の吸着は、本発明が目的とするナノ粒子を得られる限り特に制限されることはないが、CdXで示される粒子の核の表面に、遷移金属が吸着されればよく、物理吸着されることが好ましい。物理吸着の形態は必ずしも明確でないが、CdXで示される粒子の核の表面において、遷移金属がファンデルワールス力等の電気的作用などによって吸着する形態を例示できる。 The adsorption of the transition metal is not particularly limited as long as the nanoparticles targeted by the present invention can be obtained, but it is sufficient that the transition metal is adsorbed to the surface of the core of the particle represented by CdX, and preferably is physically adsorbed. The form of physical adsorption is not necessarily clear, but an example is one in which the transition metal is adsorbed to the surface of the core of the particle represented by CdX by electrical action such as van der Waals forces.
 本発明の上記実施形態のナノ粒子は、その表面に、下記一般式(2)
 -S-R21-COOR22(2)
[式(2)中、R21は、NHもしくはOHで置換されていてもよい炭素数1~20の有機基を示し、R22は、Hもしくは炭素数1~6の有機基を示す。]
で表される有機配位子を有する粒子を含む。
The nanoparticles according to the above embodiment of the present invention have a surface having a compound represented by the following general formula (2):
-SR 21 -COOR 22 (2)
[In formula (2), R 21 represents an organic group having 1 to 20 carbon atoms which may be substituted with NH 2 or OH, and R 22 represents H or an organic group having 1 to 6 carbon atoms.]
The present invention includes particles having an organic ligand represented by the formula:
 上記一般式(2)中、R21は、NHもしくはOHで置換されていてもよい炭素数1~20の有機基を示す。本発明が目的とするナノ粒子を得られる限り、炭素数1~20の有機基は制限されることはなく、例えば、脂肪族炭化水素基、芳香族炭化水素基、脂環式炭化水素基等を例示することができる。
 脂肪族炭化水素基として、例えば、直鎖状炭化水素基、分枝状炭化水素基、脂環式炭化水素基等を例示することができる。水和電子の発生、フッ素含有材料の分解などをより効率的に行うことができることから、直鎖状炭化水素基、分枝状炭化水素基がより好ましい。
In the above general formula (2), R21 represents an organic group having 1 to 20 carbon atoms which may be substituted with NH2 or OH. As long as the nanoparticles targeted by the present invention can be obtained, the organic group having 1 to 20 carbon atoms is not limited, and examples thereof include an aliphatic hydrocarbon group, an aromatic hydrocarbon group, and an alicyclic hydrocarbon group.
Examples of the aliphatic hydrocarbon group include linear hydrocarbon groups, branched hydrocarbon groups, alicyclic hydrocarbon groups, etc. Linear hydrocarbon groups and branched hydrocarbon groups are more preferred because they enable more efficient generation of hydrated electrons and decomposition of fluorine-containing materials.
 炭素数1~20の有機基は、NHもしくはOHで置換されていてもよい。NHもしくはOHは、少なくとも1つであってよく、1つであることが好ましい。本発明が目的とするナノ粒子を得られる限り、R21は、NHもしくはOHに含まれる窒素又は酸素の他に、窒素、硫黄、酸素等の元素を含んでいてもよい。 The organic group having 1 to 20 carbon atoms may be substituted with NH2 or OH. There may be at least one NH2 or OH, and it is preferable that there is only one. As long as the nanoparticles targeted by the present invention can be obtained, R21 may contain elements such as nitrogen, sulfur, and oxygen in addition to the nitrogen or oxygen contained in NH2 or OH.
 R21の炭素数は1以上であることが好ましい。R21の炭素数は20以下であることが好ましく、12以下であることがより好ましく、6以下であることが更に好ましい。水和電子の発生、フッ素含有材料の分解などをより効率的に行うことができることから、R21の炭素数は、上述の範囲であることがより好ましい。R21の炭素数は、1~3であることが更に好ましい。 The number of carbon atoms in R 21 is preferably 1 or more. The number of carbon atoms in R 21 is preferably 20 or less, more preferably 12 or less, and even more preferably 6 or less. Since the generation of hydrated electrons and the decomposition of the fluorine-containing material can be more efficiently performed, the number of carbon atoms in R 21 is more preferably within the above-mentioned range. The number of carbon atoms in R 21 is more preferably 1 to 3.
 上記一般式(2)中、R22は、Hもしくは炭素数1~6の有機基を示す。本発明が目的とするナノ粒子を得られる限り、炭素数1~6の有機基は制限されることはなく、例えば、脂肪族炭化水素基、芳香族炭化水素基、脂環式炭化水素基等を例示することができる。
 脂肪族炭化水素基として、例えば、直鎖状炭化水素基、分枝状炭化水素基、脂環式炭化水素基等を例示することができる。水和電子の発生、フッ素含有材料の分解などをより効率的に行うことができることから、直鎖状炭化水素基、分枝状炭化水素基がよりこのましい。
In the above general formula (2), R 22 represents H or an organic group having 1 to 6 carbon atoms. As long as the nanoparticles targeted by the present invention can be obtained, the organic group having 1 to 6 carbon atoms is not limited, and examples thereof include an aliphatic hydrocarbon group, an aromatic hydrocarbon group, and an alicyclic hydrocarbon group.
Examples of the aliphatic hydrocarbon group include linear hydrocarbon groups, branched hydrocarbon groups, alicyclic hydrocarbon groups, etc. Linear hydrocarbon groups and branched hydrocarbon groups are more preferred because they can more efficiently generate hydrated electrons and decompose fluorine-containing materials.
 炭素数1~6の有機基は、本発明が目的とするナノ粒子を得られる限り、窒素、硫黄、酸素等の元素を含んでいてもよい。
 R22の炭素数は1以上であることが好ましい。R22の炭素数は6以下であることが好ましく、4以下であることがより好ましく、2以下であることが更に好ましい。水和電子の発生、フッ素含有材料の分解などをより効率的に行うことができることから、R22の炭素数は、上述の範囲であることがより好ましい。R22の炭素数は、1~2であることが更に好ましい。
The organic group having 1 to 6 carbon atoms may contain elements such as nitrogen, sulfur, oxygen, etc., as long as the nanoparticles targeted by the present invention can be obtained.
The carbon number of R 22 is preferably 1 or more. The carbon number of R 22 is preferably 6 or less, more preferably 4 or less, and even more preferably 2 or less. Since the generation of hydrated electrons and the decomposition of the fluorine-containing material can be more efficiently performed, the carbon number of R 22 is more preferably within the above-mentioned range. The carbon number of R 22 is more preferably 1 to 2.
 R21は、炭素数1~6の有機基を示し、R22は、Hを示すことが、更により好ましい。
 上記一般式(2)で示される、有機配位子は、下記の式で表されることがより好ましい。
 -S-CH-COOH、-S-C-COOH
 -S-CH-CH(NH)-COOH、-S-CH-CH(CH)-COOH
 -S-CH-COOCH、-S-C-COOCH
It is even more preferable that R 21 represents an organic group having 1 to 6 carbon atoms and R 22 represents H.
The organic ligand represented by the above general formula (2) is more preferably represented by the following formula:
-S-CH 2 -COOH, -S-C 2 H 4 -COOH
-S-CH 2 -CH(NH 2 )-COOH, -S-CH 2 -CH(CH 3 )-COOH
-S-CH 2 -COOCH 3 , -S-C 2 H 4 -COOCH 3
 本発明は、別の要旨において、
 下記一般式(1’)
 CdX (1’)
[式(1’)中、Xは、第16族元素を示す。]
で表される粒子の表面に、下記一般式(2’)
 -S-R21-COOR22(2’)
[式(2’)中、R21は、NHもしくはOHで置換されていてもよい炭素数3~20の有機基を示し、R22は、Hを示し、又は、R21は、NHもしくはOHで置換されていてもよい炭素数1~20の有機基を示し、R22は、炭素数1~6の有機基を示す。]
で表される有機配位子を有する、粒子を含む、ナノ粒子を提供する。
 そのナノ粒子は、水和電子発生用、ハロゲン含有有機材料分解用、又はフォトクロミック材料用として使用することが好ましい。
In another aspect, the present invention provides a method for producing a method for manufacturing a semiconductor device comprising the steps of:
The following general formula (1'):
CdX (1')
[In formula (1'), X represents a Group 16 element.]
The surface of the particle represented by the following general formula (2')
-SR 21 -COOR 22 (2')
[In formula (2'), R 21 represents an organic group having 3 to 20 carbon atoms which may be substituted with NH 2 or OH, and R 22 represents H, or R 21 represents an organic group having 1 to 20 carbon atoms which may be substituted with NH 2 or OH, and R 22 represents an organic group having 1 to 6 carbon atoms.]
The present invention provides nanoparticles, including particles having organic ligands represented by the formula:
The nanoparticles are preferably used for generating hydrated electrons, for decomposing halogen-containing organic materials, or for photochromic materials.
 本発明の別の実施形態のナノ粒子は、下記一般式(1’)
 CdX (1’)
[式(1’)中、Xは、第16族元素を示す。]
で示される。上記ナノ粒子は、遷移金属がドープ及び/又は吸着されていてよい。
 上記一般式(1’)中のX及び上記遷移金属について、上述の一般式(1)中のX及び上述の遷移金属の記載を参照することができる。即ち、上記一般式(1’)中のX及び上記遷移金属の具体的な内容(例えば、例示、好ましい範囲、ドープ率、吸着量など)は、上述の一般式(1)中のX及び上述の遷移金属の具体的な内容と同じである。
In another embodiment of the present invention, the nanoparticles are represented by the following general formula (1'):
CdX (1')
[In formula (1'), X represents a Group 16 element.]
The nanoparticles may be doped and/or adsorbed with a transition metal.
For X and the transition metal in the general formula (1'), the description of X and the transition metal in the general formula (1) can be referred to. That is, the specific contents (e.g., examples, preferred ranges, doping rate, adsorption amount, etc.) of X and the transition metal in the general formula (1') are the same as the specific contents of X and the transition metal in the general formula (1).
 本発明の上記実施形態のナノ粒子は、その表面に、下記一般式(2’)
 -S-R21-COOR22(2’)
[式(2’)中、R21は、NHもしくはOHで置換されていてもよい炭素数3~20の有機基を示し、R22は、Hを示し、又は、R21は、NHもしくはOHで置換されていてもよい炭素数1~20の有機基を示し、R22は、炭素数1~6の有機基を示す。]で表される有機配位子を有する粒子を含む。
The nanoparticles according to the above embodiment of the present invention have a surface having a compound represented by the following general formula (2'):
-SR 21 -COOR 22 (2')
[In formula (2'), R 21 represents an organic group having 3 to 20 carbon atoms which may be substituted with NH 2 or OH, and R 22 represents H, or R 21 represents an organic group having 1 to 20 carbon atoms which may be substituted with NH 2 or OH, and R 22 represents an organic group having 1 to 6 carbon atoms.]
 上記一般式(2’)中、R21は、NHもしくはOHで置換されていてもよい炭素数3~20の有機基を示し、かつ、R22は、Hを示すことができる。本発明が目的とするナノ粒子を得られる限り、炭素数3~20の有機基は制限されることはなく、例えば、脂肪族炭化水素基、芳香族炭化水素基、脂環式炭化水素基等を例示することができる。
 脂肪族炭化水素基として、例えば、直鎖状炭化水素基、分枝状炭化水素基、脂環式炭化水素基等を例示することができる。水和電子の発生、フッ素含有材料の分解などをより効率的に行うことができることから、直鎖状炭化水素基、分枝状炭化水素基がよりこのましい。
In the above general formula (2'), R 21 represents an organic group having 3 to 20 carbon atoms which may be substituted with NH 2 or OH, and R 22 can represent H. As long as the nanoparticles targeted by the present invention can be obtained, the organic group having 3 to 20 carbon atoms is not limited, and examples thereof include an aliphatic hydrocarbon group, an aromatic hydrocarbon group, and an alicyclic hydrocarbon group.
Examples of the aliphatic hydrocarbon group include linear hydrocarbon groups, branched hydrocarbon groups, alicyclic hydrocarbon groups, etc. Linear hydrocarbon groups and branched hydrocarbon groups are more preferred because they can more efficiently generate hydrated electrons and decompose fluorine-containing materials.
 炭素数3~20の有機基は、NHもしくはOHで置換されていてもよい。NHもしくはOHは、少なくとも1つであってよく、1つであることが好ましい。本発明が目的とするナノ粒子を得られる限り、R21は、NHもしくはOHに含まれる窒素又は酸素の他に、窒素、硫黄、酸素等の元素を含んでいてもよい。 The organic group having 3 to 20 carbon atoms may be substituted with NH2 or OH. There may be at least one NH2 or OH, and it is preferable that there is only one. As long as the nanoparticles targeted by the present invention can be obtained, R21 may contain elements such as nitrogen, sulfur, and oxygen in addition to the nitrogen or oxygen contained in NH2 or OH.
 R21の炭素数は3以上であることが好ましい。R21の炭素数は20以下であることが好ましく、12以下であることがより好ましく、6以下であることが更に好ましい。水和電子の発生、フッ素含有材料の分解などをより効率的に行うことができることから、R21の炭素数は、上述の範囲であることがより好ましい。R21の炭素数は、3~6であることが更に好ましい。 The carbon number of R 21 is preferably 3 or more. The carbon number of R 21 is preferably 20 or less, more preferably 12 or less, and even more preferably 6 or less. Since the generation of hydrated electrons and the decomposition of the fluorine-containing material can be more efficiently performed, the carbon number of R 21 is more preferably within the above-mentioned range. The carbon number of R 21 is more preferably 3 to 6.
 一方、上記一般式(2’)中、R21は、NHもしくはOHで置換されていてもよい炭素数1~20の有機基を示し、かつ、R22は、炭素数1~6の有機基を示すことができる。本発明が目的とするナノ粒子を得られる限り、R21の炭素数1~20の有機基は制限されることはなく、例えば、脂肪族炭化水素基、芳香族炭化水素基、脂環式炭化水素基等を例示することができる。
 脂肪族炭化水素基として、例えば、直鎖状炭化水素基、分枝状炭化水素基、脂環式炭化水素基等を例示することができる。水和電子の発生、フッ素含有材料の分解などをより効率的に行うことができることから、直鎖状炭化水素基、分枝状炭化水素基がよりこのましい。
Meanwhile, in the above general formula (2'), R 21 represents an organic group having 1 to 20 carbon atoms which may be substituted with NH 2 or OH, and R 22 can represent an organic group having 1 to 6 carbon atoms. As long as the nanoparticles targeted by the present invention can be obtained, the organic group having 1 to 20 carbon atoms of R 21 is not limited, and examples thereof include an aliphatic hydrocarbon group, an aromatic hydrocarbon group, and an alicyclic hydrocarbon group.
Examples of the aliphatic hydrocarbon group include linear hydrocarbon groups, branched hydrocarbon groups, alicyclic hydrocarbon groups, etc. Linear hydrocarbon groups and branched hydrocarbon groups are more preferred because they can more efficiently generate hydrated electrons and decompose fluorine-containing materials.
 R21の炭素数1~20の有機基は、NHもしくはOHで置換されていてもよい。NHもしくはOHは、少なくとも1つであってよく、1つであることが好ましい。本発明が目的とするナノ粒子を得られる限り、R21は、NHもしくはOHに含まれる窒素又は酸素の他に、窒素、硫黄、酸素等の元素を含んでいてもよい。 The organic group having 1 to 20 carbon atoms in R 21 may be substituted with NH 2 or OH. There may be at least one NH 2 or OH, and it is preferable that there is only one. As long as the nanoparticles targeted by the present invention can be obtained, R 21 may contain elements such as nitrogen, sulfur, and oxygen in addition to the nitrogen or oxygen contained in NH 2 or OH.
 R21の炭素数は1以上であることが好ましい。R21の炭素数は20以下であることが好ましく、12以下であることがより好ましく、6以下であることが更に好ましい。水和電子の発生、フッ素含有材料の分解などをより効率的に行うことができることから、R21の炭素数は、上述の範囲であることがより好ましい。R21の炭素数は、1~3であることが更に好ましい。 The number of carbon atoms in R 21 is preferably 1 or more. The number of carbon atoms in R 21 is preferably 20 or less, more preferably 12 or less, and even more preferably 6 or less. Since the generation of hydrated electrons and the decomposition of the fluorine-containing material can be more efficiently performed, the number of carbon atoms in R 21 is more preferably within the above-mentioned range. The number of carbon atoms in R 21 is more preferably 1 to 3.
 本発明が目的とするナノ粒子を得られる限り、R22の炭素数1~6の有機基は制限されることはなく、例えば、脂肪族炭化水素基、芳香族炭化水素基、脂環式炭化水素基等を例示することができる。
 脂肪族炭化水素基として、例えば、直鎖状炭化水素基、分枝状炭化水素基、脂環式炭化水素基等を例示することができる。水和電子の発生、フッ素含有材料の分解などをより効率的に行うことができることから、直鎖状炭化水素基、分枝状炭化水素基がよりこのましい。
As long as the nanoparticles targeted by the present invention can be obtained, the organic group having 1 to 6 carbon atoms for R 22 is not limited, and examples thereof include an aliphatic hydrocarbon group, an aromatic hydrocarbon group, and an alicyclic hydrocarbon group.
Examples of the aliphatic hydrocarbon group include linear hydrocarbon groups, branched hydrocarbon groups, alicyclic hydrocarbon groups, etc. Linear hydrocarbon groups and branched hydrocarbon groups are more preferred because they can more efficiently generate hydrated electrons and decompose fluorine-containing materials.
 炭素数1~6の有機基は、本発明が目的とするナノ粒子を得られる限り、窒素、硫黄、酸素等の元素を含んでいてもよい。
 R22の炭素数は1以上であることが好ましい。R22の炭素数は6以下であることが好ましく、4以下であることがより好ましく、2以下であることが更に好ましい。水和電子の発生、フッ素含有材料の分解などをより効率的に行うことができることから、R22の炭素数は、上述の範囲であることがより好ましい。R22の炭素数は、1~2であることが更に好ましい。
The organic group having 1 to 6 carbon atoms may contain elements such as nitrogen, sulfur, oxygen, etc., as long as the nanoparticles targeted by the present invention can be obtained.
The carbon number of R 22 is preferably 1 or more. The carbon number of R 22 is preferably 6 or less, more preferably 4 or less, and even more preferably 2 or less. Since the generation of hydrated electrons and the decomposition of the fluorine-containing material can be more efficiently performed, the carbon number of R 22 is more preferably within the above-mentioned range. The carbon number of R 22 is more preferably 1 to 2.
 上記一般式(2’)で示される、有機配位子は、下記の式で表されることがより好ましい。
 -S-CH-CH(CH)-COOH
 -S-CH-COOCH、-S-C-COOCH
The organic ligand represented by the above general formula (2') is more preferably represented by the following formula:
-S-CH 2 -CH(CH 3 )-COOH
-S-CH 2 -COOCH 3 , -S-C 2 H 4 -COOCH 3
 本発明の実施形態のナノ粒子の平均粒子径は、1nm以上であることが好ましく、2nm以上であることがより好ましく、3nm以上であることが更に好ましい。本発明の実施形態のナノ粒子の平均粒子径は、100nm以下であることが好ましく、60nm以下であることがより好ましく、30nm以下であることが更に好ましく、10nm以下であることが更により好ましい。ナノ粒子の平均粒子径は、3nm以上10nm以下であることが最も好ましい。ナノ粒子の平均粒子径が上述の範囲内である場合、水和電子生成に必要となる非線形反応であるオージェ再結合をより効率的に生じさせることができる。 The average particle size of the nanoparticles of the embodiment of the present invention is preferably 1 nm or more, more preferably 2 nm or more, and even more preferably 3 nm or more. The average particle size of the nanoparticles of the embodiment of the present invention is preferably 100 nm or less, more preferably 60 nm or less, even more preferably 30 nm or less, and even more preferably 10 nm or less. The average particle size of the nanoparticles is most preferably 3 nm or more and 10 nm or less. When the average particle size of the nanoparticles is within the above range, Auger recombination, which is a nonlinear reaction required for the generation of hydrated electrons, can be more efficiently generated.
 本明細書において、上述の平均粒子径は、試料水平型多目的X線回析装置(例えば、リガク社製Ultima IV)を用いて測定される散乱ピークの線幅に基づいて算出することができる。 In this specification, the above-mentioned average particle size can be calculated based on the line width of the scattering peak measured using a horizontal sample type multipurpose X-ray diffraction device (e.g., Rigaku Corporation's Ultima IV).
 本発明の実施形態において、上述のナノ粒子が、分散媒に分散している、ナノ粒子分散体を提供する。本発明の実施形態のナノ粒子を利用するために、そのナノ粒子が分散媒に分散している分散体を製造して使用すると便利である。分散媒は、特に制限されないが、例えば、水を使用することができ、水分散体が好ましい。尚、本明細書では、「分散(disperse)」は、「懸濁(suspend)」であってよいし、「分散体(dispersion)」は、「懸濁物(suspension)」であってよい。 In an embodiment of the present invention, a nanoparticle dispersion is provided in which the above-mentioned nanoparticles are dispersed in a dispersion medium. In order to utilize the nanoparticles of the embodiment of the present invention, it is convenient to manufacture and use a dispersion in which the nanoparticles are dispersed in a dispersion medium. The dispersion medium is not particularly limited, but for example, water can be used, and an aqueous dispersion is preferable. In this specification, "disperse" may be "suspend," and "dispersion" may be "suspension."
 ナノ粒子分散体中のナノ粒子の含有量は、分散体を100質量%として、例えば、0.005~30質量%であってよく、0.01~30質量%であることが好ましく、0.02~30質量%であることが好ましく、0.05~30質量%であることが好ましく、0.1~30質量%であってよく、0.3~20質量%であってよく、0.5~10質量%であってよく、1.0~7.0質量%であってよい。ナノ粒子の含有量の上述の上限は、20質量%であってよく、10質量%であってよく、7.0質量%であってよく、5.0質量%であってよい。また、ナノ粒子の含有量の下限は、0.3質量%であってよく、0.5質量%であってよく、1.0質量%であってよい。ナノ粒子の含有量が上述の範囲である場合、水和電子の発生、フッ素含有材料の分解などをより効率的に行うことができる。 The content of nanoparticles in the nanoparticle dispersion may be, for example, 0.005 to 30% by mass, preferably 0.01 to 30% by mass, preferably 0.02 to 30% by mass, preferably 0.05 to 30% by mass, may be 0.1 to 30% by mass, may be 0.3 to 20% by mass, may be 0.5 to 10% by mass, or may be 1.0 to 7.0% by mass, based on 100% by mass of the dispersion. The upper limit of the content of nanoparticles may be 20% by mass, 10% by mass, 7.0% by mass, or 5.0% by mass. The lower limit of the content of nanoparticles may be 0.3% by mass, 0.5% by mass, or 1.0% by mass. When the content of nanoparticles is within the above range, the generation of hydrated electrons and the decomposition of fluorine-containing materials can be more efficiently performed.
 ナノ粒子分散体の温度は、特に制限されることはないが、例えば、0~70℃であってよく、0~60℃であることが好ましく、0~50℃であることが好ましく、0~40℃であることがより好ましく、0~30℃であることが更に好ましい。上述の温度の下限は、10℃であってもよい。ナノ粒子分散体の温度が上述の範囲である場合、ナノ粒子をより均一に分散させることができ、水和電子の発生、フッ素含有材料の分解などをより効率的に行うことができる。 The temperature of the nanoparticle dispersion is not particularly limited, but may be, for example, 0 to 70°C, preferably 0 to 60°C, more preferably 0 to 50°C, more preferably 0 to 40°C, and even more preferably 0 to 30°C. The lower limit of the above temperature may be 10°C. When the temperature of the nanoparticle dispersion is within the above range, the nanoparticles can be dispersed more uniformly, and the generation of hydrated electrons and the decomposition of fluorine-containing materials can be carried out more efficiently.
 本発明の実施形態のナノ粒子は、水和電子を発生するために使用することができ、本発明は、そのような水和電子発生用ナノ粒子を使用する、水和電子発生方法を提供することができる。
 本発明は、上述の水和電子発生用ナノ粒子に、可視光又は紫外光を照射することを含む、水和電子発生方法を提供することができる。
The nanoparticles of the embodiments of the present invention can be used to generate hydrated electrons, and the present invention can provide a method for generating hydrated electrons using such nanoparticles for generating hydrated electrons.
The present invention can provide a method for generating hydrated electrons, which comprises irradiating the above-mentioned nanoparticles for generating hydrated electrons with visible light or ultraviolet light.
 本発明の実施形態のナノ粒子は、ハロゲン含有有機材料を分解するために使用することができ、本発明は、そのようなハロゲン含有有機材料分解用ナノ粒子を使用する、ハロゲン含有有機材料分解方法を提供することができる。
 本発明は、上述のハロゲン含有有機材料分解用ナノ粒子に、可視光又は紫外光を照射して、ハロゲン含有有機材料のハロゲン-炭素結合を切断することを含む、ハロゲン含有有機材料分解方法。
The nanoparticles of the embodiments of the present invention can be used to decompose halogen-containing organic materials, and the present invention can provide a method for decomposing halogen-containing organic materials using such nanoparticles for decomposing halogen-containing organic materials.
The present invention also provides a method for decomposing a halogen-containing organic material, which comprises irradiating the above-mentioned nanoparticles for decomposing a halogen-containing organic material with visible light or ultraviolet light to cleave the halogen-carbon bond in the halogen-containing organic material.
 本発明の実施形態のナノ粒子は、フォトクロミック材料を製造するために使用することができる。本発明の実施形態のナノ粒子を使用すると、フォトクロミック反応の反応時間が短いフォトクロミック材料を製造することができる。本発明の実施形態のナノ粒子は、フォトクロミック材料用として、好適に使用することができる。 The nanoparticles of the present invention can be used to produce photochromic materials. By using the nanoparticles of the present invention, it is possible to produce photochromic materials with a short reaction time for the photochromic reaction. The nanoparticles of the present invention can be suitably used for photochromic materials.
 以下、本発明を実施例及び比較例により具体的かつ詳細に説明するが、これらの実施例は本発明の一態様にすぎず、本発明はこれらの例によって何ら限定されるものではない。
尚、実施例の記載において、特に記載がない限り、溶媒を考慮しない部分を、重量部及び重量%の基準としている。
The present invention will be specifically and in detail explained below with reference to examples and comparative examples. However, these examples are merely one embodiment of the present invention, and the present invention is not limited to these examples in any way.
In the description of the examples, unless otherwise specified, parts by weight and percentages by weight are based on the parts not taking into account the solvent.
実施例1.メルカプトプロピオン酸(MPA)を配位したCuドープCdSナノ結晶の合成とペルフルオロオクタンスルホン酸(PFOS)の分解
 (合成)
 300mL三ツ口フラスコに、0.091g(0.50mmol)のCdClと0.132g(1.25mmol)のメルカプトプロピオン酸(MPA)を90mLのミリQ水に溶解させ、2MのNaOH水溶液を用いて、pH=11に調整した。
 また、0.4mg(0.0025mmol)のCuCl・HOと0.6mg(0.0062mg)のMPAを1mLのミリQ水に溶解させ、pH=11に調整して、上述の水溶液に混合した。
 混合物を攪拌しながら30分間、窒素をバブリングした後、オイルバスを100℃まで上げて混合物を加熱し、9mLのミリQ水に溶解させた0.088g(0.25mmol)のNaS・9HOを、混合物にすばやく加え還流しながら、4時間反応させた。反応物に、100mLのメタノールを加えて沈殿させ、8500rpmで遠心分離させた後、沈殿物を遮光下で真空乾燥させて、固体を得た。下記の構造同定から目的とするMPAを配位したCuドープCdsナノ結晶と考えられる。
Example 1. Synthesis of Cu-doped CdS nanocrystals coordinated with mercaptopropionic acid (MPA) and decomposition of perfluorooctane sulfonic acid (PFOS) (Synthesis)
In a 300 mL three-neck flask, 0.091 g (0.50 mmol) of CdCl2 and 0.132 g (1.25 mmol) of mercaptopropionic acid (MPA) were dissolved in 90 mL of Milli-Q water, and the pH was adjusted to 11 using a 2 M aqueous NaOH solution.
In addition, 0.4 mg (0.0025 mmol) of CuCl 2 ·H 2 O and 0.6 mg (0.0062 mg) of MPA were dissolved in 1 mL of Milli-Q water, adjusted to pH=11, and mixed with the above aqueous solution.
After bubbling nitrogen through the mixture for 30 minutes while stirring, the mixture was heated by raising the oil bath to 100°C, and 0.088g (0.25mmol) of Na2S.9H2O dissolved in 9mL of Milli-Q water was quickly added to the mixture and reacted for 4 hours while refluxing. The reactant was precipitated by adding 100mL of methanol, centrifuged at 8500rpm, and the precipitate was vacuum dried in the dark to obtain a solid. From the structural identification below, it is considered to be the Cu-doped Cds nanocrystal coordinated with the desired MPA.
 図1は、実施例1のナノ結晶の紫外可視吸収スペクトルを示す。実施例1のナノ結晶の粒径を、図1の吸収スペクトルの第1励起子ピーク波長(λnm)から下記の式を用いて算出すると。第1励起子ピーク波長は427.5nmであり、粒径は4.3nmと求められた。
D(nm)=(-6.6521×10-8)λ+(1.9557×10-4)λ-(9.2352×10-2)λ+(13.29)
Figure 1 shows the ultraviolet-visible absorption spectrum of the nanocrystals of Example 1. The particle size of the nanocrystals of Example 1 was calculated from the first exciton peak wavelength (λ nm) of the absorption spectrum of Figure 1 using the following formula: The first exciton peak wavelength was 427.5 nm, and the particle size was determined to be 4.3 nm.
D (nm) = (-6.6521×10 −8 ) λ 3 + (1.9557×10 −4 ) λ 2 − (9.2352×10 −2) λ + (13.29)
 図2は、実施例1のナノ結晶のFTIR吸収スペクトルを示す。KBr錠剤法で測定し、積算回数は256回、分解能は0.5cm-1である。
 MPA由来の2500cm-1に存在するS-H伸縮振動が認められないことからS-H結合は存在せず、またチオレートアニオンの方がカルボキシレートアニオンよりも半導体ナノ結晶に強く結合することが知られていることから、チオレートアニオンがナノ粒子表面に配位していると考えられる。また、1560cm-1と1400cm-1付近に見える二つのピークはそれぞれMPAのカルボキシレートアニオンの対称伸縮振動と非対称伸縮振動と帰属される。また、2900~3600cm-1の範囲にかけてナノ結晶表面のカルボキシレートアニオンと表面吸着水などとの間の水素結合に由来すると思われるブロードなピークが観測された。
2 shows the FTIR absorption spectrum of the nanocrystals of Example 1. The measurement was performed by the KBr tablet method, with an accumulation count of 256 and a resolution of 0.5 cm −1 .
Since the S-H stretching vibration at 2500 cm -1 derived from MPA was not observed, there was no S-H bond, and since it is known that thiolate anions bind more strongly to semiconductor nanocrystals than carboxylate anions, it is believed that thiolate anions are coordinated to the nanoparticle surface. The two peaks seen near 1560 cm -1 and 1400 cm -1 are assigned to the symmetric and asymmetric stretching vibrations of the carboxylate anion of MPA, respectively. In addition, a broad peak was observed in the range of 2900 to 3600 cm -1 that is believed to be derived from hydrogen bonds between the carboxylate anion on the nanocrystal surface and surface-adsorbed water, etc.
 図3は、実施例1のナノ結晶のXRDスペクトルを示す。積算回数は8回であり、閃亜鉛鉱型であることがわかる。CdとCuのモル比は、Cd:Cu=1:0.005(モル比)であった。 Figure 3 shows the XRD spectrum of the nanocrystals of Example 1. The number of integrations was 8, and it was found to be zinc blende type. The molar ratio of Cd to Cu was Cd:Cu = 1:0.005 (molar ratio).
 (光分解反応)
 溶液調整
 実施例1のナノ結晶を5.0mg秤取し、3mLの重水に加えた。その溶液にトリエタノールアミン(TEOA)(100mg、0.67mmol)と、ペルフルオロオクタンスルホン酸(PFOS)(2mg、4.3×10-3mmol)を加え、溶液を調整した(実施例1のPFOSナノ粒子溶液)。
 NMRの標準物質として、4-(トリフルオロメチル)安息香酸(2.2mg、1.2×10-2mmol)と、TEOA(42mg、0.28mmol)を3mLの重水に加え、NMR標準溶液を調製した。
(Photodecomposition reaction)
5.0 mg of the nanocrystals of Example 1 was weighed out and added to 3 mL of deuterium oxide. Triethanolamine (TEOA) (100 mg, 0.67 mmol) and perfluorooctanesulfonic acid (PFOS) (2 mg, 4.3×10 −3 mmol) were added to the solution to prepare a solution (PFOS nanoparticle solution of Example 1).
As an NMR standard substance, 4-(trifluoromethyl)benzoic acid (2.2 mg, 1.2×10 −2 mmol) and TEOA (42 mg, 0.28 mmol) were added to 3 mL of heavy water to prepare an NMR standard solution.
 分解反応
 実施例1のPFOSナノ粒子溶液350mg、NMR標準溶液150mgの各々を、NMRサンプルチューブに移して、19FNMRを測定した(0h)。
 実施例1のPFOSナノ粒子溶液を、1cmセルに移し、可視光(405nm、0.89W/cm)を6時間、24時間照射した。可視光照射後の実施例1のPFOSナノ粒子溶液350mgを、NMRサンプルチューブに移して19FNMRを測定した(6h)及び(24h)。
 図4は、可視光照射前後の19FNMR測定結果を示す。0hのピーク積分値を基準値として、フッ化物イオンの積分値からCF結合の解離割合を計算した。6hで3%、24hで58%であった。尚、積算回数は64回、実施例1のナノ結晶とPFOSのモル比は、1:80であった。
 実施例1のナノ結晶によるPFOSの分解は、ナノ結晶:PFOS=1:80(モル比)で反応させた。分解後にはナノ結晶が沈殿していたため、不均一触媒として働いていることが分かった。後述する比較例を参照すると、Cuをドープした実施例1のナノ結晶は、分解効率により優れることがわかった。
Decomposition Reaction 350 mg of the PFOS nanoparticle solution of Example 1 and 150 mg of the NMR standard solution were each transferred to an NMR sample tube, and 19 F NMR was measured (0 h).
The PFOS nanoparticle solution of Example 1 was transferred to a 1 cm cell and irradiated with visible light (405 nm, 0.89 W/ cm2 ) for 6 hours and 24 hours. After visible light irradiation, 350 mg of the PFOS nanoparticle solution of Example 1 was transferred to an NMR sample tube and 19F NMR was measured (6 h) and (24 h).
4 shows the results of 19F NMR measurements before and after visible light irradiation. The peak integral value at 0 h was used as the reference value, and the dissociation rate of the CF bond was calculated from the integral value of the fluoride ion. It was 3% at 6 h and 58% at 24 h. The number of integrations was 64, and the molar ratio of the nanocrystals and PFOS in Example 1 was 1:80.
The decomposition of PFOS by the nanocrystals of Example 1 was carried out at a molar ratio of nanocrystals:PFOS = 1:80. Since the nanocrystals precipitated after the decomposition, it was found that they acted as a heterogeneous catalyst. With reference to the Comparative Example described later, it was found that the nanocrystals of Example 1 doped with Cu had better decomposition efficiency.
 更に、正孔捕捉材として使用しているTEOAを用いなかったこと、ナノ結晶:PFOS=1:16(モル比)で反応させた他は、上述の実施例1のナノ結晶によるPFOSの分解と同様の方法を用いて、実施例1のナノ結晶によるPFOSの分解を行った。
 図5は、可視光照射前後の19FNMR測定結果を示す。分解反応は正孔捕捉材であるTEOAを添加しないと効率は低下するが、ナノ結晶の量に応じて分解は進行することがわかる。
Furthermore, the decomposition of PFOS by the nanocrystals in Example 1 was carried out in the same manner as in the decomposition of PFOS by the nanocrystals in Example 1 described above, except that TEOA, which is used as a hole capture material, was not used and the reaction was carried out at a molar ratio of nanocrystals:PFOS = 1:16.
5 shows the results of 19F NMR measurements before and after irradiation with visible light. It can be seen that the efficiency of the decomposition reaction decreases when TEOA, a hole capture agent, is not added, but the decomposition proceeds according to the amount of nanocrystals.
 実施例2.メルカプトプロピオン酸(MPA)を配位したCuドープCdSナノ結晶によるポリテトラフルオロエチレン(PTFE)の分解
 (光分解反応)
 溶液調製
 実施例1のナノ結晶を15mg秤取し、2mLのミリQ水に加えた。その溶液に、TEOA(100mg、0.67mmol)とポリテトラフルオロエチレン(PTFE)(100mg)を加えて、PTFEナノ粒子調製液を得た。
 NMRの標準物質として、4-(トリフルオロメチル)安息香酸(2.2mg、1.2×10-2mmol)と、TEOA(42mg、0.28mmol)を3mLの重水に加え、NMR標準溶液を調整した。
Example 2. Decomposition of polytetrafluoroethylene (PTFE) by Cu-doped CdS nanocrystals coordinated with mercaptopropionic acid (MPA) (photodecomposition reaction)
Solution Preparation 15 mg of the nanocrystals of Example 1 was weighed out and added to 2 mL of Milli-Q water. TEOA (100 mg, 0.67 mmol) and polytetrafluoroethylene (PTFE) (100 mg) were added to the solution to obtain a PTFE nanoparticle preparation solution.
As an NMR standard substance, 4-(trifluoromethyl)benzoic acid (2.2 mg, 1.2×10 −2 mmol) and TEOA (42 mg, 0.28 mmol) were added to 3 mL of heavy water to prepare an NMR standard solution.
 分解反応
 実施例2のPTFEナノ粒子溶液350mg、NMR標準溶液150mgの各々を、NMRサンプルチューブに移して、19FNMRを測定した(0h)。
 実施例2のPTFEナノ粒子溶液を、1cmセルに移し、可視光(405nm、0.89W/cm)を18時間、42時間照射した。可視光照射後の実施例2のPTFEナノ粒子溶液350mgを、NMRサンプルチューブに移して19FNMRを測定した(18h)及び(42h)。
 図6は、可視光照射前後の19FNMR測定結果を示す。時間が経過すると、Fイオンが生じることがわかる。PTFEは水に溶解せず撥水するため、光照射の際にナノ結晶溶液との接触確率を上げるために過剰量(100mg)添加した。過剰量添加しているため、分解率は低くなるが42時間照射したサンプルではPTFEの撥水機能が低下して溶液中を浮遊するような挙動も示した。また、42時間後に見えるFのピークは濃度が十分に高くなっており、更に時間をかければより分解が進むと考えられえる。
Decomposition Reaction 350 mg of the PTFE nanoparticle solution of Example 2 and 150 mg of the NMR standard solution were each transferred to an NMR sample tube, and 19 F NMR was measured (0 h).
The PTFE nanoparticle solution of Example 2 was transferred to a 1 cm cell and irradiated with visible light (405 nm, 0.89 W/ cm2 ) for 18 hours and 42 hours. After visible light irradiation, 350 mg of the PTFE nanoparticle solution of Example 2 was transferred to an NMR sample tube and 19F NMR was measured (18 h) and (42 h).
FIG. 6 shows the results of 19F NMR measurements before and after visible light irradiation. It can be seen that F ions are generated over time. Since PTFE does not dissolve in water and is water repellent, an excess amount (100 mg) was added to increase the probability of contact with the nanocrystal solution during light irradiation. Since an excess amount was added, the decomposition rate was low, but in the sample irradiated for 42 hours, the water repellency of PTFE was reduced and it also showed behavior as if it was floating in the solution. In addition, the F peak visible after 42 hours had a sufficiently high concentration, and it is thought that decomposition would progress further if more time was taken.
 実施例3.MPAを配位したCdSナノ結晶の合成とそれを用いるPFOSの分解
 (合成)
 CuCl・HOとMPAのミリQ溶液の代わりに、CuCl・HOを含まず、MPAを含むミリQを使用した他は、実施例1で記載したナノ結晶の製造方法と同様の方法を用いて、固体を得た。下記の構造同定から目的とする実施例3のMPAを配位したCdSナノ結晶と考えられる。
Example 3. Synthesis of MPA-coordinated CdS nanocrystals and their use in decomposition of PFOS (Synthesis)
A solid was obtained using the same method as the nanocrystal manufacturing method described in Example 1, except that Milli-Q containing MPA but not CuCl2.H2O was used instead of Milli-Q solution of CuCl2.H2O and MPA. From the structural identification below, it is considered to be the targeted CdS nanocrystal coordinated with MPA of Example 3.
 図7は、実施例3のナノ結晶の紫外可視吸収スペクトルを示す。実施例3のナノ結晶の粒径を、図7の吸収スペクトルから実施例1記載の式を用いて算出すると。第1励起子ピークは432nmであり、粒径は4.5nmと求められた。 Figure 7 shows the UV-visible absorption spectrum of the nanocrystals of Example 3. The particle size of the nanocrystals of Example 3 was calculated from the absorption spectrum in Figure 7 using the formula described in Example 1. The first exciton peak was 432 nm, and the particle size was determined to be 4.5 nm.
 図8は、実施例3のナノ結晶のFTIR吸収スペクトルを示す。KBr錠剤法で測定し、積算回数は256回、分解能は0.5cm-1である。
 MPA由来の2500cm-1に存在するS-H伸縮振動が認められないことからS-H結合は存在せず、またチオレートアニオンの方がカルボキシレートアニオンよりも半導体ナノ結晶に強く結合することが知られていることから、チオレートアニオンがナノ粒子表面に配位していると考えられる。また、1560cm-1と1400cm-1付近に見える二つのピークはそれぞれMPAのカルボキシレートアニオンの対称伸縮振動と非対称伸縮振動と帰属される。また、2900~3600cm-1の範囲にかけてナノ結晶表面のカルボキシレートアニオンと表面吸着水などとの間の水素結合に由来すると思われるブロードなピークが観測された。
8 shows the FTIR absorption spectrum of the nanocrystals of Example 3. The measurement was performed by the KBr tablet method, with an accumulation count of 256 and a resolution of 0.5 cm −1 .
Since the S-H stretching vibration at 2500 cm -1 derived from MPA was not observed, there was no S-H bond, and since it is known that thiolate anions bind more strongly to semiconductor nanocrystals than carboxylate anions, it is believed that thiolate anions are coordinated to the nanoparticle surface. The two peaks seen near 1560 cm -1 and 1400 cm -1 are assigned to the symmetric and asymmetric stretching vibrations of the carboxylate anion of MPA, respectively. In addition, a broad peak was observed in the range of 2900 to 3600 cm -1 that is believed to be derived from hydrogen bonds between the carboxylate anion on the nanocrystal surface and surface-adsorbed water, etc.
 図9は、実施例3のナノ結晶のXRDスペクトルを示す。積算回数は8回であり、閃亜鉛鉱型であることがわかる。 Figure 9 shows the XRD spectrum of the nanocrystals of Example 3. The number of integrations was 8, and it is clear that they are zinc blende type.
 (光分解反応)
 溶液調整
 実施例1のナノ結晶の代わりに実施例3のナノ結晶を用いた他は、実施例1に記載した方法と同様な方法を用いて、実施例3のPFOSナノ粒子溶液とNMR標準溶液を調製した。
(Photodecomposition reaction)
Solution Preparation The PFOS nanoparticle solution of Example 3 and the NMR standard solution were prepared using a method similar to that described in Example 1, except that the nanocrystals of Example 3 were used instead of the nanocrystals of Example 1.
 分解反応
 実施例1のPFOSナノ粒子溶液の代わりに実施例3のPFOSナノ結晶溶液を使用した他は、実施例1に記載した方法を用いて、19FNMRを測定した(0h)、(6h)及び(24h)。
 図10は、可視光照射前後の19FNMR測定結果を示す。0hのピーク積分値を基準値として、フッ化物イオンの積分値からCF結合の解離割合を計算した。6hで0.4%、24hで53%であった。尚、積算回数は64回、実施例3のナノ結晶とPFOSのモル比は、1:72であった。
Decomposition Reaction 19 F NMR was measured at (0 h), (6 h) and (24 h) using the method described in Example 1, except that the PFOS nanocrystal solution of Example 3 was used instead of the PFOS nanoparticle solution of Example 1.
Fig. 10 shows the results of 19F NMR measurement before and after visible light irradiation. The peak integral value at 0 h was used as the reference value, and the dissociation rate of the CF bond was calculated from the integral value of the fluoride ion. It was 0.4% at 6 h and 53% at 24 h. The number of integrations was 64, and the molar ratio of the nanocrystals and PFOS in Example 3 was 1:72.
 比較例1.CuドープCdSナノ結晶の合成とそれを用いるPFOSの分解
 (合成)
 300mL三ツ口フラスコ中で、0.091g(0.50mmol)のCdClを90mLのミリQ水に溶解させた。
 また、0.4mg(0.0025mmol)のCuCl・HOを1mLのミリQ水に溶解させ、pH=11に調整して、上述の水溶液に混合した。
 混合物を攪拌しながら30分間、窒素をバブリングした後、オイルバスを100℃まで上げて混合物を加熱し、9mLのミリQ水に溶解させた0.088g(0.25mmol)のNaS・9HOを、混合物にすばやく加え還流しながら、4時間反応させた。反応物に、100mLのメタノールを加えて沈殿させ、8500rpmで遠心分離させた後、沈殿物を遮光下で真空乾燥させて、固体を得た。下記の構造同定から目的とするCuドープCdSナノ結晶と考えられる。
Comparative Example 1. Synthesis of Cu-doped CdS nanocrystals and their use in decomposition of PFOS (Synthesis)
In a 300 mL three-neck flask, 0.091 g (0.50 mmol) of CdCl2 was dissolved in 90 mL of Milli-Q water.
In addition, 0.4 mg (0.0025 mmol) of CuCl 2 ·H 2 O was dissolved in 1 mL of Milli-Q water, the pH was adjusted to 11, and the solution was mixed with the above aqueous solution.
After bubbling nitrogen through the mixture for 30 minutes while stirring, the mixture was heated by raising the oil bath to 100°C, and 0.088 g (0.25 mmol) of Na 2 S·9H 2 O dissolved in 9 mL of Milli-Q water was quickly added to the mixture and reacted for 4 hours while refluxing. 100 mL of methanol was added to the reactant to cause precipitation, and the mixture was centrifuged at 8500 rpm. The precipitate was vacuum-dried in the dark to obtain a solid. The following structural identification suggests that it is the target Cu-doped CdS nanocrystal.
 図11は、比較例1のナノ結晶のFTIR吸収スペクトルを示す。KBr錠剤法で測定し、積算回数は256回、分解能は0.5cm-1である。
 図12は、比較例1のナノ結晶のXRDスペクトルを示す。積算回数は8回であり、閃亜鉛鉱型であることがわかる。
11 shows the FTIR absorption spectrum of the nanocrystals of Comparative Example 1. The measurement was performed by the KBr tablet method, with an accumulation count of 256 and a resolution of 0.5 cm −1 .
12 shows the XRD spectrum of the nanocrystals of Comparative Example 1. The number of integrations was 8, and it was found that the nanocrystals were of zinc blende type.
 (光分解反応)
 溶液調整
 実施例1のナノ結晶の代わりに比較例1のナノ結晶を用いた他は、実施例1に記載した方法と同様な方法を用いて、比較例1のPFOSナノ粒子溶液とNMR標準溶液を調製した。
(Photodecomposition reaction)
Solution Preparation The PFOS nanoparticle solution of Comparative Example 1 and the NMR standard solution were prepared using a method similar to that described in Example 1, except that the nanocrystals of Comparative Example 1 were used instead of the nanocrystals of Example 1.
 分解反応
 実施例1のPFOSナノ粒子溶液代わりに比較例1のPFOSナノ結晶溶液を使用した他は、実施例1に記載した方法を用いて、19FNMRを測定した(0h)、(6h)及び(24h)。
 図13は、可視光照射前後の19FNMR測定結果を示す。0hのピーク積分値を基準値として、フッ化物イオンの積分値からCF結合の解離割合を計算した。6hで0.07%、24hで2%であった。
Decomposition Reaction 19 FNMR was measured (0 h), (6 h) and (24 h) using the method described in Example 1, except that the PFOS nanocrystal solution of Comparative Example 1 was used instead of the PFOS nanoparticle solution of Example 1.
13 shows the results of 19F NMR measurements before and after irradiation with visible light. The peak integral value at 0 h was used as the reference value, and the dissociation rate of the CF bond was calculated from the integral value of the fluoride ion. It was 0.07% at 6 h and 2% at 24 h.
 実施例4.MPAを配位したCdSナノ粒子の合成とそれを用いるPFOSの分解
 200mL二口フラスコに、91.6mg(0.50mmol)の塩化カドミウム(CdCl)と99mLのミリQ水を加えて撹拌して溶液を得た。この溶液にMPA132.6mg(1.25mmol)を加え、2MのNaOH溶液3.5gを加えて、pHを調整した。30分間窒素バブリングを行った後、オイルバスを110℃に設定し、溶液を100℃に昇温した。昇温後、1mLのミリQ水に溶解させた88mg(0.36mmol)のNaS・9HOを素早く反応溶液に添加し、15分間100℃に加熱して反応を行った。反応後、溶液を氷浴で冷却し、100mLのメタノールを加えて固形分を沈殿させた。沈殿物を8500rpmで遠心分離を行って回収し、真空乾燥を行って、実施例4のMAP配位CdSナノ結晶を得た。
 紫外可視吸収スペクトルから粒径は3.4nm、XRDスペクトルから閃亜鉛鉱型であり、FT-IRスペクトルからCdSナノ粒子にチオレートアニオンが配位していると考えられた。
Example 4. Synthesis of MPA-coordinated CdS nanoparticles and decomposition of PFOS using the same 91.6 mg (0.50 mmol) of cadmium chloride (CdCl 2 ) and 99 mL of Milli-Q water were added to a 200 mL two-neck flask and stirred to obtain a solution. 132.6 mg (1.25 mmol) of MPA was added to this solution, and 3.5 g of 2 M NaOH solution was added to adjust the pH. After nitrogen bubbling for 30 minutes, the oil bath was set to 110° C., and the solution was heated to 100° C. After heating, 88 mg (0.36 mmol) of NaS.9H 2 O dissolved in 1 mL of Milli-Q water was quickly added to the reaction solution, and the reaction was carried out by heating to 100° C. for 15 minutes. After the reaction, the solution was cooled in an ice bath, and 100 mL of methanol was added to precipitate the solids. The precipitate was collected by centrifugation at 8,500 rpm and dried in vacuum to obtain the MAP-coordinated CdS nanocrystals of Example 4.
The ultraviolet-visible absorption spectrum indicated that the particle size was 3.4 nm, the XRD spectrum indicated that the particles were of zinc blende type, and the FT-IR spectrum indicated that thiolate anions were coordinated to the CdS nanoparticles.
(光分解反応)
 溶液調製:
 PFOS10mg(18.5mmol)とトリエタノールアミン300mg(2.0mmol)をミリQ水(15mL)に溶解して、PFOS溶液を調製した。この溶液1mLに、実施例4のMPA配位CdSナノ粒子0.88mgを加えて実施例4のPFOS-ナノ粒子調整溶液を得た。
(Photodecomposition reaction)
Solution preparation:
A PFOS solution was prepared by dissolving 10 mg (18.5 mmol) of PFOS and 300 mg (2.0 mmol) of triethanolamine in Milli-Q water (15 mL). 0.88 mg of the MPA-coordinated CdS nanoparticles of Example 4 was added to 1 mL of this solution to obtain a PFOS-nanoparticle preparation solution of Example 4.
 分解反応:
 実施例4のPFOS-ナノ粒子調整溶液1mLを1cmセルに入れ、30分間窒素バブリングを行った後、可視光 (405nm、0.83W/cm)を、38℃で、合計で1、2、4又は8時間照射した。反応後、各々の実施例4の溶液を遠心分離(15000rpm、3分間)し、上澄み液を120倍希釈した。イオンクロマトグラフィー測定を行い、溶液中のフッ素イオン濃度を求めた。そのフッ化物イオンのピーク面積からC-F結合の解離割合を計算した。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
Decomposition reaction:
1 mL of the PFOS-nanoparticle preparation solution of Example 4 was placed in a 1 cm cell, and after nitrogen bubbling for 30 minutes, visible light (405 nm, 0.83 W/cm 2 ) was irradiated at 38° C. for a total of 1, 2, 4 or 8 hours. After the reaction, each solution of Example 4 was centrifuged (15,000 rpm, 3 minutes) and the supernatant was diluted 120 times. Ion chromatography measurement was performed to determine the fluoride ion concentration in the solution. The dissociation rate of the C—F bond was calculated from the peak area of the fluoride ion. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
 実施例5.MPA配位CdSナノ粒子を用いるPFOSの繰り返し光分解
 実施例4のPFOS-ナノ粒子調整溶液と同様の溶液を調整して、実施例5のPFOS-ナノ粒子調整溶液を得た。
 分解反応:
 実施例5のPFOS-ナノ粒子調製溶液を1cmセルに1mL入れ、30分間窒素バブリングを行った後、可視光(405nm、0.83W/cm)を、38℃で、合計12時間照射した。PFOS-ナノ粒子調製溶液を遠心分離(15000pm、3分間) し、上澄みを120倍に希釈した。イオンクロマトグラフィー測定を行い、溶液中のフッ素イオン濃度を求めた。
 繰り返し光分解は、遠心分離して回収したMPA配位CdSナノ粒子を、1mLのPFOS溶液に加えて、PFOS-ナノ粒子調整溶液を調整して、PFOSの分解反応を再度行った。12回繰り返し行った。
 イオンクロマトグラフィーのフッ化物イオンのピーク面積からC-F結合の解離割合(PFOSの分解割合ではない)を計算して、1回から12回のC-F結合の脱フッ素化率を算出した。結果を表2に示す。
Example 5. Repeated photodecomposition of PFOS using MPA-coordinated CdS nanoparticles A PFOS-nanoparticle prepared solution of Example 5 was obtained by preparing a solution similar to the PFOS-nanoparticle prepared solution of Example 4.
Decomposition reaction:
1 mL of the PFOS-nanoparticle preparation solution of Example 5 was placed in a 1 cm cell, and after nitrogen bubbling for 30 minutes, it was irradiated with visible light (405 nm, 0.83 W/cm 2 ) at 38° C. for a total of 12 hours. The PFOS-nanoparticle preparation solution was centrifuged (15,000 pm, 3 minutes), and the supernatant was diluted 120-fold. Ion chromatography measurement was performed to determine the fluoride ion concentration in the solution.
The repeated photolysis was carried out 12 times by adding the MPA-coordinated CdS nanoparticles recovered by centrifugation to 1 mL of the PFOS solution to prepare a PFOS-nanoparticle preparation solution.
The dissociation rate of the C—F bond (not the decomposition rate of PFOS) was calculated from the peak area of fluoride ions in ion chromatography, and the defluorination rates of the C—F bond from cycles 1 to 12 were calculated. The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
 PFOSの光分解を繰り返すと、徐々に脱フッ素化率が減少することが認められた。表2をプロットして脱フッ素化率が0%になる点を算出すると、16.7回目であった。16.77回目までの光分解で1つのCdS粒子あたりに分解できるC-F結合は17317個であった。尚、溶液中のCdSナノ粒子とPFOSの比は、1:122であった。
Figure JPOXMLDOC01-appb-T000002
It was found that the defluorination rate gradually decreased with repeated photolysis of PFOS. The point at which the defluorination rate reached 0% was calculated by plotting Table 2, and it was the 16.7th time. The number of C-F bonds that could be decomposed per CdS particle by the 16.77th photolysis was 17,317. The ratio of CdS nanoparticles to PFOS in the solution was 1:122.
 実施例6.MPA配位CdSナノ粒子を用いるNafionの光分解
 溶液調製:
 0.181wt%のNafion溶液(水:エタノール=1:1)0.4mLにミリQ水を0.6mL加えて、Nafion溶液を調整した。この溶液1mLに、実施例4と同様のMPA配位CdSナノ粒子1.1mgとトリエタノールアミン50mg(0.33mmol)を加え、実施例6のNafion-ナノ粒子調整溶液を得た。
 分解反応:
 実施例6のNafion-ナノ粒子調製溶液を1cmセルに1mL入れて、30分間窒素バブリングを行った後、可視光(405nm、0.83W/cm)を、38℃で、光照射を開始した。光照射開始から4時間後、12時間後、24時間後に、Nafion-ナノ粒子調製溶液をサンプリングして、各々について遠心分離(15000rpm、3分間)し、上澄み液を120倍希釈した。イオンクロマトグラフィー測定を行い、溶液中のフッ素イオン濃度を求めて、脱フッ素化率を得た。Nafionの分解結果を表3に示す。
Example 6. Photodegradation of Nafion using MPA-coordinated CdS nanoparticles Solution preparation:
A Nafion solution was prepared by adding 0.6 mL of Milli-Q water to 0.4 mL of a 0.181 wt % Nafion solution (water:ethanol = 1:1). To 1 mL of this solution, 1.1 mg of MPA-coordinated CdS nanoparticles similar to those in Example 4 and 50 mg (0.33 mmol) of triethanolamine were added to obtain a Nafion-nanoparticle preparation solution of Example 6.
Decomposition reaction:
1 mL of the Nafion-nanoparticle preparation solution of Example 6 was placed in a 1 cm cell, and after nitrogen bubbling for 30 minutes, irradiation with visible light (405 nm, 0.83 W/cm 2 ) was started at 38° C. Four hours, 12 hours, and 24 hours after the start of irradiation, the Nafion-nanoparticle preparation solution was sampled and centrifuged (15,000 rpm, 3 minutes) and the supernatant was diluted 120 times. Ion chromatography measurement was performed to determine the fluoride ion concentration in the solution to obtain the defluorination rate. The decomposition results of Nafion are shown in Table 3.
Figure JPOXMLDOC01-appb-T000003
 NafionはPFOSと比較して脱フッ素化率が低下する。Nafionは、ポリマーであることと、主鎖がPTFEであることによると考えられる。
Figure JPOXMLDOC01-appb-T000003
The defluorination rate of Nafion is lower than that of PFOS, which is believed to be due to the fact that Nafion is a polymer and its main chain is PTFE.
 実施例7.MPA配位CdSナノ粒子を用いるPFOSの光分解(ナノ粒子含有率)
 実施例3と同様の方法で合成したMPAを配位したCdSナノ結晶を使用し、実施例4に記載した方法と同様の方法を用いて、実施例7のナノ粒子分散体を製造した。ただし、ナノ粒子の含有量を、ナノ粒子分散体を100質量%として、0.50質量%、0.33質量%、0.17質量%、0.08質量%、0.04質量%の5種類のナノ粒子分散体を得た。それらの各々を、実施例4に記載した方法と同様の方法を用いて(光照射時間は、4時間)、PFOSの光分解反応を行った。結果を表4に示す。
Example 7. Photodegradation of PFOS using MPA-coordinated CdS nanoparticles (nanoparticle content)
The nanoparticle dispersion of Example 7 was produced using the same method as described in Example 4, using CdS nanocrystals coordinated with MPA synthesized in the same manner as in Example 3. However, five types of nanoparticle dispersions were obtained with nanoparticle contents of 0.50 mass%, 0.33 mass%, 0.17 mass%, 0.08 mass%, and 0.04 mass%, assuming the nanoparticle dispersion to be 100 mass%. Each of them was subjected to a photodecomposition reaction of PFOS using the same method as described in Example 4 (light irradiation time: 4 hours). The results are shown in Table 4.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 実施例8.MPA配位CdSナノ粒子を用いるPFOSの光分解(温度)
 実施例3に記載した方法と同様の方法を用いて合成したMPAを配位したCdSナノ結晶を使用し、実施例4に記載した方法と同様の方法を用いて2つの実施例8のナノ粒子分散体を得た。各々のナノ粒子分散体についてPFOSの光分解反応を行った(光照射時間は 時間)。ただし、2つの片方は、38℃にて、光分解反応を行い、もう一方は23℃で光分解を行った。結果を表5に示す。
Example 8. Photodecomposition of PFOS using MPA-coordinated CdS nanoparticles (temperature)
Two nanoparticle dispersions of Example 8 were obtained using the same method as that described in Example 4, using CdS nanocrystals coordinated with MPA synthesized using the same method as that described in Example 3. A photodecomposition reaction of PFOS was carried out for each nanoparticle dispersion (light irradiation time: hours). However, one of the two was subjected to the photodecomposition reaction at 38°C, and the other was subjected to photodecomposition at 23°C. The results are shown in Table 5.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 本発明の実施形態のナノ粒子を用いると、より低エネルギーで、より小型、より安価な光源を用いて、水和電子を生成することができ、そのナノ粒子は、イリジウムなどのレアメタルを含まず、よりコストが安く及びより持続可能性に優れ(カントリーリスクがより低く)、より汎用性に優れる。更に、本発明の実施形態のナノ粒子を用いて、含フッ素化合物の分解方法を提供することができ、また、フォトクロミック材料なども提供することができる。
 [関連出願]
 本出願は、2023年2月8日に日本国でされた特願2023-17884を基礎出願とするパリ条約第4条又は日本国特許法第41条に基づく優先権を主張する。この基礎出願の内容は、参照することによって、本明細書に組み込まれる。
By using the nanoparticles according to the embodiment of the present invention, hydrated electrons can be generated using a lower energy, smaller, and cheaper light source, and the nanoparticles do not contain rare metals such as iridium, are less expensive, more sustainable (lower country risk), and more versatile. Furthermore, by using the nanoparticles according to the embodiment of the present invention, a method for decomposing fluorine-containing compounds can be provided, and photochromic materials and the like can also be provided.
[Related Applications]
This application claims priority under Article 4 of the Paris Convention or Article 41 of the Japanese Patent Act, based on Japanese Patent Application No. 2023-17884 filed on February 8, 2023. The contents of this basic application are incorporated herein by reference.

Claims (11)

  1.  下記一般式(1)
     CdX (1)
    [式(1)中、Xは、第16族元素を示す。]
    で表される粒子の表面に、下記一般式(2)
     -S-R21-COOR22(2)
    [式(2)中、R21は、NHもしくはOHで置換されていてもよい炭素数1~20の有機基を示し、R22は、Hもしくは炭素数1~6の有機基を示す。]
    で表される有機配位子を有する、粒子を含む、水和電子発生用、ハロゲン含有有機材料分解用、又はフォトクロミック材料用のナノ粒子。
    The following general formula (1)
    CdX (1)
    [In formula (1), X represents a Group 16 element.]
    The surface of the particle represented by the following general formula (2)
    -SR 21 -COOR 22 (2)
    [In formula (2), R 21 represents an organic group having 1 to 20 carbon atoms which may be substituted with NH 2 or OH, and R 22 represents H or an organic group having 1 to 6 carbon atoms.]
    The nanoparticles include particles having an organic ligand represented by the following formula:
  2.  下記一般式(1’)
     CdX (1’)
    [式(1’)中、Xは、第16族元素を示す。]
    で表される粒子の表面に、下記一般式(2’)
     -S-R21-COOR22(2’)
    [式(2’)中、R21は、NHもしくはOHで置換されていてもよい炭素数3~20の有機基を示し、R22は、Hを示し、又は、R21は、NHもしくはOHで置換されていてもよい炭素数1~20の有機基を示し、R22は、炭素数1~6の有機基を示す。]
    で表される有機配位子を有する、粒子を含む、ナノ粒子。
    The following general formula (1'):
    CdX (1')
    [In formula (1'), X represents a Group 16 element.]
    The surface of the particle represented by the following general formula (2')
    -SR 21 -COOR 22 (2')
    [In formula (2'), R 21 represents an organic group having 3 to 20 carbon atoms which may be substituted with NH 2 or OH, and R 22 represents H, or R 21 represents an organic group having 1 to 20 carbon atoms which may be substituted with NH 2 or OH, and R 22 represents an organic group having 1 to 6 carbon atoms.]
    The nanoparticles include particles having an organic ligand represented by the formula:
  3.  R21は、炭素数1~6の有機基を示し、R22は、Hを示す、請求項1に記載のナノ粒子。 2. The nanoparticle according to claim 1, wherein R 21 represents an organic group having 1 to 6 carbon atoms, and R 22 represents H.
  4.  前記Xは、O、S、Se又はTeから選択される少なくとも1種である、請求項1又は2に記載のナノ粒子。 The nanoparticles according to claim 1 or 2, wherein X is at least one selected from O, S, Se, or Te.
  5.  平均粒子径が1nm以上100nm以下である、請求項1又は2に記載のナノ粒子。 The nanoparticles according to claim 1 or 2, having an average particle size of 1 nm or more and 100 nm or less.
  6.  請求項1又は2に記載のナノ粒子が水に分散している、ナノ粒子水分散体。 A nanoparticle aqueous dispersion in which the nanoparticles according to claim 1 or 2 are dispersed in water.
  7.  水和電子発生用、ハロゲン含有有機材料分解用、又はフォトクロミック材料用の請求項2に記載のナノ粒子 Nanoparticles according to claim 2 for generating hydrated electrons, for decomposing halogen-containing organic materials, or for use as photochromic materials
  8.  請求項1又は7に記載の水和電子発生用ナノ粒子を使用する、水和電子発生方法。 A method for generating hydrated electrons using the nanoparticles for generating hydrated electrons described in claim 1 or 7.
  9.  請求項1又は7に記載の水和電子発生用ナノ粒子に、可視光又は紫外光を照射することを含む、請求項8に記載の水和電子発生方法。 The method for generating hydrated electrons according to claim 8, comprising irradiating the nanoparticles for generating hydrated electrons according to claim 1 or 7 with visible light or ultraviolet light.
  10.  請求項1又は7に記載のハロゲン含有有機材料分解用ナノ粒子を使用する、ハロゲン含有有機材料分解方法。 A method for decomposing halogen-containing organic materials using the nanoparticles for decomposing halogen-containing organic materials according to claim 1 or 7.
  11.  請求項1又は7に記載のハロゲン含有有機材料分解用ナノ粒子に、可視光又は紫外光を照射して、ハロゲン含有有機材料のハロゲン-炭素結合を切断することを含む、ハロゲン含有有機材料分解方法。 A method for decomposing halogen-containing organic materials, comprising irradiating the nanoparticles for decomposing halogen-containing organic materials according to claim 1 or 7 with visible light or ultraviolet light to cleave the halogen-carbon bond of the halogen-containing organic materials.
PCT/JP2024/004156 2023-02-08 2024-02-07 Nanoparticles for hydrated electron generation, for halogen-containing organic material decomposition, and for photochromic materials WO2024166951A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2023017884 2023-02-08
JP2023-017884 2023-02-08

Publications (1)

Publication Number Publication Date
WO2024166951A1 true WO2024166951A1 (en) 2024-08-15

Family

ID=92263040

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2024/004156 WO2024166951A1 (en) 2023-02-08 2024-02-07 Nanoparticles for hydrated electron generation, for halogen-containing organic material decomposition, and for photochromic materials

Country Status (1)

Country Link
WO (1) WO2024166951A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002332477A (en) * 2001-01-18 2002-11-22 Mitsubishi Chemicals Corp Super fine semiconductor having alkyl fluoride ligand and thin-film containing the same
JP2004352594A (en) * 2003-05-30 2004-12-16 Hitachi Software Eng Co Ltd Nanoparticle production method, and nanoparticle produced by the method
JP2005272795A (en) * 2003-11-10 2005-10-06 Fuji Photo Film Co Ltd Dope-type metal sulfide phosphor nanoparticle, dispersion of the same, and method for producing the same
JP2013089969A (en) * 2011-10-18 2013-05-13 Samsung Electronics Co Ltd Quantum dot having inorganic ligands and process of manufacturing the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002332477A (en) * 2001-01-18 2002-11-22 Mitsubishi Chemicals Corp Super fine semiconductor having alkyl fluoride ligand and thin-film containing the same
JP2004352594A (en) * 2003-05-30 2004-12-16 Hitachi Software Eng Co Ltd Nanoparticle production method, and nanoparticle produced by the method
JP2005272795A (en) * 2003-11-10 2005-10-06 Fuji Photo Film Co Ltd Dope-type metal sulfide phosphor nanoparticle, dispersion of the same, and method for producing the same
JP2013089969A (en) * 2011-10-18 2013-05-13 Samsung Electronics Co Ltd Quantum dot having inorganic ligands and process of manufacturing the same

Similar Documents

Publication Publication Date Title
Chen et al. Carbon nitride modified hexagonal boron nitride interface as highly efficient blue LED light-driven photocatalyst
Wang et al. Facile construction of novel BiOBr/Bi12O17Cl2 heterojunction composites with enhanced photocatalytic performance
Kumru et al. Enhanced dispersibility of graphitic carbon nitride particles in aqueous and organic media via a one-pot grafting approach
Kandi et al. Modification of BiOI microplates with CdS QDs for enhancing stability, optical property, electronic behavior toward rhodamine B decolorization, and photocatalytic hydrogen evolution
Su et al. Internal electric field assisted photocatalytic generation of hydrogen peroxide over BiOCl with HCOOH
Chen et al. S-scheme Cs2AgBiBr6/Ag3PO4 heterojunction with efficient photocatalysis performance for H2 production and organic pollutant degradation under visible light
Fang et al. Immobilizing CdS quantum dots and dendritic Pt nanocrystals on thiolated graphene nanosheets toward highly efficient photocatalytic H 2 evolution
Jin et al. Efficient photocatalytic hydrogen evolution on band structure tuned polytriazine/heptazine based carbon nitride heterojunctions with ordered needle-like morphology achieved by an in situ molten salt method
Bariki et al. MOF-derived hollow tubular In2O3/MIIIn2S4 (MII: Ca, Mn, and Zn) heterostructures: synergetic charge-transfer mechanism and excellent photocatalytic performance to boost activation of small atmospheric molecules
Raza et al. Recent advances in structural tailoring of BiOX-based 2D composites for solar energy harvesting
Peng et al. Enhanced visible-light-driven photocatalytic activity by 0D/2D phase heterojunction of quantum dots/nanosheets on bismuth molybdates
Muruganandham et al. Mineralizer-assisted shape-controlled synthesis, characterization, and photocatalytic evaluation of CdS microcrystals
Sena et al. Lead-free halide perovskite Cs2AgBiBr6/bismuthene composites for improved CH4 production in photocatalytic CO2 reduction
Daliran et al. CsCu2I3 nanoparticles incorporated within a mesoporous metal–organic porphyrin framework as a catalyst for one-pot click cycloaddition and oxidation/knoevenagel tandem reaction
Yang et al. Construction of carbon nitride-based heterojunction as photocatalyst for peroxymonosulfate activation: Important role of carbon dots in enhancing photocatalytic activity
Wang et al. Forming electron traps deactivates self-assembled crystalline organic nanosheets toward photocatalytic overall water splitting
Li et al. Crystalline carbon nitrides for photocatalysis
Li et al. Photocatalytic reduction of Cr (VI) by WO3@ PVP with elevated conduction band level and improved charge carrier separation property
Kuchkaev et al. Chemical functionalization of 2D black phosphorus toward its applications in energy devices and catalysis: a review
Yang et al. Recent advances in metal-free CDs/g-C3N4 photocatalysts: Synthetic strategies, mechanism insight, and applications
Zhang et al. In situ construction of porous β-Bi2O3/BiOCOOH heterojunction photocatalysts: enhancing nitrogen fixation activity by the synergistic effect of oxygen vacancies and lattice oxygen
Guo et al. Fabrication of a Z-scheme heterojunction polyhedral-shaped BiOIO3/MIL-53 (Fe) photocatalyst for enhancing gaseous Hg0 removal
He et al. Boosting artificial photosynthesis: CO2 chemisorption and S-Scheme charge separation via anchoring inorganic QDs on COFs
Jiang et al. Systematic research on Ag2X (X= O, S, Se, Te) as visible and near-infrared light driven photocatalysts and effects of their electronic structures
Xue et al. Enhanced water dispersibility of discrete chalcogenide nanoclusters with a sodalite-net loose-packing pattern in a crystal lattice

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 24753394

Country of ref document: EP

Kind code of ref document: A1