WO2023204068A1 - Adhesive composition, cured product of said adhesive composition, and method for producing said adhesive composition - Google Patents

Adhesive composition, cured product of said adhesive composition, and method for producing said adhesive composition Download PDF

Info

Publication number
WO2023204068A1
WO2023204068A1 PCT/JP2023/014492 JP2023014492W WO2023204068A1 WO 2023204068 A1 WO2023204068 A1 WO 2023204068A1 JP 2023014492 W JP2023014492 W JP 2023014492W WO 2023204068 A1 WO2023204068 A1 WO 2023204068A1
Authority
WO
WIPO (PCT)
Prior art keywords
adhesive composition
mass
polycarbonate polyol
polyether polycarbonate
group
Prior art date
Application number
PCT/JP2023/014492
Other languages
French (fr)
Japanese (ja)
Inventor
豊一 鈴木
豪明 荒井
正仁 古海
仁 下間
卓也 小峰
Original Assignee
Agc株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agc株式会社 filed Critical Agc株式会社
Publication of WO2023204068A1 publication Critical patent/WO2023204068A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J175/00Adhesives based on polyureas or polyurethanes; Adhesives based on derivatives of such polymers
    • C09J175/04Polyurethanes
    • C09J175/08Polyurethanes from polyethers

Definitions

  • the present invention relates to an adhesive composition, a cured product of the adhesive composition, and a method for producing the adhesive composition.
  • a poly(propylene carbonate) polyol composition having an average molecular weight (Mn) and greater than 95% carbonate bonding between adjacent monomer units in the polycarbonate chain, and has improved lightfastness, breaking strength, and breaking elongation.
  • Patent Document 2 discloses a polyol compound containing a main ingredient including a urethane prepolymer having an isocyanate group, and a specific polyol compound having ethylene oxide at the terminal and three active hydrogen-containing groups in one molecule, that is, it is trifunctional.
  • a two-component urethane adhesive composition having a curing agent and a curing agent is disclosed, and is said to have excellent initial adhesion and long-term adhesion.
  • the poly(propylene carbonate) polyol composition described in Patent Document 1 has a problem of high viscosity and low thermal stability, and furthermore, has a problem of low film formability when made into a urethane resin. be. Furthermore, the two-component urethane adhesive composition described in Patent Document 2 has insufficient light resistance, and there is room for improvement.
  • the present inventors conducted intensive studies to solve the above problems, and found that an adhesive composition containing an isocyanate group-terminated urethane prepolymer and a polyether polycarbonate polyol having a specific structure solved the above problems. They discovered that it is possible to do so, and completed the present invention. That is, the present invention is as follows.
  • An adhesive composition comprising an isocyanate group-terminated urethane prepolymer and a polyether polycarbonate polyol
  • the polyether polycarbonate polyol has three or more terminal groups in one molecule, and has a structural unit derived from an initiator, a structural unit derived from a cyclic ether, and a structural unit derived from carbon dioxide, and An adhesive composition in which the proportion of the structural unit derived from carbon dioxide in one molecule is 10 to 30% by mass.
  • the polyether polycarbonate polyol has a molecular weight distribution (Mw/Mn) expressed by the ratio of weight average molecular weight (Mw) and number average molecular weight (Mn) of 1.05 to 3.00, [1] ] or the adhesive composition according to [2].
  • Mw/Mn molecular weight distribution
  • Mw weight average molecular weight
  • Mn number average molecular weight
  • the proportion of structural units in which the structural units derived from the carbon dioxide, the structural units derived from the cyclic ether, and the structural units derived from the carbon dioxide are chained in this order in the polyether polycarbonate polyol is 2% by mass.
  • the adhesive composition according to any one of [1] to [3] above.
  • the structural unit derived from the cyclic ether that the polyether polycarbonate polyol has is at least one structural unit selected from the group consisting of structural units derived from ethylene oxide and structural units derived from propylene oxide. , the adhesive composition according to any one of [1] to [4] above. [6] The adhesive composition according to any one of [1] to [5] above, wherein the terminal group of the polyether polycarbonate polyol is a hydroxyl group.
  • a method for producing an adhesive composition comprising an isocyanate group-terminated urethane prepolymer and a polyether polycarbonate polyol, comprising: In the presence of a catalyst, an initiator having three or more active hydrogen-containing groups in one molecule, a cyclic ether, and carbon dioxide are polymerized to obtain a polyether polycarbonate polyol, and the polyether polycarbonate polyol and isocyanate groups are polymerized. Mix the terminal urethane prepolymer, A method for producing an adhesive composition, wherein the proportion of structural units derived from carbon dioxide in one molecule of the polyether polycarbonate polyol is 10 to 30% by mass.
  • the isocyanate group-terminated urethane prepolymer is prepared by reacting a polyol and a polyisocyanate compound such that a molar ratio of 100 times the isocyanate group in the polyisocyanate compound to the hydroxyl group in the polyol is 110 or more and 600 or less.
  • an adhesive composition having good film formability and excellent light resistance, breaking strength, and breaking elongation of a cured product, a cured product of the adhesive composition, and a method for producing the adhesive composition can be provided.
  • any of the preferable ones can be adopted, and combinations of the preferable ones can be said to be more preferable.
  • the expression “XX to YY” means “XX to YY”.
  • the lower limit and upper limit described in stages for preferred numerical ranges may be independently combined. For example, from the description "preferably 10 to 90, more preferably 30 to 60", the “preferable lower limit (10)” and “more preferable upper limit (60)” are combined to become “10 to 60". You can also do that.
  • the upper limit or lower limit of the numerical range may be replaced with the value shown in the Examples.
  • the term "unit” constituting a polymer means an atomic group formed by polymerization of monomers.
  • the term “terminal group” includes not only a functional group at the end of the main chain of a polymer, but also a functional group at the end of a branched chain equivalent to the main chain.
  • the present invention is an adhesive composition comprising an isocyanate group-terminated urethane prepolymer and a polyether polycarbonate polyol, wherein the polyether polycarbonate polyol has three or more end groups in one molecule and is derived from an initiator.
  • An adhesive having a structural unit derived from a cyclic ether, a structural unit derived from carbon dioxide, and a proportion of the structural unit derived from carbon dioxide in one molecule is 10 to 30% by mass. It is a drug composition.
  • the adhesive composition of the present invention has good film formability, and the cured product thereof has excellent light resistance, breaking strength, and breaking elongation. Each component will be explained below.
  • the isocyanate group-terminated urethane prepolymer is a molecular chain obtained by reacting a polyisocyanate compound with a compound having two or more active hydrogen-containing groups in one molecule (hereinafter referred to as "active hydrogen compound"). is a compound having an isocyanate group at at least a portion of its terminal end.
  • the isocyanate group-terminated urethane prepolymer is obtained by reacting a polyisocyanate compound and an active hydrogen compound such that the isocyanate groups are in excess of the active hydrogen-containing groups.
  • the active hydrogen-containing group include a hydroxyl group, an amino group, and an imino group.
  • active hydrogen compounds include polyols having two or more hydroxyl groups in one molecule and polyamines having two or more amino groups in one molecule, with polyols being preferred.
  • the number average molecular weight (Mn) of the polyol is 1,000 to 50, from the viewpoint that the viscosity of the isocyanate group-terminated urethane prepolymer obtained by reaction with a polyisocyanate compound has appropriate fluidity at room temperature (25°C). 000 is preferred, and 3,000 to 30,000 is more preferred.
  • the Mn is a value obtained by the same method as the method for measuring Mn of polyether polycarbonate polyol, which will be described later. When the Mn of the polyol is within the above range, the cured product obtained by curing the adhesive composition of the present invention tends to have good light resistance, breaking strength, and breaking elongation.
  • the molecular weight, skeleton, etc. of the polyol are not particularly limited as long as it is a compound having two or more hydroxyl groups.
  • polyols include polyether polyols, polyester polyols, polymer polyols, poly(meth)acrylic polyols, polycarbonate polyols, castor oil polyols, and polyolefin polyols, including [0016] to [0028] of JP 2020-37689A. ] can be used without particular limitation. These may be used alone or in combination of two or more.
  • polystyrene resin it is also possible to use a polymer polyol in which a polymer having units based on (meth)acrylate monomers is dispersed in a polyether polyol.
  • the polymer polyol may be a commercially available product, such as the "Ultiflow (registered trademark)” series, the “Sharpflow (registered trademark)” series (manufactured by Sanyo Chemical Industries, Ltd.), and the "Excenol (registered trademark)”. ” series (manufactured by AGC Corporation).
  • a polyether polycarbonate polyol having three or more terminal groups in one molecule which will be described later, may also be used.
  • (meth)acrylic means acrylic and/or methacryl
  • (meth)acrylate means acrylate and/or methacrylate.
  • the polyisocyanate compound used for producing the isocyanate group-terminated urethane prepolymer is an organic compound having two or more isocyanate groups in one molecule.
  • the number of isocyanate groups in one molecule is preferably 2 to 4.
  • the polyisocyanate compounds may be used alone or in combination of two or more. Examples of the polyisocyanate compound include tetramethylene diisocyanate, pentamethylene diisocyanate, hexamethylene diisocyanate (HDI), 2,2,4-trimethylhexamethylene diisocyanate, 2,4,4-trimethylhexamethylene diisocyanate, dodecamethylene diisocyanate, and lysine.
  • Linear or branched aliphatic diisocyanate compounds such as diisocyanate, 2-methylpentane-1,5-diisocyanate, 3-methylpentane-1,5-diisocyanate; norbornane diisocyanate (NBDI), isophorone diisocyanate (IPDI), hydrogenated xylylene diisocyanate, 4,4'-dicyclohexylmethane diisocyanate, 1,4-cyclohexane diisocyanate, methylcyclohexylene diisocyanate, 1,3-bis(isocyanatomethyl)cyclohexane, Alicyclic diisocyanate compounds such as dicyclohexylmethane diisocyanate (H 12 MDI); Tolylene diisocyanate (TDI), 2,2'-diphenylmethane diisocyanate, 2,4'-diphenylmethane diisocyanate, 4,4'-diphenylme
  • modified isocyanurate products examples include Duranate TPA-100, Duranate TKA-100 (all manufactured by Asahi Kasei Corporation), and Coronate HX (manufactured by Tosoh Corporation).
  • Commercially available products of modified biuret include, for example, Duranate 24A-100 and Duranate 22A-75P (both manufactured by Asahi Kasei Corporation).
  • Commercially available trifunctional or higher isocyanate group-terminated urethane prepolymers include, for example, Coronate L, Coronate L-55E, and Coronate L-45E (all manufactured by Tosoh Corporation).
  • water-dispersed isocyanates include, for example, Duranate WB40-100, Duranate WB40-80D, Duranate WT20-100, Duranate WL70-100, Duranate WE50-100, Duranate WR80-70P (all manufactured by Asahi Kasei Corporation), Examples include Aquanate 105, Aquanate 130, Aquanate 140, Aquanate 200, and Aquanate 210 (all manufactured by Tosoh Corporation).
  • blocked isocyanates include, for example, SU-268A, NBP-211, Meikanate CX, Meikanate TP-10, and DM-6400 (all manufactured by Meisei Chemical Industry Co., Ltd.); WM44-L70G (manufactured by Asahi Kasei Corporation); Aqua BI200, Aqua BI220 (both manufactured by Baxenden Chemicals); Takelac W, Takelac WPB (both manufactured by Mitsui Chemicals, Inc.); Burnock (manufactured by DIC Corporation); and Elastron (manufactured by Dai-ichi Kogyo Co., Ltd.).
  • the content of isocyanate groups in the polyisocyanate compound is determined from the viewpoint of obtaining an adhesive composition that has excellent reactivity of the polyisocyanate compound with respect to the active hydrogen compound and has excellent light resistance, breaking strength, and elongation of the cured product.
  • polyisocyanate compound containing an isocyanate group in the above-mentioned preferable range specifically, an aliphatic diisocyanate compound, an alicyclic diisocyanate compound, an aromatic diisocyanate compound are preferable, and MDI (isocyanate group content: 33.6% by mass), Polymeric MDI (isocyanate group content 31.0% by mass), Crude MDI (mixture of MDI and triphenylmethane triisocyanate, isocyanate group content 30.0-32.6% by mass), IPDI (isocyanate group content 37.8% by mass) %).
  • MDI isocyanate group content: 33.6% by mass
  • Polymeric MDI isocyanate group content 31.0% by mass
  • Crude MDI mixture of MDI and triphenylmethane triisocyanate, isocyanate group content 30.0-32.6% by mass
  • IPDI isocyanate group content 37.8% by mass
  • the molar ratio of the isocyanate groups in the polyisocyanate compound to the hydroxyl groups in the polyol (isocyanate groups/hydroxyl groups) is preferably 100 times or more and 600 or less.
  • the molar ratio is preferably 120 or more, more preferably 125 or more, even more preferably 130 or more, and is preferably 500 or less, more preferably 450 or less, still more preferably 400 or less.
  • the molar ratio is within the preferable range, it is possible to produce an isocyanate group-terminated urethane prepolymer having an appropriate molecular chain length, thereby further improving productivity.
  • the isocyanate group-terminated urethane prepolymer can be produced by reacting a polyol and a polyisocyanate compound.
  • a catalyst may be used, if necessary, in the production of the isocyanate group-terminated urethane prepolymer.
  • the catalyst include tertiary amine compounds; tin compounds; and non-tin compounds.
  • One type of catalyst can be used alone or two or more types can be used in combination.
  • Examples of the tertiary amine compound include triethylamine, triethylenediamine, and 1,8-diazabicyclo[5.4.0]-7-undecene (DBU).
  • tin-based compounds include dibutyltin dichloride, dibutyltin oxide, dibutyltin dibromide, dibutyltin dimaleate, dibutyltin dilaurate (DBTDL), dibutyltin diacetate, dibutyltin sulfide, tributyltin sulfide, tributyltin oxide, and tributyltin.
  • DBTDL dibutyltin dilaurate
  • Examples include tin acetate, triethyltin ethoxide, tributyltin ethoxide, dioctyltin oxide, tributyltin chloride, tributyltin trichloroacetate, and tin 2-ethylhexanoate.
  • non-tin compounds include titanium compounds such as dibutyltitanium dichloride, tetrabutyl titanate, and butoxytitanium trichloride; lead compounds such as lead oleate, lead 2-ethylhexanoate, lead benzoate, and lead naphthenate.
  • the amount of the catalyst used is preferably 0.001 parts by mass or more, more preferably 0.002 parts by mass or more, and even more preferably 0. The amount is .003 parts by mass or more, and preferably 1.0 parts by mass or less, more preferably 0.2 parts by mass or less, and still more preferably 0.05 parts by mass or less.
  • a solvent may be used, if necessary, in the production of the isocyanate group-terminated urethane prepolymer.
  • the solvent include ketones such as acetone and methyl ethyl ketone; esters such as ethyl acetate; and aromatic hydrocarbons such as toluene and xylene.
  • One type of solvent can be used alone or two or more types can be used in combination.
  • the amount of the solvent used is preferably 30 parts by mass or more, more preferably 40 parts by mass or more, and even more preferably 50 parts by mass or more, based on the total of 100 parts by mass of the polyol and the polyisocyanate compound.
  • the content is preferably 500 parts by mass or less, more preferably 450 parts by mass or less, and even more preferably 400 parts by mass or less.
  • Examples of the method for producing the isocyanate group-terminated urethane prepolymer include the following methods.
  • Production method 1 A method in which a polyol, a polyisocyanate compound, an arbitrary catalyst, and an arbitrary solvent are charged all at once.
  • Production method 2 A polyol, an arbitrary catalyst, and an arbitrary solvent are introduced, and the polyisocyanate compound is added dropwise thereto.
  • Method In the case of production method 2 the low molecular weight components in the raw materials are preferentially reacted, the molecular weight distribution can be narrowed, and the reaction can be easily controlled.
  • the reaction temperature is preferably 50°C or higher, more preferably 60°C or higher, even more preferably 65°C or higher, and lower than 100°C, more preferably 95°C or lower, even more preferably 85°C or lower.
  • reaction temperature is within the above range, side reactions other than the urethane reaction can be easily suppressed, making it easier to obtain the desired isocyanate group-terminated urethane prepolymer.
  • reaction terminator may be added to inactivate the catalyst.
  • examples of the reaction terminator include acetylacetone. Two or more types of reaction terminators may be used in combination.
  • the content of the isocyanate group-terminated urethane prepolymer is preferably 30 to 90% by mass, more preferably 35 to 80% by mass, and even more preferably 40 to 70% by mass based on the total amount of the adhesive composition. .
  • the content of the isocyanate group-terminated urethane prepolymer is at least the lower limit, the cured product obtained by curing the adhesive composition of the present invention has good breaking strength, and when it is at most the upper limit, A cured product obtained by curing the adhesive composition of the present invention has good elongation properties.
  • the polyether polycarbonate polyol has three or more terminal groups in one molecule, and has a structural unit derived from an initiator, a structural unit derived from a cyclic ether, and a structural unit derived from carbon dioxide. If the polyether polycarbonate polyol has less than three terminal groups in one molecule, the light resistance, breaking strength, and elongation of the cured product obtained by curing the adhesive composition of the present invention may decrease. . From such a viewpoint, it is preferable that the polyether polycarbonate polyol has four or more terminal groups in one molecule.
  • polyether polycarbonate polyol can suppress increase in viscosity caused by hydrogen bonding of hydroxyl groups, and from the viewpoint of ease of handling when curing the adhesive composition of the present invention and ease of coating, 1 It is preferable to have 10 or less terminal groups in the molecule, and more preferably 8 or less.
  • the terminal group that the polyether polycarbonate polyol has three or more in one molecule is preferably an active hydrogen-containing group.
  • the active hydrogen-containing group include a hydroxyl group, a carboxy group, and an amino group having a hydrogen atom bonded to a nitrogen atom.
  • the active hydrogen-containing group is preferably a hydroxyl group.
  • the molecular weight in terms of hydroxyl value of the polyether polycarbonate polyol is preferably 500 to 20,000, more preferably 700 to 15,000, still more preferably 800 to 10,000, even more preferably 900 to 8 ,000.
  • the molecular weight in terms of hydroxyl value is 500 or more
  • the elongation at break of a cured product obtained by curing the adhesive composition of the present invention becomes more excellent, and the molecular weight in terms of hydroxyl value is 20,000 or less.
  • the cured product obtained by curing the adhesive composition of the present invention has better light resistance, breaking strength, and breaking elongation.
  • the molecular weight in terms of hydroxyl value of polyether polycarbonate polyol is obtained by applying the hydroxyl value calculated based on JIS K 1557 (2007) to the formula [56,100/(hydroxyl value)] x (number of functional groups). It is the molecular weight calculated using the value. Specifically, it is measured by the method described in Examples below.
  • the number average molecular weight (Mn) of the polyether polycarbonate polyol is preferably 750 to 30,000, more preferably 1,000 to 22,000, even more preferably 1,200 to 15,000, and more preferably More preferably, it is 1,300 to 12,000.
  • Mn number average molecular weight
  • the number average molecular weight is 750 or more, the elongation at break of a cured product obtained by curing the adhesive composition of the present invention becomes more excellent, and when the number average molecular weight is 30,000 or less, A cured product obtained by curing the adhesive composition of the present invention has better light resistance, breaking strength, and breaking elongation.
  • the molecular weight distribution (Mw/Mn) expressed by the ratio of the weight average molecular weight (Mw) and the number average molecular weight (Mn) of the polyether polycarbonate polyol is the light resistance of the cured product obtained by curing the adhesive composition of the present invention. , from the viewpoint of better breaking strength and breaking elongation, preferably from 1.05 to 3.00, more preferably from 1.07 to 2.50, still more preferably from 1.10 to 2.00. .
  • the Mn and molecular weight distribution of the polyether polycarbonate polyol are values obtained by measurement by the method described below.
  • a standard sample for molecular weight measurement several types of monodisperse polystyrene with different degrees of polymerization were measured using a commercially available GPC measurement device (HLC-8320GPC, manufactured by Tosoh Technosystems Co., Ltd.), and the relationship between the molecular weight of polystyrene and retention time was determined.
  • a calibration curve was created based on the relationship, and the measurement sample, polyether polycarbonate polyol, was diluted to 0.5% by mass with tetrahydrofuran and passed through a filter with a pore size of 0.5 ⁇ m. Measure using a measuring device.
  • Mn and Mw of the measurement sample are determined by computer analysis of the GPC spectrum of the measurement sample using the calibration curve.
  • the molecular weight distribution is a value calculated from the above Mw and Mn, and is the ratio of Mw to Mn ("Mw/Mn").
  • the proportion of structural units derived from carbon dioxide (CO 2 proportion) in one molecule of the polyether polycarbonate polyol is 10 to 30% by mass. If the proportion of the structural unit derived from carbon dioxide is less than 10% by mass, the light resistance, breaking strength, and breaking elongation of the cured product obtained by curing the adhesive composition of the present invention may decrease. When the proportion of the structural units derived from carbon dioxide exceeds 30% by mass, the viscosity becomes too high, resulting in poor workability, and there is a risk that the film formability of the adhesive composition of the present invention may deteriorate. From this point of view, the proportion of the structural units derived from carbon dioxide is preferably 11 to 28% by mass, more preferably 12 to 26% by mass. Note that the proportion of the structural units derived from carbon dioxide is measured by the method described in Examples below.
  • a structural unit in which a structural unit derived from carbon dioxide, a structural unit derived from a cyclic ether, and a structural unit derived from carbon dioxide in a polyether polycarbonate polyol are chained in this order (hereinafter also referred to as a CO 2 -AO-CO 2 chain)
  • the proportion of is preferably 2% by mass or more, more preferably 2% by mass, from the viewpoint of improving the light resistance, breaking strength, and elongation at break of the cured product obtained by curing the adhesive composition of the present invention.
  • the content is .5% by mass or more, more preferably 2.6% by mass or more.
  • the proportion of CO 2 -AO-CO 2 chains is preferably 50% by mass or less from the viewpoint of further improving the thermal stability of the polyether polycarbonate polyol and the film formability of the adhesive composition of the present invention, It is more preferably 40% by mass or less, still more preferably 30% by mass or less, even more preferably 20% by mass or less.
  • Ratio of structural units derived from cyclic ether, structural units derived from cyclic ether, and structural units in which structural units derived from cyclic ether are chained in this order (hereinafter also referred to as AO-AO-AO chain) in polyether polycarbonate polyol is preferably 30 to 80% by mass, more preferably 35 to 75% by mass, still more preferably 40 to 75% by mass, even more preferably 40% by mass, from the viewpoint of further exerting the effects of the present invention. ⁇ 72% by mass.
  • the proportion is preferably 8 to 60% by mass, more preferably 15 to 55% by mass, and still more preferably 20 to 50% by mass, from the viewpoint of further exerting the effects of the present invention.
  • the proportion of CO 2 -AO-CO 2 chains, the proportion of AO-AO-AO chains, and the proportion of AO-AO-CO 2 chains in the polyether polycarbonate polyol are, for example, when the cyclic ether AO is propylene oxide PO,
  • the polyether polycarbonate polyol is dissolved in deuterated chloroform to a concentration of 10% by mass, and 1 H-NMR is measured using an NMR device with a resolution of 400 MHz.
  • the total content of the structural units derived from the initiator, the structural units derived from the cyclic ether, and the structural units derived from carbon dioxide in the polyether polycarbonate polyol is preferably 80% by mass or more, more preferably 90% by mass or more. , more preferably 95% by mass or more, and may be 100% by mass. It may consist only of structural units derived from an initiator, structural units derived from a cyclic ether, and structural units derived from carbon dioxide.
  • the initiator constituting the structural unit derived from the initiator contained in the polyether polycarbonate polyol is used from the viewpoint of making the cured product obtained by curing the adhesive composition of the present invention excellent in light resistance, breaking strength, and breaking elongation. Therefore, it is preferable to have three or more active hydrogen-containing groups in one molecule.
  • the active hydrogen-containing group include a hydroxyl group, a carboxy group, and an amino group having a hydrogen atom bonded to a nitrogen atom.
  • the active hydrogen-containing group is preferably a hydroxyl group.
  • the initiator has four or more active hydrogen-containing groups in one molecule, and can suppress increase in viscosity caused by hydrogen bonding of hydroxyl groups, and can be used to cure the adhesive composition of the present invention. From the viewpoint of ease of handling and ease of coating, it is preferable to have 10 or less, more preferably 8 or less.
  • the initiator preferably has a structural unit derived from a cyclic ether per molecule of 3.0 mol or less.
  • the amount is more preferably 2.5 mol or less, still more preferably 2.0 mol or less, and may be 0.0 mol.
  • the initiator may be a polyol that does not have structural units derived from cyclic ethers.
  • the structural unit derived from the cyclic ether is a structural unit derived from ethylene oxide, from the viewpoint that the cured product obtained by curing the adhesive composition of the present invention becomes more flexible. units, structural units derived from propylene oxide are preferred.
  • the number average molecular weight (Mn) of the initiator is preferably 40 to 3,000, more preferably 40 to 2,000, even more preferably 55 to 2,000, even more preferably 60 to 1 ,500.
  • the Mn is a value obtained by the same method as the method for measuring Mn of the polyether polycarbonate polyol described above.
  • the Mn of the initiator is within the above range, a wide range of initiators can be selected according to the required physical properties of a cured product using a polyol made of the present initiator, and a sufficient amount of CO 2 can be introduced. .
  • the initiator examples include glycerin, polyglycerin, trimethylolethane, trimethylolpropane, diglycerin, pentaerythritol, dipentaerythritol, tripentaerythritol, glucose, sorbitol, dextrose, fructose, sucrose, methylglucoside, and the above. Trivalent or higher polyhydric alcohols such as saccharides or derivatives thereof other than those described in . Regarding the above-mentioned initiators, various optical isomers are also included. Also included are polyether polyols having a molecular weight of 50 to 8,000 in terms of hydroxyl value, which are obtained by reacting these with a small amount of alkylene oxide.
  • the cyclic ether constituting the structural unit derived from the cyclic ether of the polyether polycarbonate polyol has preferably 2 to 10 carbon atoms, more preferably 2 to 6 carbon atoms, and even more preferably It is 2 to 4.
  • the carbon atoms forming the ring of the cyclic ether may have a substituent, and examples of the substituent include an alkyl group having 1 to 4 carbon atoms, a halogen atom, and a hydroxyl group.
  • cyclic ethers examples include cyclic ethers having two carbon atoms forming a ring, such as ethylene oxide, propylene oxide, 1,2-butylene oxide, and 2,3-butylene oxide. These may be used alone or in combination of two or more.
  • the structural units derived from the cyclic ether that the polyether polycarbonate polyol has are the structural units derived from ethylene oxide and the structural units derived from propylene oxide, from the viewpoint that the cured product obtained by curing the adhesive composition of the present invention becomes more flexible.
  • the structural unit is preferably at least one type of structural unit selected from the group consisting of units, and more preferably a structural unit derived from propylene oxide.
  • polyether polycarbonate polyol has a structural unit derived from an initiator, a structural unit derived from a cyclic ether, and a structural unit derived from carbon dioxide, for example, a polyvalent polycarbonate polyol represented by the following general formula (X) can be used.
  • Ether polycarbonate polyols may be mentioned.
  • W represents a q-valent organic group, q is 3 to 10, R 2 represents a divalent hydrocarbon group having 2 to 10 carbon atoms, and m is 1 to 150. Yes, and n is 1 to 60.
  • R 2 represents a plurality of R 2 may be the same or different, and a plurality of n may be the same number or different numbers, The plural m's may be the same number or may be different numbers.
  • W represents a trivalent organic group
  • the number of terminal hydroxyl groups in the general formula (X) is three.
  • the q-valent organic group include a q-valent aliphatic hydrocarbon group having 2 to 12 carbon atoms having an aliphatic chain; a q-valent alicyclic hydrocarbon group having 3 to 12 carbon atoms having an alicyclic structure; ; a q-valent aromatic hydrocarbon group having 6 to 24 carbon atoms having an aromatic ring structure; a q-valent heterocyclic group having a heterocyclic structure containing a heteroatom such as an oxygen atom, a nitrogen atom, a sulfur atom, and glycerin; Polyglycerin, trimethylolethane, trimethylolpropane, diglycerin, pentaerythritol, dipentaerythritol, tripentaerythritol glucose, sorbitol, dextrose,
  • Examples include polyhydric alcohols having a valence of 3 or more. Regarding the above-mentioned initiators, various optical isomers are also included. Examples include residues obtained by removing the hydroxyl group from one selected from the group consisting of polyether polyols having a molecular weight in terms of hydroxyl value of 50 to 8,000 obtained by reacting these with a small amount of alkylene oxide. Among these, from the viewpoint of ease of polymerization of cyclic ether, the q-valent organic group is composed of trihydric or higher polyhydric alcohols, saccharides, and polyether polyols with a molecular weight of 50 to 8,000 in terms of hydroxyl value.
  • a residue obtained by removing a hydroxyl group from one selected from the group consisting of glycerin, trimethylolpropane, diglycerin, pentaerythritol, dipentaerythritol, and sorbitol is preferred. groups are more preferred. Note that these organic groups may further have a substituent.
  • substituents that the organic group may have include a halogen atom, an alkyl group, a cycloalkyl group, an aryl group, an aralkyl group, a carbonyl group, a formyl group, an ester group, an amide group, an alkoxy group, an alkylthio group, Examples include arylthio group, amino group, and silyl group.
  • the R 2 is preferably a linear or branched alkylene group having 2 to 6 carbon atoms, more preferably a tetramethylene group, a propylene group, or an ethylene group, and still more preferably a propylene group or an ethylene group.
  • the above q is preferably 3 to 10, from the viewpoint of suppressing high viscosity caused by hydrogen bonding of hydroxyl groups, ease of handling when curing the adhesive composition of the present invention, and ease of coating. , more preferably 3 to 8, still more preferably 4 to 8.
  • the n is preferably 1 to 60, more preferably 2 to 55, and even more preferably 3 to 45, from the viewpoint of improving the breaking strength and breaking elongation of the cured product and improving light resistance. be.
  • the m is preferably 1 to 150, more preferably 2 to 135, and still more preferably 3 to 120, from the viewpoint of ease of handling due to lower viscosity of the polymer.
  • R 2 in (-O-R 2 -) m is different, the structure represented by (-O-R 2 -) m may be either a random structure or a block structure. .
  • the hydroxyl value of the polyether polycarbonate polyol is preferably 8 mgKOH/g or more, more preferably 16 mgKOH/g or more, even more preferably 22 mgKOH/g or more, and preferably 900 mgKOH/g or less, more preferably 700 mgKOH/g or less. , more preferably 340 mgKOH/g or less. If the hydroxyl value of the polyether polycarbonate polyol is below the above-mentioned upper limit, the resulting cured adhesive composition tends to have better light resistance, breaking strength, and breaking elongation.
  • the hydroxyl value of the polyether polycarbonate polyol is a value measured and calculated according to method B of JIS K 1557-1:2007.
  • the viscosity of the polyether polycarbonate polyol at 25° C. is preferably 150,000 mPa ⁇ s or less, more preferably 120,000 mPa ⁇ s or less, and still more preferably 100,000 mPa ⁇ s or less.
  • the viscosity of the polyether polycarbonate polyol at 25°C is a value measured using an E-type viscometer. Specifically, it is measured by the method described in the Examples below.
  • the content of the polyether polycarbonate polyol is preferably 10 to 70% by mass, more preferably 15 to 60% by mass, and even more preferably 20 to 50% by mass, based on the total amount of the adhesive composition.
  • the content of the polyether polycarbonate polyol is at least the lower limit, the light resistance, breaking strength, and elongation at break of the resulting cured adhesive composition will be better, and the content is at most the upper limit.
  • the cured product obtained by curing the adhesive composition of the present invention has better elongation at break.
  • Polyether polycarbonate polyol is obtained by polymerizing an initiator having three or more active hydrogen-containing groups in one molecule, a cyclic ether, and carbon dioxide in the presence of a catalyst.
  • an initiator those explained in the section (Initiator) can be used
  • the cyclic ether those explained in the section (Cyclic ether) can be used.
  • the ring-opening addition polymerization in the case of reacting two or more types of cyclic ethers with an initiator and carbon dioxide may be random polymerization, block polymerization, or a combination of random polymerization and block polymerization. It may be.
  • the catalyst examples include a composite metal cyanide complex catalyst (hereinafter sometimes referred to as "DMC catalyst") such as a TBA-based composite metal cyanide complex catalyst; a metal salen complex catalyst such as a cobalt salen catalyst; sodium hydroxide; Alkali catalysts such as potassium hydroxide and cesium hydroxide; Ziegler-Natta catalysts consisting of organoaluminum compounds and transition metal compounds; metal-coordination porphyrin catalysts as complexes obtained by reacting porphyrins; phosphazene catalysts; phosphazenium salts containing imino groups; Tris (Pentafluorophenyl)borane; a reduced Robson's type macrocyclic ligand catalyst (catalyst consisting of a reduced Robson's type Macrocyclic ligand) is preferably mentioned. These may be used alone or in combination of two or more.
  • DMC catalyst composite metal cyanide complex catalyst
  • DMC catalysts examples include zinc hexacyanocobaltate complexes whose ligand is t-butyl alcohol (hereinafter sometimes referred to as "TBA-DMC catalyst"), and ethylene glycol dimethyl ether (also referred to as "glyme”) whose ligand is t-butyl alcohol.
  • TBA-DMC catalyst zinc hexacyanocobaltate complexes in which the ligand is diethylene glycol dimethyl ether (sometimes referred to as "diglyme”). These may be used alone or in combination of two or more.
  • the TBA-DMC catalyst is preferred from the viewpoints of higher activity during polymerization, narrower Mw/Mn of the polyether polycarbonate polyol, and lower viscosity.
  • metal salen complex catalysts examples include cobalt salen complexes, chromium salen complexes, and aluminum salen complexes described in Japanese Patent Publication No. 2012-500867, JP2015-129306A, and JP2015-28182A. These may be used alone or in combination of two or more.
  • the catalyst preferably contains at least one selected from the group consisting of a DMC catalyst and a metal salen complex catalyst, from the viewpoint of easily adjusting the carbon dioxide introduction rate in the polyether polycarbonate polyol to the range specified in the present invention.
  • the catalyst is preferably a DMC catalyst or a reduced Robson type macrocyclic ligand catalyst from the viewpoint of obtaining a random polymer polyether polycarbonate polyol.
  • the amount of the catalyst added is preferably as small as possible as long as it is the amount necessary for the polymerization of carbon dioxide and the ring-opening polymerization of the cyclic ether, and is preferably as small as possible based on 100 parts by mass of the obtained polyether polycarbonate polyol.
  • the amount is 0.001 to 10 parts by weight, more preferably 0.002 to 5 parts by weight, and even more preferably 0.05 to 3 parts by weight.
  • the smaller the amount of the catalyst added the smaller the amount of catalyst contained in the polyether polycarbonate polyol product. Thereby, the influence of the catalyst on the reactivity between the polyether polycarbonate polyol and the isocyanate group-terminated urethane prepolymer can be reduced, and costs can be reduced.
  • the polymerization reaction is preferably carried out under a pressure of 0.1 to 15 MPa, more preferably carried out under a pressure of 0.2 to 10 MPa, and carried out under a pressure of 0.3 to 8 MPa. It is even more preferable.
  • the polymerization temperature of the polymerization reaction is preferably 30 to 180°C, more preferably 70 to 160°C, and still more preferably 80 to 140°C.
  • the polymerization temperature is 30° C. or higher, carbon dioxide polymerization and ring-opening polymerization of cyclic ether can be reliably started, and when it is 180° C. or lower, a decrease in the polymerization activity of the catalyst can be suppressed.
  • the polymerization time of the polymerization reaction is preferably 2 to 18 hours, more preferably 2 to 14 hours, and even more preferably 2 to 10 hours.
  • the polymerization time is 2 hours or more, the reaction performance is excellent, and when it is 18 hours or less, it is economical.
  • the amount of the cyclic ether to be charged is preferably 40.0 to 99.0 parts by mass, more preferably 45.0 to 98.0 parts by mass, and even more preferably is 50.0 to 97.0 parts by mass.
  • the amount of the cyclic ether charged is within the above range, the viscosity of the resulting adhesive composition will not become too high, the workability during coating and curing will tend to be good, and the cured product of the adhesive composition will not become too high. Flexibility tends to be better.
  • the amount of carbon dioxide charged is preferably 0.05 to 40% by mass, more preferably 0.10 to 35% by mass, and even more preferably 1.15 to 30% by mass, based on the obtained polyether polycarbonate polyol. It is. When the amount of carbon dioxide charged is within the above range, the light resistance and breaking strength of the cured product of the resulting adhesive composition tend to be better.
  • the isocyanate index which represents 100 times the molar ratio (isocyanate group/hydroxyl group) of the isocyanate group in the isocyanate group-terminated urethane prepolymer to the hydroxyl group in the polyether polycarbonate polyol, is 80 or more and 150 or less. It is preferable that The isocyanate index is preferably 85 or higher, more preferably 90 or higher, even more preferably 95 or higher, and preferably 140 or lower, more preferably 130 or lower, and still more preferably 120 or lower. When the isocyanate index is within the above preferred range, the resulting cured adhesive composition tends to have good light resistance, breaking strength, and breaking elongation.
  • the isocyanate index is a value obtained by multiplying by 100 the ratio of the number of moles of isocyanate groups in the isocyanate group-terminated urethane prepolymer to the total number of moles of hydroxyl groups in the polyether polycarbonate polyol.
  • the adhesive composition of the present invention may further contain a chain extender from the viewpoint of improving breaking strength by forming hard segments.
  • the chain extender is preferably at least one selected from the group consisting of polyols and polyamines, and preferably has at least two active hydrogens that react with isocyanate groups.
  • chain extenders include ethylene glycol, diethylene glycol, triethylene glycol, propylene glycol, dipropylene glycol, tripropylene glycol, 1,3-propanediol, 1,4-butanediol, 1,5-pentane.
  • Linear aliphatic diols such as diol, 1,6-hexanediol, 1,8-octanediol, 1,9-nonanediol, 1,10-decanediol, 1,12-dodecanediol; 2-methyl-1 ,3-propanediol, 2,2-dimethyl-1,3-propanediol, 2,2-diethyl-1,3-propanediol, 2-methyl-2-propyl-1,3-propanediol, 2,4 -heptanediol, 1,4-dimethylolhexane, 2-ethyl-1,3-hexanediol, 2,2,4-trimethyl-1,3-pentanediol, 2-methyl-1,8-octanediol, 2 -Butyl-2-ethyl-1,3-propanediol, dimer diol
  • ethylene glycol, propylene glycol, 1,4-butanediol and 1,6-hexanediol are preferred, and 1,4-butanediol is more preferred.
  • the molecular weight of the chain extender is preferably 60 or more and 1,000 or less, more preferably 60 or more and less than 300. When the molecular weight of the chain extender is within the above range, the resulting cured adhesive composition tends to have better light resistance, breaking strength, and breaking elongation.
  • the content thereof is preferably 5 to 30 parts by mass based on 100 parts by mass of the polyether polycarbonate polyol, from the viewpoint that the cured product exhibits appropriate breaking strength.
  • Parts by weight more preferably 6 to 25 parts by weight, still more preferably 8 to 20 parts by weight.
  • the adhesive composition of the present invention may further contain a solvent, additives described below, and the like.
  • a solvent the above-mentioned solvents, which can be used as necessary during the production of the isocyanate group-terminated urethane prepolymer, are preferable.
  • the amount thereof is preferably 30 parts by mass or more, more preferably 40 parts by mass or more, still more preferably 50 parts by mass or more, based on 100 parts by mass of the isocyanate group-terminated urethane prepolymer. , preferably 500 parts by mass or less, more preferably 450 parts by mass or less, still more preferably 400 parts by mass or less.
  • the total proportion (content) of the isocyanate group-terminated urethane prepolymer and the polyether polycarbonate polyol in the adhesive composition of the present invention is preferably 70% by mass or more, more preferably 75% by mass or more, and even more preferably 80% by mass. That's all.
  • the adhesive composition of the present invention may contain hydrolysis inhibitors, antioxidants, ultraviolet absorbers, light stabilizers, fillers, plasticizers, and antistatic agents, as necessary, to the extent that the effects of the present invention are not impaired. , leveling agents, and other optional ingredients.
  • hydrolysis inhibitors examples include carbodiimide-based, isocyanate-based, oxazoline-based, and epoxy-based.
  • the hydrolysis inhibitors may be used alone or in combination of two or more.
  • carbodiimide is preferred from the viewpoint of hydrolysis inhibiting effect.
  • a carbodiimide-based hydrolysis inhibitor is a compound having one or more carbodiimide groups in one molecule.
  • Examples of the monocarbodiimide compound include dicyclohexylcarbodiimide, diisopropylcarbodiimide, dimethylcarbodiimide, diisobutylcarbodiimide, dioctylcarbodiimide, diphenylcarbodiimide, and naphthylcarbodiimide.
  • a polycarbodiimide compound can be produced by subjecting a diisocyanate to a decarboxylation condensation reaction in the presence of a carbodiimidation catalyst.
  • diisocyanate examples include MDI, 3,3'-dimethoxy-4,4'-diphenylmethane diisocyanate, 3,3'-dimethyl-4,4'-diphenylmethane diisocyanate, 4,4'-diphenyl ether diisocyanate, 3,3 '-dimethyl-4,4'-diphenyl ether diisocyanate, 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, 1-methoxyphenyl-2,4-diisocyanate, IPDI, 4,4'-dicyclohexylmethane diisocyanate, Tetramethylxylylene diisocyanate is mentioned.
  • carbodiimidation catalyst examples include 1-phenyl-2-phospholene-1-oxide, 3-methyl-2-phospholene-1-oxide, 1-ethyl-3-methyl-2-phospholene-1-oxide, -ethyl-2-phosphorene-1-oxide, 3-phosphorene isomers thereof, and other phosphorene oxides.
  • the amount of the hydrolysis inhibitor added is preferably 5 parts by mass or less, more preferably 4.5 parts by mass or less, and even more preferably 3 parts by mass or less, based on 100 parts by mass of the isocyanate group-terminated urethane prepolymer.
  • antioxidant By using an antioxidant, thermal deterioration of the isocyanate group-terminated urethane prepolymer can be prevented.
  • examples of the antioxidant include radical scavengers such as phenolic compounds and amine compounds; peroxide decomposers such as sulfur compounds and phosphorus compounds; and the like.
  • One type of antioxidant may be used alone or two or more types may be used in combination.
  • One or more phenolic compounds that are radical scavengers and one or more phosphorus compounds that are peroxide decomposers can also be used together.
  • the amount of the antioxidant added is preferably 5 parts by mass or less, more preferably 3 parts by mass or less, and even more preferably 2 parts by mass or less, based on 100 parts by mass of the isocyanate group-terminated urethane prepolymer.
  • UV absorber examples include benzophenone compounds, benzotriazole compounds, salicylic acid compounds, oxalic acid anilide compounds, cyanoacrylate compounds, triazine compounds, and the like.
  • the ultraviolet absorbers may be used alone or in combination of two or more.
  • the amount of the ultraviolet absorber added is preferably 3 parts by mass or less, more preferably 2.5 parts by mass or less, still more preferably 2 parts by mass or less, per 100 parts by mass of the isocyanate group-terminated urethane prepolymer.
  • light stabilizer examples include hindered amine compounds and hindered piperidine compounds.
  • One kind of light stabilizer can be used alone or two or more kinds can be used in combination.
  • the amount of the light stabilizer added is preferably 2 parts by mass or less, more preferably 1.5 parts by mass or less, still more preferably 1 part by mass or less, per 100 parts by mass of the isocyanate group-terminated urethane prepolymer.
  • Fillers include, for example, inorganic or organic fillers, such as in particular natural, heavy or precipitated calcium carbonate, optionally coated with fatty acids, in particular stearic acid, barite, talc, Quartz powder, silica sand, dolomite, wollastonite, kaolin, calcined kaolin, mica (potassium aluminum silicate), zeolite, molecular sieves, aluminum oxide, aluminum hydroxide, magnesium hydroxide, finely ground silica from pyrolysis process.
  • inorganic or organic fillers such as in particular natural, heavy or precipitated calcium carbonate, optionally coated with fatty acids, in particular stearic acid, barite, talc, Quartz powder, silica sand, dolomite, wollastonite, kaolin, calcined kaolin, mica (potassium aluminum silicate), zeolite, molecular sieves, aluminum oxide, aluminum hydroxide, magnesium hydroxide, finely ground silica from
  • the amount of the filler added is preferably 80 parts by mass or less, more preferably 70 parts by mass or less, still more preferably 60 parts by mass or less, based on 100 parts by mass of the isocyanate group-terminated urethane prepolymer.
  • plasticizer examples include di-2-ethylhexyl phthalate, dibutyl phthalate, dilauryl phthalate, dioctyl adipate, diisononyl phthalate (DINP), diisodecyl phthalate (DIDP), diisodecyl adipate, tributyl phosphate, trioctyl phosphate, propylene glycol adipate polyester. , butylene glycol adipate polyester, epoxidized soybean oil, chlorinated paraffin, and liquid paraffin.
  • the amount of the plasticizer added is preferably 40 parts by mass or less, more preferably 30 parts by mass or less, still more preferably 25 parts by mass or less, based on 100 parts by mass of the isocyanate group-terminated urethane prepolymer.
  • antistatic agent examples include inorganic salts, polyhydric alcohol compounds, ionic liquids, surfactants, and the like.
  • the antistatic agents may be used alone or in combination of two or more. Among these, ionic liquids are preferred.
  • the "ionic liquid” is also referred to as a salt molten at room temperature, and is a salt that has fluidity at 25°C.
  • the amount of the antistatic agent added is preferably 0.01 parts by mass or more, more preferably 0.03 parts by mass or more, and even more preferably 0.05 parts by mass or more, based on 100 parts by mass of the isocyanate group-terminated urethane prepolymer.
  • the content is preferably 10 parts by mass or less, more preferably 5 parts by mass or less, and even more preferably 3 parts by mass or less.
  • Leveling agent examples include acrylic leveling agents, fluorine leveling agents, silicone leveling agents, and the like. One type of leveling agent may be used alone, or two or more types may be used in combination. Among these, acrylic leveling agents are preferred.
  • the amount of the leveling agent added is preferably 0.001 parts by mass or more, more preferably 0.01 parts by mass or more, and even more preferably 0.1 parts by mass or more, based on 100 parts by mass of the isocyanate group-terminated urethane prepolymer. , and preferably 2 parts by mass or less, more preferably 1.5 parts by mass or less, and even more preferably 1 part by mass or less.
  • Other optional ingredients include, for example, catalysts, resins other than isocyanate group-terminated urethane prepolymers, metal powders, colorants (pigments, etc.), foils, conductive agents, silane coupling agents, lubricants, and corrosion inhibitors. agent, heat stabilizer, polymerization inhibitor, antifoaming agent, etc.
  • the method for producing an adhesive composition of the present invention is a method for producing an adhesive composition comprising an isocyanate group-terminated urethane prepolymer and a polyether polycarbonate polyol, comprising: In the presence of a catalyst, an initiator having three or more active hydrogen-containing groups in one molecule, a cyclic ether, and carbon dioxide are polymerized to obtain a polyether polycarbonate polyol, and the polyether polycarbonate polyol and isocyanate groups are polymerized. Mix the terminated urethane prepolymer.
  • the proportion of the structural unit derived from carbon dioxide in one molecule of the polyether polycarbonate polyol is 10 to 30% by mass.
  • the adhesive composition of the present invention is obtained by mixing a polyether polycarbonate polyol and an isocyanate group-terminated urethane prepolymer.
  • the polyether polycarbonate polyol is obtained by the manufacturing method described in the section [Method for manufacturing polyether polycarbonate polyol].
  • a catalyst component, a solvent, and the above-mentioned additives may be added as necessary.
  • a known stirring mixer such as a plastomill, kneader, Banbury mixer, roll, etc. equipped with a heating device may be used.
  • the mixing is preferably performed under an atmosphere of an inert gas such as nitrogen gas or under a vacuum dehydration atmosphere. Note that there is no particular restriction on the order in which the above-mentioned components are added.
  • the adhesive composition of the present invention may be a two-component adhesive composition comprising a base agent and a curing agent.
  • the adhesive composition of the present invention may be a base agent containing the above-mentioned isocyanate group-terminated urethane prepolymer and a curing agent containing the above-mentioned polyether polycarbonate polyol.
  • the main ingredient can be produced, for example, by uniformly stirring and mixing the above-described isocyanate group-terminated urethane prepolymer, a solvent contained as necessary, and one or more of the above-mentioned additives.
  • the curing agent can be produced, for example, by uniformly stirring and mixing one or more of the above-mentioned polyether polycarbonate polyol, a catalyst component to be included as necessary, a solvent, and the above-mentioned additives.
  • a known stirring mixer such as a plastomill, kneader, Banbury mixer, roll, etc. equipped with a heating device may be used.
  • the stirring and mixing is preferably carried out under an inert gas atmosphere such as nitrogen gas or under a reduced pressure dehydration atmosphere. Note that there is no particular restriction on the order in which the above-mentioned components are added.
  • the base agent and curing agent are each housed in separate containers. Various containers can be used, such as tubes and bottles.
  • the total proportion (content) of the main agent and curing agent in the adhesive composition is 50% by mass or more and 100% by mass or less. is preferred.
  • the total proportion of the main agent and curing agent is more preferably 55% by mass or more, still more preferably 60% by mass or more, and more preferably less than 100% by mass, still more preferably 99.5% by mass or less, and even more preferably Preferably it is 95% by mass or less.
  • the content ratio of the main agent and curing agent in the two-component adhesive composition is determined based on the above-mentioned isocyanate index.
  • the total proportion (content) of the main agent and curing agent in the solid content of the adhesive composition of the present invention is preferably 80% by mass or more, more preferably 90% by mass or more, and even more preferably 95% by mass. % or more, and may be 100% by mass.
  • the adhesive composition of the present invention is a two-component adhesive composition
  • the main ingredient and the curing agent may be mixed together.
  • the adhesive composition of the present invention can be cured under conditions of, for example, 5 to 90°C and a relative humidity of 5 to 95%.
  • the temperature during mixing is preferably 10°C or higher, more preferably 15°C or higher, even more preferably 20°C or higher, and preferably 90°C or lower, more preferably 80°C or lower, even more preferably 60°C or lower. It is. When the temperature is within the above range, side reactions other than the urethane reaction can be easily suppressed.
  • the adhesive composition of the present invention can be used to bond glass, rubber, metal, resin materials, and the like.
  • resin materials include polypropylene, polyethylene, ethylene/propylene copolymer, polyolefin such as cycloolefin polymer; polyester of polyethylene terephthalate and polybutylene terephthalate; polymethyl methacrylate; polycarbonate; polystyrene; acrylonitrile/styrene copolymer; polyvinyl chloride. ; polyacetate; acrylonitrile-butadiene-styrene copolymer; and polyamide.
  • These resin materials may be subjected to surface treatments such as flame treatment, corona treatment, and intro treatment. Further, these resin materials may contain fillers such as talc, calcium carbonate, and alumina, and may be reinforced with carbon fibers and glass fibers.
  • the adhesive composition of the present invention can be used to join parts of various structures.
  • the adhesive composition of the present invention can be used, for example, as a coating agent, paint, waterproof material, flooring material, elastomer, artificial leather, or spandex.
  • the cured product of the present invention is a cured product obtained by curing the adhesive composition of the present invention.
  • the cured product of the adhesive composition of the present invention preferably has a breaking strength of 0.8 MPa or more, more preferably 1.5 MPa or more, and still more preferably 3.0 MPa or more.
  • the elongation at break of the cured product of the adhesive composition of the present invention is preferably 15.0% or more, more preferably 30.0% or more, and still more preferably 50.0% or more.
  • the breaking strength and breaking elongation are measured by the method described in the Examples below.
  • hydroxyl value (OHV) of each polyol obtained in the synthesis examples described below was calculated by a method using an acetylation reagent in accordance with JIS K 1557 (2007).
  • the molecular weight of the polyol in terms of hydroxyl value was calculated by applying the hydroxyl value to the formula [56,100/(hydroxyl value)] ⁇ (number of functional groups).
  • a calibration curve was created based on the relationship, and the measurement sample polyol was diluted to 0.5% by mass with tetrahydrofuran and passed through a filter with a pore size of 0.5 ⁇ m. It was measured using Mn and Mw were determined by computer analysis of the GPC spectrum of the measurement sample using the above calibration curve.
  • area S3 of the 3H peak derived from the methyl group of PO ( ⁇ 1.14 ppm) adjacent to PO on both ends Based on the area S4 of the methyl group-derived 3H peak ( ⁇ 1.49 ppm), the proportion of CO 2 -PO-CO 2 chains in the polyol (proportion of complete alternating copolymer) and PO-PO-CO 2 chains are calculated from the following formula.
  • the proportion of (proportion of random copolymer), the proportion of PO-PO-PO chains (proportion of PPG), and the proportion of propylene carbonate were calculated.
  • the formula weight of PO whose both ends are adjacent to carbonate is 102
  • the formula weight of PO whose one end is adjacent to carbonate and the other end is 102.
  • the proportion of structural units derived from carbon dioxide in the polyol was calculated from the following formula.
  • ⁇ Viscosity at 25°C> The viscosity of the polyol at 25° C. was measured using an E-type viscometer (VISCOMETER TV-22, manufactured by Toki Sangyo Co., Ltd.).
  • HPC-8320GPC manufactured by Tosoh Techno System Co., Ltd.
  • urethane resin obtained in each example was applied onto a commercially available PET film to a thickness of 250 ⁇ m, and press molded using a hydraulic molding machine to obtain a urethane resin film.
  • the obtained urethane resin film was visually observed and evaluated according to the following criteria.
  • ⁇ Tensile test> The urethane resin film obtained above was punched out using a dumbbell mold (dumbbell No. 3) to obtain a test piece. Using a tensile tester (product name: Tensilon Universal Tester RTG-1310, manufactured by A&D Co., Ltd.), the breaking strength (unit: MPa) and breaking elongation (unit: :%) was measured. The measurement conditions were a temperature of 23° C., a distance between chucks of 40 mm, and a pulling speed of 50 mm/min.
  • PO propylene oxide
  • polyether polycarbonate polyol (polyol (a1)) having a hydroxyl value of 44.9 mgKOH/g and a CO 2 proportion of 24.1% by mass.
  • the amount of propylene oxide as the cyclic ether charged was 75.6 parts by mass based on 100 parts by mass of the obtained polyether polycarbonate polyol.
  • polypropylene polyol (number average molecular weight 600), which is obtained by adding propylene oxide to pentaerythritol, was used.
  • a reactor was charged with 33.0 g of the above initiator and 0.04 g of TBA-DMC catalyst as a catalyst, heated to 130°C, introduced carbon dioxide, pressurized (approximately 2.0 MPa), and then depressurized. (approximately 0.1 MPa) was repeated three times, and then degassed at 130° C. for 2 hours. After degassing, the carbon dioxide pressure was increased to 1.5 MPa to activate the catalyst.
  • the carbon dioxide pressure during synthesis was maintained at 1.5 MPa, 32.0 g of PO as a cyclic ether was added, and after confirming that heat was generated, the liquid temperature was lowered to 110 ° C., and 285 g of PO was added over 17 hours. added. After reacting at 110°C for 3 hours, the liquid temperature was raised to 130°C and maintained under reduced pressure for 5 hours to remove propylene carbonate as a by-product. Thereafter, the reactant was taken out from the reactor to obtain a polyether polycarbonate polyol (polyol (a3)) having a hydroxyl value of 31.5 mgKOH/g and a CO 2 proportion of 12.5% by mass. The amount of propylene oxide as the cyclic ether charged was 87.2 parts by mass based on 100 parts by mass of the obtained polyether polycarbonate polyol.
  • polypropylene polyol (number average molecular weight 1000), which is obtained by adding propylene oxide to glycerin, was used.
  • a reactor was charged with 51.0 g of the above initiator and 0.07 g of TBA-DMC catalyst as a catalyst, the reactor was heated to 130°C, carbon dioxide was introduced, and the pressure was increased (approximately 2.0 MPa) and then reduced. (approximately 0.1 MPa) was repeated three times, and then degassed at 130° C. for 2 hours. After degassing, the carbon dioxide pressure was increased to 1.5 MPa to activate the catalyst.
  • the carbon dioxide pressure during synthesis was maintained at 1.5 MPa, 30.0 g of PO as a cyclic ether was added, and after confirming that heat was generated, the liquid temperature was lowered to 110°C, and 270 g of PO was added over 16 hours. added. After reacting at 110°C for 3 hours, the liquid temperature was raised to 130°C and maintained under reduced pressure for 5 hours to remove propylene carbonate as a by-product. Thereafter, the reactant was taken out from the reactor to obtain a polyether polycarbonate polyol (polyol (a4)) having a hydroxyl value of 28.9 mgKOH/g and a CO 2 ratio of 11.4% by mass. The amount of propylene oxide as the cyclic ether charged was 88.4 parts by mass based on 100 parts by mass of the obtained polyether polycarbonate polyol.
  • polyether polycarbonate polyol (polyol (c1)) having a hydroxyl value of 47.5 mgKOH/g and a CO 2 proportion of 43.1% by mass.
  • the amount of propylene oxide as the cyclic ether charged was 56.7 parts by mass based on 100 parts by mass of the obtained polyether polycarbonate polyol.
  • polypropylene polyol (molecular weight 870), which is obtained by adding propylene oxide to sorbitol, was used.
  • a reactor was charged with 46.0 g of the above initiator and 0.04 g of TBA-DMC catalyst as a catalyst, the reactor was heated to 130°C, nitrogen was introduced, and the pressure was increased (approximately 0.5 MPa), followed by reduced pressure ( After repeating a series of operations three times at a pressure of about 0.1 MPa), the mixture was degassed at 130° C. for 2 hours. After degassing, the nitrogen pressure was increased to 0.1 MPa.
  • polypropylene polyol (molecular weight 1000), which is obtained by adding propylene oxide to glycerin, was used.
  • a reactor was charged with 47.0 g of the above initiator and 0.04 g of TBA-DMC catalyst as a catalyst, the reactor was heated to 130°C, nitrogen was introduced, and the pressure was increased (approximately 0.5 MPa), followed by reduced pressure ( After repeating a series of operations three times at a pressure of about 0.1 MPa), the mixture was degassed at 130° C. for 2 hours. After degassing, the nitrogen pressure was increased to 0.1 MPa.
  • Example 1 (1) Synthesis of isocyanate group-terminated urethane prepolymer (preparation of main agent) Into a 2000 ml reaction vessel equipped with a stirrer, 280 g of polyethylene glycol-terminated polypropylene glycol (average number of hydroxyl groups, molecular weight converted to hydroxyl value 4,000) was added, and then 4,4'-diphenylmethane diisocyanate (isocyanate group content 33.0 g) was added.
  • MDI 6% by mass
  • oxyethylene group-terminated polyoxyethylene/propylene polyol average number of hydroxyl groups 3, number average molecular weight 5,100, primary alcohol content 14.5% by mass
  • the value obtained by multiplying the number of isocyanate groups in the isocyanate group-terminated urethane prepolymer P1 by 100 with respect to the number of hydroxyl groups possessed by the polyether polycarbonate polyol (a1) was defined as the above-mentioned isocyanate index.
  • Example 2 A urethane resin was produced in the same manner as in Example 1, except that the types and amounts of the base resin and curing agent were changed as shown in Table 2.
  • Table 2 shows the evaluation results of the isocyanate index, film formability, light resistance, breaking strength, and breaking elongation of each adhesive composition.
  • the urethane resins obtained in Examples 1 to 4 all have good film formability. In addition, all of the cured products obtained good results in terms of light resistance, breaking strength, and breaking elongation, indicating that they are excellent in light resistance, breaking strength, and breaking elongation.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Polyurethanes Or Polyureas (AREA)

Abstract

Provided are: an adhesive composition which exhibits good film formability and excellent lightfastness, breaking strength and breaking elongation; a cured product of said adhesive composition; and a method for producing said adhesive composition. This adhesive composition contains an isocyanate group-terminated urethane prepolymer and a polyether polycarbonate polyol. The polyether polycarbonate polyol has three or more terminal groups per molecule and has a constituent unit derived from an initiator, a constituent unit derived from a cyclic ether and a constituent unit derived from carbon dioxide. The proportion of the constituent unit derived from carbon dioxide in the molecule is 10-30 mass%.

Description

接着剤組成物、当該接着剤組成物の硬化物及び当該接着剤組成物の製造方法Adhesive composition, cured product of the adhesive composition, and method for producing the adhesive composition
 本発明は、接着剤組成物、当該接着剤組成物の硬化物及び当該接着剤組成物の製造方法に関する。 The present invention relates to an adhesive composition, a cured product of the adhesive composition, and a method for producing the adhesive composition.
 自動車、建材、船舶、航空機等の分野において、樹脂、ガラス、金属、セラミックス等の材料を接着するための構造用接着剤及び前記材料のコーティング剤が種々検討されている。前記構造用接着剤及びコーティング剤では、耐光性、良好な破断強度、及び破断伸びが求められる。
 例えば、特許文献1には、コーティング剤に用いられる、少なくとも95%の-OH末端基と、約-20℃~約60℃のガラス転移温度と、2未満の多分散指数と、15kDa未満の数平均分子量(Mn)と、ポリカーボネート鎖中の隣接するモノマー単位間の95%を上回るカーボネート結合と、を有するポリ(プロピレンカーボネート)ポリオール組成物が開示されており、耐光性、破断強度、及び破断伸びに優れるとされる。
 特許文献2には、イソシアネート基を有するウレタンプレポリマーを含む主剤と、末端にエチレンオキシドを有し、1分子中に活性水素含有基を3個有する、すなわち3官能である特定のポリオール化合物を含有する硬化剤と、を有する二液型ウレタン系接着剤組成物が開示されており、初期接着性及び長期接着性に優れるとされる。
BACKGROUND ART In the fields of automobiles, building materials, ships, aircraft, etc., various structural adhesives for bonding materials such as resins, glass, metals, and ceramics and coating agents for these materials have been studied. The structural adhesives and coating agents are required to have light resistance, good breaking strength, and good breaking elongation.
For example, U.S. Pat. A poly(propylene carbonate) polyol composition is disclosed having an average molecular weight (Mn) and greater than 95% carbonate bonding between adjacent monomer units in the polycarbonate chain, and has improved lightfastness, breaking strength, and breaking elongation. It is said to be excellent in
Patent Document 2 discloses a polyol compound containing a main ingredient including a urethane prepolymer having an isocyanate group, and a specific polyol compound having ethylene oxide at the terminal and three active hydrogen-containing groups in one molecule, that is, it is trifunctional. A two-component urethane adhesive composition having a curing agent and a curing agent is disclosed, and is said to have excellent initial adhesion and long-term adhesion.
特表2013-543929号Special table number 2013-543929 国際公開第2019/240046号International Publication No. 2019/240046
 しかしながら、前記特許文献1に記載のポリ(プロピレンカーボネート)ポリオール組成物は、粘度が高く、かつ熱安定性が低いという問題があり、さらに、ウレタン樹脂にした際にフィルム成形性が低いという問題がある。また、前記特許文献2に記載の二液型ウレタン系接着剤組成物は、耐光性が不十分であり改善の余地がある。 However, the poly(propylene carbonate) polyol composition described in Patent Document 1 has a problem of high viscosity and low thermal stability, and furthermore, has a problem of low film formability when made into a urethane resin. be. Furthermore, the two-component urethane adhesive composition described in Patent Document 2 has insufficient light resistance, and there is room for improvement.
 本発明は、このような課題を解決するものであり、フィルム成形性が良好でかつ、硬化物の耐光性、破断強度、及び破断伸びに優れる接着剤組成物、当該接着剤組成物の硬化物並びに当該接着剤組成物の製造方法を提供することを目的とする。 The present invention solves these problems, and provides an adhesive composition that has good film formability and excellent light resistance, breaking strength, and elongation at break of a cured product, and a cured product of the adhesive composition. Another object of the present invention is to provide a method for producing the adhesive composition.
 本発明者らは、前記課題を解決するために鋭意検討を行った結果、イソシアネート基末端ウレタンプレポリマーと、特定の構造を有するポリエーテルポリカーボネートポリオールとを含む接着剤組成物が、前記課題を解決し得ることを見出し、本発明を完成させた。
 すなわち、本発明は下記の通りである。
[1] イソシアネート基末端ウレタンプレポリマー及びポリエーテルポリカーボネートポリオールを含む接着剤組成物であって、
 前記ポリエーテルポリカーボネートポリオールは、1分子中に末端基を3個以上有し、並びに開始剤に由来する構成単位、環状エーテルに由来する構成単位、及び二酸化炭素に由来する構成単位を有し、かつ1分子中の前記二酸化炭素に由来する構成単位の割合が、10~30質量%である、接着剤組成物。
[2] 前記ポリエーテルポリカーボネートポリオールの水酸基価換算分子量は500~20,000である、上記[1]に記載の接着剤組成物。
[3] 前記ポリエーテルポリカーボネートポリオールの、重量平均分子量(Mw)及び数平均分子量(Mn)の比で表される分子量分布(Mw/Mn)は1.05~3.00である、上記[1]又は[2]に記載の接着剤組成物。
[4] 前記ポリエーテルポリカーボネートポリオールにおける前記二酸化炭素に由来する構成単位、前記環状エーテルに由来する構成単位、及び前記二酸化炭素に由来する構成単位がこの順に連鎖した構成単位の割合は、2質量%以上である、上記[1]~[3]のいずれかに記載の接着剤組成物。
[5] 前記ポリエーテルポリカーボネートポリオールが有する前記環状エーテルに由来する構成単位は、エチレンオキシドに由来する構成単位、及びプロピレンオキシドに由来する構成単位からなる群より選択される少なくとも1種の構成単位である、上記[1]~[4]のいずれかに記載の接着剤組成物。
[6] 前記ポリエーテルポリカーボネートポリオールが有する末端基が水酸基である、上記[1]~[5]のいずれかに記載の接着剤組成物。
[7] 前記ポリエーテルポリカーボネートポリオールにおける水酸基に対する前記イソシアネート基末端ウレタンプレポリマーにおけるイソシアネート基のモル比の100倍が80以上150以下ある、上記[1]~[6]のいずれかに記載の接着剤組成物。
[8] 前記ポリエーテルポリカーボネートポリオールの含有量は、接着剤組成物全量に対して10~70質量%である、上記[1]~[7]のいずれかに記載の接着剤組成物。
[9] さらに、鎖延長剤を含有する、上記[1]~[8]のいずれかに記載の接着剤組成物。
[10] 上記[1]~[9]のいずれかに記載の接着剤組成物の硬化物。
[11] イソシアネート基末端ウレタンプレポリマー及びポリエーテルポリカーボネートポリオールを含む接着剤組成物の製造方法であって、
 触媒の存在下で、1分子中に活性水素含有基を3個以上有する開始剤と、環状エーテルと、二酸化炭素とを重合させて、ポリエーテルポリカーボネートポリオールを得、当該ポリエーテルポリカーボネートポリオール及びイソシアネート基末端ウレタンプレポリマーを混合し、
 前記ポリエーテルポリカーボネートポリオールの1分子中の二酸化炭素に由来する構成単位の割合は10~30質量%である、接着剤組成物の製造方法。
[12] 前記触媒が、複合金属シアン化物錯体触媒及び金属サレン錯体触媒からなる群より選択される少なくとも1種を含む、上記[11]に記載の接着剤組成物の製造方法。
[13] 前記イソシアネート基末端ウレタンプレポリマーはポリオールとポリイソシアネート化合物とを、前記ポリオールにおける水酸基に対する前記ポリイソシアネート化合物におけるイソシアネート基のモル比の100倍が、110以上600以下となるように反応させた反応生成物である、上記[11]又は[12]に記載の接着剤組成物の製造方法。
The present inventors conducted intensive studies to solve the above problems, and found that an adhesive composition containing an isocyanate group-terminated urethane prepolymer and a polyether polycarbonate polyol having a specific structure solved the above problems. They discovered that it is possible to do so, and completed the present invention.
That is, the present invention is as follows.
[1] An adhesive composition comprising an isocyanate group-terminated urethane prepolymer and a polyether polycarbonate polyol,
The polyether polycarbonate polyol has three or more terminal groups in one molecule, and has a structural unit derived from an initiator, a structural unit derived from a cyclic ether, and a structural unit derived from carbon dioxide, and An adhesive composition in which the proportion of the structural unit derived from carbon dioxide in one molecule is 10 to 30% by mass.
[2] The adhesive composition according to [1] above, wherein the polyether polycarbonate polyol has a molecular weight in terms of hydroxyl value of 500 to 20,000.
[3] The polyether polycarbonate polyol has a molecular weight distribution (Mw/Mn) expressed by the ratio of weight average molecular weight (Mw) and number average molecular weight (Mn) of 1.05 to 3.00, [1] ] or the adhesive composition according to [2].
[4] The proportion of structural units in which the structural units derived from the carbon dioxide, the structural units derived from the cyclic ether, and the structural units derived from the carbon dioxide are chained in this order in the polyether polycarbonate polyol is 2% by mass. The adhesive composition according to any one of [1] to [3] above.
[5] The structural unit derived from the cyclic ether that the polyether polycarbonate polyol has is at least one structural unit selected from the group consisting of structural units derived from ethylene oxide and structural units derived from propylene oxide. , the adhesive composition according to any one of [1] to [4] above.
[6] The adhesive composition according to any one of [1] to [5] above, wherein the terminal group of the polyether polycarbonate polyol is a hydroxyl group.
[7] The adhesive according to any one of [1] to [6] above, wherein the molar ratio of the isocyanate groups in the isocyanate group-terminated urethane prepolymer to the hydroxyl groups in the polyether polycarbonate polyol is 80 or more and 150 or less. Composition.
[8] The adhesive composition according to any one of [1] to [7] above, wherein the content of the polyether polycarbonate polyol is 10 to 70% by mass based on the total amount of the adhesive composition.
[9] The adhesive composition according to any one of [1] to [8] above, further containing a chain extender.
[10] A cured product of the adhesive composition according to any one of [1] to [9] above.
[11] A method for producing an adhesive composition comprising an isocyanate group-terminated urethane prepolymer and a polyether polycarbonate polyol, comprising:
In the presence of a catalyst, an initiator having three or more active hydrogen-containing groups in one molecule, a cyclic ether, and carbon dioxide are polymerized to obtain a polyether polycarbonate polyol, and the polyether polycarbonate polyol and isocyanate groups are polymerized. Mix the terminal urethane prepolymer,
A method for producing an adhesive composition, wherein the proportion of structural units derived from carbon dioxide in one molecule of the polyether polycarbonate polyol is 10 to 30% by mass.
[12] The method for producing an adhesive composition according to [11] above, wherein the catalyst includes at least one selected from the group consisting of a composite metal cyanide complex catalyst and a metal salen complex catalyst.
[13] The isocyanate group-terminated urethane prepolymer is prepared by reacting a polyol and a polyisocyanate compound such that a molar ratio of 100 times the isocyanate group in the polyisocyanate compound to the hydroxyl group in the polyol is 110 or more and 600 or less. The method for producing the adhesive composition according to [11] or [12] above, which is a reaction product.
 本発明によれば、フィルム成形性が良好でかつ、硬化物の耐光性、破断強度、及び破断伸びに優れる接着剤組成物、当該接着剤組成物の硬化物並びに当該接着剤組成物の製造方法を提供できる。 According to the present invention, an adhesive composition having good film formability and excellent light resistance, breaking strength, and breaking elongation of a cured product, a cured product of the adhesive composition, and a method for producing the adhesive composition can be provided.
 以下、本発明について詳細に説明する。
 本明細書において、好ましいとされているものは任意に採用でき、好ましいもの同士の組み合わせはより好ましいといえる。
 また、本明細書において、「XX~YY」との記載は、「XX以上YY以下」を意味する。
 また、本明細書において、好ましい数値範囲(例えば、含有量等の範囲)について、段階的に記載された下限値及び上限値は、それぞれ独立して組み合わせ得る。例えば、「好ましくは10~90、より好ましくは30~60」という記載から、「好ましい下限値(10)」と「より好ましい上限値(60)」とを組み合わせて、「10~60」とすることもできる。また、本明細書中に記載されている数値範囲において、その数値範囲の上限値又は下限値は、実施例に示されている値に置き換えてもよい。
 また、本明細書において、重合体を構成する「単位」とは単量体の重合により形成された原子団を意味する。
 また、本明細書において、末端基とは、重合体の主鎖の末端の官能基のみならず、主鎖と同等の分岐鎖の末端の官能基も含むものとする。
The present invention will be explained in detail below.
In this specification, any of the preferable ones can be adopted, and combinations of the preferable ones can be said to be more preferable.
Furthermore, in this specification, the expression "XX to YY" means "XX to YY".
Moreover, in this specification, the lower limit and upper limit described in stages for preferred numerical ranges (for example, ranges of content, etc.) may be independently combined. For example, from the description "preferably 10 to 90, more preferably 30 to 60", the "preferable lower limit (10)" and "more preferable upper limit (60)" are combined to become "10 to 60". You can also do that. Further, in the numerical ranges described in this specification, the upper limit or lower limit of the numerical range may be replaced with the value shown in the Examples.
Furthermore, in this specification, the term "unit" constituting a polymer means an atomic group formed by polymerization of monomers.
Furthermore, in this specification, the term "terminal group" includes not only a functional group at the end of the main chain of a polymer, but also a functional group at the end of a branched chain equivalent to the main chain.
<接着剤組成物>
 本発明は、イソシアネート基末端ウレタンプレポリマー及びポリエーテルポリカーボネートポリオールを含む接着剤組成物であって、前記ポリエーテルポリカーボネートポリオールは、1分子中に末端基を3個以上有し、並びに開始剤に由来する構成単位、環状エーテルに由来する構成単位、及び二酸化炭素に由来する構成単位を有し、かつ1分子中の前記二酸化炭素に由来する構成単位の割合が、10~30質量%である、接着剤組成物である。
 本発明の接着剤組成物は、フィルム成形性が良好でかつ、その硬化物の耐光性、破断強度、及び破断伸びに優れる。以下、各成分について説明する。
<Adhesive composition>
The present invention is an adhesive composition comprising an isocyanate group-terminated urethane prepolymer and a polyether polycarbonate polyol, wherein the polyether polycarbonate polyol has three or more end groups in one molecule and is derived from an initiator. An adhesive having a structural unit derived from a cyclic ether, a structural unit derived from carbon dioxide, and a proportion of the structural unit derived from carbon dioxide in one molecule is 10 to 30% by mass. It is a drug composition.
The adhesive composition of the present invention has good film formability, and the cured product thereof has excellent light resistance, breaking strength, and breaking elongation. Each component will be explained below.
〔イソシアネート基末端ウレタンプレポリマー〕
 イソシアネート基末端ウレタンプレポリマーは、ポリイソシアネート化合物と、1分子中に2個以上の活性水素含有基を有する化合物(以下、「活性水素化合物」と称する。)とを反応させて得られる、分子鎖の末端の少なくとも一部にイソシアネート基を有する化合物である。
 イソシアネート基末端ウレタンプレポリマーは、ポリイソシアネート化合物と、活性水素化合物とを、活性水素含有基に対してイソシアネート基が過剰となるように反応させることにより得られる。活性水素含有基としては、例えば水酸基、アミノ基、イミノ基が挙げられる。
 かかる活性水素化合物としては、例えば1分子中に2個以上の水酸基を有するポリオール、1分子中に2個以上のアミノ基を有するポリアミンが挙げられ、ポリオールが好ましい。
[Isocyanate group-terminated urethane prepolymer]
The isocyanate group-terminated urethane prepolymer is a molecular chain obtained by reacting a polyisocyanate compound with a compound having two or more active hydrogen-containing groups in one molecule (hereinafter referred to as "active hydrogen compound"). is a compound having an isocyanate group at at least a portion of its terminal end.
The isocyanate group-terminated urethane prepolymer is obtained by reacting a polyisocyanate compound and an active hydrogen compound such that the isocyanate groups are in excess of the active hydrogen-containing groups. Examples of the active hydrogen-containing group include a hydroxyl group, an amino group, and an imino group.
Examples of such active hydrogen compounds include polyols having two or more hydroxyl groups in one molecule and polyamines having two or more amino groups in one molecule, with polyols being preferred.
(ポリオール)
 ポリオールの数平均分子量(Mn)は、ポリイソシアネート化合物との反応によって得られるイソシアネート基末端ウレタンプレポリマーの粘度が常温(25℃)において適度な流動性を有するという観点から、1,000~50,000が好ましく、3,000~30,000がより好ましい。本発明において前記Mnは、後述する、ポリエーテルポリカーボネートポリオールのMnの測定方法と同様の方法で得られた値である。ポリオールのMnが前記範囲内であると、本発明の接着剤組成物を硬化させた硬化物の耐光性、破断強度、及び破断伸びを良好なものとしやすい。
(polyol)
The number average molecular weight (Mn) of the polyol is 1,000 to 50, from the viewpoint that the viscosity of the isocyanate group-terminated urethane prepolymer obtained by reaction with a polyisocyanate compound has appropriate fluidity at room temperature (25°C). 000 is preferred, and 3,000 to 30,000 is more preferred. In the present invention, the Mn is a value obtained by the same method as the method for measuring Mn of polyether polycarbonate polyol, which will be described later. When the Mn of the polyol is within the above range, the cured product obtained by curing the adhesive composition of the present invention tends to have good light resistance, breaking strength, and breaking elongation.
 ポリオールは、水酸基を2個以上有する化合物であれば、その分子量及び骨格等は特に限定されない。ポリオールとしては、例えばポリエーテルポリオール、ポリエステルポリオール、ポリマーポリオール、ポリ(メタ)アクリルポリオール、ポリカーボネートポリオール、ヒマシ油系ポリオール、ポリオレフィンポリオールが挙げられ、特開2020-37689号公報の[0016]~[0028]に記載のものを特に限定なく使用できる。これらは、1種類を単独で用いても、2種以上を併用してもよい。
 また、ポリオールとして、ポリエーテルポリオール中に(メタ)アクリレート単量体に基づく単位を有する重合体が分散したポリマーポリオールを使用することもできる。ポリマーポリオールは、市販品であってもよく、例えば、「アルティフロー(登録商標)」シリーズ、「シャープフロー(登録商標)」シリーズ(以上、三洋化成工業株式会社製)、「エクセノール(登録商標)」シリーズ(AGC株式会社製)が挙げられる。
 さらに、後述する、1分子中に末端基を3個以上有するポリエーテルポリカーボネートポリオールを用いてもよい。
 なお、本明細書において(メタ)アクリルとはアクリル及び/又はメタクリルを意味し、(メタ)アクリレートとはアクリレート及び/又はメタクリレートを意味する。
The molecular weight, skeleton, etc. of the polyol are not particularly limited as long as it is a compound having two or more hydroxyl groups. Examples of polyols include polyether polyols, polyester polyols, polymer polyols, poly(meth)acrylic polyols, polycarbonate polyols, castor oil polyols, and polyolefin polyols, including [0016] to [0028] of JP 2020-37689A. ] can be used without particular limitation. These may be used alone or in combination of two or more.
Furthermore, as the polyol, it is also possible to use a polymer polyol in which a polymer having units based on (meth)acrylate monomers is dispersed in a polyether polyol. The polymer polyol may be a commercially available product, such as the "Ultiflow (registered trademark)" series, the "Sharpflow (registered trademark)" series (manufactured by Sanyo Chemical Industries, Ltd.), and the "Excenol (registered trademark)". ” series (manufactured by AGC Corporation).
Furthermore, a polyether polycarbonate polyol having three or more terminal groups in one molecule, which will be described later, may also be used.
In this specification, (meth)acrylic means acrylic and/or methacryl, and (meth)acrylate means acrylate and/or methacrylate.
(ポリイソシアネート化合物)
 イソシアネート基末端ウレタンプレポリマーの製造に使用されるポリイソシアネート化合物は、1分子中に2個以上のイソシアネート基を有する有機化合物である。1分子中のイソシアネート基の数は2~4が好ましい。ポリイソシアネート化合物は、1種を単独で、又は2種以上を組み合わせて用い得る。
 ポリイソシアネート化合物としては、例えば、テトラメチレンジイソシアネート、ペンタメチレンジイソシアネート、ヘキサメチレンジイソシアネート(HDI)、2,2,4-トリメチルヘキサメチレンジイソシアネート、2,4,4-トリメチルヘキサメチレンジイソシアネート、ドデカメチレンジイソシアネート、リジンジイソシアネート、2-メチルペンタン-1,5-ジイソシアネート、3-メチルペンタン-1,5-ジイソシアネート等の直鎖又は分岐の脂肪族ジイソシアネート化合物;
 ノルボルナンジイソシアネート(NBDI)、イソホロンジイソシアネート(IPDI)、水添キシリレンジイソシアネート、4,4’-ジシクロヘキシルメタンジイソシアネート、1,4-シクロヘキサンジイソシアネート、メチルシクロヘキシレンジイソシアネート、1,3-ビス(イソシアネートメチル)シクロヘキサン、ジシクロヘキシルメタンジイソシアネート(H12MDI)等の脂環式ジイソシアネート化合物;
 トリレンジイソシアネート(TDI)、2,2’-ジフェニルメタンジイソシアネート、2,4’-ジフェニルメタンジイソシアネート、4,4’-ジフェニルメタンジイソシアネート(MDI)、1,3-フェニレンジイソシアネート、1,4-フェニレンジイソシアネート、ポリメチレンポリフェニレンポリイソシアネート、キシリレンジイソシアネート、α,α,α’,α’-テトラメチルキシリレンジイソシアネート、4,4’-ジベンジルジイソシアネート、トリジンジイソシアネート、1,5-ナフタレンジイソシアネート、ジアルキルジフェニルメタンジイソシアネート、テトラアルキルジフェニルメタンジイソシアネートの芳香族ジイソシアネート化合物;
 上述したジイソシアネート化合物のイソシアヌレート変性体;上述したジイソシアネート化合物のビウレット変性体;上述したジイソシアネート化合物のアロファネート変性体;上述したジイソシアネート化合物のカルボジイミド変性体;上述したジイソシアネート化合物と1分子中に3個以上の水酸基を有するポリオールとを反応させて得られる、3官能以上のイソシアネート基末端ウレタンプレポリマー(アダクト変成体);水分散型イソシアネート、ブロックイソシアネートの水分散性のポリイソシアネート化合物;トリフェニルメタントリイソシアネートの1分子中に3個以上のイソシアネート基を有するポリイソシアネート化合物が挙げられる。
(Polyisocyanate compound)
The polyisocyanate compound used for producing the isocyanate group-terminated urethane prepolymer is an organic compound having two or more isocyanate groups in one molecule. The number of isocyanate groups in one molecule is preferably 2 to 4. The polyisocyanate compounds may be used alone or in combination of two or more.
Examples of the polyisocyanate compound include tetramethylene diisocyanate, pentamethylene diisocyanate, hexamethylene diisocyanate (HDI), 2,2,4-trimethylhexamethylene diisocyanate, 2,4,4-trimethylhexamethylene diisocyanate, dodecamethylene diisocyanate, and lysine. Linear or branched aliphatic diisocyanate compounds such as diisocyanate, 2-methylpentane-1,5-diisocyanate, 3-methylpentane-1,5-diisocyanate;
norbornane diisocyanate (NBDI), isophorone diisocyanate (IPDI), hydrogenated xylylene diisocyanate, 4,4'-dicyclohexylmethane diisocyanate, 1,4-cyclohexane diisocyanate, methylcyclohexylene diisocyanate, 1,3-bis(isocyanatomethyl)cyclohexane, Alicyclic diisocyanate compounds such as dicyclohexylmethane diisocyanate (H 12 MDI);
Tolylene diisocyanate (TDI), 2,2'-diphenylmethane diisocyanate, 2,4'-diphenylmethane diisocyanate, 4,4'-diphenylmethane diisocyanate (MDI), 1,3-phenylene diisocyanate, 1,4-phenylene diisocyanate, polymethylene Polyphenylene polyisocyanate, xylylene diisocyanate, α,α,α',α'-tetramethylxylylene diisocyanate, 4,4'-dibenzyl diisocyanate, toridine diisocyanate, 1,5-naphthalene diisocyanate, dialkyldiphenylmethane diisocyanate, tetraalkyldiphenylmethane Aromatic diisocyanate compound of diisocyanate;
Isocyanurate-modified products of the above-mentioned diisocyanate compounds; Biuret-modified products of the above-mentioned diisocyanate compounds; Allophanate-modified products of the above-mentioned diisocyanate compounds; Carbodiimide-modified products of the above-mentioned diisocyanate compounds; Tri- or higher-functional isocyanate group-terminated urethane prepolymers (adduct modified products) obtained by reacting with polyols having hydroxyl groups; water-dispersible polyisocyanate compounds such as water-dispersible isocyanates and block isocyanates; Examples include polyisocyanate compounds having three or more isocyanate groups in one molecule.
 イソシアヌレート変性体の市販品としては、例えば、デュラネートTPA-100、デュラネートTKA-100(いずれも旭化成株式会社製)、コロネートHX(東ソー株式会社製)が挙げられる。
 ビウレット変性体の市販品としては、例えば、デュラネート24A-100、デュラネート22A-75P(いずれも旭化成株式会社製)が挙げられる。
 3官能以上のイソシアネート基末端ウレタンプレポリマーの市販品としては、例えば、コロネートL、コロネートL-55E、コロネートL-45E(いずれも東ソー株式会社製)が挙げられる。
 水分散型イソシアネートの市販品としては、例えば、デュラネートWB40-100、デュラネートWB40-80D、デュラネートWT20-100、デュラネートWL70-100、デュラネートWE50-100、デュラネートWR80-70P(いずれも旭化成株式会社製)、アクアネート105、アクアネート130、アクアネート140、アクアネート200、アクアネート210(いずれも東ソー株式会社製)が挙げられる。
 ブロックイソシアネートの市販品としては、例えば、SU-268A、NBP-211、メイカネートCX、メイカネートTP-10、DM-6400(いずれも明成化学工業株式会社製);WM44-L70G(旭化成株式会社製);Aqua BI200、Aqua BI220(いずれもBaxenden chemicals社製);タケラック
W、タケラックWPB(いずれも三井化学株式会社製);バーノック(DIC株式会社製);エラストロン(第一工業株式会社製)が挙げられる。
Examples of commercially available modified isocyanurate products include Duranate TPA-100, Duranate TKA-100 (all manufactured by Asahi Kasei Corporation), and Coronate HX (manufactured by Tosoh Corporation).
Commercially available products of modified biuret include, for example, Duranate 24A-100 and Duranate 22A-75P (both manufactured by Asahi Kasei Corporation).
Commercially available trifunctional or higher isocyanate group-terminated urethane prepolymers include, for example, Coronate L, Coronate L-55E, and Coronate L-45E (all manufactured by Tosoh Corporation).
Commercially available water-dispersed isocyanates include, for example, Duranate WB40-100, Duranate WB40-80D, Duranate WT20-100, Duranate WL70-100, Duranate WE50-100, Duranate WR80-70P (all manufactured by Asahi Kasei Corporation), Examples include Aquanate 105, Aquanate 130, Aquanate 140, Aquanate 200, and Aquanate 210 (all manufactured by Tosoh Corporation).
Commercially available blocked isocyanates include, for example, SU-268A, NBP-211, Meikanate CX, Meikanate TP-10, and DM-6400 (all manufactured by Meisei Chemical Industry Co., Ltd.); WM44-L70G (manufactured by Asahi Kasei Corporation); Aqua BI200, Aqua BI220 (both manufactured by Baxenden Chemicals); Takelac W, Takelac WPB (both manufactured by Mitsui Chemicals, Inc.); Burnock (manufactured by DIC Corporation); and Elastron (manufactured by Dai-ichi Kogyo Co., Ltd.).
 ポリイソシアネート化合物におけるイソシアネート基の含有量としては、上記活性水素化合物に対する上記ポリイソシアネート化合物の反応性に優れ、硬化物の耐光性、破断強度、及び破断伸びにより優れる接着剤組成物を得られる観点から好ましくは20質量%以上、より好ましくは25質量%以上、さらに好ましくは30質量%以上であり、また、好ましくは50質量%以下であり、より好ましくは45質量%以下、さらに好ましくは40質量%以下である。
 前記好ましい範囲のイソシアネート基を含有するポリイソシアネート化合物としては、具体的には、脂肪族ジイソシアネート化合物、脂環式ジイソシアネート化合物、芳香族ジイソシアネート化合物が好ましく、MDI(イソシアネート基含量33.6質量%)、ポリメリックMDI(イソシアネート基含量31.0質量%)、クルードMDI(MDIとトリフェニルメタントリイソシアネートとの混合物、イソシアネート基含量30.0~32.6質量%)、IPDI(イソシアネート基含量37.8質量%)が挙げられる。
The content of isocyanate groups in the polyisocyanate compound is determined from the viewpoint of obtaining an adhesive composition that has excellent reactivity of the polyisocyanate compound with respect to the active hydrogen compound and has excellent light resistance, breaking strength, and elongation of the cured product. Preferably 20% by mass or more, more preferably 25% by mass or more, even more preferably 30% by mass or more, and preferably 50% by mass or less, more preferably 45% by mass or less, still more preferably 40% by mass. It is as follows.
As the polyisocyanate compound containing an isocyanate group in the above-mentioned preferable range, specifically, an aliphatic diisocyanate compound, an alicyclic diisocyanate compound, an aromatic diisocyanate compound are preferable, and MDI (isocyanate group content: 33.6% by mass), Polymeric MDI (isocyanate group content 31.0% by mass), Crude MDI (mixture of MDI and triphenylmethane triisocyanate, isocyanate group content 30.0-32.6% by mass), IPDI (isocyanate group content 37.8% by mass) %).
 イソシアネート基末端ウレタンプレポリマーを得るに際し、ポリオールにおける水酸基に対するポリイソシアネート化合物におけるイソシアネート基のモル比(イソシアネート基/水酸基)の100倍は、110以上600以下であるのが好ましい。
 かかるモル比は好ましくは120以上、より好ましくは125以上、さらに好ましくは130以上であり、また、好ましくは500以下、より好ましくは450以下、さらに好ましくは400以下である。前記モル比が前記好ましい範囲内であると、適度な分子鎖長を有するイソシアネート基末端ウレタンプレポリマーを製造できるため、生産性がより向上する。また、本発明の接着剤組成物を硬化させた硬化物の耐光性、破断強度、及び破断伸びをより向上させる観点から好ましい。
When obtaining the isocyanate group-terminated urethane prepolymer, the molar ratio of the isocyanate groups in the polyisocyanate compound to the hydroxyl groups in the polyol (isocyanate groups/hydroxyl groups) is preferably 100 times or more and 600 or less.
The molar ratio is preferably 120 or more, more preferably 125 or more, even more preferably 130 or more, and is preferably 500 or less, more preferably 450 or less, still more preferably 400 or less. When the molar ratio is within the preferable range, it is possible to produce an isocyanate group-terminated urethane prepolymer having an appropriate molecular chain length, thereby further improving productivity. Moreover, it is preferable from the viewpoint of further improving the light resistance, breaking strength, and breaking elongation of a cured product obtained by curing the adhesive composition of the present invention.
 イソシアネート基末端ウレタンプレポリマーは、ポリオールと、ポリイソシアネート化合物とを反応させて製造できる。
 イソシアネート基末端ウレタンプレポリマーの製造には、必要に応じて、触媒を用い得る。触媒としては、3級アミン系化合物;錫系化合物;非錫系化合物が挙げられる。触媒は1種を単独で、又は2種以上を組み合わせて使用できる。
 3級アミン系化合物としては、例えば、トリエチルアミン、トリエチレンジアミン、1,8-ジアザビシクロ[5.4.0]-7-ウンデセン(DBU)が挙げられる。
 錫系化合物としては、例えば、ジブチル錫ジクロライド、ジブチル錫オキシド、ジブチル錫ジブロマイド、ジブチル錫ジマレエート、ジブチル錫ジラウレート(DBTDL)、ジブチル錫ジアセテート、ジブチル錫スルファイド、トリブチル錫スルファイド、トリブチル錫オキシド、トリブチル錫アセテート、トリエチル錫エトキサイド、トリブチル錫エトキサイド、ジオクチル錫オキシド、トリブチル錫クロライド、トリブチル錫トリクロロアセテート、2-エチルヘキサン酸錫が挙げられる。
 非錫系化合物としては、例えば、ジブチルチタニウムジクロライド、テトラブチルチタネート、ブトキシチタニウムトリクロライド等のチタン系化合物;オレイン酸鉛、2-エチルヘキサン酸鉛、安息香酸鉛、ナフテン酸鉛等の鉛系化合物;2-エチルヘキサン酸鉄、鉄アセチルアセトネート等の鉄系化合物;安息香酸コバルト、2-エチルヘキサン酸コバルト等のコバルト系化合物;ナフテン酸亜鉛、2-エチルヘキサン酸亜鉛等の亜鉛系化合物;ナフテン酸ジルコニウム等のジルコニウム系化合物が挙げられる。
 触媒を使用する場合における触媒の使用量は、ポリオールとポリイソシアネート化合物との合計100質量部に対して、好ましくは0.001質量部以上、より好ましくは0.002質量部以上、さらに好ましくは0.003質量部以上であり、また、好ましくは1.0質量部以下、より好ましくは0.2質量部以下、さらに好ましくは0.05質量部以下である。
The isocyanate group-terminated urethane prepolymer can be produced by reacting a polyol and a polyisocyanate compound.
A catalyst may be used, if necessary, in the production of the isocyanate group-terminated urethane prepolymer. Examples of the catalyst include tertiary amine compounds; tin compounds; and non-tin compounds. One type of catalyst can be used alone or two or more types can be used in combination.
Examples of the tertiary amine compound include triethylamine, triethylenediamine, and 1,8-diazabicyclo[5.4.0]-7-undecene (DBU).
Examples of tin-based compounds include dibutyltin dichloride, dibutyltin oxide, dibutyltin dibromide, dibutyltin dimaleate, dibutyltin dilaurate (DBTDL), dibutyltin diacetate, dibutyltin sulfide, tributyltin sulfide, tributyltin oxide, and tributyltin. Examples include tin acetate, triethyltin ethoxide, tributyltin ethoxide, dioctyltin oxide, tributyltin chloride, tributyltin trichloroacetate, and tin 2-ethylhexanoate.
Examples of non-tin compounds include titanium compounds such as dibutyltitanium dichloride, tetrabutyl titanate, and butoxytitanium trichloride; lead compounds such as lead oleate, lead 2-ethylhexanoate, lead benzoate, and lead naphthenate. ; Iron-based compounds such as iron 2-ethylhexanoate and iron acetylacetonate; Cobalt-based compounds such as cobalt benzoate and cobalt 2-ethylhexanoate; Zinc-based compounds such as zinc naphthenate and zinc 2-ethylhexanoate; Examples include zirconium compounds such as zirconium naphthenate.
When a catalyst is used, the amount of the catalyst used is preferably 0.001 parts by mass or more, more preferably 0.002 parts by mass or more, and even more preferably 0. The amount is .003 parts by mass or more, and preferably 1.0 parts by mass or less, more preferably 0.2 parts by mass or less, and still more preferably 0.05 parts by mass or less.
 イソシアネート基末端ウレタンプレポリマーの製造には、必要に応じて、溶媒を用い得る。
 溶媒としては、アセトン、メチルエチルケトン等のケトン;酢酸エチル等のエステル;トルエン、キシレン等の芳香族炭化水素が挙げられる。溶媒は1種を単独で、又は2種以上を組み合わせて使用できる。
 溶媒を使用する場合における溶媒の使用量は、ポリオールとポリイソシアネート化合物との合計100質量部に対して、好ましくは30質量部以上、より好ましくは40質量部以上、さらに好ましくは50質量部以上であり、また、好ましくは500質量部以下、より好ましくは450質量部以下、さらに好ましくは400質量部以下である。
A solvent may be used, if necessary, in the production of the isocyanate group-terminated urethane prepolymer.
Examples of the solvent include ketones such as acetone and methyl ethyl ketone; esters such as ethyl acetate; and aromatic hydrocarbons such as toluene and xylene. One type of solvent can be used alone or two or more types can be used in combination.
When a solvent is used, the amount of the solvent used is preferably 30 parts by mass or more, more preferably 40 parts by mass or more, and even more preferably 50 parts by mass or more, based on the total of 100 parts by mass of the polyol and the polyisocyanate compound. The content is preferably 500 parts by mass or less, more preferably 450 parts by mass or less, and even more preferably 400 parts by mass or less.
 イソシアネート基末端ウレタンプレポリマーの製造方法としては、例えば、以下に掲げる方法が挙げられる。
 製造方法1:ポリオール、ポリイソシアネート化合物、任意の触媒、並びに任意の溶媒を一括して仕込む方法
 製造方法2:ポリオール、任意の触媒、並びに任意の溶媒を仕込み、これにポリイソシアネート化合物を滴下添加する方法
 製造方法2の場合、原料中の低分子成分を優先的に反応させ、分子量分布をより狭くでき、反応制御し易くなる。
Examples of the method for producing the isocyanate group-terminated urethane prepolymer include the following methods.
Production method 1: A method in which a polyol, a polyisocyanate compound, an arbitrary catalyst, and an arbitrary solvent are charged all at once. Production method 2: A polyol, an arbitrary catalyst, and an arbitrary solvent are introduced, and the polyisocyanate compound is added dropwise thereto. Method In the case of production method 2, the low molecular weight components in the raw materials are preferentially reacted, the molecular weight distribution can be narrowed, and the reaction can be easily controlled.
 反応温度は、好ましくは50℃以上、より好ましくは60℃以上、さらに好ましくは65以上であり、また、100℃未満、より好ましくは95℃以下、さらに好ましくは85℃以下である。反応温度を上記範囲内にするとウレタン反応以外の副反応を抑制しやすいため、所望のイソシアネート基末端ウレタンプレポリマーを得やすい。 The reaction temperature is preferably 50°C or higher, more preferably 60°C or higher, even more preferably 65°C or higher, and lower than 100°C, more preferably 95°C or lower, even more preferably 85°C or lower. When the reaction temperature is within the above range, side reactions other than the urethane reaction can be easily suppressed, making it easier to obtain the desired isocyanate group-terminated urethane prepolymer.
 反応終了後には、反応停止剤を添加して、上記触媒を不活性化させてもよい。反応停止剤としては、例えば、アセチルアセトンが挙げられる。反応停止剤は2種以上を併用してもよい。 After the reaction is completed, a reaction terminator may be added to inactivate the catalyst. Examples of the reaction terminator include acetylacetone. Two or more types of reaction terminators may be used in combination.
 イソシアネート基末端ウレタンプレポリマーの含有量は、接着剤組成物全量に対して好ましくは30~90質量%であり、より好ましくは35~80質量%であり、さらに好ましくは40~70質量%である。前記イソシアネート基末端ウレタンプレポリマーの含有量が、前記下限値以上であると、本発明の接着剤組成物を硬化させた硬化物の破断強度が良好となり、また、前記上限値以下であると、本発明の接着剤組成物を硬化させた硬化物の伸び特性が良好となる。 The content of the isocyanate group-terminated urethane prepolymer is preferably 30 to 90% by mass, more preferably 35 to 80% by mass, and even more preferably 40 to 70% by mass based on the total amount of the adhesive composition. . When the content of the isocyanate group-terminated urethane prepolymer is at least the lower limit, the cured product obtained by curing the adhesive composition of the present invention has good breaking strength, and when it is at most the upper limit, A cured product obtained by curing the adhesive composition of the present invention has good elongation properties.
〔ポリエーテルポリカーボネートポリオール〕
 ポリエーテルポリカーボネートポリオールは、1分子中に末端基を3個以上有し、並びに開始剤に由来する構成単位、環状エーテルに由来する構成単位、及び二酸化炭素に由来する構成単位を有する。
 ポリエーテルポリカーボネートポリオールは、1分子中に有する末端基が3個未満であると、本発明の接着剤組成物を硬化させた硬化物の耐光性、破断強度、及び破断伸びが低下するおそれがある。このような観点から、ポリエーテルポリカーボネートポリオールは、1分子中に末端基を4個以上有することが好ましい。また、ポリエーテルポリカーボネートポリオールは、水酸基の水素結合に起因する高粘度化を抑制でき、本発明の接着剤組成物を硬化させる際の取り扱い易さ、及び塗工性の容易さの観点から、1分子中に末端基を10個以下有することが好ましく、8個以下有することがより好ましい。
[Polyether polycarbonate polyol]
The polyether polycarbonate polyol has three or more terminal groups in one molecule, and has a structural unit derived from an initiator, a structural unit derived from a cyclic ether, and a structural unit derived from carbon dioxide.
If the polyether polycarbonate polyol has less than three terminal groups in one molecule, the light resistance, breaking strength, and elongation of the cured product obtained by curing the adhesive composition of the present invention may decrease. . From such a viewpoint, it is preferable that the polyether polycarbonate polyol has four or more terminal groups in one molecule. In addition, polyether polycarbonate polyol can suppress increase in viscosity caused by hydrogen bonding of hydroxyl groups, and from the viewpoint of ease of handling when curing the adhesive composition of the present invention and ease of coating, 1 It is preferable to have 10 or less terminal groups in the molecule, and more preferably 8 or less.
 ポリエーテルポリカーボネートポリオールが1分子中に3個以上有する末端基としては、活性水素含有基が好ましい。前記活性水素含有基としては、水酸基、カルボキシ基及び窒素原子に結合した水素原子を有するアミノ基等が挙げられる。前記活性水素含有基は、好ましくは水酸基である。 The terminal group that the polyether polycarbonate polyol has three or more in one molecule is preferably an active hydrogen-containing group. Examples of the active hydrogen-containing group include a hydroxyl group, a carboxy group, and an amino group having a hydrogen atom bonded to a nitrogen atom. The active hydrogen-containing group is preferably a hydroxyl group.
 ポリエーテルポリカーボネートポリオールの水酸基価換算分子量は、好ましくは500~20,000であり、より好ましくは700~15,000であり、さらに好ましくは800~10,000であり、よりさらに好ましくは900~8,000である。前記水酸基価換算分子量が500以上であると、本発明の接着剤組成物を硬化させた硬化物の破断伸びがより優れたものになり、また、前記水酸基価換算分子量が20,000以下であると、本発明の接着剤組成物を硬化させた硬化物の耐光性、破断強度、及び破断伸びがより優れたものとなる。
 なお、ポリエーテルポリカーボネートポリオールの水酸基価換算分子量は、JIS K 1557(2007)に基づいて算出した水酸基価を、[56,100/(水酸基価)]×(官能基数)の式に当てはめて得られる値を用いて算出される分子量である。具体的には、後述の実施例に記載される方法で測定される。
The molecular weight in terms of hydroxyl value of the polyether polycarbonate polyol is preferably 500 to 20,000, more preferably 700 to 15,000, still more preferably 800 to 10,000, even more preferably 900 to 8 ,000. When the molecular weight in terms of hydroxyl value is 500 or more, the elongation at break of a cured product obtained by curing the adhesive composition of the present invention becomes more excellent, and the molecular weight in terms of hydroxyl value is 20,000 or less. Thus, the cured product obtained by curing the adhesive composition of the present invention has better light resistance, breaking strength, and breaking elongation.
In addition, the molecular weight in terms of hydroxyl value of polyether polycarbonate polyol is obtained by applying the hydroxyl value calculated based on JIS K 1557 (2007) to the formula [56,100/(hydroxyl value)] x (number of functional groups). It is the molecular weight calculated using the value. Specifically, it is measured by the method described in Examples below.
 ポリエーテルポリカーボネートポリオールの数平均分子量(Mn)は、好ましくは750~30,000であり、より好ましくは1,000~22,000であり、さらに好ましくは1,200~15,000であり、よりさらに好ましくは1、300~12,000である。前記数平均分子量が750以上であると、本発明の接着剤組成物を硬化させた硬化物の破断伸びがより優れたものになり、また、前記数平均分子量が30,000以下であると、本発明の接着剤組成物を硬化させた硬化物の耐光性、破断強度、及び破断伸びがより優れたものとなる。
 ポリエーテルポリカーボネートポリオールの、重量平均分子量(Mw)及び数平均分子量(Mn)の比で表される分子量分布(Mw/Mn)は、本発明の接着剤組成物を硬化させた硬化物の耐光性、破断強度、及び破断伸びがより優れる観点から、好ましくは1.05~3.00であり、より好ましくは1.07~2.50であり、さらに好ましくは1.10~2.00である。
The number average molecular weight (Mn) of the polyether polycarbonate polyol is preferably 750 to 30,000, more preferably 1,000 to 22,000, even more preferably 1,200 to 15,000, and more preferably More preferably, it is 1,300 to 12,000. When the number average molecular weight is 750 or more, the elongation at break of a cured product obtained by curing the adhesive composition of the present invention becomes more excellent, and when the number average molecular weight is 30,000 or less, A cured product obtained by curing the adhesive composition of the present invention has better light resistance, breaking strength, and breaking elongation.
The molecular weight distribution (Mw/Mn) expressed by the ratio of the weight average molecular weight (Mw) and the number average molecular weight (Mn) of the polyether polycarbonate polyol is the light resistance of the cured product obtained by curing the adhesive composition of the present invention. , from the viewpoint of better breaking strength and breaking elongation, preferably from 1.05 to 3.00, more preferably from 1.07 to 2.50, still more preferably from 1.10 to 2.00. .
 ポリエーテルポリカーボネートポリオールのMn及び分子量分布は、以下に記載する方法により測定して得られた値である。
 分子量測定用の標準試料として重合度の異なる単分散ポリスチレンの数種類について、市販のGPC測定装置(HLC-8320GPC、東ソー・テクノシステム株式会社製)を用いて測定し、ポリスチレンの分子量と保持時間との関係をもとに検量線を作成し、測定試料であるポリエーテルポリカーボネートポリオールをテトラヒドロフランで0.5質量%に希釈し、孔径0.5μmのフィルターに通過させた後、当該測定試料について、前記GPC測定装置を用いて測定する。前記検量線を用いて、測定試料のGPCスペクトルをコンピュータ解析することにより、測定試料のMn及びMwを求める。
 分子量分布は、前記MwとMnより算出した値であり、Mnに対するMwの比率(「Mw/Mn」)である。
The Mn and molecular weight distribution of the polyether polycarbonate polyol are values obtained by measurement by the method described below.
As a standard sample for molecular weight measurement, several types of monodisperse polystyrene with different degrees of polymerization were measured using a commercially available GPC measurement device (HLC-8320GPC, manufactured by Tosoh Technosystems Co., Ltd.), and the relationship between the molecular weight of polystyrene and retention time was determined. A calibration curve was created based on the relationship, and the measurement sample, polyether polycarbonate polyol, was diluted to 0.5% by mass with tetrahydrofuran and passed through a filter with a pore size of 0.5 μm. Measure using a measuring device. Mn and Mw of the measurement sample are determined by computer analysis of the GPC spectrum of the measurement sample using the calibration curve.
The molecular weight distribution is a value calculated from the above Mw and Mn, and is the ratio of Mw to Mn ("Mw/Mn").
 ポリエーテルポリカーボネートポリオールの1分子中の二酸化炭素に由来する構成単位の割合(COの割合)は、10~30質量%である。前記二酸化炭素に由来する構成単位の割合が10質量%未満であると、本発明の接着剤組成物を硬化させた硬化物の耐光性、破断強度、及び破断伸びが低下するおそれがある。前記二酸化炭素に由来する構成単位の割合が30質量%を超えると、粘度が高くなり過ぎて作業性が悪くなり、本発明の接着剤組成物のフィルム成形性が低下するおそれがある。このような観点から、前記二酸化炭素に由来する構成単位の割合は、好ましくは11~28質量%であり、より好ましくは12~26質量%である。
 なお、前記二酸化炭素に由来する構成単位の割合は後述の実施例に記載される方法で測定される。
The proportion of structural units derived from carbon dioxide (CO 2 proportion) in one molecule of the polyether polycarbonate polyol is 10 to 30% by mass. If the proportion of the structural unit derived from carbon dioxide is less than 10% by mass, the light resistance, breaking strength, and breaking elongation of the cured product obtained by curing the adhesive composition of the present invention may decrease. When the proportion of the structural units derived from carbon dioxide exceeds 30% by mass, the viscosity becomes too high, resulting in poor workability, and there is a risk that the film formability of the adhesive composition of the present invention may deteriorate. From this point of view, the proportion of the structural units derived from carbon dioxide is preferably 11 to 28% by mass, more preferably 12 to 26% by mass.
Note that the proportion of the structural units derived from carbon dioxide is measured by the method described in Examples below.
 ポリエーテルポリカーボネートポリオールにおける二酸化炭素に由来する構成単位、環状エーテルに由来する構成単位、及び二酸化炭素に由来する構成単位がこの順に連鎖した構成単位(以下、CO-AO-CO連鎖ともいう)の割合は、本発明の接着剤組成物を硬化させた硬化物の耐光性、破断強度、及び破断伸びをより優れたものとする観点から、好ましくは2質量%以上であり、より好ましくは2.5質量%以上であり、さらに好ましくは2.6質量%以上である。また、CO-AO-CO連鎖の割合は、ポリエーテルポリカーボネートポリオールの熱安定性及び本発明の接着剤組成物のフィルム成形性をより向上させる観点から、好ましくは50質量%以下であり、より好ましくは40質量%以下であり、さらに好ましくは30質量%以下であり、よりさらに好ましくは20質量%以下である。 A structural unit in which a structural unit derived from carbon dioxide, a structural unit derived from a cyclic ether, and a structural unit derived from carbon dioxide in a polyether polycarbonate polyol are chained in this order (hereinafter also referred to as a CO 2 -AO-CO 2 chain) The proportion of is preferably 2% by mass or more, more preferably 2% by mass, from the viewpoint of improving the light resistance, breaking strength, and elongation at break of the cured product obtained by curing the adhesive composition of the present invention. The content is .5% by mass or more, more preferably 2.6% by mass or more. Further, the proportion of CO 2 -AO-CO 2 chains is preferably 50% by mass or less from the viewpoint of further improving the thermal stability of the polyether polycarbonate polyol and the film formability of the adhesive composition of the present invention, It is more preferably 40% by mass or less, still more preferably 30% by mass or less, even more preferably 20% by mass or less.
 ポリエーテルポリカーボネートポリオールにおける環状エーテルに由来する構成単位、環状エーテルに由来する構成単位、及び環状エーテルに由来する構成単位がこの順に連鎖した構成単位(以下、AO-AO-AO連鎖ともいう)の割合は、本発明の効果をより発揮させる観点から、好ましくは30~80質量%であり、より好ましくは35~75質量%であり、さらに好ましくは40~75質量%であり、よりさらに好ましくは40~72質量%である。 Ratio of structural units derived from cyclic ether, structural units derived from cyclic ether, and structural units in which structural units derived from cyclic ether are chained in this order (hereinafter also referred to as AO-AO-AO chain) in polyether polycarbonate polyol is preferably 30 to 80% by mass, more preferably 35 to 75% by mass, still more preferably 40 to 75% by mass, even more preferably 40% by mass, from the viewpoint of further exerting the effects of the present invention. ~72% by mass.
 ポリエーテルポリカーボネートポリオールにおける環状エーテルに由来する構成単位、環状エーテルに由来する構成単位、及び二酸化炭素に由来する構成単位がこの順に連鎖した構成単位(以下、AO-AO-CO連鎖ともいう)の割合は、本発明の効果をより発揮させる観点から、好ましくは8~60質量%であり、より好ましくは15~55質量%であり、さらに好ましくは20~50質量%である。 A structural unit in which a structural unit derived from a cyclic ether, a structural unit derived from a cyclic ether, and a structural unit derived from carbon dioxide are chained in this order in polyether polycarbonate polyol (hereinafter also referred to as AO-AO-CO 2 chain). The proportion is preferably 8 to 60% by mass, more preferably 15 to 55% by mass, and still more preferably 20 to 50% by mass, from the viewpoint of further exerting the effects of the present invention.
 ポリエーテルポリカーボネートポリオールにおけるCO-AO-CO連鎖の割合、AO-AO-AO連鎖の割合、及びAO-AO-CO連鎖の割合は、例えば、環状エーテルAOがプロピレンオキシドPOである場合、前記ポリエーテルポリカーボネートポリオールを10質量%となるように重クロロホルムに溶解し、分解能400MHzのNMR装置でH-NMRを測定する。得られた結果から、両端がカーボネートに隣接する環状エーテルAOとしてのプロピレンオキシドPOのメチル基由来3Hピーク(δ1.34ppm)、一端がカーボネート、他端がPOに隣接するPOのメチル基由来3Hピーク(δ1.29ppm)、両端にPOが隣接するPOのメチル基由来3Hピーク(δ1.14ppm)の面積比から算出できる。具体的には実施例に記載の方法により測定できる。
 なお、前述の二酸化炭素に由来する構成単位の割合は、前記面積比に基づき算出できる。
The proportion of CO 2 -AO-CO 2 chains, the proportion of AO-AO-AO chains, and the proportion of AO-AO-CO 2 chains in the polyether polycarbonate polyol are, for example, when the cyclic ether AO is propylene oxide PO, The polyether polycarbonate polyol is dissolved in deuterated chloroform to a concentration of 10% by mass, and 1 H-NMR is measured using an NMR device with a resolution of 400 MHz. From the obtained results, the 3H peak (δ1.34 ppm) derived from the methyl group of propylene oxide PO as a cyclic ether AO with both ends adjacent to carbonate, and the 3H peak derived from the methyl group of PO with one end adjacent to carbonate and the other end adjacent to PO. (δ1.29ppm), which can be calculated from the area ratio of the 3H peak derived from the methyl group of PO (δ1.14ppm), which has PO adjacent to both ends. Specifically, it can be measured by the method described in Examples.
Note that the ratio of the structural units derived from carbon dioxide described above can be calculated based on the area ratio.
 ポリエーテルポリカーボネートポリオールにおける、開始剤に由来する構成単位、環状エーテルに由来する構成単位、及び二酸化炭素に由来する構成単位の合計含有量は、好ましくは80質量%以上、より好ましくは90質量%以上、さらに好ましくは95質量%以上であり、100質量%であってもよい。開始剤に由来する構成単位、環状エーテルに由来する構成単位、及び二酸化炭素に由来する構成単位のみからなっていてもよい。 The total content of the structural units derived from the initiator, the structural units derived from the cyclic ether, and the structural units derived from carbon dioxide in the polyether polycarbonate polyol is preferably 80% by mass or more, more preferably 90% by mass or more. , more preferably 95% by mass or more, and may be 100% by mass. It may consist only of structural units derived from an initiator, structural units derived from a cyclic ether, and structural units derived from carbon dioxide.
(開始剤)
 ポリエーテルポリカーボネートポリオールが有する開始剤に由来する構成単位を構成する開始剤は、本発明の接着剤組成物を硬化させた硬化物の耐光性、破断強度、及び破断伸びを優れたものとする観点から、1分子中に活性水素含有基を3個以上することが好ましい。前記活性水素含有基としては、水酸基、カルボキシ基及び窒素原子に結合した水素原子を有するアミノ基等が挙げられる。前記活性水素含有基は、好ましくは水酸基である。
 開始剤は、1分子中に活性水素含有基を4個以上有することがより好ましく、また、水酸基の水素結合に起因する高粘度化を抑制でき、本発明の接着剤組成物を硬化させる際の取り扱い易さ、及び塗工性の容易さの観点から、10個以下有することが好ましく、8個以下有することがより好ましい。
(initiator)
The initiator constituting the structural unit derived from the initiator contained in the polyether polycarbonate polyol is used from the viewpoint of making the cured product obtained by curing the adhesive composition of the present invention excellent in light resistance, breaking strength, and breaking elongation. Therefore, it is preferable to have three or more active hydrogen-containing groups in one molecule. Examples of the active hydrogen-containing group include a hydroxyl group, a carboxy group, and an amino group having a hydrogen atom bonded to a nitrogen atom. The active hydrogen-containing group is preferably a hydroxyl group.
It is more preferable that the initiator has four or more active hydrogen-containing groups in one molecule, and can suppress increase in viscosity caused by hydrogen bonding of hydroxyl groups, and can be used to cure the adhesive composition of the present invention. From the viewpoint of ease of handling and ease of coating, it is preferable to have 10 or less, more preferably 8 or less.
 開始剤は、本発明の接着剤組成物を硬化させた硬化物の耐光性をより優れたものとする観点から、1分子当たりの環状エーテルに由来する構成単位が好ましくは3.0モル以下であり、より好ましくは2.5モル以下であり、さらに好ましくは2.0モル以下であり、0.0モルであってもよい。
 開始剤は、環状エーテルに由来する構成単位を有しないポリオールであってもよい。
In order to improve the light resistance of the cured product obtained by curing the adhesive composition of the present invention, the initiator preferably has a structural unit derived from a cyclic ether per molecule of 3.0 mol or less. The amount is more preferably 2.5 mol or less, still more preferably 2.0 mol or less, and may be 0.0 mol.
The initiator may be a polyol that does not have structural units derived from cyclic ethers.
 開始剤が、環状エーテルに由来する構成単位を有する場合、環状エーテルに由来する構成単位は、本発明の接着剤組成物を硬化させた硬化物がより柔軟になる観点から、エチレンオキシドに由来する構成単位、プロピレンオキシドに由来する構成単位が好ましい。 When the initiator has a structural unit derived from a cyclic ether, the structural unit derived from the cyclic ether is a structural unit derived from ethylene oxide, from the viewpoint that the cured product obtained by curing the adhesive composition of the present invention becomes more flexible. units, structural units derived from propylene oxide are preferred.
 開始剤の数平均分子量(Mn)は、好ましくは40~3,000であり、より好ましくは40~2,000であり、さらに好ましくは55~2,000であり、よりさらに好ましくは60~1,500である。本発明において前記Mnは、上述のポリエーテルポリカーボネートポリオールのMnの測定方法と同様の方法で得られた値である。開始剤のMnが前記範囲内であると、本開始剤からなるポリオールを用いた硬化物の要求物性に合わせ、広く開始剤を選定することができ、またCOを十分量導入することができる。 The number average molecular weight (Mn) of the initiator is preferably 40 to 3,000, more preferably 40 to 2,000, even more preferably 55 to 2,000, even more preferably 60 to 1 ,500. In the present invention, the Mn is a value obtained by the same method as the method for measuring Mn of the polyether polycarbonate polyol described above. When the Mn of the initiator is within the above range, a wide range of initiators can be selected according to the required physical properties of a cured product using a polyol made of the present initiator, and a sufficient amount of CO 2 can be introduced. .
 開始剤の具体例としては、グリセリン、ポリグリセリン、トリメチロールエタン、トリメチロールプロパン、ジグリセリン、ペンタエリスリトール、ジペンタエリスリトール、トリペンタエリスリトール、グルコース、ソルビトール、デキストロース、フラクトース、蔗糖、メチルグルコシド、及び上記に記載した以外の糖類又はまたはその誘導体等の3価以上の多価アルコールが挙げられる。上記開始剤に関して、各種光学異性体も含む。またこれらに少量のアルキレンオキシドを反応させて得られる水酸基価換算分子量50~8,000のポリエーテルポリオールも挙げられる。 Specific examples of the initiator include glycerin, polyglycerin, trimethylolethane, trimethylolpropane, diglycerin, pentaerythritol, dipentaerythritol, tripentaerythritol, glucose, sorbitol, dextrose, fructose, sucrose, methylglucoside, and the above. Trivalent or higher polyhydric alcohols such as saccharides or derivatives thereof other than those described in . Regarding the above-mentioned initiators, various optical isomers are also included. Also included are polyether polyols having a molecular weight of 50 to 8,000 in terms of hydroxyl value, which are obtained by reacting these with a small amount of alkylene oxide.
(環状エーテル)
 ポリエーテルポリカーボネートポリオールが有する環状エーテルに由来する構成単位を構成する環状エーテルは、環状エーテルの環を形成する炭素数が好ましくは2~10であり、より好ましくは2~6であり、さらに好ましくは2~4である。環状エーテルの環を形成する炭素原子は置換基を有していてもよく、前記置換基としては、炭素数1~4のアルキル基、ハロゲン原子、水酸基等が挙げられる。
(cyclic ether)
The cyclic ether constituting the structural unit derived from the cyclic ether of the polyether polycarbonate polyol has preferably 2 to 10 carbon atoms, more preferably 2 to 6 carbon atoms, and even more preferably It is 2 to 4. The carbon atoms forming the ring of the cyclic ether may have a substituent, and examples of the substituent include an alkyl group having 1 to 4 carbon atoms, a halogen atom, and a hydroxyl group.
 環状エーテルとしては、例えば、エチレンオキシド、プロピレンオキシド、1,2-ブチレンオキシド、2,3-ブチレンオキシド等の環を形成する炭素数が2個である環状エーテルが挙げられる。これらは、1種単独で用いてもよく、2種以上用いてもよい。 Examples of the cyclic ether include cyclic ethers having two carbon atoms forming a ring, such as ethylene oxide, propylene oxide, 1,2-butylene oxide, and 2,3-butylene oxide. These may be used alone or in combination of two or more.
 ポリエーテルポリカーボネートポリオールが有する環状エーテルに由来する構成単位は、本発明の接着剤組成物を硬化させた硬化物がより柔軟になる観点から、エチレンオキシドに由来する構成単位、及びプロピレンオキシドに由来する構成単位からなる群より選択される少なくとも1種の構成単位であることが好ましく、プロピレンオキシドに由来する構成単位であることがより好ましい。 The structural units derived from the cyclic ether that the polyether polycarbonate polyol has are the structural units derived from ethylene oxide and the structural units derived from propylene oxide, from the viewpoint that the cured product obtained by curing the adhesive composition of the present invention becomes more flexible. The structural unit is preferably at least one type of structural unit selected from the group consisting of units, and more preferably a structural unit derived from propylene oxide.
 ポリエーテルポリカーボネートポリオールは、開始剤に由来する構成単位、環状エーテルに由来する構成単位、及び二酸化炭素に由来する構成単位を有する限り、例えば、下記一般式(X)で表される多価のポリエーテルポリカーボネートポリオールが挙げられる。 As long as the polyether polycarbonate polyol has a structural unit derived from an initiator, a structural unit derived from a cyclic ether, and a structural unit derived from carbon dioxide, for example, a polyvalent polycarbonate polyol represented by the following general formula (X) can be used. Ether polycarbonate polyols may be mentioned.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 前記一般式(X)において、Wはq価の有機基を表し、qは3~10であり、Rは炭素数2~10の2価の炭化水素基を表し、mは1~150であり、nは1~60である。なお、一般式(X)中、複数のRは同一であってもよく、異なるものであってもよく、複数のnは、同一数であってもよく、異なる数であってもよく、複数のmは、同一数であってもよく、異なる数であってもよい。 In the general formula (X), W represents a q-valent organic group, q is 3 to 10, R 2 represents a divalent hydrocarbon group having 2 to 10 carbon atoms, and m is 1 to 150. Yes, and n is 1 to 60. In addition, in general formula (X), a plurality of R 2 may be the same or different, and a plurality of n may be the same number or different numbers, The plural m's may be the same number or may be different numbers.
 前記一般式(X)において、例えば、qが3であるとき、Wは3価の有機基を表し、前記一般式(X)の末端の水酸基は3個となる。
 q価の有機基としては、例えば、脂肪族鎖を有するq価の炭素数2~12の脂肪族炭化水素基;脂環構造を有するq価の炭素数3~12の脂環式炭化水素基;芳香環構造を有するq価の炭素数6~24の芳香族炭化水素基;酸素原子、窒素原子、硫黄原子等のヘテロ原子を含む複素環構造を有するq価の複素環基、並びにグリセリン、ポリグリセリン、トリメチロールエタン、トリメチロールプロパン、ジグリセリン、ペンタエリスリトール、ジペンタエリスリトール、トリペンタエリスリトールグルコース、ソルビトール、デキストロース、フラクトース、蔗糖、メチルグルコシド、及び上記に記載した以外の糖類又はその誘導体等の3価以上の多価アルコールが挙げられる。上記開始剤に関して、各種光学異性体も含む。これらに少量のアルキレンオキシドを反応させて得られる水酸基価換算分子量50~8,000のポリエーテルポリオールからなる群より選択される1種から水酸基を除いた残基が挙げられる。これらの中でも、前記q価の有機基は、環状エーテルの重合しやすさの観点から、3価以上の多価アルコール類、糖類、及び水酸基価換算分子量50~8,000のポリエーテルポリオールからなる群より選択される1種から水酸基を除いた残基が好ましく、グリセリン、トリメチロールプロパン、ジグリセリン、ペンタエリスリトール、ジペンタエリスリトール、及びソルビトールからなる群より選択される1種から水酸基を除いた残基がより好ましい。
 なお、これらの有機基は、さらに置換基を有していてもよい。前記有機基が有してもよい置換基としては、例えば、ハロゲン原子、アルキル基、シクロアルキル基、アリール基、アラルキル基、カルボニル基、ホルミル基、エステル基、アミド基、アルコキシ基、アルキルチオ基、アリールチオ基、アミノ基、シリル基が挙げられる。
In the general formula (X), for example, when q is 3, W represents a trivalent organic group, and the number of terminal hydroxyl groups in the general formula (X) is three.
Examples of the q-valent organic group include a q-valent aliphatic hydrocarbon group having 2 to 12 carbon atoms having an aliphatic chain; a q-valent alicyclic hydrocarbon group having 3 to 12 carbon atoms having an alicyclic structure; ; a q-valent aromatic hydrocarbon group having 6 to 24 carbon atoms having an aromatic ring structure; a q-valent heterocyclic group having a heterocyclic structure containing a heteroatom such as an oxygen atom, a nitrogen atom, a sulfur atom, and glycerin; Polyglycerin, trimethylolethane, trimethylolpropane, diglycerin, pentaerythritol, dipentaerythritol, tripentaerythritol glucose, sorbitol, dextrose, fructose, sucrose, methyl glucoside, and other sugars or derivatives thereof, etc. Examples include polyhydric alcohols having a valence of 3 or more. Regarding the above-mentioned initiators, various optical isomers are also included. Examples include residues obtained by removing the hydroxyl group from one selected from the group consisting of polyether polyols having a molecular weight in terms of hydroxyl value of 50 to 8,000 obtained by reacting these with a small amount of alkylene oxide. Among these, from the viewpoint of ease of polymerization of cyclic ether, the q-valent organic group is composed of trihydric or higher polyhydric alcohols, saccharides, and polyether polyols with a molecular weight of 50 to 8,000 in terms of hydroxyl value. A residue obtained by removing a hydroxyl group from one selected from the group consisting of glycerin, trimethylolpropane, diglycerin, pentaerythritol, dipentaerythritol, and sorbitol is preferred. groups are more preferred.
Note that these organic groups may further have a substituent. Examples of substituents that the organic group may have include a halogen atom, an alkyl group, a cycloalkyl group, an aryl group, an aralkyl group, a carbonyl group, a formyl group, an ester group, an amide group, an alkoxy group, an alkylthio group, Examples include arylthio group, amino group, and silyl group.
 前記Rとしては、好ましくは炭素数2~6の直鎖又は分岐アルキレン基であり、より好ましくはテトラメチレン基、プロピレン基、又はエチレン基であり、さらに好ましくはプロピレン基又はエチレン基である。 The R 2 is preferably a linear or branched alkylene group having 2 to 6 carbon atoms, more preferably a tetramethylene group, a propylene group, or an ethylene group, and still more preferably a propylene group or an ethylene group.
 前記qは、水酸基の水素結合に起因する高粘度化を抑制でき、本発明の接着剤組成物を硬化させる際の取り扱い易さ、及び塗工性の容易さの観点から、好ましくは3~10であり、より好ましくは3~8であり、さらに好ましくは4~8である。
 前記nは、硬化物の破断強度、及び破断伸びの向上、並びに耐光性が良好となる観点から、好ましくは1~60であり、より好ましくは2~55であり、さらに好ましくは3~45である。
 前記mは、重合体の低粘度化による扱い易さの観点から、好ましくは1~150であり、より好ましくは2~135であり、さらに好ましくは3~120である。
The above q is preferably 3 to 10, from the viewpoint of suppressing high viscosity caused by hydrogen bonding of hydroxyl groups, ease of handling when curing the adhesive composition of the present invention, and ease of coating. , more preferably 3 to 8, still more preferably 4 to 8.
The n is preferably 1 to 60, more preferably 2 to 55, and even more preferably 3 to 45, from the viewpoint of improving the breaking strength and breaking elongation of the cured product and improving light resistance. be.
The m is preferably 1 to 150, more preferably 2 to 135, and still more preferably 3 to 120, from the viewpoint of ease of handling due to lower viscosity of the polymer.
 なお、上記一般式(X)で表されるポリエーテルポリカーボネートポリオールでは、Wの隣に(-O-C(=O)-O-C(CH)-CH-)で表される構造が形成され、(-O-C(=O)-O-C(CH)-CH-)で表される構造の一端に(-O-R-)で表される構造が形成されているが、これに限定されるものではなく、例えば、Wの隣に(-O-R-)で表される構造が形成されていてもよい。
 また、(-O-C(=O)-O-C(CH)-CH-)で表される構造に(-O-R-)の構造単位が挿入されていてもよく、(-O-R-)で表される構造に(-O-C(=O)-O-C(CH)-CH-)の構造単位が挿入されていてもよい。
 さらに、(-O-R-)におけるRが異なるものであった場合、(-O-R-)で表される構造は、ランダム構造及びブロック構造のいずれであってもよい。
In addition, in the polyether polycarbonate polyol represented by the above general formula (X), there is a structure represented by (-OC(=O)-OC(CH 3 )-CH 2 -) n next to W. is formed, and a structure represented by (-O-R 2 -) m is placed at one end of the structure represented by (-OC(=O)-OC(CH 3 )-CH 2 -) n . However, the present invention is not limited to this. For example, a structure represented by (-OR 2 -) m may be formed next to W.
Furthermore, a structural unit of (-O-R 2 -) may be inserted into the structure represented by (-OC(=O)-OC(CH 3 )-CH 2 -) n , A structural unit (-OC(=O)-OC(CH 3 )-CH 2 -) may be inserted into the structure represented by ( -OR 2 -) m .
Furthermore, when R 2 in (-O-R 2 -) m is different, the structure represented by (-O-R 2 -) m may be either a random structure or a block structure. .
 ポリエーテルポリカーボネートポリオールの水酸基価は、好ましくは8mgKOH/g以上、より好ましくは16mgKOH/g以上、さらに好ましくは22mgKOH/g以上であり、また、好ましくは900mgKOH/g以下、より好ましくは700mgKOH/g以下、さらに好ましくは340mgKOH/g以下である。ポリエーテルポリカーボネートポリオールの水酸基価が前記上限値以下であれば、得られる接着剤組成物の硬化物の耐光性、破断強度、及び破断伸びがより良好となりやすい。
 ポリエーテルポリカーボネートポリオールの水酸基価は、JIS K 1557-1:2007のB法に従って、測定して算出した値である。
The hydroxyl value of the polyether polycarbonate polyol is preferably 8 mgKOH/g or more, more preferably 16 mgKOH/g or more, even more preferably 22 mgKOH/g or more, and preferably 900 mgKOH/g or less, more preferably 700 mgKOH/g or less. , more preferably 340 mgKOH/g or less. If the hydroxyl value of the polyether polycarbonate polyol is below the above-mentioned upper limit, the resulting cured adhesive composition tends to have better light resistance, breaking strength, and breaking elongation.
The hydroxyl value of the polyether polycarbonate polyol is a value measured and calculated according to method B of JIS K 1557-1:2007.
 ポリエーテルポリカーボネートポリオールの25℃における粘度は、好ましくは150,000mPa・s以下であり、より好ましくは120,000mPa・s以下であり、さらに好ましくは100,000mPa・s以下である。ポリエーテルポリカーボネートポリオールの25℃における粘度が前記上限値以下であれば、得られる接着剤組成物の硬化物の耐光性、破断強度、及び破断伸びがより良好となりやすい。
 ポリエーテルポリカーボネートポリオールの25℃における粘度は、E型粘度計を用いて測定した値である。具体的には、後述する実施例に記載の方法で測定される。
The viscosity of the polyether polycarbonate polyol at 25° C. is preferably 150,000 mPa·s or less, more preferably 120,000 mPa·s or less, and still more preferably 100,000 mPa·s or less. When the viscosity of the polyether polycarbonate polyol at 25° C. is below the above upper limit, the resulting cured adhesive composition tends to have better light resistance, breaking strength, and breaking elongation.
The viscosity of the polyether polycarbonate polyol at 25°C is a value measured using an E-type viscometer. Specifically, it is measured by the method described in the Examples below.
 ポリエーテルポリカーボネートポリオールの含有量は、接着剤組成物全量に対して好ましくは10~70質量%であり、より好ましくは15~60質量%であり、さらに好ましくは20~50質量%である。前記ポリエーテルポリカーボネートポリオールの含有量が、前記下限値以上であると、得られる接着剤組成物の硬化物の耐光性、破断強度、及び破断伸びがより良好となり、また、前記上限値以下であると、本発明の接着剤組成物を硬化させた硬化物の破断伸びがより優れたものとなる。 The content of the polyether polycarbonate polyol is preferably 10 to 70% by mass, more preferably 15 to 60% by mass, and even more preferably 20 to 50% by mass, based on the total amount of the adhesive composition. When the content of the polyether polycarbonate polyol is at least the lower limit, the light resistance, breaking strength, and elongation at break of the resulting cured adhesive composition will be better, and the content is at most the upper limit. Thus, the cured product obtained by curing the adhesive composition of the present invention has better elongation at break.
〔ポリエーテルポリカーボネートポリオールの製造方法〕
 ポリエーテルポリカーボネートポリオールは、触媒の存在下で、1分子中に活性水素含有基を3個以上有する開始剤と、環状エーテルと、二酸化炭素とを重合させることで得られる。
 前記開始剤は、(開始剤)の項で説明したものを用いることができ、環状エーテルは(環状エーテル)の項で説明したものを用いることができる。
 なお、2種類以上の環状エーテルを開始剤及び二酸化炭素と反応させる場合の開環付加重合は、ランダム重合であってもよく、ブロック重合であってもよく、また、ランダム重合及びブロック重合の組み合わせであってもよい。
[Production method of polyether polycarbonate polyol]
Polyether polycarbonate polyol is obtained by polymerizing an initiator having three or more active hydrogen-containing groups in one molecule, a cyclic ether, and carbon dioxide in the presence of a catalyst.
As the initiator, those explained in the section (Initiator) can be used, and as the cyclic ether, those explained in the section (Cyclic ether) can be used.
In addition, the ring-opening addition polymerization in the case of reacting two or more types of cyclic ethers with an initiator and carbon dioxide may be random polymerization, block polymerization, or a combination of random polymerization and block polymerization. It may be.
 前記触媒としては、例えば、TBA系複合金属シアン化物錯体触媒等の複合金属シアン化物錯体触媒(以下「DMC触媒」ということがある);コバルトサレン系触媒等の金属サレン錯体触媒;水酸化ナトリウム、水酸化カリウム、水酸化セシウム等のアルカリ触媒;有機アルミニウム化合物及び遷移金属化合物よりなるチーグラナッタ触媒;ポルフィリンを反応させて得られる錯体としての金属配位ポルフィリン触媒;ホスファゼン触媒;イミノ基含有ホスファゼニウム塩;トリス(ペンタフルオロフェニル)ボラン;還元ロブソン型大環状配位子触媒(reduced Robson’s type Macrocyclic ligandよりなる触媒)が好適に挙げられる。これらは1種単独で用いてもよく、2種以上用いてもよい。 Examples of the catalyst include a composite metal cyanide complex catalyst (hereinafter sometimes referred to as "DMC catalyst") such as a TBA-based composite metal cyanide complex catalyst; a metal salen complex catalyst such as a cobalt salen catalyst; sodium hydroxide; Alkali catalysts such as potassium hydroxide and cesium hydroxide; Ziegler-Natta catalysts consisting of organoaluminum compounds and transition metal compounds; metal-coordination porphyrin catalysts as complexes obtained by reacting porphyrins; phosphazene catalysts; phosphazenium salts containing imino groups; Tris (Pentafluorophenyl)borane; a reduced Robson's type macrocyclic ligand catalyst (catalyst consisting of a reduced Robson's type Macrocyclic ligand) is preferably mentioned. These may be used alone or in combination of two or more.
 DMC触媒としては、例えば、配位子がt-ブチルアルコールである亜鉛ヘキサシアノコバルテート錯体(以下「TBA-DMC触媒」ということがある)、配位子がエチレングリコールジメチルエーテル(「グライム」ともいうことがある)である亜鉛ヘキサシアノコバルテート錯体、配位子がジエチレングリコールジメチルエーテル(「ジグライム」ともいうことがある)である亜鉛ヘキサシアノコバルテート錯体が挙げられる。これらは、1種単独で用いてもよく、2種以上用いてもよい。
 これらの中でも、重合時の活性がより高く、ポリエーテルポリカーボネートポリオールのMw/Mnをより狭くできるため、より低粘度にすることができる観点から、TBA-DMC触媒が好ましい。
Examples of DMC catalysts include zinc hexacyanocobaltate complexes whose ligand is t-butyl alcohol (hereinafter sometimes referred to as "TBA-DMC catalyst"), and ethylene glycol dimethyl ether (also referred to as "glyme") whose ligand is t-butyl alcohol. Examples include zinc hexacyanocobaltate complexes in which the ligand is diethylene glycol dimethyl ether (sometimes referred to as "diglyme"). These may be used alone or in combination of two or more.
Among these, the TBA-DMC catalyst is preferred from the viewpoints of higher activity during polymerization, narrower Mw/Mn of the polyether polycarbonate polyol, and lower viscosity.
 金属サレン錯体触媒としては、例えば、特表2012-500867号、特開2015-129306号公報、及び特開2015-28182号公報に記載のコバルトサレン錯体、クロムサレン錯体、アルミニウムサレン錯体が挙げられる。これらは、1種単独で用いてもよく、2種以上用いてもよい。 Examples of metal salen complex catalysts include cobalt salen complexes, chromium salen complexes, and aluminum salen complexes described in Japanese Patent Publication No. 2012-500867, JP2015-129306A, and JP2015-28182A. These may be used alone or in combination of two or more.
 前記触媒は、ポリエーテルポリカーボネートポリオールにおける二酸化炭素の導入率を本発明で規定する範囲に調整しやすい観点から、DMC触媒及び金属サレン錯体触媒からなる群より選択される少なくとも1種を含むことが好ましい。
 また、前記触媒は、ランダム重合体のポリエーテルポリカーボネートポリオールを得る観点から、DMC触媒、還元ロブソン型大環状配位子触媒であることが好ましい。
The catalyst preferably contains at least one selected from the group consisting of a DMC catalyst and a metal salen complex catalyst, from the viewpoint of easily adjusting the carbon dioxide introduction rate in the polyether polycarbonate polyol to the range specified in the present invention. .
Further, the catalyst is preferably a DMC catalyst or a reduced Robson type macrocyclic ligand catalyst from the viewpoint of obtaining a random polymer polyether polycarbonate polyol.
 前記触媒の添加量としては、二酸化炭素の重合、及び環状エーテルの開環重合に必要な量である限り、できるだけ少量が好ましく、得られたポリエーテルポリカーボネートポリオールの100質量部に対して、好ましくは0.001~10質量部、より好ましくは0.002~5質量部、さらに好ましくは0.05~3質量部となる量である。
 前記触媒の添加量が少ないほど、生成物であるポリエーテルポリカーボネートポリオールに含まれる触媒の量を少なくできる。これにより、ポリエーテルポリカーボネートポリオールとイソシアネート基末端ウレタンプレポリマーとの反応性に対する前記触媒の影響を少なくできると共に、コストを低減することができる。
The amount of the catalyst added is preferably as small as possible as long as it is the amount necessary for the polymerization of carbon dioxide and the ring-opening polymerization of the cyclic ether, and is preferably as small as possible based on 100 parts by mass of the obtained polyether polycarbonate polyol. The amount is 0.001 to 10 parts by weight, more preferably 0.002 to 5 parts by weight, and even more preferably 0.05 to 3 parts by weight.
The smaller the amount of the catalyst added, the smaller the amount of catalyst contained in the polyether polycarbonate polyol product. Thereby, the influence of the catalyst on the reactivity between the polyether polycarbonate polyol and the isocyanate group-terminated urethane prepolymer can be reduced, and costs can be reduced.
 前記重合反応は、反応性の観点から、0.1~15MPaの加圧下で行うことが好ましく、0.2~10MPaの加圧下で行うことがより好ましく、0.3~8MPaの加圧下で行うことがさらに好ましい。 From the viewpoint of reactivity, the polymerization reaction is preferably carried out under a pressure of 0.1 to 15 MPa, more preferably carried out under a pressure of 0.2 to 10 MPa, and carried out under a pressure of 0.3 to 8 MPa. It is even more preferable.
 前記重合反応の重合温度としては、好ましくは30~180℃、より好ましくは70~160℃、さらに好ましくは80~140℃である。
 重合温度が、30℃以上であると、二酸化炭素の重合、及び環状エーテルの開環重合を確実に開始させることができ、また、180℃以下であると、触媒の重合活性低下を抑制できる。
The polymerization temperature of the polymerization reaction is preferably 30 to 180°C, more preferably 70 to 160°C, and still more preferably 80 to 140°C.
When the polymerization temperature is 30° C. or higher, carbon dioxide polymerization and ring-opening polymerization of cyclic ether can be reliably started, and when it is 180° C. or lower, a decrease in the polymerization activity of the catalyst can be suppressed.
 前記重合反応の重合時間としては、好ましくは2~18時間、より好ましくは2~14時間、さらに好ましくは2~10時間である。
 重合時間が、2時間以上であると、反応遂行性に優れ、また、18時間以下であると、経済性に優れる。
The polymerization time of the polymerization reaction is preferably 2 to 18 hours, more preferably 2 to 14 hours, and even more preferably 2 to 10 hours.
When the polymerization time is 2 hours or more, the reaction performance is excellent, and when it is 18 hours or less, it is economical.
 環状エーテルの仕込量としては、得られたポリエーテルポリカーボネートポリオールの100質量部に対して、好ましくは40.0~99.0質量部、より好ましくは45.0~98.0質量部、さらに好ましくは50.0~97.0質量部である。
 環状エーテルの仕込量が前記範囲内であると、得られる接着剤組成物の粘度が高くなり過ぎず、塗工時や硬化時の作業性が良好となりやすく、また接着性組成物の硬化物の柔軟性がより良好となりやすい。
The amount of the cyclic ether to be charged is preferably 40.0 to 99.0 parts by mass, more preferably 45.0 to 98.0 parts by mass, and even more preferably is 50.0 to 97.0 parts by mass.
When the amount of the cyclic ether charged is within the above range, the viscosity of the resulting adhesive composition will not become too high, the workability during coating and curing will tend to be good, and the cured product of the adhesive composition will not become too high. Flexibility tends to be better.
 二酸化炭素の仕込量としては、得られたポリエーテルポリカーボネートポリオールに対して、好ましくは0.05~40質量%、より好ましくは0.10~35質量%、さらに好ましくは1.15~30質量%である。
 二酸化炭素の仕込量が前記範囲内であると、得られる接着剤組成物の硬化物の耐光性及び破断強度がより良好となりやすい。
The amount of carbon dioxide charged is preferably 0.05 to 40% by mass, more preferably 0.10 to 35% by mass, and even more preferably 1.15 to 30% by mass, based on the obtained polyether polycarbonate polyol. It is.
When the amount of carbon dioxide charged is within the above range, the light resistance and breaking strength of the cured product of the resulting adhesive composition tend to be better.
 本発明の接着剤組成物では、前記したポリエーテルポリカーボネートポリオールにおける水酸基に対する、前記イソシアネート基末端ウレタンプレポリマーにおけるイソシアネート基のモル比(イソシアネート基/水酸基)の100倍を表すイソシアネートインデックスが80以上150以下であるのが好ましい。
 かかるイソシアネートインデックスは、好ましくは85以上、より好ましくは90以上、さらに好ましくは95以上であり、また、好ましくは140以下、より好ましくは130以下、さらに好ましくは120以下である。イソシアネートインデックスが前記好ましい範囲内であると、得られる接着剤組成物の硬化物の耐光性、破断強度、及び破断伸びが良好となりやすい。
 なお、イソシアネートインデックスは、ポリエーテルポリカーボネートポリオールの水酸基の合計モル数に対するイソシアネート基末端ウレタンプレポリマーのイソシアネート基のモル数の比率を100倍した値である。
In the adhesive composition of the present invention, the isocyanate index, which represents 100 times the molar ratio (isocyanate group/hydroxyl group) of the isocyanate group in the isocyanate group-terminated urethane prepolymer to the hydroxyl group in the polyether polycarbonate polyol, is 80 or more and 150 or less. It is preferable that
The isocyanate index is preferably 85 or higher, more preferably 90 or higher, even more preferably 95 or higher, and preferably 140 or lower, more preferably 130 or lower, and still more preferably 120 or lower. When the isocyanate index is within the above preferred range, the resulting cured adhesive composition tends to have good light resistance, breaking strength, and breaking elongation.
The isocyanate index is a value obtained by multiplying by 100 the ratio of the number of moles of isocyanate groups in the isocyanate group-terminated urethane prepolymer to the total number of moles of hydroxyl groups in the polyether polycarbonate polyol.
〔鎖延長剤〕
 本発明の接着剤組成物は、ハードセグメント形成による破断強度の向上の観点から、さらに、鎖延長剤を含有してもよい。前記鎖延長剤は、ポリオール及びポリアミンからなる群より選ばれる少なくとも1種であって、イソシアネート基と反応する活性水素を少なくとも2個有することが好ましい。
[Chain extender]
The adhesive composition of the present invention may further contain a chain extender from the viewpoint of improving breaking strength by forming hard segments. The chain extender is preferably at least one selected from the group consisting of polyols and polyamines, and preferably has at least two active hydrogens that react with isocyanate groups.
 鎖延長剤の具体例としては、例えば、エチレングリコール、ジエチレングリコール、トリエチレングリコール、プロピレングリコール、ジプロピレングリコール、トリプロピレングリコール、1,3-プロパンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、1,8-オクタンジオール、1,9-ノナンジオール、1,10-デカンジオール、1,12-ドデカンジオールの直鎖の脂肪族ジオール類;2-メチル-1,3-プロパンジオール、2,2-ジメチル-1,3-プロパンジオール、2,2-ジエチル-1,3-プロパンジオール、2-メチル-2-プロピル-1,3-プロパンジオール、2,4-ヘプタンジオール、1,4-ジメチロールヘキサン、2-エチル-1,3-ヘキサンジオール、2,2,4-トリメチル-1,3-ペンタンジオール、2-メチル-1,8-オクタンジオール、2-ブチル-2-エチル-1,3-プロパンジオール、ダイマージオール、ネオペンチルグリコールの分岐鎖を有する脂肪族ジオール類;1,4-シクロヘキサンジオール、1,4-シクロヘキサンジメタノール、1,4-ジヒドロキシシクロヘキサン、1,4-ジヒドロキシエチルシクロヘキサンの脂環構造を有するジオール類;キシリレングリコール、1,4-ジヒドロキシエチルベンゼン、4,4’-メチレンビス(ヒドロキシエチルベンゼン)の芳香族基を有するジオール類;グリセリン、トリメチロールプロパン、ペンタエリスリトールの3価以上の脂肪族アルコール類;N-メチルエタノールアミン、N-エチルエタノールアミン、2-ヒドロキシエチルプロピレンジアミン、ジ-2-ヒドロキシエチルエチレンジアミン、ジ-2-ヒドロキシエチルプロピレンジアミン、2-ヒドロキシプロピルエチレンジアミン、ジ-2-ヒドロキシプロピルエチレンジアミンのヒドロキシアミン類;エチレンジアミン、1,3-ジアミノプロパン、ヘキサメチレンジアミン、トリエチレンテトラミン、ジエチレントリアミン、イソホロンジアミン、4,4’-ジアミノジシクロヘキシルメタン、4,4’-ジフェニルメタンジアミン、メチレンビス(o-クロロアニリン)、キシリレンジアミン、メタキシレンジアミン、ジフェニルジアミン、トリレンジアミン、ヒドラジン、ピペラジン、N,N’-ジアミノピペラジンの水酸基を有さないポリアミン類を挙げることができる。これらは、1種単独で用いてもよく、2種以上用いてもよい。 Specific examples of chain extenders include ethylene glycol, diethylene glycol, triethylene glycol, propylene glycol, dipropylene glycol, tripropylene glycol, 1,3-propanediol, 1,4-butanediol, 1,5-pentane. Linear aliphatic diols such as diol, 1,6-hexanediol, 1,8-octanediol, 1,9-nonanediol, 1,10-decanediol, 1,12-dodecanediol; 2-methyl-1 ,3-propanediol, 2,2-dimethyl-1,3-propanediol, 2,2-diethyl-1,3-propanediol, 2-methyl-2-propyl-1,3-propanediol, 2,4 -heptanediol, 1,4-dimethylolhexane, 2-ethyl-1,3-hexanediol, 2,2,4-trimethyl-1,3-pentanediol, 2-methyl-1,8-octanediol, 2 -Butyl-2-ethyl-1,3-propanediol, dimer diol, aliphatic diols with branched chains of neopentyl glycol; 1,4-cyclohexanediol, 1,4-cyclohexanedimethanol, 1,4-dihydroxy Diols having an alicyclic structure such as cyclohexane and 1,4-dihydroxyethylcyclohexane; diols having an aromatic group such as xylylene glycol, 1,4-dihydroxyethylbenzene, and 4,4'-methylenebis(hydroxyethylbenzene); glycerin, Trimethylolpropane, trihydric or higher aliphatic alcohols such as pentaerythritol; N-methylethanolamine, N-ethylethanolamine, 2-hydroxyethylpropylenediamine, di-2-hydroxyethylethylenediamine, di-2-hydroxyethylpropylene Hydroxyamines such as diamine, 2-hydroxypropylethylenediamine, di-2-hydroxypropylethylenediamine; ethylenediamine, 1,3-diaminopropane, hexamethylenediamine, triethylenetetramine, diethylenetriamine, isophoronediamine, 4,4'-diaminodicyclohexylmethane , 4,4'-diphenylmethanediamine, methylenebis(o-chloroaniline), xylylenediamine, metaxylenediamine, diphenyldiamine, tolylenediamine, hydrazine, piperazine, N,N'-diaminopiperazine, which are polyamines without hydroxyl groups. I can list several types. These may be used alone or in combination of two or more.
 これらの中でも、得られる接着剤組成物の硬化物の耐光性、破断強度、及び破断伸びがより良好となりやすい観点、工業的に安価に多量に入手が可能な観点で、エチレングリコール、プロピレングリコール、1,4-ブタンジオール、1,6-ヘキサンジオールが好ましく、1,4-ブタンジオールがより好ましい。 Among these, ethylene glycol, propylene glycol, 1,4-butanediol and 1,6-hexanediol are preferred, and 1,4-butanediol is more preferred.
 鎖延長剤の分子量としては、60以上1,000以下が好ましく、60以上300未満がより好ましい。
 鎖延長剤の分子量が前記範囲内であると、得られる接着剤組成物の硬化物の耐光性、破断強度、及び破断伸びがより良好となりやすい。
The molecular weight of the chain extender is preferably 60 or more and 1,000 or less, more preferably 60 or more and less than 300.
When the molecular weight of the chain extender is within the above range, the resulting cured adhesive composition tends to have better light resistance, breaking strength, and breaking elongation.
 本発明の接着剤組成物が鎖延長剤を含有する場合、その含有量は、硬化物が適切な破断強度を発現する観点から、ポリエーテルポリカーボネートポリオール100質量部に対して、好ましくは5~30質量部、より好ましくは6~25質量部、さらに好ましくは8~20質量部である。 When the adhesive composition of the present invention contains a chain extender, the content thereof is preferably 5 to 30 parts by mass based on 100 parts by mass of the polyether polycarbonate polyol, from the viewpoint that the cured product exhibits appropriate breaking strength. Parts by weight, more preferably 6 to 25 parts by weight, still more preferably 8 to 20 parts by weight.
 本発明の接着剤組成物は、さらに溶媒や、後述する添加剤等を含んでもよい。
 溶媒としては、イソシアネート基末端ウレタンプレポリマーの製造の際に必要に応じて用い得る、上述した溶媒が好ましい。
 また、溶媒を含有する場合、その量はイソシアネート基末端ウレタンプレポリマー100質量部に対して、好ましくは30質量部以上、より好ましくは40質量部以上、さらに好ましくは50質量部以上であり、また、好ましくは500質量部以下、より好ましくは450質量部以下、さらに好ましくは400質量部以下である。
The adhesive composition of the present invention may further contain a solvent, additives described below, and the like.
As the solvent, the above-mentioned solvents, which can be used as necessary during the production of the isocyanate group-terminated urethane prepolymer, are preferable.
In addition, when a solvent is contained, the amount thereof is preferably 30 parts by mass or more, more preferably 40 parts by mass or more, still more preferably 50 parts by mass or more, based on 100 parts by mass of the isocyanate group-terminated urethane prepolymer. , preferably 500 parts by mass or less, more preferably 450 parts by mass or less, still more preferably 400 parts by mass or less.
 本発明の接着剤組成物におけるイソシアネート基末端ウレタンプレポリマー及びポリエーテルポリカーボネートポリオールの合計の割合(含有量)は、好ましくは70質量%以上、より好ましくは75質量%以上、さらに好ましくは80質量%以上である。 The total proportion (content) of the isocyanate group-terminated urethane prepolymer and the polyether polycarbonate polyol in the adhesive composition of the present invention is preferably 70% by mass or more, more preferably 75% by mass or more, and even more preferably 80% by mass. That's all.
〔接着剤組成物に配合可能な添加剤〕
 本発明の接着剤組成物は、本発明の効果を損なわない範囲で、必要に応じて、加水分解抑制剤、酸化防止剤、紫外線吸収剤、光安定剤、充填剤、可塑剤、帯電防止剤、レベリング剤、他の任意成分等の添加剤を含み得る。
[Additives that can be added to the adhesive composition]
The adhesive composition of the present invention may contain hydrolysis inhibitors, antioxidants, ultraviolet absorbers, light stabilizers, fillers, plasticizers, and antistatic agents, as necessary, to the extent that the effects of the present invention are not impaired. , leveling agents, and other optional ingredients.
(加水分解抑制剤)
 加水分解抑制剤としては、カルボジイミド系、イソシアネート系、オキサゾリン系、エポキシ系が挙げられる。加水分解抑制剤は、1種を単独で、又は2種以上を組み合わせて用い得る。これらの中でも、加水分解抑制効果の観点から、カルボジイミド系が好ましい。
 カルボジイミド系加水分解抑制剤は、1分子中に1つ以上のカルボジイミド基を有する化合物である。モノカルボジイミド化合物としては、例えば、ジシクロヘキシルカルボジイミド、ジイソプロピルカルボジイミド、ジメチルカルボジイミド、ジイソブチルカルボジイミド、ジオクチルカルボジイミド、ジフェニルカルボジイミド、ナフチルカルボジイミドが挙げられる。
 ポリカルボジイミド化合物は、カルボジイミド化触媒の存在下でジイソシアネートを脱炭酸縮合反応させて生成できる。
 上記ジイソシアネートとしては、例えば、MDI、3,3’-ジメトキシ-4,4’-ジフェニルメタンジイソシアネート、3,3’-ジメチル-4,4’-ジフェニルメタンジイソシアネート、4,4’-ジフェニルエーテルジイソシアネート、3,3’-ジメチル-4,4’-ジフェニルエーテルジイソシアネート、2,4-トリレンジイソシアネート、2,6-トリレンジイソシアネート、1-メトキシフェニル-2,4-ジイソシアネート、IPDI、4,4’-ジシクロヘキシルメタンジイソシアネート、テトラメチルキシリレンジイソシアネートが挙げられる。
 上記カルボジイミド化触媒としては、例えば、1-フェニル-2-ホスホレン-1-オキシド、3-メチル-2-ホスホレン-1-オキシド、1-エチル-3-メチル-2-ホスホレン-1-オキシド、1-エチル-2-ホスホレン-1-オキシド、これらの3-ホスホレン異性体等のホスホレンオキシドが挙げられる。
(hydrolysis inhibitor)
Examples of hydrolysis inhibitors include carbodiimide-based, isocyanate-based, oxazoline-based, and epoxy-based. The hydrolysis inhibitors may be used alone or in combination of two or more. Among these, carbodiimide is preferred from the viewpoint of hydrolysis inhibiting effect.
A carbodiimide-based hydrolysis inhibitor is a compound having one or more carbodiimide groups in one molecule. Examples of the monocarbodiimide compound include dicyclohexylcarbodiimide, diisopropylcarbodiimide, dimethylcarbodiimide, diisobutylcarbodiimide, dioctylcarbodiimide, diphenylcarbodiimide, and naphthylcarbodiimide.
A polycarbodiimide compound can be produced by subjecting a diisocyanate to a decarboxylation condensation reaction in the presence of a carbodiimidation catalyst.
Examples of the diisocyanate include MDI, 3,3'-dimethoxy-4,4'-diphenylmethane diisocyanate, 3,3'-dimethyl-4,4'-diphenylmethane diisocyanate, 4,4'-diphenyl ether diisocyanate, 3,3 '-dimethyl-4,4'-diphenyl ether diisocyanate, 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, 1-methoxyphenyl-2,4-diisocyanate, IPDI, 4,4'-dicyclohexylmethane diisocyanate, Tetramethylxylylene diisocyanate is mentioned.
Examples of the carbodiimidation catalyst include 1-phenyl-2-phospholene-1-oxide, 3-methyl-2-phospholene-1-oxide, 1-ethyl-3-methyl-2-phospholene-1-oxide, -ethyl-2-phosphorene-1-oxide, 3-phosphorene isomers thereof, and other phosphorene oxides.
 加水分解抑制剤の添加量は、イソシアネート基末端ウレタンプレポリマー100質量部に対して、好ましくは5質量部以下、より好ましくは4.5質量部以下、さらに好ましくは3質量部以下である。 The amount of the hydrolysis inhibitor added is preferably 5 parts by mass or less, more preferably 4.5 parts by mass or less, and even more preferably 3 parts by mass or less, based on 100 parts by mass of the isocyanate group-terminated urethane prepolymer.
(酸化防止剤)
 酸化防止剤を用いることで、イソシアネート基末端ウレタンプレポリマーの熱劣化を防ぎ得る。
 酸化防止剤としては、フェノール系化合物、アミン系化合物等のラジカル捕捉剤;硫黄系化合物及びリン系化合物等の過酸化物分解剤;等が挙げられる。酸化防止剤は1種を単独で、又は2種以上を組み合わせて用い得る。
 酸化防止剤としては、安定性と酸化防止効果の観点から、ラジカル捕捉剤であるフェノール系化合物を1種以上用いるのが好ましい。ラジカル捕捉剤である1種以上のフェノール系化合物と過酸化物分解剤である1種以上のリン系化合物とを併用することもできる。
(Antioxidant)
By using an antioxidant, thermal deterioration of the isocyanate group-terminated urethane prepolymer can be prevented.
Examples of the antioxidant include radical scavengers such as phenolic compounds and amine compounds; peroxide decomposers such as sulfur compounds and phosphorus compounds; and the like. One type of antioxidant may be used alone or two or more types may be used in combination.
As the antioxidant, from the viewpoint of stability and antioxidant effect, it is preferable to use one or more phenolic compounds which are radical scavengers. One or more phenolic compounds that are radical scavengers and one or more phosphorus compounds that are peroxide decomposers can also be used together.
 酸化防止剤の添加量は、イソシアネート基末端ウレタンプレポリマー100質量部に対して、好ましくは5質量部以下、より好ましくは3質量部以下、さらに好ましくは2質量部以下である。 The amount of the antioxidant added is preferably 5 parts by mass or less, more preferably 3 parts by mass or less, and even more preferably 2 parts by mass or less, based on 100 parts by mass of the isocyanate group-terminated urethane prepolymer.
(紫外線吸収剤)
 紫外線吸収剤としては、例えば、ベンゾフェノン系化合物、ベンゾトリアゾール系化合物、サリチル酸系化合物、シュウ酸アニリド系化合物、シアノアクリレート系化合物、トリアジン系化合物等が挙げられる。紫外線吸収剤は、1種を単独で、又は2種以上を組み合わせて用い得る。
 紫外線吸収剤の添加量は、イソシアネート基末端ウレタンプレポリマー100質量部に対して、好ましくは3質量部以下、より好ましくは2.5質量部以下、さらに好ましくは2質量部以下である。
(Ultraviolet absorber)
Examples of the ultraviolet absorber include benzophenone compounds, benzotriazole compounds, salicylic acid compounds, oxalic acid anilide compounds, cyanoacrylate compounds, triazine compounds, and the like. The ultraviolet absorbers may be used alone or in combination of two or more.
The amount of the ultraviolet absorber added is preferably 3 parts by mass or less, more preferably 2.5 parts by mass or less, still more preferably 2 parts by mass or less, per 100 parts by mass of the isocyanate group-terminated urethane prepolymer.
(光安定剤)
 光安定剤としては、例えば、ヒンダードアミン系化合物、ヒンダードピペリジン系化合物等が挙げられる。光安定剤は1種を単独で、又は2種以上を組み合わせて用い得る。
 光安定剤の添加量は、イソシアネート基末端ウレタンプレポリマー100質量部に対して、好ましくは2質量部以下、より好ましくは1.5質量部以下、さらに好ましくは1質量部以下である。
(light stabilizer)
Examples of the light stabilizer include hindered amine compounds and hindered piperidine compounds. One kind of light stabilizer can be used alone or two or more kinds can be used in combination.
The amount of the light stabilizer added is preferably 2 parts by mass or less, more preferably 1.5 parts by mass or less, still more preferably 1 part by mass or less, per 100 parts by mass of the isocyanate group-terminated urethane prepolymer.
(充填剤)
充填剤としては、例えば無機又は有機充填剤、例えば特に天然、重質又は沈殿炭酸カルシウムであって、任意選択的に脂肪酸、特にステアリン酸によってコーティングされたもの、バライト(重晶石)、タルク、石英粉、ケイ砂、ドロマイト、ウォラストナイト、カオリン、焼成カオリン、マイカ(ケイ酸カリウムアルミニウム)、ゼオライト、モレキュラーシーブ、酸化アルミニウム、水酸化アルミニウム、水酸化マグネシウム、熱分解プロセスからの微粉砕シリカを含むシリカ、工業的に製造されたカーボンブラック、黒鉛、金属粉末、例えばアルミニウム、銅、鉄、銀又は鉄鋼、PVC粉末又は中空球並びに難燃性充填剤、例えば水酸化物又は水和物、特にアルミニウムの水酸化物又は水和物、好ましくは水酸化アルミニウムが挙げられる。
 充填剤の添加量は、イソシアネート基末端ウレタンプレポリマー100質量部に対して、好ましくは80質量部以下、より好ましくは70質量部以下、さらに好ましくは60質量部以下である。
(filler)
Fillers include, for example, inorganic or organic fillers, such as in particular natural, heavy or precipitated calcium carbonate, optionally coated with fatty acids, in particular stearic acid, barite, talc, Quartz powder, silica sand, dolomite, wollastonite, kaolin, calcined kaolin, mica (potassium aluminum silicate), zeolite, molecular sieves, aluminum oxide, aluminum hydroxide, magnesium hydroxide, finely ground silica from pyrolysis process. containing silica, industrially produced carbon black, graphite, metal powders such as aluminium, copper, iron, silver or steel, PVC powder or hollow spheres as well as flame retardant fillers such as hydroxides or hydrates, in particular Aluminum hydroxides or hydrates, preferably aluminum hydroxide, are mentioned.
The amount of the filler added is preferably 80 parts by mass or less, more preferably 70 parts by mass or less, still more preferably 60 parts by mass or less, based on 100 parts by mass of the isocyanate group-terminated urethane prepolymer.
(可塑剤)
 可塑剤としては、例えばジ-2-エチルヘキシルフタレート、ジブチルフタレート、ジラウリルフタレート、ジオクチルアジペート、ジイソノニルフタレート(DINP)、ジイソデシルフタレート(DIDP)、ジイソデシルアジペート、トリブチルホスフェート、トリオクチルホスフェート、アジピン酸プロピレングリコールポリエステル、アジピン酸ブチレングリコールポリエステル、エポキシ化大豆油、塩素化パラフィン、流動パラフィンが挙げられる。
 可塑剤の添加量は、イソシアネート基末端ウレタンプレポリマー100質量部に対して、好ましくは40質量部以下、より好ましくは30質量部以下、さらに好ましくは25質量部以下である。
(Plasticizer)
Examples of plasticizers include di-2-ethylhexyl phthalate, dibutyl phthalate, dilauryl phthalate, dioctyl adipate, diisononyl phthalate (DINP), diisodecyl phthalate (DIDP), diisodecyl adipate, tributyl phosphate, trioctyl phosphate, propylene glycol adipate polyester. , butylene glycol adipate polyester, epoxidized soybean oil, chlorinated paraffin, and liquid paraffin.
The amount of the plasticizer added is preferably 40 parts by mass or less, more preferably 30 parts by mass or less, still more preferably 25 parts by mass or less, based on 100 parts by mass of the isocyanate group-terminated urethane prepolymer.
(帯電防止剤)
 帯電防止剤としては、無機塩、多価アルコール化合物、イオン性液体、界面活性剤等が挙げられる。帯電防止剤は、1種を単独で、又は2種以上を組み合わせて用い得る。
 これらの中でもイオン性液体が好ましい。なお、「イオン性液体」は常温溶融塩ともいい、25℃で流動性がある塩である。
 帯電防止剤の添加量は、イソシアネート基末端ウレタンプレポリマー100質量部に対して、好ましくは0.01質量部以上、より好ましくは0.03質量部以上、さらに好ましくは0.05質量部以上であり、また、好ましくは10質量部以下、より好ましくは5質量部以下、さらに好ましくは3質量部以下である。
(Antistatic agent)
Examples of the antistatic agent include inorganic salts, polyhydric alcohol compounds, ionic liquids, surfactants, and the like. The antistatic agents may be used alone or in combination of two or more.
Among these, ionic liquids are preferred. Note that the "ionic liquid" is also referred to as a salt molten at room temperature, and is a salt that has fluidity at 25°C.
The amount of the antistatic agent added is preferably 0.01 parts by mass or more, more preferably 0.03 parts by mass or more, and even more preferably 0.05 parts by mass or more, based on 100 parts by mass of the isocyanate group-terminated urethane prepolymer. The content is preferably 10 parts by mass or less, more preferably 5 parts by mass or less, and even more preferably 3 parts by mass or less.
(レベリング剤)
 レベリング剤としては、例えば、アクリル系レベリング剤、フッ素系レベリング剤、シリコーン系レベリング剤等が挙げられる。レベリング剤は、1種を単独で、又は2種以上を組み合わせて用い得る。これらの中でも、アクリル系レベリング剤が好ましい。
 レベリング剤の添加量は、イソシアネート基末端ウレタンプレポリマー100質量部に対して、好ましくは0.001質量部以上、より好ましくは0.01質量部以上、さらに好ましくは0.1質量部以上であり、また、好ましくは2質量部以下、より好ましくは1.5質量部以下、さらに好ましくは1質量部以下である。
(Leveling agent)
Examples of the leveling agent include acrylic leveling agents, fluorine leveling agents, silicone leveling agents, and the like. One type of leveling agent may be used alone, or two or more types may be used in combination. Among these, acrylic leveling agents are preferred.
The amount of the leveling agent added is preferably 0.001 parts by mass or more, more preferably 0.01 parts by mass or more, and even more preferably 0.1 parts by mass or more, based on 100 parts by mass of the isocyanate group-terminated urethane prepolymer. , and preferably 2 parts by mass or less, more preferably 1.5 parts by mass or less, and even more preferably 1 part by mass or less.
(他の任意成分)
 他の任意成分としては、例えば、触媒、イソシアネート基末端ウレタンプレポリマー以外の他の樹脂、金属粉、着色剤(顔料等)、箔状物、導電剤、シランカップリング剤、潤滑剤、腐食防止剤、耐熱安定剤、重合禁止剤、消泡剤等が挙げられる。
(Other optional ingredients)
Other optional components include, for example, catalysts, resins other than isocyanate group-terminated urethane prepolymers, metal powders, colorants (pigments, etc.), foils, conductive agents, silane coupling agents, lubricants, and corrosion inhibitors. agent, heat stabilizer, polymerization inhibitor, antifoaming agent, etc.
<接着剤組成物の製造方法>
 本発明の接着剤組成物の製造方法は、イソシアネート基末端ウレタンプレポリマー及びポリエーテルポリカーボネートポリオールを含む接着剤組成物の製造方法であって、
 触媒の存在下で、1分子中に活性水素含有基を3個以上有する開始剤と、環状エーテルと、二酸化炭素とを重合させて、ポリエーテルポリカーボネートポリオールを得、当該ポリエーテルポリカーボネートポリオール及びイソシアネート基末端ウレタンプレポリマーを混合する。
 前記ポリエーテルポリカーボネートポリオールの1分子中の前記二酸化炭素に由来する構成単位の割合は10~30質量%である。
<Method for manufacturing adhesive composition>
The method for producing an adhesive composition of the present invention is a method for producing an adhesive composition comprising an isocyanate group-terminated urethane prepolymer and a polyether polycarbonate polyol, comprising:
In the presence of a catalyst, an initiator having three or more active hydrogen-containing groups in one molecule, a cyclic ether, and carbon dioxide are polymerized to obtain a polyether polycarbonate polyol, and the polyether polycarbonate polyol and isocyanate groups are polymerized. Mix the terminated urethane prepolymer.
The proportion of the structural unit derived from carbon dioxide in one molecule of the polyether polycarbonate polyol is 10 to 30% by mass.
 本発明の接着剤組成物は、ポリエーテルポリカーボネートポリオール及びイソシアネート基末端ウレタンプレポリマーを混合することで得られる。ポリエーテルポリカーボネートポリオールは、〔ポリエーテルポリカーボネートポリオールの製造方法〕の項で説明した製造方法により得られる。
 ポリエーテルポリカーボネートポリオール及びイソシアネート基末端ウレタンプレポリマーを混合する際、さらに必要に応じ含有させる触媒成分、溶媒、及び前記した添加剤を加えてもよい。前記混合には、加熱装置を備えたプラストミル、ニーダー、バンバリーミキサー、ロール等の公知の撹拌混合機を用い得る。前記混合は、窒素ガス等の不活性ガス雰囲気下あるいは減圧脱水雰囲気下で行うのが好ましい。
 なお、前記各成分の投入順序に特に制限はない。
The adhesive composition of the present invention is obtained by mixing a polyether polycarbonate polyol and an isocyanate group-terminated urethane prepolymer. The polyether polycarbonate polyol is obtained by the manufacturing method described in the section [Method for manufacturing polyether polycarbonate polyol].
When mixing the polyether polycarbonate polyol and the isocyanate group-terminated urethane prepolymer, a catalyst component, a solvent, and the above-mentioned additives may be added as necessary. For the mixing, a known stirring mixer such as a plastomill, kneader, Banbury mixer, roll, etc. equipped with a heating device may be used. The mixing is preferably performed under an atmosphere of an inert gas such as nitrogen gas or under a vacuum dehydration atmosphere.
Note that there is no particular restriction on the order in which the above-mentioned components are added.
(二液型の接着剤組成物)
 本発明の接着剤組成物は、主剤及び硬化剤からなる二液型の接着剤組成物としてもよい。本発明の接着剤組成物を二液型の接着剤組成物とする場合、例えば、前記したイソシアネート基末端ウレタンプレポリマーを含む主剤と、前記したポリエーテルポリカーボネートポリオールを含む硬化剤としてもよい。主剤は、例えば、前記したイソシアネート基末端ウレタンプレポリマー、及び必要に応じて含有させる溶媒や、前記した添加剤の1種又は2種以上を均一に撹拌混合することで製造できる。また、硬化剤は、例えば、前記したポリエーテルポリカーボネートポリオール、必要に応じ含有させる触媒成分、溶媒、及び前記した添加剤の1種又は2種以上を均一に撹拌混合することで製造できる。
 撹拌混合には、加熱装置を備えたプラストミル、ニーダー、バンバリーミキサー、ロール等の公知の撹拌混合機を用い得る。撹拌混合は、窒素ガス等の不活性ガス雰囲気下あるいは減圧脱水雰囲気下で行うのが好ましい。
 なお、前記各成分の投入順序に特に制限はない。
 主剤及び硬化剤は、それぞれ別の容器に収容される。容器は、チューブ、瓶等、様々なものを利用できる。
(Two-component adhesive composition)
The adhesive composition of the present invention may be a two-component adhesive composition comprising a base agent and a curing agent. When the adhesive composition of the present invention is a two-component adhesive composition, for example, it may be a base agent containing the above-mentioned isocyanate group-terminated urethane prepolymer and a curing agent containing the above-mentioned polyether polycarbonate polyol. The main ingredient can be produced, for example, by uniformly stirring and mixing the above-described isocyanate group-terminated urethane prepolymer, a solvent contained as necessary, and one or more of the above-mentioned additives. Further, the curing agent can be produced, for example, by uniformly stirring and mixing one or more of the above-mentioned polyether polycarbonate polyol, a catalyst component to be included as necessary, a solvent, and the above-mentioned additives.
For stirring and mixing, a known stirring mixer such as a plastomill, kneader, Banbury mixer, roll, etc. equipped with a heating device may be used. The stirring and mixing is preferably carried out under an inert gas atmosphere such as nitrogen gas or under a reduced pressure dehydration atmosphere.
Note that there is no particular restriction on the order in which the above-mentioned components are added.
The base agent and curing agent are each housed in separate containers. Various containers can be used, such as tubes and bottles.
 本発明の接着剤組成物が二液型の接着剤組成物の場合、当該接着剤組成物における主剤及び硬化剤の合計の割合(含有量)は、50質量%以上100質量%以下であるのが好ましい。主剤及び硬化剤の合計の割合は、より好ましくは55質量%以上、さらに好ましくは60質量%以上であり、また、より好ましくは100質量%未満、さらに好ましくは99.5質量%以下、よりさらに好ましくは95質量%以下である。
 二液型の接着剤組成物における主剤と硬化剤との含有量比は、前述のイソシアネートインデックスに基づいて決定される。
 本発明の接着剤組成物の固形分中の主剤及び硬化剤の合計の割合(含有量)は、好ましくは80質量%以上であり、より好ましくは90質量%以上であり、さらに好ましくは95質量%以上であり、100質量%であってもよい。
When the adhesive composition of the present invention is a two-component adhesive composition, the total proportion (content) of the main agent and curing agent in the adhesive composition is 50% by mass or more and 100% by mass or less. is preferred. The total proportion of the main agent and curing agent is more preferably 55% by mass or more, still more preferably 60% by mass or more, and more preferably less than 100% by mass, still more preferably 99.5% by mass or less, and even more preferably Preferably it is 95% by mass or less.
The content ratio of the main agent and curing agent in the two-component adhesive composition is determined based on the above-mentioned isocyanate index.
The total proportion (content) of the main agent and curing agent in the solid content of the adhesive composition of the present invention is preferably 80% by mass or more, more preferably 90% by mass or more, and even more preferably 95% by mass. % or more, and may be 100% by mass.
(使用方法)
 本発明の接着剤組成物が二液型の接着剤組成物の場合、前記主剤と前記硬化剤とを混合して用いればよい。
 本発明の接着剤組成物は、例えば5~90℃、相対湿度5~95%の条件下で硬化できる。混合の際の温度は、好ましくは10℃以上、より好ましくは15℃以上、さらに好ましくは20℃以上であり、また、好ましくは90℃以下、より好ましくは80℃以下、さらに好ましくは60℃以下である。温度を前記範囲内にするとウレタン反応以外の副反応を抑制しやすい。
(how to use)
When the adhesive composition of the present invention is a two-component adhesive composition, the main ingredient and the curing agent may be mixed together.
The adhesive composition of the present invention can be cured under conditions of, for example, 5 to 90°C and a relative humidity of 5 to 95%. The temperature during mixing is preferably 10°C or higher, more preferably 15°C or higher, even more preferably 20°C or higher, and preferably 90°C or lower, more preferably 80°C or lower, even more preferably 60°C or lower. It is. When the temperature is within the above range, side reactions other than the urethane reaction can be easily suppressed.
 本発明の接着剤組成物は、ガラス、ゴム、金属と樹脂材料等を接着するために使用できる。樹脂材料としては、例えばポリプロピレン、ポリエチレン、エチレン・プロピレン共重合体、シクロオレフィンポリマーのポリオレフィン;ポリエチレンテレフタレート、ポリブチレンテレフタレートのポリエステル;ポリメチルメタクリレート;ポリカーボネート;ポリスチレン;アクリロニトリル・スチレン共重合体;ポリ塩化ビニル;ポリアセテート;アクリロニトリル・ブタジエン・スチレン共重合体;ポリアミドが挙げられる。
 これらの樹脂材料はフレーム処理、コロナ処理、イトロ処理の表面処理がなされていてもよい。また、これらの樹脂材料はタルク、炭酸カルシウム、アルミナ等の充填剤を含有していてもよく、炭素繊維、ガラス繊維で強化されていてもよい。
The adhesive composition of the present invention can be used to bond glass, rubber, metal, resin materials, and the like. Examples of resin materials include polypropylene, polyethylene, ethylene/propylene copolymer, polyolefin such as cycloolefin polymer; polyester of polyethylene terephthalate and polybutylene terephthalate; polymethyl methacrylate; polycarbonate; polystyrene; acrylonitrile/styrene copolymer; polyvinyl chloride. ; polyacetate; acrylonitrile-butadiene-styrene copolymer; and polyamide.
These resin materials may be subjected to surface treatments such as flame treatment, corona treatment, and intro treatment. Further, these resin materials may contain fillers such as talc, calcium carbonate, and alumina, and may be reinforced with carbon fibers and glass fibers.
 本発明の接着剤組成物は、種々の構造体の部品同士の接合に使用できる。また、本発明の接着剤組成物は、接着剤として用いられるほか、例えば、コーティング剤、塗料、防水材、床材、エラストマー、人工皮革、スパンデックスとして用い得る。 The adhesive composition of the present invention can be used to join parts of various structures. In addition to being used as an adhesive, the adhesive composition of the present invention can be used, for example, as a coating agent, paint, waterproof material, flooring material, elastomer, artificial leather, or spandex.
<硬化物>
 本発明の硬化物は、本発明の接着剤組成物を硬化した硬化物である。
<Cured product>
The cured product of the present invention is a cured product obtained by curing the adhesive composition of the present invention.
(物性)
 本発明の接着剤組成物の硬化物は、破断強度が好ましくは0.8MPa以上であり、より好ましくは1.5MPa以上であり、さらに好ましくは3.0MPa以上である。
 本発明の接着剤組成物の硬化物は、破断伸びが好ましくは15.0%以上であり、より好ましくは30.0%以上であり、さらに好ましくは50.0%以上である。
 前記破断強度及び破断伸びは、後述する実施例に記載の方法で測定される。
(physical properties)
The cured product of the adhesive composition of the present invention preferably has a breaking strength of 0.8 MPa or more, more preferably 1.5 MPa or more, and still more preferably 3.0 MPa or more.
The elongation at break of the cured product of the adhesive composition of the present invention is preferably 15.0% or more, more preferably 30.0% or more, and still more preferably 50.0% or more.
The breaking strength and breaking elongation are measured by the method described in the Examples below.
 以下、実施例に基づいて、本発明を具体的に説明するが、本発明は、下記実施例により限定されるものではない。 Hereinafter, the present invention will be specifically explained based on Examples, but the present invention is not limited to the Examples below.
(評価方法)
<1分子中の水酸基数(末端基数)>
 各ポリオールの合成の際にそれぞれ用いた開始剤の水酸基数を、そのまま各ポリオールの1分子中の水酸基数(末端基数)とした。例えばグリセリンの場合は3、ペンタエリスリトールの場合は4、ソルビトールの場合は6となる。
(Evaluation method)
<Number of hydroxyl groups in one molecule (number of terminal groups)>
The number of hydroxyl groups in each initiator used in the synthesis of each polyol was directly defined as the number of hydroxyl groups in one molecule of each polyol (number of terminal groups). For example, it is 3 for glycerin, 4 for pentaerythritol, and 6 for sorbitol.
<水酸基価、水酸基価換算分子量>
 後述の合成例で得られた各ポリオールの水酸基価(OHV)は、JIS K 1557(2007)に準拠して、アセチル化試薬を用いた方法にて算出した。
 前記ポリオールの水酸基価換算分子量は、前記水酸基価を、[56,100/(水酸基価)]×(官能基数)の式に当てはめて算出した。
<Hydroxyl value, molecular weight converted to hydroxyl value>
The hydroxyl value (OHV) of each polyol obtained in the synthesis examples described below was calculated by a method using an acetylation reagent in accordance with JIS K 1557 (2007).
The molecular weight of the polyol in terms of hydroxyl value was calculated by applying the hydroxyl value to the formula [56,100/(hydroxyl value)]×(number of functional groups).
<数平均分子量(Mn)及び分子量分布(Mw/Mn)>
 後述の合成例で得られた各ポリオールの数平均分子量(Mn)、及び分子量分布(Mw/Mn)は、以下に記載する方法により測定して得られた値である。
 分子量測定用の標準試料として重合度の異なる単分散ポリスチレンの数種類について、市販のGPC測定装置(HLC-8320GPC、東ソー・テクノシステム株式会社製)を用いて測定し、ポリスチレンの分子量と保持時間との関係をもとに検量線を作成し、測定試料であるポリオールをテトラヒドロフランで0.5質量%に希釈し、孔径0.5μmのフィルターに通過させた後、当該測定試料について、上記GPC測定装置を用いて測定した。上記検量線を用いて、測定試料のGPCスペクトルをコンピュータ解析することにより、Mn及びMwを求めた。
<Number average molecular weight (Mn) and molecular weight distribution (Mw/Mn)>
The number average molecular weight (Mn) and molecular weight distribution (Mw/Mn) of each polyol obtained in the synthesis examples described below are values obtained by measurement by the method described below.
As a standard sample for molecular weight measurement, several types of monodisperse polystyrene with different degrees of polymerization were measured using a commercially available GPC measurement device (HLC-8320GPC, manufactured by Tosoh Technosystems Co., Ltd.), and the relationship between the molecular weight of polystyrene and retention time was determined. A calibration curve was created based on the relationship, and the measurement sample polyol was diluted to 0.5% by mass with tetrahydrofuran and passed through a filter with a pore size of 0.5 μm. It was measured using Mn and Mw were determined by computer analysis of the GPC spectrum of the measurement sample using the above calibration curve.
<ポリオール中のPO-PO-PO連鎖(AO-AO-AO連鎖)、PO-PO-CO連鎖(AO-AO-CO連鎖)、及びCO-PO-CO連鎖(CO-AO-CO連鎖)の定量、並びにポリオール中のプロピレンカーボネートの割合、及び二酸化炭素に由来する構成単位の割合>
 後述の合成例で得られた各ポリオールを10質量%となるように重クロロホルムに溶解し、分解能400MHzのNMR装置(JNM-ECZ400S FT-NMR、日本電子社製品名)でH-NMRを測定した。得られた結果から、両端がカーボネートに隣接する環状エーテルとしてのプロピレンオキシドPO(式量58)のメチル基由来3Hピーク(δ1.34ppm)の面積S1、一端がカーボネート、他端がPOに隣接するPOのメチル基由来3Hピーク(δ1.29ppm)の面積S2、両端にPOが隣接するPOのメチル基由来3Hピーク(δ1.14ppm)の面積S3、副生物であるプロピレンカーボネート(式量102)のメチル基由来3Hピーク(δ1.49ppm)の面積S4に基づいて、下記式よりポリオール中のCO-PO-CO連鎖の割合(完全交互共重合体の割合)、PO-PO-CO連鎖の割合(ランダム共重合体の割合)、PO-PO-PO連鎖の割合(PPGの割合)、及びプロピレンカーボネートの割合を算出した。なお、下記式において、両端がカーボネートに隣接するPOの式量は102、一端がカーボネート、他端がPOに隣接するPOの式量は102とした。
 また、ポリオール中の二酸化炭素に由来する構成単位の割合(CO(式量44)の割合)を下記式より算出した。
 (CO-PO-CO連鎖の割合[質量%])=S1×102/(S1×102+S2×102+S3×58+S4×102)×100
 (PO-PO-CO連鎖の割合[質量%])=S2×102/(S1×102+S2×102+S3×58+S4×102)×100
 (PO-PO-PO連鎖の割合[質量%])=S3×58/(S1×102+S2×102+S3×58+S4×102)×100
 (プロピレンカーボネートの割合[質量%])=S4×102/(S1×102+S2×102+S3×58+S4×102)×100
 (COの割合[質量%])=(S1+S2)/{(S1×102+S2×102+S3×58)}×44×100
<PO-PO-PO chain (AO-AO-AO chain), PO-PO-CO 2 chain (AO-AO-CO 2 chain), and CO 2 -PO-CO 2 chain (CO 2 -AO chain) in polyol -CO2 chain), the proportion of propylene carbonate in the polyol, and the proportion of structural units derived from carbon dioxide>
Each polyol obtained in the synthesis examples described below was dissolved in deuterated chloroform to a concentration of 10% by mass, and 1 H-NMR was measured using an NMR device with a resolution of 400 MHz (JNM-ECZ400S FT-NMR, product name of JEOL Ltd.). did. From the obtained results, the area S1 of the methyl group-derived 3H peak (δ1.34 ppm) of propylene oxide PO (formula weight 58) as a cyclic ether with both ends adjacent to carbonate, one end adjacent to carbonate and the other end adjacent to PO Area S2 of the 3H peak derived from the methyl group of PO (δ 1.29 ppm), area S3 of the 3H peak derived from the methyl group of PO (δ 1.14 ppm) adjacent to PO on both ends, Based on the area S4 of the methyl group-derived 3H peak (δ1.49 ppm), the proportion of CO 2 -PO-CO 2 chains in the polyol (proportion of complete alternating copolymer) and PO-PO-CO 2 chains are calculated from the following formula. The proportion of (proportion of random copolymer), the proportion of PO-PO-PO chains (proportion of PPG), and the proportion of propylene carbonate were calculated. In the formula below, the formula weight of PO whose both ends are adjacent to carbonate is 102, and the formula weight of PO whose one end is adjacent to carbonate and the other end is 102.
Further, the proportion of structural units derived from carbon dioxide in the polyol (proportion of CO 2 (formula weight 44)) was calculated from the following formula.
(Ratio of CO 2 -PO-CO 2 chains [mass%]) = S1 x 102/(S1 x 102 + S2 x 102 + S3 x 58 + S4 x 102) x 100
(Ratio of PO-PO-CO 2 chains [mass%]) = S2 x 102/(S1 x 102 + S2 x 102 + S3 x 58 + S4 x 102) x 100
(Ratio of PO-PO-PO chains [mass%]) = S3 x 58/(S1 x 102 + S2 x 102 + S3 x 58 + S4 x 102) x 100
(Ratio of propylene carbonate [mass%]) = S4 x 102/(S1 x 102 + S2 x 102 + S3 x 58 + S4 x 102) x 100
(Ratio of CO 2 [mass%]) = (S1 + S2) / {(S1 × 102 + S2 × 102 + S3 × 58)} × 44 × 100
<25℃における粘度>
 ポリオールの25℃における粘度は、E型粘度計(VISCOMETER TV-22、東機産業株式会社製)を用いて測定した。
<Viscosity at 25°C>
The viscosity of the polyol at 25° C. was measured using an E-type viscometer (VISCOMETER TV-22, manufactured by Toki Sangyo Co., Ltd.).
<熱分解測定>
 15mlのバイアルに後述の合成例で得られた各ポリオールを5g入れ、窒素で置換して密栓し、80℃で7日間高温保管した。その後、高速GPC装置(HLC-8320GPC、東ソー・テクノシステム株式会社製)を用い、テトラヒドロフランを展開溶媒として分析を実施し、高温保管後のプロピレンカーボネートの面積割合を算出した。
<Pyrolysis measurement>
5 g of each polyol obtained in the synthesis examples described below was placed in a 15 ml vial, the vial was purged with nitrogen, the vial was sealed tightly, and the vial was stored at a high temperature of 80° C. for 7 days. Thereafter, analysis was performed using a high-speed GPC device (HLC-8320GPC, manufactured by Tosoh Techno System Co., Ltd.) using tetrahydrofuran as a developing solvent, and the area ratio of propylene carbonate after high-temperature storage was calculated.
<フィルム成形性>
 各例で得られたウレタン樹脂を市販のPETフィルム上に厚みが250μmとなるように塗布し、油圧成型機にてプレス成型し、ウレタン樹脂フィルムを得た。得られたウレタン樹脂フィルムを目視にて観察し、下記基準で評価した。
 〔評価基準〕
  A:フィルム表面が平坦である
  C:フィルム表面に凹凸がある
<Film formability>
The urethane resin obtained in each example was applied onto a commercially available PET film to a thickness of 250 μm, and press molded using a hydraulic molding machine to obtain a urethane resin film. The obtained urethane resin film was visually observed and evaluated according to the following criteria.
〔Evaluation criteria〕
A: The film surface is flat C: The film surface has unevenness
<耐光性>
 上記で得られたウレタン樹脂フィルムを、50℃のQUV試験装置(QUV/SE、Q-Lab Corporation社製)で120時間保管した後にウレタン樹脂フィルムを180°折り曲げ、破損するかどうかを観察することで、UVによる劣化程度を評価した。破損しなかった場合は「A」、破損した場合は「C」とした。
<Light resistance>
After storing the urethane resin film obtained above in a QUV tester (QUV/SE, manufactured by Q-Lab Corporation) at 50°C for 120 hours, bend the urethane resin film 180° and observe whether it breaks. The degree of deterioration due to UV was evaluated. If there was no damage, it was rated "A", and if it was damaged, it was rated "C".
<引張試験>
 上記で得られたウレタン樹脂フィルムについて、ダンベル型枠(ダンベル3号)で打ち抜いて、試験片を得た。引張試験機(製品名:テンシロン万能試験機RTG-1310、エー・アンド・デイ社製)を用いて、JIS K 7312:1996に依拠して、破断強度(単位:MPa)、及び破断伸び(単位:%)を測定した。測定条件は、温度23℃、チャック間距離40mm、引張速度50mm/分とした。
<Tensile test>
The urethane resin film obtained above was punched out using a dumbbell mold (dumbbell No. 3) to obtain a test piece. Using a tensile tester (product name: Tensilon Universal Tester RTG-1310, manufactured by A&D Co., Ltd.), the breaking strength (unit: MPa) and breaking elongation (unit: :%) was measured. The measurement conditions were a temperature of 23° C., a distance between chucks of 40 mm, and a pulling speed of 50 mm/min.
<ポリエーテルポリカーボネートポリオールの合成>
[合成例1]
 開始剤として、ソルビトールにプロピレンオキシドを付加したポリプロピレンポリオール(数平均分子量870)を用いた。
 反応器に、上記開始剤46.0g及び触媒として配位子がt-ブチルアルコールである亜鉛ヘキサシアノコバルテート錯体(以下、「TBA-DMC触媒」と記す。)0.04gを仕込み、反応器を130℃に加熱し、二酸化炭素を導入して、加圧(約2.0MPa)した後に減圧(約0.1MPa)する一連の操作を3回繰り返した後、130℃で2時間脱気した。脱気後、二酸化炭素圧力を6.0MPaまで加圧して触媒を活性化させた。次いで、合成時の二酸化炭素圧力を6.0MPaに保持し、環状エーテルとしてのプロピレンオキシド(PO)を26.0g加え、発熱したことを確認後、液温を110℃に降温し、さらにPO 232gを14時間かけて加えた。110℃で3時間反応させた後、液温を130℃まで昇温して、減圧下で5時間保持し、副生物のプロピレンカーボネートを除去した。その後、反応器から反応物を取り出し、水酸基価が44.9mgKOH/g、COの割合が24.1質量%のポリエーテルポリカーボネートポリオール(ポリオール(a1))を得た。環状エーテルとしてのプロピレンオキシドの仕込み量は得られたポリエーテルポリカーボネートポリオールの100質量部に対して75.6質量部であった。
<Synthesis of polyether polycarbonate polyol>
[Synthesis example 1]
As an initiator, polypropylene polyol (number average molecular weight 870), which is obtained by adding propylene oxide to sorbitol, was used.
A reactor was charged with 46.0 g of the above initiator and 0.04 g of a zinc hexacyanocobaltate complex (hereinafter referred to as "TBA-DMC catalyst") whose ligand is t-butyl alcohol as a catalyst, and the reactor was turned off. A series of operations of heating to 130°C, introducing carbon dioxide, pressurizing (approximately 2.0 MPa), and then reducing the pressure (approximately 0.1 MPa) was repeated three times, followed by degassing at 130°C for 2 hours. After degassing, the carbon dioxide pressure was increased to 6.0 MPa to activate the catalyst. Next, the carbon dioxide pressure during synthesis was maintained at 6.0 MPa, 26.0 g of propylene oxide (PO) as a cyclic ether was added, and after confirming that heat was generated, the liquid temperature was lowered to 110 ° C., and an additional 232 g of PO was added. was added over 14 hours. After reacting at 110°C for 3 hours, the liquid temperature was raised to 130°C and maintained under reduced pressure for 5 hours to remove propylene carbonate as a by-product. Thereafter, the reactant was taken out from the reactor to obtain a polyether polycarbonate polyol (polyol (a1)) having a hydroxyl value of 44.9 mgKOH/g and a CO 2 proportion of 24.1% by mass. The amount of propylene oxide as the cyclic ether charged was 75.6 parts by mass based on 100 parts by mass of the obtained polyether polycarbonate polyol.
[合成例2]
 触媒を活性化させる際の二酸化炭素圧力を1.5MPa、及び合成時の二酸化炭素圧力を1.5MPaに変えた以外は合成例1と同様の手順で合成を行い、水酸基価が44.1mgKOH/g、COの割合が12.3質量%のポリエーテルポリカーボネートポリオール(ポリオール(a2))を得た。環状エーテルとしてのプロピレンオキシドの仕込み量は得られたポリエーテルポリカーボネートポリオールの100質量部に対して87.5質量部であった。
[Synthesis example 2]
Synthesis was carried out in the same manner as in Synthesis Example 1, except that the carbon dioxide pressure when activating the catalyst was changed to 1.5 MPa, and the carbon dioxide pressure during synthesis was changed to 1.5 MPa, and the hydroxyl value was 44.1 mgKOH/ A polyether polycarbonate polyol (polyol (a2)) having a CO 2 content of 12.3% by mass was obtained. The amount of propylene oxide as the cyclic ether charged was 87.5 parts by mass based on 100 parts by mass of the obtained polyether polycarbonate polyol.
[合成例3]
 開始剤として、ペンタエリスリトールにプロピレンオキシドを付加したポリプロピレンポリオール(数平均分子量600)を用いた。
 反応器に、上記開始剤33.0g及び触媒としてTBA-DMC触媒0.04gを仕込み、反応器を130℃に加熱し、二酸化炭素を導入して、加圧(約2.0MPa)した後に減圧(約0.1MPa)する一連の操作を3回繰り返した後、130℃で2時間脱気した。脱気後、二酸化炭素圧力を1.5MPaまで加圧して触媒を活性化させた。次いで、合成時の二酸化炭素圧力を1.5MPaに保持し、環状エーテルとしてのPOを32.0g加え、発熱したことを確認後、液温を110℃に降温し、さらにPO 285gを17時間かけて加えた。110℃で3時間反応させた後、液温を130℃まで昇温して、減圧下で5時間保持し、副生物のプロピレンカーボネートを除去した。その後、反応器から反応物を取り出し、水酸基価が31.5mgKOH/g、COの割合が12.5質量%のポリエーテルポリカーボネートポリオール(ポリオール(a3))を得た。環状エーテルとしてのプロピレンオキシドの仕込み量は得られたポリエーテルポリカーボネートポリオールの100質量部に対して87.2質量部であった。
[Synthesis example 3]
As an initiator, polypropylene polyol (number average molecular weight 600), which is obtained by adding propylene oxide to pentaerythritol, was used.
A reactor was charged with 33.0 g of the above initiator and 0.04 g of TBA-DMC catalyst as a catalyst, heated to 130°C, introduced carbon dioxide, pressurized (approximately 2.0 MPa), and then depressurized. (approximately 0.1 MPa) was repeated three times, and then degassed at 130° C. for 2 hours. After degassing, the carbon dioxide pressure was increased to 1.5 MPa to activate the catalyst. Next, the carbon dioxide pressure during synthesis was maintained at 1.5 MPa, 32.0 g of PO as a cyclic ether was added, and after confirming that heat was generated, the liquid temperature was lowered to 110 ° C., and 285 g of PO was added over 17 hours. added. After reacting at 110°C for 3 hours, the liquid temperature was raised to 130°C and maintained under reduced pressure for 5 hours to remove propylene carbonate as a by-product. Thereafter, the reactant was taken out from the reactor to obtain a polyether polycarbonate polyol (polyol (a3)) having a hydroxyl value of 31.5 mgKOH/g and a CO 2 proportion of 12.5% by mass. The amount of propylene oxide as the cyclic ether charged was 87.2 parts by mass based on 100 parts by mass of the obtained polyether polycarbonate polyol.
[合成例4]
 開始剤として、グリセリンにプロピレンオキシドを付加したポリプロピレンポリオール(数平均分子量1000)を用いた。
 反応器に、上記開始剤51.0g及び触媒としてTBA-DMC触媒0.07gを仕込み、反応器を130℃に加熱し、二酸化炭素を導入して、加圧(約2.0MPa)した後に減圧(約0.1MPa)する一連の操作を3回繰り返した後、130℃で2時間脱気した。脱気後、二酸化炭素圧力を1.5MPaまで加圧して触媒を活性化させた。次いで、合成時の二酸化炭素圧力を1.5MPaに保持し、環状エーテルとしてのPOを30.0g加え、発熱したことを確認後、液温を110℃に降温し、さらにPO 270gを16時間かけて加えた。110℃で3時間反応させた後、液温を130℃まで昇温して、減圧下で5時間保持し、副生物のプロピレンカーボネートを除去した。その後、反応器から反応物を取り出し、水酸基価が28.9mgKOH/g、COの割合が11.4質量%のポリエーテルポリカーボネートポリオール(ポリオール(a4))を得た。環状エーテルとしてのプロピレンオキシドの仕込み量は得られたポリエーテルポリカーボネートポリオールの100質量部に対して88.4質量部であった。
[Synthesis example 4]
As an initiator, polypropylene polyol (number average molecular weight 1000), which is obtained by adding propylene oxide to glycerin, was used.
A reactor was charged with 51.0 g of the above initiator and 0.07 g of TBA-DMC catalyst as a catalyst, the reactor was heated to 130°C, carbon dioxide was introduced, and the pressure was increased (approximately 2.0 MPa) and then reduced. (approximately 0.1 MPa) was repeated three times, and then degassed at 130° C. for 2 hours. After degassing, the carbon dioxide pressure was increased to 1.5 MPa to activate the catalyst. Next, the carbon dioxide pressure during synthesis was maintained at 1.5 MPa, 30.0 g of PO as a cyclic ether was added, and after confirming that heat was generated, the liquid temperature was lowered to 110°C, and 270 g of PO was added over 16 hours. added. After reacting at 110°C for 3 hours, the liquid temperature was raised to 130°C and maintained under reduced pressure for 5 hours to remove propylene carbonate as a by-product. Thereafter, the reactant was taken out from the reactor to obtain a polyether polycarbonate polyol (polyol (a4)) having a hydroxyl value of 28.9 mgKOH/g and a CO 2 ratio of 11.4% by mass. The amount of propylene oxide as the cyclic ether charged was 88.4 parts by mass based on 100 parts by mass of the obtained polyether polycarbonate polyol.
[合成例5]
 反応器に、開始剤としてソルビトール25.0g及び触媒としてコバルトサレン錯体1.8gを仕込み、反応器を50℃に加熱し、二酸化炭素を導入して、加圧(約2.0MPa)した後に減圧(約0.1MPa)する一連の操作を3回繰り返した後、二酸化炭素圧力を2.0MPaまで加圧して触媒を活性化させた。その後、二酸化炭素で容器内を置換しながら、環状エーテルとしてのPOを143g加え、6時間反応させた。反応後、メタノールを66.7ml添加し、溶媒をクエンチした。クエンチ後、液温を130℃まで昇温して、減圧下で5時間保持し、副生物のプロピレンカーボネートを除去した。その後、反応器から反応物を取り出し、水酸基価が47.5mgKOH/g、COの割合が43.1質量%のポリエーテルポリカーボネートポリオール(ポリオール(c1))を得た。環状エーテルとしてのプロピレンオキシドの仕込み量は得られたポリエーテルポリカーボネートポリオールの100質量部に対して56.7質量部であった。
[Synthesis example 5]
A reactor was charged with 25.0 g of sorbitol as an initiator and 1.8 g of cobalt salen complex as a catalyst, the reactor was heated to 50°C, carbon dioxide was introduced, and the pressure was increased (approximately 2.0 MPa) and then reduced. (approximately 0.1 MPa) was repeated three times, and then the carbon dioxide pressure was increased to 2.0 MPa to activate the catalyst. Thereafter, while replacing the inside of the container with carbon dioxide, 143 g of PO as a cyclic ether was added and reacted for 6 hours. After the reaction, 66.7 ml of methanol was added to quench the solvent. After quenching, the liquid temperature was raised to 130°C and maintained under reduced pressure for 5 hours to remove propylene carbonate as a by-product. Thereafter, the reactant was taken out from the reactor to obtain a polyether polycarbonate polyol (polyol (c1)) having a hydroxyl value of 47.5 mgKOH/g and a CO 2 proportion of 43.1% by mass. The amount of propylene oxide as the cyclic ether charged was 56.7 parts by mass based on 100 parts by mass of the obtained polyether polycarbonate polyol.
<ポリプロピレンポリオールの合成>
[合成例6]
 開始剤として、ソルビトールにプロピレンオキシドを付加したポリプロピレンポリオール(分子量870)を用いた。
 反応器に、上記開始剤46.0g及び触媒としてTBA-DMC触媒0.04gを仕込み、反応器を130℃に加熱し、窒素を導入して、加圧(約0.5MPa)した後に減圧(約0.1MPa)する一連の操作を3回繰り返した後、130℃で2時間脱気した。脱気後、窒素圧力を0.1MPaまで加圧した。次いで、環状エーテルとしてのPOを35.0g加え、発熱したことを確認後、さらにPO 319gを18時間かけて加えた。130℃で2時間反応させた後、液温130℃、減圧下で2時間保持した。その後、反応器から反応物を取り出し、水酸基価が44.2mgKOH/gのポリプロピレンポリオール(ポリオール(c2))を得た。
<Synthesis of polypropylene polyol>
[Synthesis example 6]
As an initiator, polypropylene polyol (molecular weight 870), which is obtained by adding propylene oxide to sorbitol, was used.
A reactor was charged with 46.0 g of the above initiator and 0.04 g of TBA-DMC catalyst as a catalyst, the reactor was heated to 130°C, nitrogen was introduced, and the pressure was increased (approximately 0.5 MPa), followed by reduced pressure ( After repeating a series of operations three times at a pressure of about 0.1 MPa), the mixture was degassed at 130° C. for 2 hours. After degassing, the nitrogen pressure was increased to 0.1 MPa. Next, 35.0 g of PO as a cyclic ether was added, and after confirming that heat was generated, 319 g of PO was further added over 18 hours. After reacting at 130°C for 2 hours, the liquid temperature was maintained at 130°C for 2 hours under reduced pressure. Thereafter, the reactant was taken out from the reactor to obtain a polypropylene polyol (polyol (c2)) having a hydroxyl value of 44.2 mgKOH/g.
[合成例7]
 開始剤として、グリセリンにプロピレンオキシドを付加したポリプロピレンポリオール(分子量1000)を用いた。
 反応器に、上記開始剤47.0g及び触媒としてTBA-DMC触媒0.04gを仕込み、反応器を130℃に加熱し、窒素を導入して、加圧(約0.5MPa)した後に減圧(約0.1MPa)する一連の操作を3回繰り返した後、130℃で2時間脱気した。脱気後、窒素圧力を0.1MPaまで加圧した。次いで、環状エーテルとしてのPOを35.0g加え、発熱したことを確認後、さらにPO 318gを18時間かけて加えた。130℃で2時間反応させた後、液温130℃、減圧下で2時間保持した。その後、反応器から反応物を取り出し、水酸基価が22.5mgKOH/gのポリプロピレンポリオール(ポリオール(c3))を得た。
[Synthesis example 7]
As an initiator, polypropylene polyol (molecular weight 1000), which is obtained by adding propylene oxide to glycerin, was used.
A reactor was charged with 47.0 g of the above initiator and 0.04 g of TBA-DMC catalyst as a catalyst, the reactor was heated to 130°C, nitrogen was introduced, and the pressure was increased (approximately 0.5 MPa), followed by reduced pressure ( After repeating a series of operations three times at a pressure of about 0.1 MPa), the mixture was degassed at 130° C. for 2 hours. After degassing, the nitrogen pressure was increased to 0.1 MPa. Next, 35.0 g of PO as a cyclic ether was added, and after confirming that heat was generated, 318 g of PO was further added over 18 hours. After reacting at 130°C for 2 hours, the liquid temperature was maintained at 130°C for 2 hours under reduced pressure. Thereafter, the reactant was taken out from the reactor to obtain a polypropylene polyol (polyol (c3)) having a hydroxyl value of 22.5 mgKOH/g.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 以下の例において、例1~例4は実施例、例5~例7は比較例である。
[例1]
(1)イソシアネート基末端ウレタンプレポリマーの合成(主剤の調製)
 撹拌機を備えた2000mlの反応容器内に、ポリエチレングリコール末端ポリプロピ
レングリコール(平均水酸基数2、水酸基価換算分子量4,000)を280g加え、次いで、4,4’-ジフェニルメタンジイソシアネート(イソシアネート基含量33.6質量%)(以下、MDI)を126g加え、室温(25℃)で混合した後、80℃に加熱して3時間反応させた。その後、オキシエチレン基末端ポリオキシエチレン/プロピレンポリオール(平均水酸基数3、数平均分子量5,100、1級アルコール含有量14.5質量%)を560g加え混合し、80℃に加熱して3時間反応させた(イソシアネートインデックス:216)。次に、反応液の温度が室温(25℃)になるまで冷却した後、可塑剤としてDIDP(フタル酸イソデシル)を100g、及び加水分解抑制剤としてカルボジイミド変性MDI(商品名:ミリオネートMTL、東ソー株式会社製、イソシアネート含有率28.9%)を577g加え混合し、室温(25℃)で撹拌し、イソシアネート基末端ウレタンプレポリマーP1を得た(イソシアネートインデックス:1067)。
In the following examples, Examples 1 to 4 are examples, and Examples 5 to 7 are comparative examples.
[Example 1]
(1) Synthesis of isocyanate group-terminated urethane prepolymer (preparation of main agent)
Into a 2000 ml reaction vessel equipped with a stirrer, 280 g of polyethylene glycol-terminated polypropylene glycol (average number of hydroxyl groups, molecular weight converted to hydroxyl value 4,000) was added, and then 4,4'-diphenylmethane diisocyanate (isocyanate group content 33.0 g) was added. 6% by mass) (hereinafter referred to as MDI) and mixed at room temperature (25°C), the mixture was heated to 80°C and reacted for 3 hours. Then, 560g of oxyethylene group-terminated polyoxyethylene/propylene polyol (average number of hydroxyl groups 3, number average molecular weight 5,100, primary alcohol content 14.5% by mass) was added and mixed, and heated to 80°C for 3 hours. reacted (isocyanate index: 216). Next, after cooling the reaction solution to room temperature (25°C), 100 g of DIDP (isodecyl phthalate) was added as a plasticizer, and carbodiimide-modified MDI (trade name: Millionate MTL, Tosoh Corporation) was added as a hydrolysis inhibitor. 577g of urethane prepolymer P1 (manufactured by Nippon Steel Corporation, isocyanate content: 28.9%) was added and mixed, and the mixture was stirred at room temperature (25°C) to obtain isocyanate group-terminated urethane prepolymer P1 (isocyanate index: 1067).
(2)硬化剤の調製
 反応容器中に、合成例1で得られたポリエーテルポリカーボネートポリオール(a1)48.0g、鎖延長剤として1,4-BD8.8g及びメタキシレンジアミン(MXDA)1.0g、充填剤としてゼオライト(商品名:SP#600、日東粉化工業株式会社製)10.33g、触媒としてトリエチレンジアミン0.05gを加え、遠心撹拌機で撹拌し硬化剤を得た。
(2) Preparation of curing agent In a reaction vessel, 48.0 g of the polyether polycarbonate polyol (a1) obtained in Synthesis Example 1, 8.8 g of 1,4-BD as a chain extender, and 1.0 g of metaxylene diamine (MXDA) were placed. 0 g, 10.33 g of zeolite (trade name: SP#600, manufactured by Nitto Funka Kogyo Co., Ltd.) as a filler, and 0.05 g of triethylenediamine as a catalyst were added and stirred with a centrifugal stirrer to obtain a curing agent.
(3)ウレタン樹脂の合成
 上記で得られた硬化剤68.2gと、主剤として、イソシアネート基末端ウレタンプレポリマーP1 85.4g及びカルボジイミド変性MDI(商品名:ミリオネートMTL) 5.5gとを撹拌機にて室温(25℃)で混合し反応させ、ウレタン樹脂を得た(イソシアネートインデックス:110)。
 ここで、ポリエーテルポリカーボネートポリオール(a1)が有する水酸基数に対する、イソシアネート基末端ウレタンプレポリマーP1のイソシアネート基の数を100倍した値を、上記のイソシアネートインデックスとした。
(3) Synthesis of urethane resin 68.2 g of the curing agent obtained above and 85.4 g of isocyanate group-terminated urethane prepolymer P1 and 5.5 g of carbodiimide-modified MDI (trade name: Millionate MTL) as main ingredients are mixed in a stirrer. They were mixed and reacted at room temperature (25°C) to obtain a urethane resin (isocyanate index: 110).
Here, the value obtained by multiplying the number of isocyanate groups in the isocyanate group-terminated urethane prepolymer P1 by 100 with respect to the number of hydroxyl groups possessed by the polyether polycarbonate polyol (a1) was defined as the above-mentioned isocyanate index.
[例2~7]
 主剤及び硬化剤の種類並びに配合量を表2に示すように変更した以外は、例1と同様の手順でウレタン樹脂を製造した。
 各接着剤組成物のイソシアネートインデックス、並びにフィルム成形性、耐光性、破断強度、及び破断伸びの評価結果を表2に示す。
[Examples 2 to 7]
A urethane resin was produced in the same manner as in Example 1, except that the types and amounts of the base resin and curing agent were changed as shown in Table 2.
Table 2 shows the evaluation results of the isocyanate index, film formability, light resistance, breaking strength, and breaking elongation of each adhesive composition.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 例1~4で得られたウレタン樹脂は、いずれもフィルム成形性が良好である。また、その硬化物は、いずれも耐光性、破断強度、及び破断伸びの項目で良好な結果が得られており、耐光性、破断強度、及び破断伸びに優れることがわかる。 The urethane resins obtained in Examples 1 to 4 all have good film formability. In addition, all of the cured products obtained good results in terms of light resistance, breaking strength, and breaking elongation, indicating that they are excellent in light resistance, breaking strength, and breaking elongation.

Claims (13)

  1.  イソシアネート基末端ウレタンプレポリマー及びポリエーテルポリカーボネートポリオールを含む接着剤組成物であって、
     前記ポリエーテルポリカーボネートポリオールは、1分子中に末端基を3個以上有し、並びに開始剤に由来する構成単位、環状エーテルに由来する構成単位、及び二酸化炭素に由来する構成単位を有し、かつ1分子中の前記二酸化炭素に由来する構成単位の割合が、10~30質量%である、接着剤組成物。
    An adhesive composition comprising an isocyanate group-terminated urethane prepolymer and a polyether polycarbonate polyol,
    The polyether polycarbonate polyol has three or more terminal groups in one molecule, and has a structural unit derived from an initiator, a structural unit derived from a cyclic ether, and a structural unit derived from carbon dioxide, and An adhesive composition in which the proportion of the structural unit derived from carbon dioxide in one molecule is 10 to 30% by mass.
  2.  前記ポリエーテルポリカーボネートポリオールの水酸基価換算分子量は500~20,000である、請求項1に記載の接着剤組成物。 The adhesive composition according to claim 1, wherein the polyether polycarbonate polyol has a molecular weight in terms of hydroxyl value of 500 to 20,000.
  3.  前記ポリエーテルポリカーボネートポリオールの、重量平均分子量(Mw)及び数平均分子量(Mn)の比で表される分子量分布(Mw/Mn)は1.05~3.00である、請求項1に記載の接着剤組成物。 The polyether polycarbonate polyol has a molecular weight distribution (Mw/Mn) expressed as a ratio of weight average molecular weight (Mw) and number average molecular weight (Mn) of 1.05 to 3.00, according to claim 1. Adhesive composition.
  4.  前記ポリエーテルポリカーボネートポリオールにおける前記二酸化炭素に由来する構成単位、前記環状エーテルに由来する構成単位、及び前記二酸化炭素に由来する構成単位がこの順に連鎖した構成単位の割合は、2質量%以上である、請求項1に記載の接着剤組成物。 The proportion of structural units in which the carbon dioxide-derived structural units, the cyclic ether-derived structural units, and the carbon dioxide-derived structural units are chained in this order in the polyether polycarbonate polyol is 2% by mass or more. , the adhesive composition according to claim 1.
  5.  前記ポリエーテルポリカーボネートポリオールが有する前記環状エーテルに由来する構成単位は、エチレンオキシドに由来する構成単位、及びプロピレンオキシドに由来する構成単位からなる群より選択される少なくとも1種の構成単位である、請求項1に記載の接着剤組成物。 The structural unit derived from the cyclic ether that the polyether polycarbonate polyol has is at least one structural unit selected from the group consisting of structural units derived from ethylene oxide and structural units derived from propylene oxide. 1. The adhesive composition according to 1.
  6.  前記ポリエーテルポリカーボネートポリオールが有する末端基が水酸基である、請求項1に記載の接着剤組成物。 The adhesive composition according to claim 1, wherein the terminal group of the polyether polycarbonate polyol is a hydroxyl group.
  7.  前記ポリエーテルポリカーボネートポリオールにおける水酸基に対する前記イソシアネート基末端ウレタンプレポリマーにおけるイソシアネート基のモル比の100倍が80以上150以下ある、請求項6に記載の接着剤組成物。 The adhesive composition according to claim 6, wherein the molar ratio of the isocyanate groups in the isocyanate group-terminated urethane prepolymer to the hydroxyl groups in the polyether polycarbonate polyol is 100 times greater than or equal to 80 and less than or equal to 150.
  8.  前記ポリエーテルポリカーボネートポリオールの含有量は、接着剤組成物全量に対して10~70質量%である、請求項1に記載の接着剤組成物。 The adhesive composition according to claim 1, wherein the content of the polyether polycarbonate polyol is 10 to 70% by mass based on the total amount of the adhesive composition.
  9.  さらに、鎖延長剤を含有する、請求項1に記載の接着剤組成物。 The adhesive composition according to claim 1, further comprising a chain extender.
  10.  請求項1~9のいずれか一項に記載の接着剤組成物の硬化物。 A cured product of the adhesive composition according to any one of claims 1 to 9.
  11.  イソシアネート基末端ウレタンプレポリマー及びポリエーテルポリカーボネートポリオールを含む接着剤組成物の製造方法であって、
     触媒の存在下で、1分子中に活性水素含有基を3個以上有する開始剤と、環状エーテルと、二酸化炭素とを重合させて、ポリエーテルポリカーボネートポリオールを得、当該ポリエーテルポリカーボネートポリオール及びイソシアネート基末端ウレタンプレポリマーを混合し、
     前記ポリエーテルポリカーボネートポリオールの1分子中の二酸化炭素に由来する構成単位の割合は10~30質量%である、接着剤組成物の製造方法。
    A method for producing an adhesive composition comprising an isocyanate group-terminated urethane prepolymer and a polyether polycarbonate polyol, the method comprising:
    In the presence of a catalyst, an initiator having three or more active hydrogen-containing groups in one molecule, a cyclic ether, and carbon dioxide are polymerized to obtain a polyether polycarbonate polyol, and the polyether polycarbonate polyol and isocyanate groups are polymerized. Mix the terminal urethane prepolymer,
    A method for producing an adhesive composition, wherein the proportion of structural units derived from carbon dioxide in one molecule of the polyether polycarbonate polyol is 10 to 30% by mass.
  12.  前記触媒が、複合金属シアン化物錯体触媒及び金属サレン錯体触媒からなる群より選択される少なくとも1種を含む、請求項11に記載の接着剤組成物の製造方法。 The method for producing an adhesive composition according to claim 11, wherein the catalyst includes at least one selected from the group consisting of a composite metal cyanide complex catalyst and a metal salen complex catalyst.
  13.  前記イソシアネート基末端ウレタンプレポリマーはポリオールとポリイソシアネート化合物とを、前記ポリオールにおける水酸基に対する前記ポリイソシアネート化合物におけるイソシアネート基のモル比の100倍が、110以上600以下となるように反応させた反応生成物である、請求項11又は12に記載の接着剤組成物の製造方法。 The isocyanate group-terminated urethane prepolymer is a reaction product obtained by reacting a polyol and a polyisocyanate compound such that a molar ratio of 100 times the isocyanate group in the polyisocyanate compound to the hydroxyl group in the polyol is 110 or more and 600 or less. The method for producing an adhesive composition according to claim 11 or 12.
PCT/JP2023/014492 2022-04-22 2023-04-10 Adhesive composition, cured product of said adhesive composition, and method for producing said adhesive composition WO2023204068A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-070674 2022-04-22
JP2022070674 2022-04-22

Publications (1)

Publication Number Publication Date
WO2023204068A1 true WO2023204068A1 (en) 2023-10-26

Family

ID=88419971

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/014492 WO2023204068A1 (en) 2022-04-22 2023-04-10 Adhesive composition, cured product of said adhesive composition, and method for producing said adhesive composition

Country Status (1)

Country Link
WO (1) WO2023204068A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010516796A (en) * 2007-01-30 2010-05-20 ビーエーエスエフ ソシエタス・ヨーロピア Method for producing polyether carbonate polyol
JP2018511689A (en) * 2015-04-13 2018-04-26 レプソル・ソシエダッド・アノニマRepsol.S.A. Novel compositions for polyurethane applications
JP2018528997A (en) * 2015-08-04 2018-10-04 レプソル・ソシエダッド・アノニマRepsol.S.A. Novel preparations for pressure sensitive adhesives
JP2019536848A (en) * 2016-10-18 2019-12-19 レプソル・エセ・アRepsol, S.A. New high molecular weight polymers derived from waste raw materials
WO2020095995A1 (en) * 2018-11-08 2020-05-14 株式会社Adeka Curable resin composition
JP2021059722A (en) * 2019-10-04 2021-04-15 Agc株式会社 Curable material, curable composition, cured product, method for producing polycarbonate polymer, and polycarbonate polymer
WO2021132558A1 (en) * 2019-12-26 2021-07-01 三洋化成工業株式会社 Two-part curable urethane adhesive, cured product of two-part curable urethane adhesive, and urethane adhesive sheet
JP2022027509A (en) * 2020-07-30 2022-02-10 Agc株式会社 Method for producing polyoxyalkylene diol, method for producing polyurethane resin precursor, method for producing polyurethane resin, polyurethane resin, polyurethane resin composition, and article
WO2023013510A1 (en) * 2021-08-06 2023-02-09 Agc株式会社 Polyurethane resin and method for producing same

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010516796A (en) * 2007-01-30 2010-05-20 ビーエーエスエフ ソシエタス・ヨーロピア Method for producing polyether carbonate polyol
JP2018511689A (en) * 2015-04-13 2018-04-26 レプソル・ソシエダッド・アノニマRepsol.S.A. Novel compositions for polyurethane applications
JP2018528997A (en) * 2015-08-04 2018-10-04 レプソル・ソシエダッド・アノニマRepsol.S.A. Novel preparations for pressure sensitive adhesives
JP2019536848A (en) * 2016-10-18 2019-12-19 レプソル・エセ・アRepsol, S.A. New high molecular weight polymers derived from waste raw materials
WO2020095995A1 (en) * 2018-11-08 2020-05-14 株式会社Adeka Curable resin composition
JP2021059722A (en) * 2019-10-04 2021-04-15 Agc株式会社 Curable material, curable composition, cured product, method for producing polycarbonate polymer, and polycarbonate polymer
WO2021132558A1 (en) * 2019-12-26 2021-07-01 三洋化成工業株式会社 Two-part curable urethane adhesive, cured product of two-part curable urethane adhesive, and urethane adhesive sheet
JP2022027509A (en) * 2020-07-30 2022-02-10 Agc株式会社 Method for producing polyoxyalkylene diol, method for producing polyurethane resin precursor, method for producing polyurethane resin, polyurethane resin, polyurethane resin composition, and article
WO2023013510A1 (en) * 2021-08-06 2023-02-09 Agc株式会社 Polyurethane resin and method for producing same

Similar Documents

Publication Publication Date Title
US10907012B2 (en) Polycarbonate diol and producing method thereof, and polyurethane and active energy ray-curable polymer composition both formed using same
JP6860059B2 (en) Polycarbonate diol, its manufacturing method, and polyurethane using it
US9834711B2 (en) One-pack moisture-curing composition
KR102291750B1 (en) Reactive UV absorbers and their applications
JP5570043B2 (en) Curable composition for soft feel coatings with fast drying speed and improved resistance
JP5344852B2 (en) Curable coating composition containing polycarbonate diol
EP2821423B1 (en) Polyurethane
TW202210582A (en) Polyol compositions and methods
EP3421515A1 (en) Urethane resin composition, and urethane resin-molded article using same
WO2015153399A1 (en) Natural oil derived blocked prepolymers and acrylic plastisol compositions having the blocked prepolymers
WO2023204068A1 (en) Adhesive composition, cured product of said adhesive composition, and method for producing said adhesive composition
WO2015115291A1 (en) Polyisocyanate composition, two-pack-type curable polyurethane resin, coating material, and adhesive
JP7235698B2 (en) Urethane adhesive composition
EP4269096A1 (en) Aqueous dispersion liquid, adhesive agent composition, adhesive agent, affixing material, and adhesive tape
EP4249566A1 (en) Urethane-based adhesive composition
EP4130085A1 (en) Active energy ray-curable polyurethane resin, curable resin composition, and production method for active energy ray-curable polyurethane resin
WO2013016265A1 (en) Blocked prepolymers and acrylic plastisol compositions comprising the blocked prepolymers
JP7461884B2 (en) Two-component coating composition
EP3568424B1 (en) Physical property improvement of polyurethanes
WO2023233962A1 (en) Adhesive composition and article
JP2021161136A (en) Curable resin composition
EP4379015A1 (en) Two-pack type adhesive composition and cured object
JP2022161606A (en) polyurethane urea resin
EP4379014A1 (en) One-pack type adhesive agent composition and cured product

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23791717

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2024516200

Country of ref document: JP

Kind code of ref document: A