WO2023281760A1 - 太陽電池、多接合型太陽電池、太陽電池モジュール及び太陽光発電システム - Google Patents

太陽電池、多接合型太陽電池、太陽電池モジュール及び太陽光発電システム Download PDF

Info

Publication number
WO2023281760A1
WO2023281760A1 PCT/JP2021/026048 JP2021026048W WO2023281760A1 WO 2023281760 A1 WO2023281760 A1 WO 2023281760A1 JP 2021026048 W JP2021026048 W JP 2021026048W WO 2023281760 A1 WO2023281760 A1 WO 2023281760A1
Authority
WO
WIPO (PCT)
Prior art keywords
light absorption
type
layer
region
absorption layer
Prior art date
Application number
PCT/JP2021/026048
Other languages
English (en)
French (fr)
Inventor
和重 山本
幸民 水野
祐弥 保西
聡一郎 芝崎
直之 中川
靖孝 西田
六月 山崎
Original Assignee
株式会社 東芝
東芝エネルギーシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 東芝, 東芝エネルギーシステムズ株式会社 filed Critical 株式会社 東芝
Priority to JP2023501618A priority Critical patent/JP7500855B2/ja
Priority to EP21949392.1A priority patent/EP4199121A4/en
Priority to CN202180061562.5A priority patent/CN116134628A/zh
Priority to PCT/JP2021/026048 priority patent/WO2023281760A1/ja
Publication of WO2023281760A1 publication Critical patent/WO2023281760A1/ja
Priority to US18/181,607 priority patent/US20230215965A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • H01L31/0687Multiple junction or tandem solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/041Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L31/00
    • H01L25/043Stacked arrangements of devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0328Inorganic materials including, apart from doping materials or other impurities, semiconductor materials provided for in two or more of groups H01L31/0272 - H01L31/032
    • H01L31/0336Inorganic materials including, apart from doping materials or other impurities, semiconductor materials provided for in two or more of groups H01L31/0272 - H01L31/032 in different semiconductor regions, e.g. Cu2X/CdX hetero- junctions, X being an element of Group VI of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/0445PV modules or arrays of single PV cells including thin film solar cells, e.g. single thin film a-Si, CIS or CdTe solar cells
    • H01L31/046PV modules composed of a plurality of thin film solar cells deposited on the same substrate
    • H01L31/0465PV modules composed of a plurality of thin film solar cells deposited on the same substrate comprising particular structures for the electrical interconnection of adjacent PV cells in the module
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S20/00Supporting structures for PV modules
    • H02S20/30Supporting structures being movable or adjustable, e.g. for angle adjustment
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells

Definitions

  • the present invention relates to solar cells, multi-junction solar cells, solar cell modules, and photovoltaic power generation systems.
  • the problem to be solved by the present invention is to provide a solar cell, a multi-junction solar cell, a solar cell module, and a photovoltaic power generation system with excellent conversion efficiency.
  • Cu , Ga , M1 and O are contained in the first region, which is a region extending from the interface between the light absorption layer and the n-type layer to a position at a depth of 2 nm or less toward the p-type light absorption layer.
  • M1 is one selected from the group consisting of Sn, Sb, Ag, Li, Na, K, Cs, Rb, Al, In, Zn, Mg, Si, Ge, N, B, Ti, Hf, Zr and Ca These are the above elements.
  • the ratio of Cu , Ga , M1 and O in the first region is a1:b1:c1:d1, where a1, b1, c1 and d1 are 1.80 ⁇ a1 ⁇ 2.20, 0.005 ⁇ b1 ⁇ 0.05, 0 ⁇ c1 ⁇ 0.20 and 0.60 ⁇ d1 ⁇ 1.00.
  • FIG. 1 is a cross-sectional view of a solar cell according to an embodiment
  • FIG. FIG. 2 is a diagram for explaining analysis spots of the solar cell of the embodiment
  • FIG. 3 is a cross-sectional view of the multi-junction solar cell of the embodiment
  • FIG. 4 is a perspective view of the solar cell module of the embodiment
  • FIG. 5 is a cross-sectional view of the solar cell module of the embodiment
  • FIG. 6 is a configuration diagram of a photovoltaic power generation system according to the embodiment
  • FIG. 7 is a schematic diagram of a vehicle according to the embodiment
  • FIG. 8 is a schematic diagram of a flying object according to the embodiment
  • FIG. 9 is a table relating to Examples.
  • FIG. 10 is a table relating to Examples.
  • FIG. 1 shows a cross-sectional view of a solar cell 100 of the first embodiment.
  • a solar cell 100 includes a substrate 1, a p-electrode 2 as a first electrode, a p-type light absorption layer 3, an n-type layer 4, and an n-electrode as a second electrode. It has an electrode 5 .
  • An intermediate layer (not shown) may be included between the n-type layer 4 and the n-electrode 5 or the like.
  • Sunlight may be incident from either the n-electrode 5 side or the p-electrode 2 side, but is more preferably incident from the n-electrode 5 side. Since the solar cell 100 of the embodiment is a transmissive solar cell, it is preferably used as the top cell (light incident side) of a multi-junction solar cell.
  • the substrate 1 is provided on the side of the p-electrode 2 opposite to the p-type light absorption layer 3 side in FIG. 1, the substrate 1 may be provided on the side of the n-electrode 5 opposite to the n-type layer 4 side.
  • the form in which the substrate 1 is provided on the n-electrode 5 side is the same except that the position of the substrate 1 is different.
  • light is incident from the n-electrode 5 side toward the p-electrode 2 side.
  • the substrate 1 is a transparent substrate.
  • the substrate 1 is made of light-transmitting acrylic, polyimide, polycarbonate, polyethylene terephthalate (PET) polypropylene (PP), fluorine resin (polytetrafluoroethylene (PTFE), perfluoroethylene propene copolymer (FEP), ethylenetetrafluoroethylene Copolymer (ETFE), polychlorotrifluoroethylene (PCTFE), perfluoroalkoxyalkane (PFA), etc.), organic substrates such as polyarylate, polysulfone, polyethersulfone and polyetherimide, soda lime glass, white plate glass , an inorganic substrate such as chemically strengthened glass or quartz can be used.
  • substrate 1 may laminate
  • the p-electrode 2 is provided on the substrate 1 and arranged between the substrate 1 and the p-type light absorption layer 3 .
  • the p-electrode 2 is preferably in ohmic contact with the p-type light absorption layer 3 .
  • the p-electrode 2 is a light-transmitting conductive layer provided on the p-type light absorption layer 3 side.
  • the thickness of the p-electrode 2 is typically 100 nm or more and 2,000 nm or less. In FIG. 1, the p-electrode 2 is in direct contact with the p-type light absorbing layer 3 .
  • the p-electrode 2 preferably includes one or more layers of oxide transparent conductive films.
  • transparent conductive oxide films examples include indium tin oxide (ITO), aluminum-doped zinc oxide (AZO), boron-doped zinc oxide (BZO), and gallium-doped zinc oxide.
  • ITO indium tin oxide
  • AZO aluminum-doped zinc oxide
  • BZO boron-doped zinc oxide
  • gallium-doped zinc oxide examples include gallium-doped zinc oxide.
  • GZO Gadium-doped Zinc Oxide
  • doped tin oxide Titanium-doped Indium Oxide (ITiO), Indium Zinc Oxide (IZO) and Indium Gallium Zinc Oxide (IZO).
  • Oxide (IGZO), hydrogen-doped Indium Oxide (IOH), and other semiconductor conductive films can be used, and are not particularly limited.
  • the oxide transparent conductive film may be a laminated film having a plurality of films.
  • the dopant for the film such as tin oxide is not particularly limited as long as it is one or more selected from the group consisting of In, Si, Ge, Ti, Cu, Sb, Nb, Ta, W, Mo, F and Cl. .
  • the p-electrode 2 contains a tin oxide film doped with one or more elements selected from the group consisting of In, Si, Ge, Ti, Cu, Sb, Nb, Ta, W, Mo, F, Cl, etc. is preferred.
  • at least one element selected from the group consisting of In, Si, Ge, Ti, Cu, Sb, Nb, Ta, W, Mo, F, Cl, etc. is included in the tin oxide film.
  • the p-electrode 2 a laminated film in which a transparent conductive oxide film and a metal film are laminated can be used.
  • the metal film preferably has a thickness of 1 nm or more and 2 ⁇ m or less, and the metal (including alloy) contained in the metal film is not particularly limited, and may be Mo, Au, Cu, Ag, Al, Ta, W, or the like.
  • the p-electrode 2 is a dot-like, line-like or mesh-like electrode (metal, alloy, one or more selected from the group consisting of graphene, conductive nitride and conductive oxide).
  • the dot-shaped, line-shaped or mesh-shaped metal preferably has an aperture ratio of 50% or more with respect to the oxide transparent conductive film.
  • the dot-shaped, line-shaped or mesh-shaped metal is not particularly limited and may be Mo, Au, Cu, Ag, Al, Ta or W.
  • the film thickness is preferably about 5 nm or less from the viewpoint of transparency.
  • the thickness of the metal film is not limited to this because permeability is ensured at the openings.
  • a doped tin oxide film is preferably provided on the outermost surface of the oxide transparent conductive film on the p-type light absorption layer 3 side. At least part of the doped tin oxide film provided on the outermost surface of the oxide transparent conductive film on the p-type light absorption layer 3 side is preferably in direct contact with the p-type light absorption layer 3 .
  • the p-type light absorption layer 3 is a p-type semiconductor layer.
  • the p-type light absorbing layer 3 may be in direct contact with the p-electrode 2, or another layer may exist as long as electrical contact with the p-electrode 2 can be ensured.
  • a p-type light absorption layer 3 is arranged between the electrode 2 and the n-type layer 4 .
  • the p-type light absorption layer 3 is in direct contact with the n-type layer 4 .
  • the p-type light absorption layer 3 is a semiconductor layer of metal oxide containing Cu as a main component.
  • the metal oxide containing Cu as a main component is cuprous oxide or/and a cuprous oxide composite oxide.
  • the p-type light absorption layer 3 is preferably a polycrystal of cuprous oxide or/and a cuprous oxide composite oxide.
  • Cuprous oxide and/or cuprous oxide composite oxide is an oxide having an average composition of Cu e M2 f O g .
  • the average composition is a composition obtained from an average value of compositions obtained by measuring a plurality of points in the thickness direction and planar direction of the p-type light absorption layer 3 .
  • M2 is selected from the group consisting of Sn, Sb, Ag, Li, Na, K, Cs, Rb, Al, In, Zn, Mg, Ga, Si, Ge, N, B, Ti, Hf, Zr and Ca One or more elements are preferred.
  • e, f and g satisfy 1.80 ⁇ e ⁇ 2.01, 0.00 ⁇ f ⁇ 0.20 and 0.98 ⁇ g ⁇ 1.02.
  • 90 wt % or more and 100 wt % or less of the p-type light absorption layer 3 is preferably cuprous oxide or/and a cuprous oxide composite oxide. More preferably, 95 wt % or more and 100 wt % or less of the p-type light absorption layer 3 is cuprous oxide or/and a composite oxide of cuprous oxide. More preferably, 98 wt % or more and 100 wt % or less of the p-type light absorption layer 3 is cuprous oxide or/and cuprous oxide composite oxide.
  • the p-type light absorption layer 3 preferably contains almost no hetero-phase Cu and/or CuO. It is preferable that the p-type light absorption layer 3 contains a small number of different phases and has good crystallinity because the p-type light absorption layer 3 has high translucency.
  • the bandgap of the p-type light absorption layer 3 can be adjusted.
  • the bandgap of the p-type light absorption layer 3 is preferably 2.0 eV or more and 2.2 eV or less.
  • both the top cell and the bottom cell are solar cells. Efficient use of light.
  • the p-type light absorption layer 3 preferably contains Sn and/or Sb. Sn and Sb of the p-type light absorption layer 3 may be added to the p-type light absorption layer 3 or derived from the p-electrode 2 .
  • the Ga contained in the p-type light absorption layer 3 is not contained in the raw material for forming the p-type light absorption layer 3 , but is Ga contained in the n-type layer 4 diffused into the p-type light absorption layer 3 . If other elements are also used when forming the n-type layer 4 , these elements may also diffuse into the p-type light absorption layer 3 .
  • the composition ratio of the p-type light absorption layer 3 is the composition ratio of the entire p-type light absorption layer 3 . Moreover, it is preferable that the compound composition ratio of the p-type light absorption layer 3 is satisfied entirely in the p-type light absorption layer 3 . If the concentrations of Sn and Sb in the p-type light absorption layer 3 are high, defects increase and carrier recombination increases. Therefore, the total volume concentration of Sb and Sn in the p-type light absorption layer 3 is preferably 1.5 ⁇ 10 19 atoms/cm 3 or less.
  • the composition of the p-type light absorption layer 3 is 0.2d3 , 0.5d3 , Average composition at a depth of 0.8d3 .
  • the p-type light absorption layer 3 preferably satisfies the above and following preferred compositions at each depth, except when there is a condition that the elemental composition ratio of the compound of the p-type light absorption layer 3 is graded.
  • the analysis spots (A1 to A9) distributed at equal intervals as shown in FIG. It is obtained by analysis by an analytical method (Secondary Ion Mass Spectrometry; SIMS).
  • FIG. 2 is a schematic diagram of the solar cell 100 viewed from the light incident side.
  • D1 is the length of the p-type light absorption layer 3 in the width direction
  • D2 is the length of the p-type light absorption layer 3 in the depth direction.
  • the thickness of the p-type light absorption layer 3 is obtained by cross-sectional observation with an electron microscope or by a profilometer, and is preferably 1,000 nm or more and 10,000 nm or less.
  • the crystals constituting the p-type light absorption layer 3 contain large grains.
  • the crystal diameter (circumscribed circle diameter) of the cuprous oxide or/and the cuprous oxide composite oxide of the p-type light absorption layer 3 is 80% or more and 100% or less of the thickness of the p-type light absorption layer 3 Included in the p-type light absorption layer 3 .
  • the crystals of cuprous oxide and/or the cuprous oxide complex oxide of the p-type light absorption layer 3 with large grains are excellent in transparency and conversion efficiency, and thus contribute to improvement in the conversion efficiency of the solar cell. Further, the existence of the first region 6 and the large grain size of the crystals of the cuprous oxide and/or the composite oxide of cuprous oxide in the p-type light absorption layer 3 further improve the conversion efficiency.
  • the p-type light absorption layer 3 is preferably formed by, for example, sputtering.
  • the n-type layer 4 is an n-type semiconductor layer.
  • the n-type layer 4 is arranged between the p-type light absorption layer 3 and the n-electrode 5 .
  • the n-type layer 4 is in direct contact with the surface of the p-type light absorption layer 3 opposite to the surface in contact with the p-electrode 2 .
  • the n-type layer 4 is an oxide semiconductor layer containing Ga, and preferably contains a compound (oxide) containing Ga as a main component.
  • the n-type layer 4 may be formed by mixing an oxide containing Ga as a main component with another oxide, an oxide containing Ga as a main component doped with another element, or an oxide containing Ga as a main component doped with another element.
  • the n-type layer 4 is a single layer or multiple layers.
  • Ga is preferably 40 atomic % or more, more preferably 50 atomic % or more.
  • the metal element contained in the n-type layer 4 may be inclined from the p-type light absorption layer 3 side to the n-electrode 5 side.
  • the n-type layer 4 preferably contains an oxide containing the element represented by M3 and Ga.
  • An oxide containing Ga as a main component is, for example, an oxide containing an element represented by M3 and Ga.
  • the n-type layer 4 is a group consisting of Sn, Sb, Cu, Ag, Li, Na, K, Cs, Rb, Al, In, Zn, Mg, Si, Ge, N, B, Ti, Hf, Zr and Ca. It is preferable to include an oxide containing one or more selected elements M3 and Ga.
  • the n-type layer 4 is a group consisting of Sn, Sb, Cu, Ag, Li, Na, K, Cs, Rb, Al, In, Zn, Mg, Si, Ge, N, B, Ti, Hf, Zr and Ca. It is preferable that an oxide containing M3 and Ga, which are one or more selected elements, is contained in an amount of 90 wt % or more and 100 wt % or less.
  • the compound containing Ga as the main component of the n -type layer 4 is preferably an oxide containing M3 and Ga with an average composition represented by GahM3iOj . h, i and j preferably satisfy 1.8 ⁇ h ⁇ 2.1, 0 ⁇ i ⁇ 0.2 and 2.9 ⁇ j ⁇ 3.1.
  • 90 wt % or more and 100 wt % or less of the n-type layer 4 is preferably an oxide containing M3 and Ga. More preferably, 95 wt % or more and 100 wt % or less of the n-type layer 4 is an oxide containing M3 and Ga. More preferably, 98 wt % or more and 100 wt % or less of the n-type layer 4 is a compound represented by an oxide containing M3 and Ga.
  • the Cu contained in the n-type layer 4 is not contained in the raw material for forming the n-type layer 4 , but is the Cu contained in the p-type light absorption layer 3 diffused into the n-type layer 4 . If other elements are also used when forming the p-type light absorption layer 3 , these elements may also diffuse into the n-type layer 4 .
  • the thickness of the n-type layer 4 is typically 3 nm or more and 100 nm or less. If the thickness of the n-type layer 4 is less than 3 nm, a leakage current may occur when the coverage of the n-type layer 4 is poor, resulting in deterioration of the characteristics. If the coverage is good, the film thickness is not limited to the above. If the thickness of the n-type layer 4 exceeds 50 nm, the resistance of the n-type layer 4 may be excessively increased, resulting in deterioration in characteristics, or a decrease in short-circuit current due to a decrease in transmittance. Therefore, the thickness of the n-type layer 4 is more preferably 3 nm or more and 20 nm or less, and even more preferably 5 nm or more and 20 nm or less.
  • the composition of the compound of the n-type layer 4 is the average composition of the entire n-type layer 4 unless otherwise specified.
  • the composition of the n-type layer 4 is 0.2d 4 , 0.5d 4 , 0.8d from the surface of the n-type layer 4 on the p-type light absorption layer 3 side, where d 4 is the thickness of the n-type layer 4 . It is the average value of the composition at 4 depths.
  • the n-type layer 4 preferably satisfies the above and following preferred compositions at each depth except when there is a condition that the elemental composition ratio of the compound of the n-type layer 4 is graded.
  • the composition at a depth of 0.5 d from the surface of the n-type layer 4 on the p-type light absorption layer 3 side is the composition of the entire n-type layer 4.
  • the analysis spots (A1 to A9) distributed at equal intervals as shown in FIG. It is obtained by analysis by mass spectrometry (Secondary Ion Mass Spectrometry; SIMS).
  • FIG. 2 is a schematic diagram of the solar cell 100 viewed from the light incident side.
  • D1 is the length of n-type layer 4 in the width direction
  • D2 is the length of n-type layer 4 in the depth direction.
  • the conduction band minimum (Conduction Band Minimum: CBM) of the p-type light absorption layer 3 and the n-type layer 4 (in the case of multiple layers, the p-type light absorption layer
  • the n-type layer 4 having a smaller difference in the bottom of the conduction band of the n-type layer 4) on the side 3 and having a recombination rate of about 10 cm/sec or less is preferable.
  • solar cells using cuprous oxide oxide (composite oxide) in the light absorption layer have a small difference in the bottom of the conduction band, which is the exact opposite of the mode in which the recombination rate is slow.
  • the difference between the bottom of the conduction band of the p-type light absorption layer 3 and the bottom of the conduction band of the n-type layer 4 ([the bottom of the conduction band of the p-type light absorption layer 3] ⁇ [the bottom of the conduction band of the n-type layer 4]) is 0.5. It is preferably greater than 5 eV and less than or equal to 1.0 eV.
  • a first region 6 is preferably included between the p-type light absorption layer 3 and the n-type layer 4 .
  • a first region 6 is a transition region between the p-type light absorption layer 3 and the n-type layer 4 .
  • the first region 6 contains heterogeneous phases of the cuprous oxide of the p-type light absorbing layer 3 and the composite oxide of cuprous oxide, which become defects at the junction of the p-type light absorbing layer 3 and the n-type layer 4.
  • the first region 6 contains elements represented by Cu, Ga, M1, and oxygen.
  • the first region 6 extends from the boundary between the p-type light absorption layer 3 and the n-type layer 4 to the n-type layer 4 side of the p-type light absorption layer 3 and the n-type layer 4 at a depth of 2 nm (first point). from the boundary to the position (second point) at a depth of 2 nm or less on the p-type light absorption layer 3 side.
  • the defects in the extremely thin region with a width of 4 nm accelerate the recombination rate and improve the power generation efficiency.
  • the conversion efficiency is greatly reduced.
  • a different phase that becomes a defect is a different phase with respect to the fourth region of the p-type light absorption layer 3 and a different phase with respect to the third region of the n-type layer 4 .
  • the boundary between the p-type light absorption layer 3 and the n-type layer 4 may not be clear.
  • the central portion of the unclear portion between the p-type light absorption layer 3 and the n-type layer 4 is the p-type light absorption layer 3 and the n-type layer 4. This is the boundary of the mold layer 4 .
  • the boundary between the p-type light absorption layer 3 and the n-type layer 4 may have an uneven surface rather than a flat surface.
  • the boundary between the p-type light absorption layer 3 and the n-type layer 4 can be specified by observing the cross section of the p-type light absorption layer 3 and the n-type layer 4 .
  • the width of the unclear portion between the p-type light absorption layer 3 and the n-type layer 4 is the p-type It is 0 nm or more and 10 nm or less, preferably 1 nm or more and 5 nm or less, more preferably 2 nm or more and 4 nm or less, in the stacking direction of the light absorption layer 3 and the n-type layer 4 .
  • the first region 6 is preferably layered rather than island-shaped. If the island-shaped first region 6 exists, both a region with a high recombination rate and a region with a low recombination rate will exist.
  • a layered first region 6 is preferably present between the p-type light absorbing layer 3 and the n-type layer 4 .
  • the fact that the layered first p region 6 is present between the p-type light absorption layer 3 and the n-type layer 4 means that the first layer is continuously formed between the p-type light absorption layer 3 and the n-type layer 4 without interruption. It means that region 6 exists.
  • the fact that the layered first region 6 exists between the p-type light absorption layer 3 and the n-type layer 4 means that the p-type light absorption layer This means that there is no portion where the first region 6 does not exist between 3 and the n-type layer 4 .
  • the thickness of the first region 6 is less than 2 nm, the first region 6 tends to exist in an island shape, and regions in which recombination velocities differ greatly tend to exist.
  • the first region 6 contain a heterogeneous phase that becomes a defect at the junction between the p-type light absorption layer 3 and the n-type layer 4 . It is preferable that the heterogeneous phase that becomes a defect at the junction between the p-type light absorption layer 3 and the n-type layer 4 contains both the metal element contained in the p-type light absorption layer 3 and the metal element contained in the n-type layer 4 .
  • M1 is one selected from the group consisting of Sn, Sb, Ag, Li, Na, K, Cs, Rb, Al, In, Zn, Mg, Si, Ge, N, B, Ti, Hf, Zr and Ca The above elements are preferable.
  • the element contained as the M2 element of the p-type light absorption layer 3 and the element contained as the M3 element of the n-type layer 4 be the M1 element.
  • the first region 6 does not contain the element M1.
  • the element M1 in the first region 6 is M3 contained in the n-type layer 4.
  • the element M1 in the first region 6 is the element M1 of the p-type light absorption layer 3 is preferably an element of M2 other than Ga contained in .
  • the ratio of Cu , Ga , M1 and O (Cu:Ga:M1:O) in the first region 6 is a1:b1:c1:d1.
  • a1, b1, c1 and d1 can satisfy 1.80 ⁇ a1 ⁇ 2.20, 0.005 ⁇ b1 ⁇ 0.05, 0 ⁇ c1 ⁇ 0.20 and 0.60 ⁇ d1 ⁇ 1.00. More preferably, 1.80 ⁇ a1 ⁇ 2.05, 0.005 ⁇ b1 ⁇ 0.02, 0 ⁇ c1 ⁇ 0.20 and 0.60 ⁇ d1 ⁇ 0.90 are satisfied.
  • the average content ratio of the oxide represented by Cu e M2 f O g in the first region is 50% of the average content ratio of cuprous oxide or / and cuprous oxide composite oxide in the p-type light absorption layer The following are preferable.
  • the total number of atoms of Cu , Ga , M1 and O contained in the first region 6 is 95 atom % or more and 100 atom % or less, preferably 98 atom % or more and 100 atom % or less.
  • Elements other than Cu , Ga , M1 and O in the first region 6 are inevitable elements such as impurities, and the atomic concentration of the inevitable elements contained in the first region 6 is It is lower than the atomic concentration of any element other than Cu , Ga , M1 and O.
  • the thickness of the first region 6 is preferably much thinner than the thickness of the p-type light absorption layer 3. Therefore, the thickness of the first region 6 is preferably 0.001% or more and 0.2% or less, more preferably 0.005% or more and 0.1% or less, of the thickness of the p-type light absorption layer 3 .
  • the thickness of the first region 6 is preferably 0.001% or more and 0.2% or less of the sum of the thickness of the p-type light absorption layer 3 and the thickness of the n-type layer 4, and more preferably 0.005% or more and 0.2%. 1% or less is more preferable.
  • the portion containing Ga contains a phase that becomes a defect at the junction between the p-type light absorption layer 3 and the n-type layer 4 .
  • the element M2 contains Ga, and the phase containing this Ga in the p-type light absorption layer 3 (for example, an amorphous phase or microcrystals having a circumscribed circle diameter of 1 nm or less) is a heterogeneous phase.
  • the phase containing Ga more specifically, the phase containing Cu, Ga, M1 and O is a different phase.
  • the p-type light absorption layer 3 does not substantially contain Ga in regions other than the first region 6 . Therefore, in the p-type light absorption layer 3 , the phase containing Ga is a different phase, and the different phase exists selectively in the first region 6 .
  • the portion containing Cu contains a phase that becomes a defect at the junction between the p-type light absorption layer 3 and the n-type layer 4 .
  • the element of M3 contains Cu, and the phase containing this Cu in the n-type layer 4 (for example, an amorphous phase or microcrystals having a circumscribed circle diameter of 1 nm or less) is a heterogeneous phase.
  • the different phase in the p-type light absorption layer 3 is also different in the n-type layer 4 .
  • the phase containing Cu is more specifically a phase containing Cu, Ga, M1 and O, which is the same as the heterophase of the p-type light absorption layer 3 .
  • the n-type layer 4 does not substantially contain Cu in regions other than the first region 6 . Therefore, in the n-type layer 4 , the Cu-containing phase is a different phase, and the different phase exists selectively in the first region 6 .
  • the Ga concentration contained in the p-type light absorption layer 3 excluding the first region 6 is preferably 0 atom % or more and 0.05 atom % or less with respect to the metal element contained in the p-type light absorption layer 3, and is 0 atom %. It is more preferable that the content is 0.00005 atom % or more.
  • the Cu concentration contained in the n-type layer 4 excluding the first region 6 is preferably 0 atom % or more and 10 atom % or less with respect to the metal element contained in the n-type layer 4, and is preferably 0 atom % or more and 1 atom % or less.
  • the atomic concentration of Cu contained in the n-type layer 4 excluding the first region 6 is ten times or more the atomic concentration of Ga contained in the p-type light absorption layer 3 excluding the first region 6 .
  • the thickness of the p-type light absorption layer 3 is at least 10 times the thickness of the n-type layer 4, so Cu diffuses relatively deep into the n-type layer 4 even if the diffusion distance is short. That is the reason. If the difference between the amount of Cu diffused from the p-type light absorption layer 3 side and the amount of Ga diffused from the n-type layer 4 side is large, it may cause deterioration in the characteristics of the p-type light absorption layer 3 and/or the n-type layer 4.
  • the number of Ga atoms contained in the p-type light absorption layer 3 excluding the first region 6 is 0.2 times or more and 7 times or less the number of Cu atoms contained in the n-type layer 4 excluding the first region. is preferred.
  • the phase containing Cu , Ga , M1 and O means that the ratio of Cu , Ga , M1 and O (Cu:Ga:M1:O) is a:b:c:d, where 0.65 ⁇ a/ (a + b + c + d) ⁇ 0.72, 0.001 ⁇ b/a ⁇ 0.01, 0.005 ⁇ c/a ⁇ 0.05 and 0.27 ⁇ d/(a + b + c + d) ⁇ 0.31 .
  • the analysis spots (A1 to A9) described below when at least one spot contains a phase containing Cu , Ga , M1 and O in the first region 6, the phase containing Cu , Ga , M1 and O is included in the first region 6.
  • the first region 6 contains a phase containing Cu , Ga , M1 and O in a majority (5) or more spots, and the phase containing Cu , Ga , M1 and O in all spots is the first region. Even more preferably included in region 6 .
  • the majority (5) of the spots contain a phase containing Cu , Ga , M1 and O in the first region 6
  • less than half of the first region 6 contains a phase containing Cu , Ga , M1 and O.
  • a region up to a position (end point) at a depth of 10 nm or less on the absorption layer 3 side is defined as a second region.
  • the ratio of Cu , Ga , M1 and O (Cu:Ga:M1:O) in the second region is a2:b2:c2:d2.
  • a2, b2, c2 and d2 may satisfy 1.90 ⁇ a2 ⁇ 2.10, 0.00 ⁇ b2 ⁇ 0.01, 0 ⁇ c2 ⁇ 0.20 and 0.80 ⁇ d2 ⁇ 1.00. More preferably, 1.95 ⁇ a2 ⁇ 2.05, 0 ⁇ b2 ⁇ 0.001, 0 ⁇ c2 ⁇ 0.20 and 0.80 ⁇ d2 ⁇ 1.00 are satisfied.
  • a heterogeneous phase does not substantially exist on the p-type light absorption layer 3 side, and a heterogeneous phase exists locally in the very narrow first region 6, thereby increasing the recombination rate of the bulk p-type light absorption layer 3.
  • the recombination rate at the boundary between the p-type light absorption layer 3 and the n-type layer 4 can be increased without reducing the
  • the second region preferably does not contain phases containing Cu , Ga , M1 and O as a whole, and more preferably does not contain more than half of the phases containing Cu , Ga , M1 and O. It is even more preferred that phases containing Cu , Ga , M1 and O are not included.
  • the second region is preferably composed of a cuprous oxide oxide or / and a composite oxide of cuprous oxide oxide that does not substantially contain Ga, cuprous oxide oxide that does not contain Ga or/and a composite oxide of cuprous oxide. Therefore, it is preferable to satisfy 0.87 ⁇ a2/a1 ⁇ 1.16, 0 ⁇ b2/b1 ⁇ 0.2, 0 ⁇ c2/c1 ⁇ 2 and 1 ⁇ d2/d1 ⁇ 1.33, and 0.96 More preferably, ⁇ a2/a1 ⁇ 1.13, 0 ⁇ b2/b1 ⁇ 0.15, 0 ⁇ c2/c1 ⁇ 1.75 and 1.25 ⁇ d2/d1 ⁇ 1.33.
  • the ratio of Ga in the second region (b2 / (a2 + b2 + c2 + d2) ) is lower than the ratio of Ga in the first region 6 (b1/(a1+b1+c1+d1)).
  • a region up to a position (end point) at a depth of 10 nm or less is defined as a third region.
  • the ratio of Cu , Ga , M1 and O (Cu:Ga:M1:O) in the third region is a3:b3:c3:d3.
  • a3, b3, c3 and d3 preferably satisfy 0 ⁇ a3 ⁇ 0.05, 2.8 ⁇ b3 ⁇ 3.2, 0 ⁇ c3 ⁇ 0.4 and 1.8 ⁇ d3 ⁇ 2.2, It is more preferable to satisfy 0 ⁇ a3 ⁇ 0.03, 2.9 ⁇ b3 ⁇ 3.1, 0 ⁇ c3 ⁇ 0.3 and 1.9 ⁇ d3 ⁇ 2.1.
  • the heterogeneous phase does not substantially exist on the n-type layer 4 side, and the heterogeneous phase exists locally in the very narrow first region 6, so that the electron trap density of the n-type layer 4 in the bulk third region is reduced to The recombination rate at the boundary between the p-type light absorption layer 3 and the n-type layer 4 can be increased without increasing the rate.
  • the third region preferably does not contain phases containing Cu , Ga , M1 and O as a whole, and more preferably does not contain more than half of the phases containing Cu , Ga , M1 and O. It is even more preferred that phases containing Cu , Ga , M1 and O are not included.
  • the ratio of Cu in the third region is the ratio of Cu in the first region 6 ( a1/(a1+b1+c1+d1)). Therefore, it is preferable to satisfy (a3/(a3+b3+c3+d3)) ⁇ (a1/(a1+b1+c1+d1)), more preferably 10(a3/(a3+b3+c3+d3)) ⁇ (a1/(a1+b1+c1+d1)), and 50(a3/ It is even more preferable to satisfy (a3+b3+c3+d3)) ⁇ (a1/(a1+b1+c1+d1)).
  • the ratio of Ga in the third region (b3/(a3+b3+c3+d3)) is the ratio of Ga in the first region 6 It is higher than the ratio (b1/(a1+b1+c1+d1)).
  • the first region 6 may further contain a Cu phase. Since the Cu phase is contained in the first region 6, defects occur at the boundary between the p-type light absorption layer 3 and the n-type layer 4, and the recombination rate at the boundary between the p-type light absorption layer 3 and the n-type layer 4 increases. It is preferable to be Also, the first region 6 may further contain a CuO phase.
  • the content ratio of Ga contained in the entire p-type light absorption layer 3 is preferably low.
  • the heterophase does not substantially exist on the p-type light absorption layer 3 side except for the first region 6, and the heterophase locally exists in the very narrow first region 6, so that the bulk fourth region
  • the recombination rate at the boundary between the p-type light absorption layer 3 and the n-type layer 4 can be increased without increasing the recombination rate in the p-type light absorption layer 3 . Therefore, when the atomic concentration of Cu in the entire p-type light absorption layer 3 is C Cu and the Ga concentration in the entire p-type light absorption layer is C Ga , 0 ⁇ C Ga /C Cu ⁇ 0.001 is satisfied. is preferable, and it is more preferable to satisfy 0 ⁇ C Ga /C Cu ⁇ 0.000001.
  • the content ratio of Cu in the n-type layer 4 is preferably very low. Therefore, the ratio of Cu atoms to the metal elements contained in n-type layer 4 is preferably 0.0% or more and 0.1% or less.
  • the heterogeneous phase does not substantially exist on the n-type layer 4 side except for the first region 6, and the heterogeneous phase exists locally in the very narrow first region 6, so that the n-type of the bulk third region The recombination rate at the interface between the p-type light absorbing layer 3 and the n-type layer 4 can be increased without increasing the electron trap density of the layer 4 .
  • the area up to is defined as the fourth area.
  • the ratio of Cu , Ga , M1 and O (Cu:Ga:M1:O) in the fourth region is a4:b4:c4:d4.
  • a4, b4, c4 and d4 preferably satisfy 1.8 ⁇ a4 ⁇ 2.1, 0 ⁇ b4 ⁇ 0.001, 0 ⁇ c4 ⁇ 0.2 and 0.9 ⁇ d4 ⁇ 1.0, More preferably, 1.8 ⁇ a4 ⁇ 2.03, 0 ⁇ b4 ⁇ 0.000001, 0 ⁇ c4 ⁇ 0.2 and 0.95 ⁇ d4 ⁇ 1.
  • the fourth region is composed of a cuprous oxide oxide or / and a composite oxide of cuprous oxide oxide that does not substantially contain Ga
  • the ratio of Ga in the fourth region (b4 / (a4 + b4 + c4 + d4) ) is lower than the ratio of Ga in the first region 6 (b1/(a1+b1+c1+d1)).
  • the average content of the phase containing Cu , Ga , M1 and O in the fourth region is equal to or less than the average content of the phase containing Cu , Ga , M1 and O in the second region 6,
  • the ratio of Ga in the fourth region (b4/(a4+b4+c4+d4)) is less than or equal to the ratio of Ga in the second region (b2/(a2+b2+c2+d2)).
  • the n-electrode 5 is an electrode on the side of the n-type layer 4 that is optically transparent to visible light.
  • the n-type layer 4 is sandwiched between the n-electrode 5 and the p-type light absorption layer 3 .
  • An intermediate layer (not shown) can be provided between the n-type layer 4 and the n-electrode 5 .
  • An oxide transparent conductive film is preferably used for the n-electrode 5 .
  • Transparent conductive oxide films used in the n-electrode 5 include indium tin oxide, aluminum-doped zinc oxide, boron-doped zinc oxide, gallium-doped zinc oxide, indium-doped zinc oxide, titanium-doped indium oxide, indium gallium zinc oxide, and hydrogen-doped oxide. It is preferably one or more semiconductor conductive films selected from the group consisting of indium.
  • the dopant for the film such as tin oxide is not particularly limited as long as it is one or more selected from the group consisting of In, Si, Ge, Ti, Cu, Sb, Nb, Ta, W, Mo, F and Cl. .
  • the n-electrode 5 can include a mesh or line-shaped electrode in order to reduce the resistance of the oxide transparent conductive film. Mo, Au, Cu, Ag, Al, Ta, W, and the like are not particularly limited for the mesh or line-shaped electrodes. Graphene can also be used for the n-electrode 5 . Graphene is preferably laminated with silver nanowires.
  • the thickness of the n-electrode 5 is determined by cross-sectional observation with an electron microscope or by a profilometer, and is not particularly limited, but is typically 50 nm or more and 2 ⁇ m or less.
  • FIG. 3 shows a conceptual cross-sectional view of the multi-junction solar cell of the second embodiment.
  • a multi-junction solar cell 200 in FIG. 3 has the solar cell (first solar cell) 100 of the first embodiment and a second solar cell 201 on the light incident side.
  • the bandgap of the light absorbing layer of the second solar cell 201 is smaller than that of the p-type light absorbing layer 3 of the solar cell 100 of the first embodiment.
  • the multi-junction solar cell 200 of the embodiment also includes a solar cell in which three or more solar cells are joined.
  • the bandgap of the p-type light absorption layer 3 of the first solar cell 100 of the first embodiment is about 2.0 eV-2.2 eV
  • the bandgap of the light absorption layer of the second solar cell 201 is 1.0 eV. It is preferable that it is more than or equal to 1.6 eV or less.
  • the light absorption layer of the second solar cell at least one compound semiconductor layer selected from the group consisting of CIGS-based and CdTe-based compounds having a high In content, and one selected from the group consisting of crystalline silicon and perovskite compounds. is preferably
  • FIG. 4 shows a perspective view of a solar cell module 300 of the third embodiment.
  • a solar cell module 300 in FIG. 4 is a solar cell module in which a first solar cell module 301 and a second solar cell module 302 are stacked.
  • the first solar cell module 301 is on the light incident side and uses the solar cell 100 of the first embodiment.
  • Second solar cell 201 is preferably used for second solar cell module 302 .
  • the solar cells 101-103 of the second to fourth embodiments can also be used in the first solar cell module 301.
  • FIG. 1 shows a perspective view of a solar cell module 300 of the third embodiment.
  • a solar cell module 300 in FIG. 4 is a solar cell module in which a first solar cell module 301 and a second solar cell module 302 are stacked.
  • the first solar cell module 301 is on the light incident side and uses the solar cell 100 of the first embodiment.
  • Second solar cell 201 is preferably used for second solar cell module 302 .
  • the solar cell 100 of the third embodiment also has a substrate 1, a p-electrode 2, a p-type light absorbing layer 3, an n-type layer 4 and an n-electrode 5, like the solar cell 100 of the first embodiment.
  • Both ends of the solar cell 100 in the sub-module 303 are connected to a bus bar 305, which electrically connects the plurality of sub-modules 303 in parallel or series, and adjusts the output voltage with the second solar cell module 302. It is preferably configured as follows.
  • the connection form of the solar cells 100 shown in the third embodiment is an example, and the solar cell module can be configured by other connection forms.
  • the load 404 may be configured to use the electrical energy stored in the storage battery 403 .
  • the converter 402 is a device that includes a circuit or element that performs power conversion such as DC-DC converter, DC-AC converter, AC-AC converter, or the like. A suitable configuration may be adopted for the configuration of the converter 402 according to the generated voltage, the configuration of the storage battery 403 and the load 404 .
  • the photovoltaic cells included in the sub-module 303 included in the photovoltaic module 300 that received the light generate electricity, and the electrical energy is converted by the converter 402 and stored in the storage battery 403 or consumed by the load 404 .
  • the solar cell module 401 is provided with a sunlight tracking drive device for always directing the solar cell module 401 toward the sun, a light collector for collecting sunlight, a device for improving power generation efficiency, and the like. Adding is preferred.
  • the photovoltaic power generation system 400 is preferably used for real estate such as residences, commercial facilities, and factories, and for movable properties such as vehicles, aircraft, and electronic equipment. An increase in power generation is expected by using the solar cell of the embodiment with excellent conversion efficiency in a solar cell module.
  • FIG. 7 shows a structural conceptual diagram of the vehicle 500.
  • a vehicle 500 in FIG. 7 has a vehicle body 501 , a solar cell module 502 , a power conversion device 503 , a storage battery 504 , a motor 505 and tires (wheels) 506 .
  • the power generated by the solar cell module 502 provided on the upper part of the vehicle body 501 is converted by the power conversion device 503 and charged by the storage battery 504 or consumed by the load such as the motor 505 .
  • Vehicle 500 can be moved by rotating tires (wheels) 506 with motor 505 using power supplied from solar cell module 502 or storage battery 504 .
  • the solar cell module 502 may be composed only of the first solar cell module provided with the solar cell 100 of the first embodiment and the like instead of the multi-junction type.
  • FIG. 1 A perspective view of a transparent solar cell module 502
  • FIG. 1 A perspective view of a transparent solar cell module 502
  • the motor 602 uses the power output from the solar cell module 401 to rotate the rotor blade 603 .
  • the flying object 600 having the present configuration including the solar cell module 401 of the embodiment a flying object that can fly using more electric power is provided.
  • EXAMPLES The present invention will be more specifically described below based on examples, but the present invention is not limited to the following examples.
  • a Cu 2 O light absorption layer is formed on the transparent p-electrode by heating at 500° C. by a sputtering method in an atmosphere of oxygen and argon gas. After that, the surface of the Cu 2 O light absorption layer is partially oxidized in an atmosphere containing oxygen at 200°C.
  • nm of Ga 1.92 Al 0.08 O 3.00 is deposited as an n-type layer, and further 14 nm of Zn 0.80 Sn 0.20 O 1.2 is deposited.
  • An AZO transparent conductive film is deposited as an n-electrode on the n-type layer.
  • a solar cell is obtained by forming an MgF 2 film as an antireflection film. The short-circuit current (Jsc), open-circuit voltage (Voc), fill factor (FF), conversion efficiency and translucency of the obtained solar cell are evaluated.
  • Example 2 A solar cell is fabricated in the same manner as in Example 1 except that Ga 1.95 Al 0.05 O 3.00 is deposited to a thickness of 12 nm instead of Ga 1.92 Al 0.08 O 3.00 as the n-type layer. .
  • the short-circuit current (Jsc), open-circuit voltage (Voc), fill factor (FF), conversion efficiency and translucency of the obtained solar cell are evaluated.
  • Example 3 A solar cell is fabricated in the same manner as in Example 1, except that Ga 2 O 3 is deposited to a thickness of 11 nm instead of Ga 1.92 Al 0.08 O 3.00 as the n-type layer.
  • the short-circuit current (Jsc), open-circuit voltage (Voc), fill factor (FF), conversion efficiency and translucency of the obtained solar cell are evaluated.
  • Example 4 10 nm of Ga 2 O 3 is deposited instead of Ga 1.92 Al 0.08 O 3.00 as an n-type layer, and Ga 1.70 is instead of Zn 0.80 Sn 0.20 O 1.2 .
  • a solar cell is fabricated in the same manner as in Example 1, except that Sn 0.30 O 3.15 is deposited to a thickness of 12 nm.
  • the short-circuit current (Jsc), open-circuit voltage (Voc), fill factor (FF), conversion efficiency and translucency of the obtained solar cell are evaluated.
  • Example 5 A solar cell is produced in the same manner as in Example 1, except that a Cu 2 O light absorption layer containing Si is formed. The short-circuit current (Jsc), open-circuit voltage (Voc), fill factor (FF), conversion efficiency and translucency of the obtained solar cell are evaluated.
  • Example 6 A solar cell is fabricated in the same manner as in Example 1, except that the n-type layers are sequentially deposited and then heated at 150°C. The short-circuit current (Jsc), open-circuit voltage (Voc), fill factor (FF), conversion efficiency and translucency of the obtained solar cell are evaluated.
  • Example 7 Instead of Ga1.92Al0.08O3.00 , Ga1.95Al0.05O2.50 with oxygen deficiency was deposited to a thickness of 10 nm as an n-type layer, and Zn0.80Sn0.20 was deposited .
  • a solar cell is fabricated as in Example 1, except that the O 1.2 is heated at 150° C. after deposition. The short-circuit current (Jsc), open-circuit voltage (Voc), fill factor (FF), conversion efficiency and translucency of the obtained solar cell are evaluated.
  • Example 8 A solar cell is fabricated in the same manner as in Example 1, except that 30 nm of Ga 2 O 3 is deposited as the n-type layer. The short-circuit current (Jsc), open-circuit voltage (Voc), fill factor (FF), conversion efficiency and translucency of the obtained solar cell are evaluated.
  • Example 9 A solar cell is fabricated in the same manner as in Example 1, except that Cu 2 O doped with Sb and Sn is deposited on the p-electrode and 30 nm of Ga 2 O 3 is deposited as the n-type layer.
  • the short-circuit current (Jsc), open-circuit voltage (Voc), fill factor (FF), conversion efficiency and translucency of the obtained solar cell are evaluated.
  • Example 1 A solar cell is produced in the same manner as in Example 1, except that the surface of the Cu 2 O light absorption layer is oxidized in an oxygen atmosphere at 500°C.
  • the short-circuit current (Jsc), open-circuit voltage (Voc), fill factor (FF), conversion efficiency and translucency of the obtained solar cell are evaluated.
  • Example 2 A solar cell is fabricated in the same manner as in Example 1, except that the surface of the Cu 2 O light absorption layer is not oxidized.
  • the short-circuit current (Jsc), open-circuit voltage (Voc), fill factor (FF), conversion efficiency and translucency of the obtained solar cell are evaluated.
  • Example 3 A solar cell is produced in the same manner as in Example 1, except that the surface of the Cu 2 O light absorption layer is oxidized in a hydrogen peroxide atmosphere at 100°C.
  • the short-circuit current (Jsc), open-circuit voltage (Voc), fill factor (FF), conversion efficiency and translucency of the obtained solar cell are evaluated.
  • Example 4 A solar cell is fabricated in the same manner as in Example 1, except that the surface of the Cu 2 O light absorption layer is oxidized in a water vapor atmosphere at room temperature.
  • the short-circuit current (Jsc), open-circuit voltage (Voc), fill factor (FF), conversion efficiency and translucency of the obtained solar cell are evaluated.
  • Example 5 A solar cell is fabricated in the same manner as in Example 5, except that the n-type layers are sequentially deposited and then heated at 400°C. The short-circuit current (Jsc), open-circuit voltage (Voc), fill factor (FF), conversion efficiency and translucency of the obtained solar cell are evaluated.
  • Example 7 A solar cell is produced in the same manner as in Example 8, except that the surface of the Cu 2 O light absorption layer is oxidized in an oxygen atmosphere at 500°C.
  • the short-circuit current (Jsc), open-circuit voltage (Voc), fill factor (FF), conversion efficiency and translucency of the obtained solar cell are evaluated.
  • Example 8 A solar cell is produced in the same manner as in Example 9, except that the surface of the Cu 2 O light absorption layer is oxidized in an oxygen atmosphere at 500°C.
  • the short-circuit current (Jsc), open-circuit voltage (Voc), fill factor (FF), conversion efficiency and translucency of the obtained solar cell are evaluated.
  • the amount of light is adjusted to 1 sun using a standard Si cell under that light source.
  • the measurement is carried out under atmospheric pressure and the temperature in the measurement room is 25°C.
  • the voltage is swept and the current density (current divided by cell area) is measured.
  • the horizontal axis is the voltage and the vertical axis is the current density
  • the point at which the horizontal axis intersects is the open circuit voltage Voc
  • the point at which the vertical axis intersects is the short circuit current density Jsc.
  • Jsc short-circuit current
  • Voc open-circuit voltage
  • FF fill factor
  • Translucency is evaluated as A when the transmittance of light in the wavelength band of 700 nm or more and 1200 nm or less is 75% or more, and the transmittance of light in the wavelength band of 700 nm or more and 1200 nm or less is 70% or more and 75%.
  • the transmittance is less than 700 nm or more and 1200 nm or less, it is evaluated as B, and when the transmittance of light in the wavelength band of 700 nm or more and 1200 nm or less is less than 70%, it is evaluated as C.
  • Jsc is evaluated as A when it is 1.1 times or more the conversion efficiency of Comparative Example 1, and B when it is 1.0 times or more and less than 1.1 times as high as Jsc of Comparative Example 1. Evaluate and evaluate as C when the Jsc of Comparative Example 1 is less than 1.0 times.
  • Voc is rated as A when it is 1.3 times or more the conversion efficiency of Comparative Example 1, and rated as B when it is 1.1 times or more and less than 1.3 times the Voc of Comparative Example 1.
  • the Voc of Comparative Example 1 is less than 1.1 times, it is evaluated as C.
  • FF is evaluated as A when it is 1.1 times or more the conversion efficiency of Comparative Example 1, and B when it is 1.0 times or more and less than 1.1 times the FF of Comparative Example 1. When it is less than 1.0 times the FF of Comparative Example 1, it is evaluated as C.
  • the conversion efficiency is evaluated as A when it is 1.5 times or more the conversion efficiency of Comparative Example 1, and when it is 1.1 times or more and less than 1.5 times the conversion efficiency of Comparative Example 1. Evaluated as B, and evaluated as C when the conversion efficiency is less than 1.1 times the conversion efficiency of Comparative Example 1.
  • FIG. 10 shows the elements of M1 in the phase containing Cu , Ga , M1 and O (M1 in the table), the ratio of Cu , Ga , M1 and O a1:b1:c1:d1 (R1 in the table), the second a1:b1:c1:d1 (R2 in the table) which is the ratio of Cu , Ga , M1 and O in the region, and a1:b1:c1:d1 which is the ratio of Cu , Ga , M1 and O in the third region (R3 in the table), a1:b1:c1:d1 which is the ratio of Cu , Ga , M1 and O in the fourth region (R4 in the table), the presence or absence of a Cu phase in the first region (Cu phase in the table) and the presence or absence of CuO phase in the first region (CuO phase in the table).
  • the presence of the phase containing Cu , Ga , M1 and O locally in the first region improves Jsc and the conversion efficiency of the solar cell.
  • the conversion efficiency is similarly improved in a multi-junction solar cell in which the solar cell of the example is used as the top cell and the solar cell using Si as the light absorption layer is used as the bottom cell.
  • Technical plan 1 a p-electrode; a p-type light absorption layer mainly composed of cuprous oxide or/and a cuprous oxide composite oxide on the p-electrode; an n-type layer containing an oxide containing Ga on the p-type light absorption layer; an n-electrode on the n-type layer; including a first region between the p-type light absorption layer and the n-type layer; The first region extends from the interface between the p-type light absorption layer and the n-type layer to the n-type layer side at a depth of up to 2 nm from the interface between the p-type light absorption layer and the n-type layer to the p A region up to a depth of 2 nm or less on the side of the mold light absorption layer, Cu , Ga , M1 and O are contained in the first region, M1 is 1 selected from the group consisting of Sn, Sb, Ag, Li, Na, K, Cs, Rb,
  • Technical plan 3 The solar cell according to Technical Solution 1 or 2, wherein the first region further includes a Cu phase.
  • Technical plan 4 From the interface of the p-type light absorption layer and the n-type layer to the p-type light absorption layer side from the position at a depth of up to 5 nm from the interface of the p-type light absorption layer and the n-type layer to the p-type light absorption layer A second region is a region up to a depth of 10 nm or less on the side, the ratio of Cu , Ga , M1 and O in the second region is a2:b2:c2:d2; a2, b2, c2 and d2 are 1.90 ⁇ a2 ⁇ 2.10, 0.00 ⁇ b2 ⁇ 0.01, 0 ⁇ c2 ⁇ 0.20 and 0.80 ⁇ d2 ⁇ 1.00
  • Technical plan 7 The n-type layer includes an oxide containing Ga as a main component, The solar cell according to any one of technical proposals 1 to 6, wherein 40 atomic % or more of the metal elements contained in the n-type layer is Ga.
  • Technical plan 8 The n-type layer is a group consisting of Sn, Sb, Cu, Ag, Li, Na, K, Cs, Rb, Al, In, Zn, Mg, Si, Ge, N, B, Ti, Hf, Zr and Ca. 7.
  • Technical plan 11 10 nm or less from the interface between the p-type light absorption layer and the n-type layer to the n-type layer side from a position at a depth of up to 5 nm from the interface between the p-type light absorption layer and the n-type layer to the n-type layer side
  • the area up to the position of the depth to be the third area
  • the ratio of Cu , Ga , M1 and O in the third region is a3:b3:c3:d3; a3, b3, c3 and d3 satisfy 0 ⁇ a3 ⁇ 0.05, 2.8 ⁇ b3 ⁇ 3.2, 0 ⁇ c3 ⁇ 0.4 and 1.8 ⁇ d3 ⁇ 2.2;
  • a1, a3, b1, b3, c1, c3, d1 and d3 are 0.006 ⁇ a3/a1 ⁇ 0.02, 100 ⁇ b3/b1 ⁇ 500, 0.5 ⁇ c3 /c1 ⁇ 0.8 and 1.8 ⁇ d3/d1 ⁇ 3.
  • the ratio of Cu , Ga , M1 and O in the fourth region is a4:b4:c4:d4, a4, b4, c4 and d4 satisfy 1.8 ⁇ a4 ⁇ 2.1, 0 ⁇ b4 ⁇ 0.001, 0 ⁇ c4 ⁇ 0.2 and 0.9 ⁇ d4 ⁇ 1.0; , a1, a4, b1, b4, c1, c4, d1 and d4 are 0.82 ⁇ a4/a1 ⁇ 1, 0 ⁇ b4/b1 ⁇ 0.02, 0 ⁇ c4/c1
  • the solar cell according to any one of technical proposals 1 to 11, which satisfies ⁇ 2 and 1 ⁇ d4/d1 ⁇ 1.6.
  • Technical plan 13 Let C Cu be the atomic concentration of Cu in the entire p-type light absorption layer, When the Ga concentration of the entire p-type light absorption layer is C Ga , The solar cell according to any one of technical proposals 1 to 12, wherein the C Cu and the C Ga satisfy 0 ⁇ C Ga /C Cu ⁇ 0.001.
  • Technical plan 14 A region extending from the interface between the p-type light absorption layer and the n-type layer to a depth of 10 nm toward the p-type light absorption layer to the surface of the p-type light absorption layer on the p-electrode side is a fourth region.
  • Technical plan 15 The first region is layered, The thickness of the first region is 0.001% or more and 0.2% or less of the thickness of the p-type light absorption layer,
  • the first region includes a phase containing Cu , Ga , M1 and O;
  • the ratio of Cu , Ga , M1 and O in the phase containing Cu , Ga , M1 and O is a:b:c:d, 0.65 ⁇ a/(a+b+c+d) ⁇ 0.72; 001 ⁇ b/a ⁇ 0.01, 0.005 ⁇ c/a ⁇ 0.05 and 0.27 ⁇ d/(a+b+c+d) ⁇ 0.31; 16.
  • Technical plan 17 Ga contained in the p-type light absorption layer is Ga diffused from the n-type layer, The solar cell according to any one of technical proposals 1 to 16, wherein the Cu contained in the n-type layer is Cu diffused from the p-type light absorption layer.
  • Technical plan 18 a solar cell according to any one of technical proposals 1 to 17; A multi-junction solar cell comprising a solar cell having a light absorbing layer with a bandgap smaller than that of the p-type light absorbing layer of the solar cell according to any one of technical proposals 1 to 17.
  • Technical plan 19 A solar cell module using the solar cell according to any one of technical proposals 1 to 17 or the multi-junction solar cell according to technical proposal 18.
  • Technical plan 20 A photovoltaic power generation system that performs photovoltaic power generation using the photovoltaic module according to Technical Plan 19.
  • Electrode 200 multi-junction solar cell
  • 201 second solar cell
  • 300 First solar cell module
  • Second solar cell module 303
  • Sub-module 304
  • Bus bar DESCRIPTION OF SYMBOLS 400... Photovoltaic power generation system 401... Solar cell module 402... Converter 403... Storage battery 404... Load 500... Vehicle 501... Vehicle body 502... Solar cell module 503... Power converter 504... Storage battery 505... Motor, 506... tire (wheel) 600...Flying object 601...Airframe skeleton 602...Motor 603...Rotor wing 604...Control unit

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本発明が解決しようとする課題は、変換効率に優れた太陽電池の製造方法、多接合型太陽電池、太陽電池モジュール及び太陽光発電システムを提供する。 実施形態の太陽電池は、p電極と、p電極上には亜酸化銅又は/及び亜酸化銅の複合酸化物を主体とするp型光吸収層と、p型光吸収層上にGaを含む酸化物を含むn型層と、n型層上にn電極と、を有する。p型光吸収層とn型層の間に第1領域を含み、第1領域は、p型光吸収層とn型層の界面からn型層側に2nmまでの深さの位置からp型光吸収層とn型層の界面からp型光吸収層側に2nm以下までの深さの位置までの領域であり、第1領域中には、Cu、Ga、M1及びOが含まれる。M1は、Sn、Sb、Ag、Li、Na、K、Cs、Rb、Al、In、Zn、Mg、Si、Ge、N、B、Ti、Hf、Zr及びCaからなる群から選ばれる1種以上の元素である。第1領域のCu、Ga、M1及びOの比は、a1:b1:c1:d1であり、a1、b1、c1及びd1は、1.80≦a1≦2.20、0.005≦b1≦0.05、0≦c1≦0.20及び0.60≦d1≦1.00を満たす。

Description

太陽電池、多接合型太陽電池、太陽電池モジュール及び太陽光発電システム
 本発明は、太陽電池、多接合型太陽電池、太陽電池モジュール及び太陽光発電システムに関する。
 新しい太陽電池の1つに、亜酸化銅(CuO)を光吸収層に用いた太陽電池がある。CuOはワイドギャップ半導体である。CuOは地球上に豊富に存在する銅と酸素からなる安全かつ安価な材料であるため、高効率かつ低コストな太陽電池が実現できると期待されている。
特開2018-46196号公報
 本発明が解決しようとする課題は、変換効率に優れた太陽電池、多接合型太陽電池、太陽電池モジュール及び太陽光発電システムを提供する。
 実施形態の太陽電池は、p電極と、p電極上には亜酸化銅又は/及び亜酸化銅の複合酸化物を主体とするp型光吸収層と、p型光吸収層上にGaを含む酸化物を含むn型層と、n型層上にn電極と、を有する。p型光吸収層とn型層の間に第1領域を含み、第1領域は、p型光吸収層とn型層の界面からn型層側に2nmまでの深さの位置からp型光吸収層とn型層の界面からp型光吸収層側に2nm以下までの深さの位置までの領域であり、第1領域中には、CuGaM1及びOが含まれる。M1は、Sn、Sb、Ag、Li、Na、K、Cs、Rb、Al、In、Zn、Mg、Si、Ge、N、B、Ti、Hf、Zr及びCaからなる群から選ばれる1種以上の元素である。第1領域のCuGaM1及びOの比は、a1:b1:c1:d1であり、a1、b1、c1及びd1は、1.80≦a1≦2.20、0.005≦b1≦0.05、0≦c1≦0.20及び0.60≦d1≦1.00を満たす。
図1は、実施形態の太陽電池の断面図。 図2は、実施形態の太陽電池の分析スポットを説明する図。 図3は、実施形態の多接合型太陽電池の断面図。 図4は、実施形態の太陽電池モジュールの斜視図。 図5は、実施形態の太陽電池モジュールの断面図。 図6は、実施形態の太陽光発電システムの構成図。 図7は、実施形態の車両の模式図。 図8は、実施形態の飛翔体の模式図。 図9は、実施例に関する表。 図10は、実施例に関する表。
 以下、図面を参照しながら、本発明の好適な一実施形態について詳細に説明する。なお、特に記載が無い限り、25℃、1気圧(大気)における物性値を示している。
(第1実施形態)
 第1実施形態は、太陽電池に関する。図1に、第1実施形態の太陽電池100の断面図を示す。図1に示すように、本実施形態に係る太陽電池100は、基板1、第1電極であるp電極2と、p型光吸収層3と、n型層4と、第2電極であるn電極5を有する。n型層4のn電極5との間等には、図示しない中間層が含まれていてもよい。太陽光はn電極5側、p電極2側いずれから入射しても良いが、n電極5側から入射するのがより好ましい。実施形態の太陽電池100は、透過型の太陽電池であるため、多接合型太陽電池のトップセル(光入射側)に用いることが好ましい。図1では基板1をp電極2のp型光吸収層3側とは反対側に設けているが、基板1をn電極5のn型層4側とは反対側に設けてもよい。以下は、図1に示す形態について説明するが、基板1の位置が異なること以外はn電極5側に基板1が設けられた形態も同様である。実施形態の太陽電池100は、n電極5側からp電極2側に向かって光が入射する。
 基板1は、透明な基板である。基板1には、光を透過するアクリル、ポリイミド、ポリカーボネート、ポリエチレンテレフタレート(PET)ポリプロピレン(PP)、フッ素系樹脂(ポリテトラフルオロエチレン(PTFE)、パーフルオロエチレンプロペンコポリマー(FEP)、エチレンテトラフルオロエチレンコポリマー(ETFE)、ポリクロロトリフルオロエチレン(PCTFE)、パーフルオロアルコキシアルカン(PFA)など)、ポリアリレート、ポリサルフォン、ポリエーテルサルフォンやポリエーテルイミドなどの有機系の基板やソーダライムガラス、白板ガラス、化学強化ガラスや石英などの無機系の基板を用いることができる。基板1は、上記に挙げた基板を積層してもよい。
 p電極2は、基板1上に設けられており、基板1とp型光吸収層3との間に配置されている。p電極2は、p型光吸収層3とオーミック接合することが好ましい。p電極2は、p型光吸収層3側に設けられた光透過性を有する導電層である。p電極2の厚さは、典型的には、100nm以上2,000nm以下である。図1では、p電極2は、p型光吸収層3と直接接している。p電極2は、1層以上の酸化物透明導電膜を含むことが好ましい。酸化物透明導電膜としては、酸化インジウムスズ(Indium Tin Oxide;ITO)、アルミニウムドープ酸化亜鉛(Al-doped Zinc Oxide;AZO)、ボロンドープ酸化亜鉛(Boron-doped Zinc Oxide;BZO)、ガリウムドープ酸化亜鉛(Gallium-doped Zinc Oxide;GZO)、ドープされた酸化スズ、チタンドープ酸化インジウム(Titanium-doped Indium Oxide;ITiO)、酸化インジウム酸化亜鉛(Indium Zinc Oxide;IZO)や酸化インジウムガリウム亜鉛(Indium Gallium Zinc Oxide;IGZO)、水素ドープ酸化インジウム(Hydrogen-doped Indium Oxide;IOH)などの半導体導電膜を用いることができ、特に限定されない。酸化物透明導電膜は、複数の膜を持つ積層膜であってもよい。酸化スズなどの膜へのドーパントとしては、In、Si、Ge、Ti、Cu、Sb、Nb、Ta、W、Mo、F及びClなどからなる群から選ばれる1種以上であれば特に限定されない。p電極2は、In、Si、Ge、Ti、Cu、Sb、Nb、Ta、W、Mo、F及びClなどからなる群から選ばれる1種以上の元素がドープされた酸化スズ膜が含まれることが好ましい。ドープされた酸化スズ膜において、In、Si、Ge、Ti、Cu、Sb、Nb、Ta、W、Mo、F及びClなどからなる群から選ばれる1種以上の元素は、酸化スズ膜に含まれるスズに対して10原子%以下含まれることが好ましい。p電極2として、酸化物透明導電膜と金属膜を積層した積層膜を用いることができる。金属膜は、厚さが1nm以上2μm以下であることが好ましく、金属膜に含まれる金属(合金を含む)は、Mo、Au、Cu、Ag、Al、TaやWなど特に限定されない。また、p電極2は、酸化物透明導電膜と基板1の間、又は、酸化物透明導電膜とp型光吸収層3の間にドット状、ライン状もしくはメッシュ状の電極(金属、合金、グラフェン、導電性窒化物及び導電性酸化物からなる群より選ばれる1種以上)を含むことが好ましい。ドット状、ライン状もしくはメッシュ状の金属は、酸化物透明導電膜に対して開口率が50%以上であることが好ましい。ドット状、ライン状もしくはメッシュ状の金属は、Mo、Au、Cu、Ag、Al、TaやWなど特に限定されない。p電極2に金属膜を用いる場合、透過性の観点から5nm以下程度の膜厚とすることが好ましい。ライン状やメッシュ状の金属膜を用いる場合、透過性は開口部で確保されるため、金属膜の膜厚に関してはこの限りではない。
 酸化物透明導電膜のp型光吸収層3側の最表面にはドープされた酸化スズ膜が設けられていることが好ましい。酸化物透明導電膜のp型光吸収層3側の最表面に設けられているドープされた酸化スズ膜の少なくとも一部がp型光吸収層3と直接的に接していることが好ましい。
 p型光吸収層3は、p型の半導体層である。p型光吸収層3は、p電極2と直接的に接していても良いし、p電極2との電気的なコンタクトを確保できる限り、他の層が存在していても良い。p型光吸収層3は、電極2とn型層4との間に配置される。p型光吸収層3はn型層4と直接的に接している。p型光吸収層3は、Cuを主成分とする金属の酸化物の半導体層である。Cuを主成分とする金属の酸化物は、亜酸化銅又は/及び亜酸化銅の複合酸化物である。p型光吸収層3は、亜酸化銅又は/及び亜酸化銅の複合酸化物の多結晶であることが好ましい。亜酸化銅又は/及び亜酸化銅の複合酸化物は、平均組成がCuM2で表される酸化物である。平均組成とは、p型光吸収層3の厚さ方向と平面方向で複数点測定して得られる組成の平均値から得られる組成である。M2は、Sn、Sb、Ag、Li、Na、K、Cs、Rb、Al、In、Zn、Mg、Ga、Si、Ge、N、B、Ti、Hf、Zr及びCaからなる群より選ばれる1種以上の元素であることが好ましい。e、f及びgは、1.80≦e≦2.01、0.00≦f≦0.20及び0.98≦g≦1.02を満たすことが好ましい。p型光吸収層3の90wt%以上100wt%以下は亜酸化銅又は/及び亜酸化銅の複合酸化物であることが好ましい。p型光吸収層3の95wt%以上100wt%以下は亜酸化銅又は/及び亜酸化銅の複合酸化物であることがより好ましい。p型光吸収層3の98wt%以上100wt%以下は亜酸化銅又は/及び亜酸化銅の複合酸化物であることがさらにより好ましい。p型光吸収層3は、p型光吸収層3は、異相であるCu又は/及びCuOをほとんど含まないことが好ましい。p型光吸収層3に含まれる異相が少なく結晶性が良いとp型光吸収層3の透光性が高くなるため好ましい。p型光吸収層3にM2の元素が含まれると、p型光吸収層3のバンドギャップを調整することができる。p型光吸収層3のバンドギャップは、2.0eV以上2.2eV以下であることが好ましい。かかる範囲のバンドギャップであると、Siを光吸収層に用いた太陽電池をボトムセルに用い、実施形態の太陽電池をトップセルに用いた多接合型太陽電池において、トップセル及びボトムセルの両方で太陽光を効率よく利用できる。p型光吸収層3は、Sn又は/及びSbを含むことが好ましい。p型光吸収層3のSnやSbは、p型光吸収層3に添加されたものでもよいし、p電極2に由来するものでもよい。p型光吸収層3に含まれるGaは、p型光吸収層3を成膜する原料には含まれず、n型層4に含まれるGaがp型光吸収層3に拡散したものである。n型層4の成膜時に他の元素も用いる場合はこれらの元素もp型光吸収層3に拡散する場合がある。
 上記p型光吸収層3の組成比は、p型光吸収層3の全体の組成比である。また、上記のp型光吸収層3の化合物組成比は、p型光吸収層3において全体的に満たすことが好ましい。なお、Sn及びSbのp型光吸収層3中の濃度が高いと、欠陥が増加して、キャリア再結合が増えてしまう。そこで、p型光吸収層3中のSb及びSnの合計体積濃度は、1.5x1019atoms/cm以下が好ましい。
 p型光吸収層3の組成は、p型光吸収層3の厚さをdとする場合、p電極2側のp型光吸収層3の表面から0.2d、0.5d、0.8dの深さにおける組成の平均値である。p型光吸収層3の化合物の元素組成比が傾斜しているといった条件がある場合を除き各深さにおいて、p型光吸収層3は、上記及び下記の好適な組成を満たすことが好ましい。なお、分析はn型層の表面からの各距離において図2の分析スポットを説明する図に示すような等間隔に可能な限り隔たり無く分布した分析スポット(A1~A9)を例えば二次イオン質量分析法(Secondary Ion Mass Spectrometry;SIMS)で分析することで求められる。図2は太陽電池100を光の入射側から見た模式図である。p型光吸収層3の組成を分析する場合、D1はp型光吸収層3の幅方向の長さであり、D2はp型光吸収層3の奥行き方向の長さである。
 p型光吸収層3の厚さは、電子顕微鏡による断面観察や、段差計によって求められ、1,000nm以上10,000nm以下が好ましい。
 p型光吸収層3は、結晶性の高い亜酸化銅又は/及び亜酸化銅の複合酸化物を含むため、p型光吸収層3を構成する結晶は大粒径を含む。p型光吸収層3の亜酸化銅又は/及び亜酸化銅の複合酸化物の結晶の直径(外接円直径)がp型光吸収層3の厚さの80%以上100%以下である結晶がp型光吸収層3に含まれる。p型光吸収層3の亜酸化銅又は/及び亜酸化銅の複合酸化物の結晶の直径(外接円直径)がp型光吸収層3の厚さの80%以上である結晶の断面積は、p型光吸収層3の断面積の80%以上を占めることが好ましい。大粒径のp型光吸収層3の亜酸化銅又は/及び亜酸化銅の複合酸化物の結晶は、透過性及び変換効率に優れるため、太陽電池の変換効率の向上に寄与する。また、第1領域6が存在し、かつ、p型光吸収層3の亜酸化銅又は/及び亜酸化銅の複合酸化物の結晶が大粒径であることで、さらに変換効率が向上する。
 p型光吸収層3は、例えばスパッタなどによって成膜されることが好ましい。
 n型層4は、n型の半導体層である。n型層4は、p型光吸収層3とn電極5との間に配置される。n型層4は、p型光吸収層3のp電極2と接した面とは反対側の面と直接接している。n型層4はGaを含む酸化物半導体層であって、Gaを主成分とする化合物(酸化物)を含むことが好ましい。n型層4はGaを主成分とする酸化物に他の酸化物が混合していてもよいし、Gaを主成分とする酸化物に他の元素がドープしていてもよいし、他の元素がドープしたGaを主成分とする酸化物と他の酸化物が混合していてもよい。n型層4は、単層又は多層である。n型層4に含まれる金属元素のうち、Gaが40原子%以上であることが好ましく、50原子%以上であることがより好ましい。n型層4に含まれる金属元素は、p型光吸収層3側からn電極5側に傾斜していてもよい。
 n型層4は、M3で表される元素とGaを含む酸化物を含むことが好ましい。Gaを主成分とする酸化物は、例えば、M3で表される元素とGaを含む酸化物である。n型層4は、Sn、Sb、Cu、Ag、Li、Na、K、Cs、Rb、Al、In、Zn、Mg、Si、Ge、N、B、Ti、Hf、Zr及びCaからなる群より選ばれる1種以上の元素であるM3とGaを含む酸化物を含むことが好ましい。n型層4は、Sn、Sb、Cu、Ag、Li、Na、K、Cs、Rb、Al、In、Zn、Mg、Si、Ge、N、B、Ti、Hf、Zr及びCaからなる群より選ばれる1種以上の元素であるM3とGaを含む酸化物を90wt%以上100wt%以下含むことが好ましい。n型層4のGaを主成分とする化合物は、平均組成がGaM3で表されるM3とGaを含む酸化物であることが好ましい。h、i及びjは、1.8≦h≦2.1、0≦i≦0.2及び2.9≦j≦3.1を満たすことが好ましい。
 n型層4の90wt%以上100wt%以下は、M3とGaを含む酸化物であることが好ましい。n型層4の95wt%以上100wt%以下は、M3とGaを含む酸化物であることがより好ましい。n型層4の98wt%以上100wt%以下は、M3とGaを含む酸化物で表される化合物であることがさらにより好ましい。n型層4に含まれるCuは、n型層4を成膜する原料には含まれず、p型光吸収層3に含まれるCuがn型層4に拡散したものである。p型光吸収層3の成膜時に他の元素も用いる場合はこれらの元素もn型層4に拡散する場合がある。
 n型層4の膜厚は、典型的には、3nm以上100nm以下である。n型層4の厚さが3nm未満であるとn型層4のカバレッジが悪い場合にリーク電流が発生し、特性を低下させてしまう場合がある。カバレッジが良い場合は上記膜厚に限定されない。n型層4の厚さが50nmを超えるとn型層4の過度の高抵抗化による特性低下や、透過率低下による短絡電流低下が起こる場合がある。従って、n型層4の厚さは3nm以上20nm以下がより好ましく、5nm以上20nm以下がさらにより好ましい。
 なお、n型層4の化合物の組成は、特に条件を付けなければn型層4全体の平均組成である。n型層4の組成は、n型層4の厚さをdとする場合、p型光吸収層3側のn型層4の表面から0.2d、0.5d、0.8dの深さにおける組成の平均値である。n型層4の化合物の元素組成比が傾斜しているといった条件がある場合を除き各深さにおいて、n型層4は、上記及び下記の好適な組成を満たすことが好ましい。なお、n型層4が非常に薄い場合(例えば5nm以下)は、p型光吸収層3側のn型層4の表面から0.5dの深さにおける組成をn型層4の全体の組成とみなすことができる。なお、分析はn型層4の表面からの各距離において図2の分析スポットを説明する図に示すような等間隔に可能な限り隔たり無く分布した分析スポット(A1~A9)を例えば二次イオン質量分析法(Secondary Ion Mass Spectrometry;SIMS)で分析することで求められる。図2は太陽電池100を光の入射側から見た模式図である。n型層4の組成を分析する場合、D1はn型層4の幅方向の長さであり、D2はn型層4の奥行き方向の長さである。
 Si系などの一般的な太陽電池では、発電効率を高めるためにp型光吸収層3の伝導帯下端(Conduction Band Minimum:CBM)とn型層4(多層の場合は、p型光吸収層3側のn型層4)の伝導帯下端の差が小さくなり、再結合速度が10cm/sec以下程度になるn型層4が好ましい。しかし、発明者らの研究により、亜酸化銅酸化物(複合酸化物)を光吸収層に用いた太陽電池では伝導帯下端の差が小さくて、再結合速度が遅い形態とは真逆で、伝導帯下端の差がある程度大きく、さらに。再結合速度が速い場合において、発電効率が向上することが分かった。p型光吸収層3の伝導帯下端とn型層4の伝導帯下端の差([p型光吸収層3の伝導帯下端]-[n型層4の伝導帯下端])は、0.5eVより大きく1.0eV以下であることが好ましい。
 p型光吸収層3とn型層4の間に第1領域6を含むことが好ましい。第1領域6は、p型光吸収層3とn型層4の遷移領域である。第1領域6には、p型光吸収層3とn型層4の接合部分の欠陥になるp型光吸収層3の亜酸化銅酸化物と亜酸化銅の複合酸化物の異相が含まれる。第1領域6には、Cu、Ga、M1で表される元素及び酸素が含まれる。
第1領域6は、p型光吸収層3とn型層4の境界からn型層4側に2nmまでの深さの位置(第1点)からp型光吸収層3とn型層4の境界からp型光吸収層3側に2nm以下までの深さの位置(第2点)までの領域である。CuOをp型光吸収層3に用いた太陽電池では4nm幅の非常に薄い領域に欠陥が有ることで、再結合速度が速まり発電効率が向上する。p型光吸収層3とn型層4の接合部分の欠陥となる異相が存在する領域が例えば10nm幅など厚い場合、変換効率は大きく低下してしまう。欠陥となる異相とは、p型光吸収層3の第4領域に対する異相であり、かつ、n型層4の第3領域に対する異相である。
 p型光吸収層3とn型層4の境界は明瞭でない場合がある。p型光吸収層3とn型層4の境界が明瞭ではない場合は、p型光吸収層3とn型層4の間の不明瞭な部分の中心部分をp型光吸収層3とn型層4の境界とする。p型光吸収層3とn型層4の境界は、平面ではなくて凹凸面を有している場合がある。p型光吸収層3とn型層4の境界は、p型光吸収層3とn型層4の断面を観察して特定することができる。p型光吸収層3とn型層4の間の不明瞭な部分に異相が含まれることから、p型光吸収層3とn型層4の間の不明瞭な部分の幅は、p型光吸収層3とn型層4の積層方向に0nm以上10nm以下であり、1nm以上5nm以下であることが好ましく、2nm以上4nm以下であることがより好ましい。
 第1領域6は、島状ではなく層状であることが好ましい。島状に第1領域6が存在すると再結合速度が速い領域と遅い領域の両方が存在してしまう。層状の第1領域6がp型光吸収層3とn型層4の間に存在していることが好ましい。層状の第1p領域6がp型光吸収層3とn型層4の間に存在しているということは、p型光吸収層3とn型層4の間に途切れず連続的に第1領域6が存在していることを意味する。層状の第1領域6がp型光吸収層3とn型層4の間に存在しているということは、p型光吸収層3とn型層4の積層方向において、p型光吸収層3とn型層4の間に第1領域6が存在しない部分は無いことを意味する。第1領域6の厚さが2nm未満であると、第1領域6が島状に存在し易くなり、再結合速度が大きく異なる領域が存在し易くなる。
 第1領域6には、p型光吸収層3とn型層4の接合部分の欠陥となる異相が含まれることが好ましい。p型光吸収層3とn型層4の接合部分の欠陥となる異相は、p型光吸収層3に含まれる金属元素とn型層4に含まれる金属元素の両方を含むことが好ましい。M1は、Sn、Sb、Ag、Li、Na、K、Cs、Rb、Al、In、Zn、Mg、Si、Ge、N、B、Ti、Hf、Zr及びCaからなる群から選ばれる1種以上の元素であることが好ましい。p型光吸収層3のM2の元素として含まれている元素及びn型層4のM3の元素として含まれている元素がM1の元素であることが好ましい。p型光吸収層3にGa以外のM2の元素が含まれず、かつ、n型層4にM3の元素が含まれない場合は、第1領域6中にM1の元素が含まれない。p型光吸収層3にGa以外のM2の元素が含まれず、かつ、n型層4にM3の元素が含まれる場合は、第1領域6のM1の元素はn型層4に含まれるM3の元素であることが好ましい。p型光吸収層3にGa以外にもM2の元素が含まれ、かつ、n型層4にM3の元素が含まれない場合は、第1領域6のM1の元素はp型光吸収層3に含まれるGa以外のM2の元素であることが好ましい。
 第1領域6のCuGaM1及びOの比(Cu:Ga:M1:O)は、a1:b1:c1:d1である。a1、b1、c1及びd1は、1.80≦a1≦2.20、0.005≦b1≦0.05、0≦c1≦0.20及び0.60≦d1≦1.00を満たすことが好ましく、1.80≦a1≦2.05、0.005≦b1≦0.02、0≦c1≦0.20及び0.60≦d1≦0.90を満たすことがより好ましい。第1領域中のCuM2で表される酸化物の平均含有比率は、p型光吸収層中の亜酸化銅又は/及び亜酸化銅の複合酸化物の平均含有比率の50%以下であることが好ましい。
 第1領域6に含まれるCuGaM1及びOの総原子数は、第1領域6中の95atom%以上100atom%以下であり、98atom%以上100atom%以下であることが好ましい。第1領域6中のCuGaM1及びO以外の元素は不純物などの不可避的な元素であり、第1領域6中に含まれる不可避的な元素の原子濃度は、第1領域6中のCuGaM1及びO以外の元素のいずれの原子濃度よりも低い。
 第1領域6の厚さは、p型光吸収層3の厚さよりも非常に薄いことが好ましい。そこで、第1領域6の厚さは、p型光吸収層3の厚さの0.001%以上0.2%以下が好ましく、0.005%以上0.1%以下がより好ましい。また、第1領域6の厚さは、p型光吸収層3の厚さとn型層4の厚さの和の0.001%以上0.2%以下が好ましく、0.005%以上0.1%以下がより好ましい。
 p型光吸収層3中のn型層4との境界近傍において、Gaが含まれる部分にはp型光吸収層3とn型層4の接合部分の欠陥となる相が含まれる。M2の元素にはGaが含まれていて、p型光吸収層3中においてこのGaが含まれている相(例えばアモルファス相又は結晶の外接円直径が1nm以下の微結晶)が異相である。Gaが含まれている相は、より具体的には、Cu、Ga、M1及びOを含む相が異相である。p型光吸収層3は、第1領域6を除いた領域においては、実質的にGaを含まない。従って、p型光吸収層3において、Gaが含まれている相は異相であり、異相は第1領域6に位置選択的に存在している。
 また、n型層4中のp型光吸収層3との境界近傍において、Cuが含まれる部分にはp型光吸収層3とn型層4の接合部分の欠陥となる相が含まれる。M3の元素にはCuが含まれていて、n型層4中においてこのCuが含まれている相(例えばアモルファス相又は結晶の外接円直径が1nm以下の微結晶)が異相である。p型光吸収層3における異相はn型層4においても異相である。Cuが含まれている相はより具体的にはp型光吸収層3の異相と同じCu、Ga、M1及びOを含む相である。n型層4は、第1領域6除いた領域においては、実質的にCuを含まない。従って、n型層4において、Cuを含む相は、異相であり、異相は第1領域6に位置選択的に存在している。
 前記第1領域6を除くp型光吸収層3に含まれるGa濃度は、p型光吸収層3に含まれる金属元素に対して0atom%以上0.05atom%以下であることが好ましく、0atom%以上0.00005atom%以下であることがより好ましい。また、第1領域6を除くn型層4に含まれるCu濃度は、n型層4に含まれる金属元素に対して0atom%以上10atom%以下であることが好ましく、0atom%以上1atom%以下であることがより好ましい。第1領域6を除くn型層4に含まれるCuの原子濃度は、第1領域6を除くp型光吸収層3に含まれるGa原子濃度の10倍以上になる。これは、p型光吸収層3の膜厚がn型層4の厚さの少なくとも10倍以上であるため、拡散する距離が短くてもn型層4の比較的深部にまでCuが拡散することが理由である。p型光吸収層3側から拡散するCu量とn型層4側から拡散するGa量の差が大きいと、p型光吸収層3及び/又はn型層4の特性低下の原因になる場合がある。そこで、第1領域6を除くp型光吸収層3に含まれるGaの原子数は、第1領域を除くn型層4に含まれるCuの原子数の0。2倍以上7倍以下であることが好ましい。
 CuGaM1及びOが含まれる相とは、CuGaM1及びOの比(Cu:Ga:M1:O)をa:b:c:dとするとき、0.65≦a/(a+b+c+d)≦0.72、0.001≦b/a≦0.01、0.005≦c/a≦0.05及び0.27≦d/(a+b+c+d)≦0.31を満たす相である。下記に説明する分析スポット(A1~A9)において、少なくとも1つのスポットにCuGaM1及びOが含まれる相が第1領域6に含まれるとき、CuGaM1及びOが含まれる相が第1領域6に含まれることを意味する。
 過半数(5)以上のスポットにCuGaM1及びOが含まれる相が第1領域6に含まれることがより好ましく、全てのスポットにCuGaM1及びOが含まれる相が第1領域6に含まれることがさらにより好ましい。過半数(5)未満のスポットにCuGaM1及びOが含まれる相が第1領域6に含まれるとき、第1領域6の半分未満にCuGaM1及びOが含まれる相が含まれていることを意味する。過半数(5)以上のスポットにCuGaM1及びOが含まれる相が第1領域6に含まれるとき、第1領域6の半分以上にCuGaM1及びOが含まれる相が含まれていることを意味する。全てのスポットにCuGaM1及びOが含まれる相が第1領域6に含まれるとき、第1領域6の全体にCuGaM1及びOが含まれる相が含まれていることを意味する。上記のCuGaM1及びOが含まれる相が存在する比率の定義については、第1領域6以外の他の領域についても同様である。
 p型光吸収層3とn型層4の境界からp型光吸収層3側に5nmまでの深さの位置(起点)からp型光吸収層3とn型層4の境界からp型光吸収層3側に10nm以下までの深さの位置(終点)までの領域を第2領域とする。このとき、第2領域中のCuGaM1及びOの比(Cu:Ga:M1:O)は、a2:b2:c2:d2である。a2、b2、c2及びd2は、1.90≦a2≦2.10、0.00≦b2≦0.01、0≦c2≦0.20及び0.80≦d2≦1.00を満たすことが好ましく、1.95≦a2≦2.05、0≦b2≦0.001、0≦c2≦0.20及び0.80≦d2≦1.00を満たすことがより好ましい。異相がp型光吸収層3側には実質的に存在せず、非常に狭い第1領域6に局所的に異相が存在することで、バルクのp型光吸収層3の再結合速度を増加させずに、p型光吸収層3とn型層4の境界における再結合速度を高めることができる。第2領域には、CuGaM1及びOが含まれる相が全体的には含まれないことが好ましく、CuGaM1及びOが含まれる相が半分以上は含まれないことがより好ましく、CuGaM1及びOが含まれる相が含まれないことがさらにより好ましい。
 上記観点から第2領域は、Gaを実質的に含まない亜酸化銅酸化物又は/及び亜酸化銅酸化物の複合酸化物で構成されていることが好ましく、Gaを含まない亜酸化銅酸化物又は/及び亜酸化銅酸化物の複合酸化物で構成されていることが好ましい。そこで、0.87≦a2/a1≦1.16、0≦b2/b1≦0.2、0≦c2/c1≦2及び1≦d2/d1≦1.33を満たすことが好ましく、0.96≦a2/a1≦1.13、0≦b2/b1≦0.15、0≦c2/c1≦1.75及び1.25≦d2/d1≦1.33を満たすことがより好ましい。また、上記観点から、-0.3≦(a2-a1)≦0.3、0≦(b1-b2)<b1、-0.1≦(c1-c2)<c1及び-0.2≦(d2-d1)≦0.4を満たすことがより好ましい。b2=0を満たすことがさらにより好ましい。
 第2領域は、Gaを実質的に含まない亜酸化銅酸化物又は/及び亜酸化銅酸化物の複合酸化物で構成されている場合、第2領域中のGaの比率(b2/(a2+b2+c2+d2))が第1領域6中のGaの比率(b1/(a1+b1+c1+d1))よりも低くなっている。従って、(b2/(a2+b2+c2+d2))<(b1/(a1+b1+c1+d1))を満たすことが好ましく、10(b2/(a2+b2+c2+d2))<(b1/(a1+b1+c1+d1))を満たすことがより好ましく、50(b2/(a2+b2+c2+d2))<(b1/(a1+b1+c1+d1))を満たすことがさらにより好ましい。
 第1領域6中、第2領域中、後述する第3領域中及び第4領域中のCuGaM1及びOが含まれる相の存在確認、組成及び平均含有比率は、SIMS、走査型顕微鏡付きエネルギー分散型分光分析(Scanning Electron Microscope-Energy Dispersive X-ray Spectrometry:SEM-EDX)、透過型顕微鏡付きエネルギー分散型分光分析(Transmission Electron Microscope-Energy Dispersive X-ray Spectrometry:TEM-EDX)又はエネルギー分散型分光分析(Energy Dispersive X-ray Spectrometry:EDX)による組成分析で求まる。明細書中において0、0.0や0.00などの表現は、対象の元素や化合物(相)などが含まないことを表している。分析において検出限界以下の場合及び/又は定量限界以下の場合も対象の元素などが含まれないとみなす。
 p型光吸収層3とn型層4の境界からn型層4側に5nmまでの深さの位置(起点)からp型光吸収層3とn型層4の境界からn型層4側に10nm以下までの深さの位置(終点)までの領域を第3領域とする。このとき、第3領域中のCuGaM1及びOの比(Cu:Ga:M1:O)は、a3:b3:c3:d3である。a3、b3、c3及びd3は、0≦a3≦0.05、2.8≦b3≦3.2、0≦c3≦0.4及び1.8≦d3≦2.2を満たすことが好ましく、0≦a3≦0.03、2.9≦b3≦3.1、0≦c3≦0.3及び1.9≦d3≦2.1を満たすことがより好ましい。異相がn型層4側には実質的に存在せず、非常に狭い第1領域6に局所的に異相が存在することで、バルクである第3領域のn型層4の電子トラップ密度を増加させずに、p型光吸収層3とn型層4の境界における再結合速度を高めることができる。第3領域には、CuGaM1及びOが含まれる相が全体的には含まれないことが好ましく、CuGaM1及びOが含まれる相が半分以上は含まれないことがより好ましく、CuGaM1及びOが含まれる相が含まれないことがさらにより好ましい。
 第3領域中のCu含有率は、第1領域6中のCu含有率よりも少ないことが好ましい。そこで、0.006≦a3/a1≦0.02、100≦b3/b1≦500、0.5≦c3/c1≦0.8及び1.8≦d3/d1≦3を満たすことが好ましく、0.1≦a3/a1≦0.16、200≦b3/b1≦450、0.5≦c3/c1≦0.7及び2≦d3/d1≦2.6を満たすことがより好ましい。a3=0を満たすことがさらにより好ましい。
 第3領域中のCu含有率は、第1領域6中のCu含有率よりも少ない場合、第3領域中のCuの比率(a3/(a3+b3+c3+d3))が第1領域6中のCuの比率(a1/(a1+b1+c1+d1))よりも低くなっている。従って、(a3/(a3+b3+c3+d3))<(a1/(a1+b1+c1+d1))を満たすことが好ましく、10(a3/(a3+b3+c3+d3))<(a1/(a1+b1+c1+d1))を満たすことがより好ましく、50(a3/(a3+b3+c3+d3))<(a1/(a1+b1+c1+d1))を満たすことがさらにより好ましい。
 また、第3領域中のCu含有率は、第1領域6中のCu含有率よりも少ない場合、第3領域中のGaの比率(b3/(a3+b3+c3+d3))が第1領域6中のGaの比率(b1/(a1+b1+c1+d1))よりも高くなっている。従って、(b3/(a3+b3+c3+d3))>(b1/(a1+b1+c1+d1))を満たすことが好ましく、(b3/(a3+b3+c3+d3))>10(b1/(a1+b1+c1+d1))を満たすことがより好ましく、(b3/(a3+b3+c3+d3))>50(b1/(a1+b1+c1+d1))を満たすことがさらにより好ましい。
 第1領域6中には、Cu相がさらに含まれていてもよい。Cu相が第1領域6に含まれることで、p型光吸収層3とn型層4の境界に欠陥が生じてp型光吸収層3とn型層4の境界における再結合速度が速くなることが好ましい。また、第1領域6中には、CuO相がさらに含まれていてもよい。
 p型光吸収層3の全体に含まれるGa含有比率は、低いが好ましい。異相が第1領域6を除いたp型光吸収層3側には実質的に存在せず、非常に狭い第1領域6に局所的に異相が存在することで、バルクである第4領域のp型光吸収層3での再結合速度を増加させずに、p型光吸収層3とn型層4の境界における再結合速度を高めることができる。そこで、p型光吸収層3の全体のCuの原子濃度をCCuとし、p型光吸収層全体のGa濃度をCGaとするとき、0≦CGa/CCu≦0.001を満たすことが好ましく、0≦CGa/CCu≦0.000001を満たすことがより好ましい。
 n型層4中のCuの含有比率は、非常に低いことが好ましい。そこで、n型層4中に含まれる金属元素に占めるCu原子の比率は、0.0%以上0.1%以下であることが好ましい。異相が第1領域6を除いたn型層4側には実質的に存在せず、非常に狭い第1領域6に局所的に異相が存在することで、バルクである第3領域のn型層4の電子トラップ密度を増加させずに、p型光吸収層3とn型層4の境界における再結合速度を高めることができる。
 p型光吸収層3とn型層4の境界からp型光吸収層3側に10nmまでの深さの位置(起点)からp型光吸収層3のp電極側の表面の位置(終点)までの領域を第4領域とする。このとき、第4領域中のCuGaM1及びOの比(Cu:Ga:M1:O)は、a4:b4:c4:d4である。a4、b4、c4及びd4は、1.8≦a4≦2.1、0≦b4≦0.001、0≦c4≦0.2及び0.9≦d4≦1.0を満たすことが好ましく、1.8≦a4≦2.03、0≦b4≦0.000001、0≦c4≦0.2及び0.95≦d4≦1を満たすことがより好ましい。異相が第1領域6を除いたp型光吸収層3側には実質的に存在せず、非常に狭い第1領域6に局所的に異相が存在することで、バルクである第4領域のp型光吸収層3での再結合速度を増加させずに、p型光吸収層3とn型層4の境界における再結合速度を高めることができる。第4領域には、CuGaM1及びOが含まれる相が全体的には含まれないことが好ましく、CuGaM1及びOが含まれる相が半分以上は含まれないことがより好ましく、CuGaM1及びOが含まれる相が含まれないことがさらにより好ましい。
 第4領域は、Gaを実質的に含まない亜酸化銅酸化物又は/及び亜酸化銅酸化物の複合酸化物で構成されていることが好ましく、Gaを含まない亜酸化銅酸化物又は/及び亜酸化銅酸化物の複合酸化物で構成されていることが好ましい。そこで、0.82≦a4/a1≦1、0≦b4/b1≦0.02、0≦c4/c1≦2及び1≦d4/d1≦1.6を満たすことが好ましく、0.9≦a4/a1≦1、0≦b4/b1≦0.00005、0≦c4/c1≦1.9及び1.3≦d4/d1≦1.5を満たすことがより好ましい。b4=0を満たすことがさらにより好ましい。
 第4領域は、Gaを実質的に含まない亜酸化銅酸化物又は/及び亜酸化銅酸化物の複合酸化物で構成されている場合、第4領域中のGaの比率(b4/(a4+b4+c4+d4))が第1領域6中のGaの比率(b1/(a1+b1+c1+d1))よりも低くなっている。従って、10(b4/(a4+b4+c4+d4))<(b1/(a1+b1+c1+d1))を満たすことが好ましく、40(b4/(a4+b4+c4+d4))<(b1/(a1+b1+c1+d1))を満たすことがより好ましく、100(b4/(a4+b4+c4+d4))<(b1/(a1+b1+c1+d1))を満たすことがさらにより好ましい。
 また、第4領域中のCuGaM1及びOが含まれる相の平均含有率は、第2領域6中のCuGaM1及びOが含まれる相の平均含有率以下である場合、第4領域中のGaの比率(b4/(a4+b4+c4+d4))が第2領域中のGaの比率(b2/(a2+b2+c2+d2))以下になる。従って、(b4/(a4+b4+c4+d4))≦(b2/(a2+b2+c2+d2))を満たすことが好ましく、5(b4/(a4+b4+c4+d4))≦(b2/(a2+b2+c2+d2))を満たすことがより好ましく、10(b4/(a4+b4+c4+d4))≦(b2/(a2+b2+c2+d2))を満たすことがさらにより好ましい。
 n電極5は、可視光に対して、光透過性を有するn型層4側の電極である。n電極5とp型光吸収層3によってn型層4を挟んでいる。n型層4とn電極5の間には、図示しない中間層を設けることができる。n電極5には、酸化物透明導電膜を用いることが好ましい。n電極5で用いられる酸化物透明導電膜としては、酸化インジウムスズ、アルミニウムドープ酸化亜鉛、ボロンドープ酸化亜鉛、ガリウムドープ酸化亜鉛、インジウムドープ酸化亜鉛、チタンドープ酸化インジウム、酸化インジウムガリウム亜鉛及び水素ドープ酸化インジウムからなる群より選ばれる1種以上の半導体導電膜であることが好ましい。酸化スズなどの膜へのドーパントとしては、In、Si、Ge、Ti、Cu、Sb、Nb、Ta、W、Mo、F及びClなどからなる群から選ばれる1種以上であれば特に限定されない。n電極5は、酸化物透明導電膜を低抵抗化するために、メッシュやライン形状の電極を含むことができる。メッシュやライン形状の電極には、Mo、Au、Cu、Ag、Al、TaやWなど特に限定されない。n電極5には、グラフェンも用いることができる。グラフェンは、銀ナノワイヤと積層させることが好ましい。
 n電極5の厚さは、電子顕微鏡による断面観察や、段差計によって求められ、特に限定はないが、典型的には、50nm以上2μm以下である。
 n電極5は、例えばスパッタなどによって成膜されることが好ましい。
(第2実施形態)
 第2実施形態は、多接合型太陽電池に関する。図3に第2実施形態の多接合型太陽電池の断面概念図を示す。図3の多接合型太陽電池200は、光入射側に第1実施形態の太陽電池(第1太陽電池)100と、第2太陽電池201を有する。第2太陽電池201の光吸収層のバンドギャップは、第1実施形態の太陽電池100のp型光吸収層3よりも小さいバンドギャップを有する。なお、実施形態の多接合型太陽電池200は、3以上の太陽電池を接合させた太陽電池も含まれる。
 第1実施形態の第1太陽電池100のp型光吸収層3のバンドギャップが2.0eV-2.2eV程度であるため、第2太陽電池201の光吸収層のバンドギャップは、1.0eV以上1.6eV以下であることが好ましい。第2太陽電池の光吸収層としては、Inの含有比率が高いCIGS系及びCdTe系からなる群から選ばれる1種以上の化合物半導体層、結晶シリコン及びペロブスカイト型化合物からなる群より選ばれる1種であることが好ましい。
(第3実施形態)
 第3実施形態は、太陽電池モジュールに関する。図4に第3実施形態の太陽電池モジュール300の斜視図を示す。図4の太陽電池モジュール300は、第1太陽電池モジュール301と第2太陽電池モジュール302を積層した太陽電池モジュールである。第1太陽電池モジュール301は、光入射側であり、第1実施形態の太陽電池100を用いている。第2太陽電池モジュール302には、第2太陽電池201を用いることが好ましい。第1太陽電池モジュール301には、第2から第4実施形態の太陽電池101-103も使用することができる。
 図5に太陽電池モジュール300の断面図を示す。図5では、第1太陽電池モジュール301の構造を詳細に示し、第2太陽電池モジュール302の構造は示していない。第2太陽電池モジュール302では、用いる太陽電池の光吸収層などに応じて適宜、太陽電池モジュールの構造を選択する。図5の太陽電池モジュールは、複数の太陽電池100(太陽電池セル)が横方向に並んで配線304で電気的に直列に接続した破線で囲われたサブモジュール303が複数含まれ、複数のサブモジュール303が電気的に並列もしくは直列に接続している。隣り合うサブモジュール303は、バスバー305で電気的に接続している。
 隣り合う太陽電池100は、上部側のn電極5と下部側のp電極2が配線304によって接続している。第3実施形態の太陽電池100も第1実施形態の太陽電池100と同様に、基板1、p電極2、p型光吸収層3、n型層4とn電極5を有する。サブモジュール303中の太陽電池100の両端は、バスバー305と接続し、バスバー305が複数のサブモジュール303を電気的に並列もしくは直列に接続し、第2太陽電池モジュール302との出力電圧を調整するように構成されていることが好ましい。なお、第3実施形態に示す太陽電池100の接続形態は一例であり、他の接続形態によって太陽電池モジュールを構成することができる。
(第4実施形態)
 第4実施形態は太陽光発電システムに関する。第4実施形態の太陽電池モジュールは、第4実施形態の太陽光発電システムにおいて、発電を行う発電機として用いることができる。実施形態の太陽光発電システムは、太陽電池モジュールを用いて発電を行うものであって、具体的には、発電を行う太陽電池モジュールと、発電した電気を電力変換する手段と、発電した電気をためる蓄電手段又は発電した電気を消費する負荷とを有する。図6に実施形態の太陽光発電システム400の構成図を示す。図6の太陽光発電システムは、太陽電池モジュール401(300)と、コンバーター402と、蓄電池403と、負荷404とを有する。蓄電池403と負荷404は、どちらか一方を省略しても良い。負荷404は、蓄電池403に蓄えられた電気エネルギーを利用することもできる構成にしてもよい。コンバーター402は、DC-DCコンバーター、DC-ACコンバーター、AC-ACコンバーターなど変圧や直流交流変換などの電力変換を行う回路又は素子を含む装置である。コンバーター402の構成は、発電電圧、蓄電池403や負荷404の構成に応じて好適な構成を採用すればよい。
 太陽電池モジュール300に含まれる受光したサブモジュール303に含まれる太陽電池セルが発電し、その電気エネルギーは、コンバーター402で変換され、蓄電池403で蓄えられるか、負荷404で消費される。太陽電池モジュール401には、太陽電池モジュール401を常に太陽に向けるための太陽光追尾駆動装置を設けたり、太陽光を集光する集光体を設けたり、発電効率を向上させるための装置等を付加することが好ましい。
 太陽光発電システム400は、住居、商業施設や工場などの不動産に用いられたり、車両、航空機や電子機器などの動産に用いられたりすることが好ましい。実施形態の変換効率に優れた太陽電池を太陽電池モジュールに用いることで、発電量の増加が期待される。
 太陽光発電システム400の利用例として車両を示す。図7に車両500の構成概念図を示す。図7の車両500は、車体501、太陽電池モジュール502、電力変換装置503、蓄電池504、モーター505とタイヤ(ホイール)506を有する。車体501の上部に設けられた太陽電池モジュール502で発電した電力は、電力変換装置503変換されて、蓄電池504にて充電されるか、モーター505等の負荷で電力が消費される。太陽電池モジュール502又は蓄電池504から供給される電力を用いてモーター505によってタイヤ(ホイール)506を回転させることにより車両500を動かすことができる。太陽電池モジュール502としては、多接合型ではなく、第1実施形態の太陽電池100等を備えた第1太陽電池モジュールだけで構成されていてもよい。透過性のある太陽電池モジュール502を採用する場合は、車体501の上部に加え、車体501の側面に発電する窓として太陽電池モジュール502を使用することも好ましい。
 太陽光発電システム400の利用例として飛翔体(ドローン)を示す。飛翔体は、太陽電池モジュール401を用いている。本実施形態にかかる飛翔体の構成を、図9の飛翔体600の模式図を用いて簡単に説明する。飛翔体600は、太陽電池モジュール401、機体骨格601、モーター602、回転翼603と制御ユニット604を有する。太陽電池モジュール401、モーター602、回転翼603と制御ユニット604は、機体骨格601に配置している。制御ユニット604は、太陽電池モジュール401から出力した電力を変換したり、出力調整したりする。モーター602は太陽電池モジュール401から出力された電力を用いて、回転翼603を回転させる。実施形態の太陽電池モジュール401を有する本構成の飛翔体600とすることで、より多くの電力を用いて飛行することができる飛翔体が提供される。
 以下、実施例に基づき本発明をより具体的に説明するが、本発明は以下の実施例に限定されるものではない。
(実施例1)
 ガラス基板上に、裏面側のp電極として、ガラスと接する側に上面にITO(In:Sn=80:20、膜厚20nm)とATO(Sn:Sb=98:2 150μm)を堆積する。透明なp電極上に酸素、アルゴンガス雰囲気中でスパッタリング法により500℃で加熱してCuO光吸収層を成膜する。その後、CuO光吸収層の表面を200℃の酸素を含む雰囲気で一部酸化させる。次いでALD法により、n型層としてGa1.92Al0.083.00を10nm堆積し、さらにZn0.80Sn0.201.2を14nm堆積させる。n型層上にn電極としてAZO透明導電膜を堆積する。そして、反射防止膜としてMgF膜を成膜することで太陽電池を得る。得られた太陽電池について、短絡電流(Jsc)、開放電圧(Voc)、フィルファクター(FF)、変換効率及び透光性を評価する。
(実施例2)
 n型層としてGa1.92Al0.083.00に代ってGa1.95Al0.053.00を12nm堆積させること以外は実施例1と同様に太陽電池を作製する。得られた太陽電池について、短絡電流(Jsc)、開放電圧(Voc)、フィルファクター(FF)、変換効率及び透光性を評価する。
(実施例3)
 n型層としてGa1.92Al0.083.00に代ってGaを11nm堆積させること以外は実施例1と同様に太陽電池を作製する。得られた太陽電池について、短絡電流(Jsc)、開放電圧(Voc)、フィルファクター(FF)、変換効率及び透光性を評価する。
(実施例4)
 n型層としてGa1.92Al0.083.00に代ってGaを10nm堆積させ、さらにZn0.80Sn0.201.2に代ってGa1.70Sn0.303.15を12nm堆積させること以外は実施例1と同様に太陽電池を作製する。得られた太陽電池について、短絡電流(Jsc)、開放電圧(Voc)、フィルファクター(FF)、変換効率及び透光性を評価する。
(実施例5)
 Siを含むCuO光吸収層を成膜すること以外は実施例1と同様に太陽電池を作製する。得られた太陽電池について、短絡電流(Jsc)、開放電圧(Voc)、フィルファクター(FF)、変換効率及び透光性を評価する。
(実施例6)
 n型層を順次堆積した後に150度で加熱すること以外は実施例1と同様に太陽電池を作製する。得られた太陽電池について、短絡電流(Jsc)、開放電圧(Voc)、フィルファクター(FF)、変換効率及び透光性を評価する。
(実施例7)
 n型層としてGa1.92Al0.083.00に代って酸素欠損のあるGa1.95Al0.052.50を10nm堆積させ、さらにZn0.80Sn0.201.2を堆積後に150度で加熱すること以外は実施例1と同様に太陽電池を作製する。得られた太陽電池について、短絡電流(Jsc)、開放電圧(Voc)、フィルファクター(FF)、変換効率及び透光性を評価する。
(実施例8)
 n型層としてGaを30nm堆積させること以外は、実施例1と同様に太陽電池を作製する。得られた太陽電池について、短絡電流(Jsc)、開放電圧(Voc)、フィルファクター(FF)、変換効率及び透光性を評価する。
(実施例9)
 Sb及びSnをドープさせたCuOをp電極上に堆積させ、n型層としてGaを30nm堆積させること以外は、実施例1と同様に太陽電池を作製する。得られた太陽電池について、短絡電流(Jsc)、開放電圧(Voc)、フィルファクター(FF)、変換効率及び透光性を評価する。
(比較例1)
 CuO光吸収層の表面を500℃の酸素雰囲気で酸化させること以外は実施例1と同様に太陽電池を作製する。得られた太陽電池について、短絡電流(Jsc)、開放電圧(Voc)、フィルファクター(FF)、変換効率及び透光性を評価する。
(比較例2)
 CuO光吸収層の表面酸化を行なわない以外は実施例1と同様に太陽電池を作製する。得られた太陽電池について、短絡電流(Jsc)、開放電圧(Voc)、フィルファクター(FF)、変換効率及び透光性を評価する。
(比較例3)
 CuO光吸収層の表面を100℃の過酸化水素雰囲気で酸化させること以外は実施例1と同様に太陽電池を作製する。得られた太陽電池について、短絡電流(Jsc)、開放電圧(Voc)、フィルファクター(FF)、変換効率及び透光性を評価する。
(比較例4)
 CuO光吸収層の表面を室温の水蒸気雰囲気で酸化させること以外は実施例1と同様に太陽電池を作製する。得られた太陽電池について、短絡電流(Jsc)、開放電圧(Voc)、フィルファクター(FF)、変換効率及び透光性を評価する。
(比較例5)
 n型層を順次堆積した後に400度で加熱すること以外は実施例5と同様に太陽電池を作製する。得られた太陽電池について、短絡電流(Jsc)、開放電圧(Voc)、フィルファクター(FF)、変換効率及び透光性を評価する。
(比較例6)
 n型層としてGa1.92Al0.083.00に代って酸素欠損のあるGa1.95Al0.052.50を10nm堆積させ、さらにZn0.80Sn0.201.2を堆積後に400度で加熱すること以外は実施例7と同様に太陽電池を作製する。得られた太陽電池について、短絡電流(Jsc)、開放電圧(Voc)、フィルファクター(FF)、変換効率及び透光性を評価する。
(比較例7)
 CuO光吸収層の表面を500℃の酸素雰囲気で酸化させる以外は、実施例8と同様に太陽電池を作製する。得られた太陽電池について、短絡電流(Jsc)、開放電圧(Voc)、フィルファクター(FF)、変換効率及び透光性を評価する。
(比較例8)
 CuO光吸収層の表面を500℃の酸素雰囲気で酸化させる以外は、実施例9と同様に太陽電池を作製する。得られた太陽電池について、短絡電流(Jsc)、開放電圧(Voc)、フィルファクター(FF)、変換効率及び透光性を評価する。
 AM1.5Gの光源を模擬したソーラーシミュレータを用い、その光源下で基準となるSiセルを用いて1sunになるように光量を調節する。測定は大気圧下で測定室内の気温は25℃とする。電圧をスイープし、電流密度(電流をセル面積で割ったもの)を測定する。横軸を電圧、縦軸を電流密度とした際に、横軸と交わる点が開放電圧Vocとなり、縦軸と交わる点が短絡電流密度Jscとなる。測定曲線上において、電圧と電流密度を掛け合わせ、最大になる点をそれぞれVmpp、Jmpp(マキシマムパワーポイント)とすると、FF=(Vmpp*Jmpp)/(Voc*Jsc)であり、変換効率Eff.はEff.=Voc*Jsc*FFで求まる。
 図9の実施例に関する表に実施例及び比較例の短絡電流(Jsc)、開放電圧(Voc)、フィルファクター(FF)、変換効率及び透光性をまとめて示す。
 透光性は、700nm以上1200nm以下の波長帯の光の透光率が75%以上である場合をAと評価し、700nm以上1200nm以下の波長帯の光の透光率が70%以上75%未満である場合をBと評価し、700nm以上1200nm以下の波長帯の光の透光率が70%未満である場合をCと評価する。
 Jscは、比較例1の変換効率に対して1.1倍以上である場合をAと評価し、比較例1のJscに対して1.0倍以上1.1倍未満である場合をBと評価して、比較例1のJscに対して1.0倍未満である場合をCと評価する。
 Vocは、比較例1の変換効率に対して1.3倍以上である場合をAと評価し、比較例1のVocに対して1.1倍以上1.3倍未満である場合をBと評価して、比較例1のVocに対して1.1倍未満である場合をCと評価する。
 FFは、比較例1の変換効率に対して1.1倍以上である場合をAと評価し、比較例1のFFに対して1.0倍以上1.1倍未満である場合をBと評価して、比較例1のFFに対して1.0倍未満である場合をCと評価する。
 変換効率は、比較例1の変換効率に対して1.5倍以上である場合をAと評価し、比較例1の変換効率に対して1.1倍以上1.5倍未満である場合をBと評価して、比較例1の変換効率に対して1.1倍未満である場合をCと評価する。
 実施例8の透光性、Jsc、Voc、FF、及び変換効率の評価において、比較基準とする比較例は比較例1ではなく比較例7である。実施例9の透光性、Jsc、Voc、FF、及び変換効率の評価において、比較基準とする比較例は比較例1ではなく比較例8である。
 図10にCuGaM1及びOが含まれる相のM1の元素(表中 M1)、CuGaM1及びOの比であるa1:b1:c1:d1(表中 R1)、第2領域中のCuGaM1及びOの比であるa1:b1:c1:d1(表中 R2)、第3領域中のCuGaM1及びOの比であるa1:b1:c1:d1(表中 R3)、第4領域中のCuGaM1及びOの比であるa1:b1:c1:d1(表中 R4)、第1領域中のCu相の有無(表中 Cu相)及び第1領域中のCuO相の有無(表中 CuO相)を示す。
 図9、10の表から分るように、第1領域に局所的にCuGaM1及びOが含まれる相が存在することで、Jscが向上し、太陽電池の変換効率が向上する。実施例の太陽電池をトップセルに用い、Siを光吸収層に用いた太陽電池をボトムセルに用いた多接合型太陽電池においても同様に変換効率が向上する。
 明細書中一部の元素は、元素記号のみで示している。
 以下、実施形態の技術案を付記する。
技術案1
 p電極と、
 前記p電極上には亜酸化銅又は/及び亜酸化銅の複合酸化物を主体とするp型光吸収層と、
 前記p型光吸収層上にGaを含む酸化物を含むn型層と、
 前記n型層上にn電極と、を有し、
 前記p型光吸収層と前記n型層の間に第1領域を含み、
 前記第1領域は、前記p型光吸収層と前記n型層の界面から前記n型層側に2nmまでの深さの位置から前記p型光吸収層と前記n型層の界面から前記p型光吸収層側に2nm以下までの深さの位置までの領域であり、
 前記第1領域中には、CuGaM1及びOが含まれ、
 前記M1は、Sn、Sb、Ag、Li、Na、K、Cs、Rb、Al、In、Zn、Mg、Si、Ge、N、B、Ti、Hf、Zr及びCaからなる群から選ばれる1種以上の元素であり、
 前記第1領域のCuGaM1及びOの比は、a1:b1:c1:d1であり、
 前記a1、前記b1、前記c1及び前記d1は、1.80≦a1≦2.20、0.005≦b1≦0.05、0≦c1≦0.20及び0.60≦d1≦1.00を満たす太陽電池。
技術案2
 前記p型光吸収層は、CuM2で表される酸化物を90wt%以上含み、
 前記CuM2で表される酸化物のM2は、Sn、Sb、Ag、Li、Na、K、Cs、Rb、Al、In、Zn、Mg、Ga、Si、Ge、N、B、Ti、Hf、Zr及びCaからなる群より選ばれる1種以上の元素であり、
 前記e、前記f及び前記gは、1.80≦e≦2.01、0.00≦f≦0.20及び0.98≦g≦1.02を満たす技術案1に記載の太陽電池。
技術案3
 前記第1領域中にはCu相がさらに含まれる技術案1又は2に記載の太陽電池。
技術案4
 前記p型光吸収層と前記n型層の界面から前記p型光吸収層側に5nmまでの深さの位置から前記p型光吸収層と前記n型層の界面から前記p型光吸収層側に10nm以下までの深さの位置までの領域を第2領域とし、
 前記第2領域のCuGaM1及びOの比は、a2:b2:c2:d2であり、
 前記a2、前記b2、前記c2及び前記d2は、1.90≦a2≦2.10、0.00≦b2≦0.01、0≦c2≦0.20及び0.80≦d2≦1.00を満たす技術案1ないし3のいずれか1案に記載の太陽電池。
技術案5
 前記p型光吸収層と前記n型層の界面から前記n型層側に5nmまでの深さの位置から前記p型光吸収層と前記n型層の界面から前記n型層側に10nm以下までの深さの位置までの領域を第3領域とし、
 前記第3領域のCuGaM1及びOの比は、a3:b3:c3:d3であり、
 前記a3、前記b3、前記c3及び前記d3は、0≦a3≦0.05、2.8≦b3≦3.2、0≦c3≦0.4及び1.8≦d3≦2.2を満たす技術案1ないし3のいずれか1案に記載の太陽電池。
技術案6
 前記第1領域は、CuO相をさらに含む技術案1ないし5のいずれか1案に記載の太陽電池。
技術案7
 前記n型層は、Gaを主成分とする酸化物を含み、
 前記n型層に含まれる金属元素のうち、40原子%以上がGaである技術案1ないし6のいずれか1案に記載の太陽電池。
技術案8
 前記n型層は、Sn、Sb、Cu、Ag、Li、Na、K、Cs、Rb、Al、In、Zn、Mg、Si、Ge、N、B、Ti、Hf、Zr及びCaからなる群より選ばれる1種以上の元素であるM3とGaを含む酸化物を含む技術案1ないし7のいずれか1案に記載の太陽電池。
技術案9
前記p型光吸収層と前記n型層の境界から前記p型光吸収層側に10nmまでの深さの位置から前記p型光吸収層の前記p電極側の表面の位置までの領域を第4領域とし、
 第4領域中のCuGaM1及びOの比は、a4:b4:c4:d4であり、
 前記a4、前記b4、前記c4及び前記d4は、1.8≦a4≦2.1、0≦b4≦0.001、0≦c4≦0.2及び0.9≦d4≦1.0を満たす技術案1ないし8のいずれか1案に記載の太陽電池。
技術案10
 前記p型光吸収層と前記n型層の界面から前記p型光吸収層側に5nmまでの深さの位置から前記p型光吸収層と前記n型層の界面から前記p型光吸収層側に10nm以下までの深さの位置までの領域を第2領域とし、
 前記第2領域のCuGaM1及びOの比は、a2:b2:c2:d2であり、
 前記a2、前記b2、前記c2及び前記d2は、1.90≦a2≦2.10、0.00≦b2≦0.01、0≦c2≦0.20及び0.80≦d2≦1.00を満たし、
 前記a1、前記a2、前記b1、前記b2、前記c1、前記c2、前記d1及び前記d2は、0.87≦a2/a1≦1.16、0≦b2/b1≦0.2、0≦c2/c1≦2及び1≦d2/d1≦1.33を満たす技術案1ないし9のいずれか1案に記載の太陽電池。
技術案11
 前記p型光吸収層と前記n型層の界面から前記n型層側に5nmまでの深さの位置から前記p型光吸収層と前記n型層の界面から前記n型層側に10nm以下までの深さの位置までの領域を第3領域とし、
 前記第3領域のCuGaM1及びOの比は、a3:b3:c3:d3であり、
 前記a3、前記b3、前記c3及び前記d3は、0≦a3≦0.05、2.8≦b3≦3.2、0≦c3≦0.4及び1.8≦d3≦2.2を満たし、
 前記a1、前記a3、前記b1、前記b3、前記c1、前記c3、前記d1及び前記d3は、0.006≦a3/a1≦0.02、100≦b3/b1≦500、0.5≦c3/c1≦0.8及び1.8≦d3/d1≦3を満たす技術案1ないし10のいずれか1案に記載の太陽電池。
技術案12
 前記p型光吸収層と前記n型層の境界から前記p型光吸収層側に10nmまでの深さの位置から前記p型光吸収層の前記p電極側の表面の位置までの領域を第4領域とし、
 第4領域中のCuGaM1及びOの比は、a4:b4:c4:d4であり、
 前記a4、前記b4、前記c4及び前記d4は、1.8≦a4≦2.1、0≦b4≦0.001、0≦c4≦0.2及び0.9≦d4≦1.0を満たし、
 前記a1、前記a4、前記b1、前記b4、前記c1、前記c4、前記d1及び前記d4は、0.82≦a4/a1≦1、0≦b4/b1≦0.02、0≦c4/c1≦2及び1≦d4/d1≦1.6を満たす技術案1ないし11のいずれか1案に記載の太陽電池。
技術案13
 前記p型光吸収層の全体のCuの原子濃度をCCuとし、
 前記p型光吸収層の全体のGa濃度をCGaとするとき、
 前記CCu及び前記CGaは、0≦CGa/CCu≦0.001を満たす技術案1ないし12のいずれか1案に記載の太陽電池。
技術案14
 前記p型光吸収層と前記n型層の界面から前記p型光吸収層側に10nmまでの深さのところから前記p型光吸収層のp電極側の表面のところまでの領域を第4領域とし、
 前記第4領域中のCuGaM1及びOが含まれる相の最大含有比率は、1.0%以下である技術案1ないし13のいずれか1案に記載の太陽電池。
技術案15
 前記第1領域は、層状で、
 前記第1領域の厚さは、前記p型光吸収層の厚さの0.001%以上0.2%以下であり、
 前記第1領域に含まれるCuGaM1及びOの総原子数は、前記第1領域中の95atom%以上100atom%以下である技術案1ないし14のいずれか1案に記載の太陽電池。
技術案16
 前記第1領域は、CuGaM1及びOが含まれる相を含み、
 前記CuGaM1及びOが含まれる相のCuGaM1及びOの比をa:b:c:dとするとき、0.65≦a/(a+b+c+d)≦0.72、0.001≦b/a≦0.01、0.005≦c/a≦0.05及び0.27≦d/(a+b+c+d)≦0.31を満たし、
 前記第1領域の半分以上にCuGaM1及びOが含まれる相が含まれている技術案1ないし15のいずれか1案に記載の太陽電池。
技術案17
 前記p型光吸収層に含まれるGaは、前記n型層から拡散したGaであり、
 前記n型層に含まれるCuは、前記p型光吸収層から拡散したCuである技術案1ないし16のいずれか1案に記載の太陽電池。
技術案18
 技術案1ないし17のいずれか1案に記載の太陽電池と、
 技術案1ないし17のいずれか1案に記載の太陽電池のp型光吸収層よりもバンドギャップの小さい光吸収層を有する太陽電池とを有する多接合型太陽電池。
技術案19
 技術案1ないし17のいずれか1案に記載の太陽電池又は技術案18に記載の多接合型太陽電池を用いた太陽電池モジュール。
技術案20
 技術案19に記載の太陽電池モジュールを用いて太陽光発電を行う太陽光発電システム。
 以上、本発明の実施形態を説明したが、本発明は上記実施形態そのままに限定解釈されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、上記実施形態に開示されている複数の構成要素の適宜な組み合わせにより種々の発明を形成することができる。例えば、変形例の様に異なる実施形態にわたる構成要素を適宜組み合わせても良い。
100,101…太陽電池(第1太陽電池)、1…基板、2…p電極(第1p電極2a、第2p電極2b)、3…p型光吸収層、4…n型層、5…n電極
200…多接合型太陽電池、201…第2太陽電池、
300…太陽電池モジュール、6…基板、301第1太陽電池モジュール、302…第2太陽電池モジュール、303…サブモジュール、304…バスバー、
400…太陽光発電システム、401…太陽電池モジュール、402…コンバーター、403…蓄電池、404…負荷
500…車両、501…車体、502…太陽電池モジュール、503…電力変換装置、504…蓄電池、505…モーター、506…タイヤ(ホイール)
600…飛翔体、601…機体骨格、602…モーター、603…回転翼、604…制御ユニット
        

 

Claims (20)

  1.  p電極と、
     前記p電極上には亜酸化銅又は/及び亜酸化銅の複合酸化物を主体とするp型光吸収層と、
     前記p型光吸収層上にGaを含む酸化物を含むn型層と、
     前記n型層上にn電極と、を有し、
     前記p型光吸収層と前記n型層の間に第1領域を含み、
     前記第1領域は、前記p型光吸収層と前記n型層の界面から前記n型層側に2nmまでの深さの位置から前記p型光吸収層と前記n型層の界面から前記p型光吸収層側に2nm以下までの深さの位置までの領域であり、
     前記第1領域中には、CuGaM1及びOが含まれ、
     前記M1は、Sn、Sb、Ag、Li、Na、K、Cs、Rb、Al、In、Zn、Mg、Si、Ge、N、B、Ti、Hf、Zr及びCaからなる群から選ばれる1種以上の元素であり、
     前記第1領域のCuGaM1及びOの比は、a1:b1:c1:d1であり、
     前記a1、前記b1、前記c1及び前記d1は、1.80≦a1≦2.20、0.005≦b1≦0.05、0≦c1≦0.20及び0.60≦d1≦1.00を満たす太陽電池。
  2.  前記p型光吸収層は、CuM2で表される酸化物を90wt%以上含み、
     前記CuM2で表される酸化物のM2は、Sn、Sb、Ag、Li、Na、K、Cs、Rb、Al、In、Zn、Mg、Ga、Si、Ge、N、B、Ti、Hf、Zr及びCaからなる群より選ばれる1種以上の元素であり、
     前記e、前記f及び前記gは、1.80≦e≦2.01、0.00≦f≦0.20及び0.98≦g≦1.02を満たす請求項1に記載の太陽電池。
  3.  前記第1領域中にはCu相がさらに含まれる請求項1又は2に記載の太陽電池。
  4.  前記p型光吸収層と前記n型層の界面から前記p型光吸収層側に5nmまでの深さの位置から前記p型光吸収層と前記n型層の界面から前記p型光吸収層側に10nm以下までの深さの位置までの領域を第2領域とし、
     前記第2領域のCuGaM1及びOの比は、a2:b2:c2:d2であり、
     前記a2、前記b2、前記c2及び前記d2は、1.90≦a2≦2.10、0.00≦b2≦0.01、0≦c2≦0.20及び0.80≦d2≦1.00を満たす請求項1ないし3のいずれか1項に記載の太陽電池。
  5.  前記p型光吸収層と前記n型層の界面から前記n型層側に5nmまでの深さの位置から前記p型光吸収層と前記n型層の界面から前記n型層側に10nm以下までの深さの位置までの領域を第3領域とし、
     前記第3領域のCuGaM1及びOの比は、a3:b3:c3:d3であり、
     前記a3、前記b3、前記c3及び前記d3は、0≦a3≦0.05、2.8≦b3≦3.2、0≦c3≦0.4及び1.8≦d3≦2.2を満たす請求項1ないし3のいずれか1項に記載の太陽電池。
  6.  前記第1領域はCuO相をさらに含む請求項1ないし5のいずれか1項に記載の太陽電池。
  7.  前記n型層は、Gaを主成分とする酸化物を含み、
     前記n型層に含まれる金属元素のうち、40原子%以上がGaである請求項1ないし6のいずれか1項に記載の太陽電池。
  8.  前記n型層は、Sn、Sb、Cu、Ag、Li、Na、K、Cs、Rb、Al、In、Zn、Mg、Si、Ge、N、B、Ti、Hf、Zr及びCaからなる群より選ばれる1種以上の元素であるM3とGaを含む酸化物を含む請求項1ないし7のいずれか1項に記載の太陽電池。
  9. 前記p型光吸収層と前記n型層の境界から前記p型光吸収層側に10nmまでの深さの位置から前記p型光吸収層の前記p電極側の表面の位置までの領域を第4領域とし、
     第4領域中のCuGaM1及びOの比は、a4:b4:c4:d4であり、
     前記a4、前記b4、前記c4及び前記d4は、1.8≦a4≦2.1、0≦b4≦0.001、0≦c4≦0.2及び0.9≦d4≦1.0を満たす請求項1ないし8のいずれか1項に記載の太陽電池。
  10.  前記p型光吸収層と前記n型層の界面から前記p型光吸収層側に5nmまでの深さの位置から前記p型光吸収層と前記n型層の界面から前記p型光吸収層側に10nm以下までの深さの位置までの領域を第2領域とし、
     前記第2領域のCuGaM1及びOの比は、a2:b2:c2:d2であり、
     前記a2、前記b2、前記c2及び前記d2は、1.90≦a2≦2.10、0.00≦b2≦0.01、0≦c2≦0.20及び0.80≦d2≦1.00を満たし、
     前記a1、前記a2、前記b1、前記b2、前記c1、前記c2、前記d1及び前記d2は、0.87≦a2/a1≦1.16、0≦b2/b1≦0.2、0≦c2/c1≦2及び1≦d2/d1≦1.33を満たす請求項1ないし9のいずれか1項に記載の太陽電池。
  11.  前記p型光吸収層と前記n型層の界面から前記n型層側に5nmまでの深さの位置から前記p型光吸収層と前記n型層の界面から前記n型層側に10nm以下までの深さの位置までの領域を第3領域とし、
     前記第3領域のCuGaM1及びOの比は、a3:b3:c3:d3であり、
     前記a3、前記b3、前記c3及び前記d3は、0≦a3≦0.05、2.8≦b3≦3.2、0≦c3≦0.4及び1.8≦d3≦2.2を満たし、
     前記a1、前記a3、前記b1、前記b3、前記c1、前記c3、前記d1及び前記d3は、0.006≦a3/a1≦0.02、100≦b3/b1≦500、0.5≦c3/c1≦0.8及び1.8≦d3/d1≦3を満たす請求項1ないし10のいずれか1項に記載の太陽電池。
  12.  前記p型光吸収層と前記n型層の境界から前記p型光吸収層側に10nmまでの深さの位置から前記p型光吸収層の前記p電極側の表面の位置までの領域を第4領域とし、
     第4領域中のCuGaM1及びOの比は、a4:b4:c4:d4であり、
     前記a4、前記b4、前記c4及び前記d4は、1.8≦a4≦2.1、0≦b4≦0.001、0≦c4≦0.2及び0.9≦d4≦1.0を満たし、
     前記a1、前記a4、前記b1、前記b4、前記c1、前記c4、前記d1及び前記d4は、0.82≦a4/a1≦1、0≦b4/b1≦0.02、0≦c4/c1≦2及び1≦d4/d1≦1.6を満たす請求項1ないし11のいずれか1項に記載の太陽電池。
  13.  前記p型光吸収層の全体のCuの原子濃度をCCuとし、
     前記p型光吸収層の全体のGa濃度をCGaとするとき、
     前記CCu及び前記CGaは、0≦CGa/CCu≦0.001を満たす請求項1ないし12のいずれか1項に記載の太陽電池。
  14.  前記p型光吸収層と前記n型層の界面から前記p型光吸収層側に10nmまでの深さのところから前記p型光吸収層のp電極側の表面のところまでの領域を第4領域とし、
     前記第4領域中のCuGaM1及びOが含まれる相の最大含有比率は、1.0%以下である請求項1ないし13のいずれか1項に記載の太陽電池。
  15.  前記第1領域は、層状で、
     前記第1領域の厚さは、前記p型光吸収層の厚さの0.001%以上0.2%以下であり、
     前記第1領域に含まれるCuGaM1及びOの総原子数は、前記第1領域中の95atom%以上100atom%以下である請求項1ないし14のいずれか1項に記載の太陽電池。
  16.  前記第1領域は、CuGaM1及びOが含まれる相を含み、
     前記CuGaM1及びOが含まれる相のCuGaM1及びOの比をa:b:c:dとするとき、0.65≦a/(a+b+c+d)≦0.72、0.001≦b/a≦0.01、0.005≦c/a≦0.05及び0.27≦d/(a+b+c+d)≦0.31を満たし、
     前記第1領域の半分以上にCuGaM1及びOが含まれる相が含まれている請求項1ないし15のいずれか1項に記載の太陽電池。
  17.  前記p型光吸収層に含まれるGaは、前記n型層から拡散したGaであり、
     前記n型層に含まれるCuは、前記p型光吸収層から拡散したCuである請求項1ないし16のいずれか1項に記載の太陽電池。
  18.  請求項1ないし17のいずれか1項に記載の太陽電池と、
     請求項1ないし17のいずれか1項に記載の太陽電池のp型光吸収層よりもバンドギャップの小さい光吸収層を有する太陽電池とを有する多接合型太陽電池。
  19.  請求項1ないし17のいずれか1項に記載の太陽電池又は請求項18に記載の多接合型太陽電池を用いた太陽電池モジュール。
  20.  請求項19に記載の太陽電池モジュールを用いて太陽光発電を行う太陽光発電システム。
PCT/JP2021/026048 2021-07-09 2021-07-09 太陽電池、多接合型太陽電池、太陽電池モジュール及び太陽光発電システム WO2023281760A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2023501618A JP7500855B2 (ja) 2021-07-09 2021-07-09 太陽電池、多接合型太陽電池、太陽電池モジュール及び太陽光発電システム
EP21949392.1A EP4199121A4 (en) 2021-07-09 2021-07-09 SOLAR CELL, MULTI-JUNCTION SOLAR CELL, SOLAR CELL MODULE AND SOLAR POWER GENERATION SYSTEM
CN202180061562.5A CN116134628A (zh) 2021-07-09 2021-07-09 太阳能电池、多结型太阳能电池、太阳能电池模块及太阳能发电系统
PCT/JP2021/026048 WO2023281760A1 (ja) 2021-07-09 2021-07-09 太陽電池、多接合型太陽電池、太陽電池モジュール及び太陽光発電システム
US18/181,607 US20230215965A1 (en) 2021-07-09 2023-03-10 Solar cell, multi-junction solar cell, solar cell module, and photovoltaic power generation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/026048 WO2023281760A1 (ja) 2021-07-09 2021-07-09 太陽電池、多接合型太陽電池、太陽電池モジュール及び太陽光発電システム

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/181,607 Continuation US20230215965A1 (en) 2021-07-09 2023-03-10 Solar cell, multi-junction solar cell, solar cell module, and photovoltaic power generation system

Publications (1)

Publication Number Publication Date
WO2023281760A1 true WO2023281760A1 (ja) 2023-01-12

Family

ID=84800566

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/026048 WO2023281760A1 (ja) 2021-07-09 2021-07-09 太陽電池、多接合型太陽電池、太陽電池モジュール及び太陽光発電システム

Country Status (5)

Country Link
US (1) US20230215965A1 (ja)
EP (1) EP4199121A4 (ja)
JP (1) JP7500855B2 (ja)
CN (1) CN116134628A (ja)
WO (1) WO2023281760A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017135261A (ja) * 2016-01-28 2017-08-03 国立大学法人茨城大学 太陽電池の製造方法、太陽電池
CN109309136A (zh) * 2018-10-12 2019-02-05 浙江大学 一种超薄MgO层修饰Cu2O平面异质结太阳能电池
WO2019146120A1 (ja) * 2018-01-29 2019-08-01 株式会社 東芝 太陽電池、多接合型太陽電池、太陽電池モジュール及び太陽光発電システム

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017135261A (ja) * 2016-01-28 2017-08-03 国立大学法人茨城大学 太陽電池の製造方法、太陽電池
WO2019146120A1 (ja) * 2018-01-29 2019-08-01 株式会社 東芝 太陽電池、多接合型太陽電池、太陽電池モジュール及び太陽光発電システム
CN109309136A (zh) * 2018-10-12 2019-02-05 浙江大学 一种超薄MgO层修饰Cu2O平面异质结太阳能电池

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
CHUA DANNY; KIM SANG BOK; GORDON ROY: "Enhancement of the open circuit voltage of Cu2O/Ga2O3heterojunction solar cells through the mitigation of interfacial recombination", AIP ADVANCES, AMERICAN INSTITUTE OF PHYSICS, 2 HUNTINGTON QUADRANGLE, MELVILLE, NY 11747, vol. 9, no. 5, 2 May 2019 (2019-05-02), 2 Huntington Quadrangle, Melville, NY 11747 , XP012237611, DOI: 10.1063/1.5096283 *
MINAMI TADATSUGU, NISHI YUKI, MIYATA TOSHIHIRO: "Heterojunction solar cell with 6% efficiency based on an n-type aluminum–gallium–oxide thin film and p-type sodium-doped Cu 2 O sheet", APPLIED PHYSICS EXPRESS, JAPAN SOCIETY OF APPLIED PHYSICS; JP, JP, vol. 8, no. 2, 1 February 2015 (2015-02-01), JP , pages 022301, XP055868523, ISSN: 1882-0778, DOI: 10.7567/APEX.8.022301 *
See also references of EP4199121A4 *

Also Published As

Publication number Publication date
US20230215965A1 (en) 2023-07-06
JPWO2023281760A1 (ja) 2023-01-12
EP4199121A1 (en) 2023-06-21
EP4199121A4 (en) 2024-07-17
CN116134628A (zh) 2023-05-16
JP7500855B2 (ja) 2024-06-17

Similar Documents

Publication Publication Date Title
US12021161B2 (en) Solar cell, multi-junction solar cell, solar cell module, and photovoltaic power generation system
US20220406957A1 (en) Method for manufacturing stacked thin film, method for manufacturing solar cell, multi-junction solar cell, solar cell module, and photovoltaic power generation system
US20230017543A1 (en) Solar cell, multi-junction solar cell, solar cell module, and photovoltaic power generation system
JP7330004B2 (ja) 光電変換層、太陽電池、多接合型太陽電池、太陽電池モジュール及び太陽光発電システム
US11901474B2 (en) Solar cell, multi-junction solar cell, solar cell module, and photovoltaic power generation system
US20220077332A1 (en) Solar cell, multi-junction solar cell, solar cell module, and solar photovoltaic power generation system
WO2023281760A1 (ja) 太陽電池、多接合型太陽電池、太陽電池モジュール及び太陽光発電システム
WO2023281761A1 (ja) 太陽電池、太陽電池の製造方法、多接合型太陽電池、太陽電池モジュール及び太陽光発電システム
JP7500383B2 (ja) 太陽電池、多接合型太陽電池、太陽電池モジュール及び太陽光発電システム
JP7581363B2 (ja) 太陽電池、多接合型太陽電池、太陽電池モジュール及び太陽光発電システム
WO2024195155A1 (en) Solar cell, multi-junction solar cell, solar cell module and photovoltaic power generation system
JP7559250B2 (ja) 太陽電池、多接合型太陽電池、太陽電池モジュール及び太陽光発電システム
CN115315816B (zh) 太阳能电池、多结太阳能电池、太阳能电池组件和光伏发电系统
JP7330015B2 (ja) 太陽電池、多接合型太陽電池、太陽電池モジュール及び太陽光発電システム
WO2020250521A1 (en) Solar cell, multi-junction solar cell, solar cell module, and solar power generation system

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2023501618

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21949392

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021949392

Country of ref document: EP

Effective date: 20230314

NENP Non-entry into the national phase

Ref country code: DE