WO2023127088A1 - Saddled vehicle - Google Patents
Saddled vehicle Download PDFInfo
- Publication number
- WO2023127088A1 WO2023127088A1 PCT/JP2021/048770 JP2021048770W WO2023127088A1 WO 2023127088 A1 WO2023127088 A1 WO 2023127088A1 JP 2021048770 W JP2021048770 W JP 2021048770W WO 2023127088 A1 WO2023127088 A1 WO 2023127088A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- motor
- engine
- battery
- drive
- vehicle
- Prior art date
Links
- 238000002485 combustion reaction Methods 0.000 claims abstract description 21
- 230000005611 electricity Effects 0.000 claims description 3
- 239000000725 suspension Substances 0.000 description 9
- 230000005540 biological transmission Effects 0.000 description 8
- 238000010586 diagram Methods 0.000 description 8
- 238000010248 power generation Methods 0.000 description 8
- 230000008929 regeneration Effects 0.000 description 6
- 238000011069 regeneration method Methods 0.000 description 6
- 239000000446 fuel Substances 0.000 description 3
- 239000002828 fuel tank Substances 0.000 description 3
- 230000005484 gravity Effects 0.000 description 3
- 230000001172 regenerating effect Effects 0.000 description 3
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 238000004146 energy storage Methods 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 229910001416 lithium ion Inorganic materials 0.000 description 2
- 239000007858 starting material Substances 0.000 description 2
- 230000001133 acceleration Effects 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 230000000712 assembly Effects 0.000 description 1
- 238000000429 assembly Methods 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000004590 computer program Methods 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 238000009499 grossing Methods 0.000 description 1
- 210000003127 knee Anatomy 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60K—ARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
- B60K1/00—Arrangement or mounting of electrical propulsion units
- B60K1/02—Arrangement or mounting of electrical propulsion units comprising more than one electric motor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60K—ARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
- B60K1/00—Arrangement or mounting of electrical propulsion units
- B60K1/04—Arrangement or mounting of electrical propulsion units of the electric storage means for propulsion
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B62—LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
- B62M—RIDER PROPULSION OF WHEELED VEHICLES OR SLEDGES; POWERED PROPULSION OF SLEDGES OR SINGLE-TRACK CYCLES; TRANSMISSIONS SPECIALLY ADAPTED FOR SUCH VEHICLES
- B62M7/00—Motorcycles characterised by position of motor or engine
- B62M7/02—Motorcycles characterised by position of motor or engine with engine between front and rear wheels
Definitions
- the present invention relates to a saddle-ride type vehicle.
- Patent Literature 1 discloses a hybrid motorcycle equipped with a generator-driving engine.
- the drive motor is arranged in the transmission portion of the existing vehicle, and the drive motor and the rear wheels are connected by a drive chain or the like.
- Patent Document 2 discloses that a hybrid motorcycle is provided with a drive motor and a generator motor, and these motors are distributed and arranged on both sides of the crankshaft of the engine.
- a drive system including the engine and the two motors in a saddle type vehicle that includes a drive motor that provides drive force to the drive wheels, a second motor for power generation, and an engine.
- the present invention provides a drive motor (M1) that provides drive force to the drive wheels (4), a battery (37) that provides power to the drive motor (M1), and the drive motor (M1).
- the drive motor (M1) and the second motor (M2) are arranged side by side so as to be adjacent to each other in top view. provide a vehicle.
- the drive motor and the second motor within the lateral width of the internal combustion engine, it is possible to suppress an increase in the lateral width of the drive system including the internal combustion engine and both motors, thereby increasing the flexibility of the vehicle body layout. can be done.
- the motors can be grouped closer together and the wiring connected to each motor can be shortened.
- the drive motor (M1) and the second motor (M2) may be arranged so as to fit within the lateral width (H1) of the internal combustion engine (E). According to this configuration, it is possible to reliably suppress an increase in the lateral width of the drive system including the internal combustion engine and the two motors, and increase the flexibility of the vehicle body layout.
- control device (34) may be arranged above the drive motor (M1) and the second motor (M2). According to this configuration, by stacking the control device above the drive motor and the second motor, it is possible to suppress an increase in the lateral width of the drive system including the control device.
- control device (34) may be arranged so as to fit within the lateral width (H1) of the internal combustion engine (E). According to this configuration, it is possible to reliably suppress an increase in the lateral width of the drive system including the control device.
- the battery (37) may be arranged behind the control device (34). According to this configuration, by arranging the battery above and behind the drive motor and the second motor, it is possible to suppress an increase in the lateral width of the drive system including the battery.
- the battery (37) may be arranged to fit within the lateral width (H1) of the internal combustion engine (E). With this configuration, it is possible to reliably suppress an increase in the lateral width of the drive system including the battery.
- the battery (37) may include a plurality of unit batteries (37a), and the plurality of unit batteries (37a) may be arranged side by side. According to this configuration, the height of the entire battery in the vertical direction can be suppressed, and the position of the center of gravity of the battery can be easily brought closer to the center of the vehicle body.
- a saddle-ride type vehicle that includes a drive motor that applies drive force to drive wheels, a second motor for power generation, and an engine, it is possible to suppress an increase in the lateral width of the drive system that includes the engine and both motors. can.
- FIG. 1 is a left side view schematically showing a motorcycle according to an embodiment of the invention
- FIG. 2 is a configuration diagram showing an outline of a drive system of the motorcycle
- FIG. 3 is a configuration diagram corresponding to FIG. 2 showing an EV mode of the drive system
- FIG. 3 is a configuration diagram corresponding to FIG. 2 showing a hybrid mode of the drive system
- FIG. 3 is a configuration diagram corresponding to FIG. 2 showing a regeneration mode of the drive system
- FIG. 3 is a configuration diagram corresponding to FIG. 2 showing an engine drive mode of the drive system
- It is a block diagram which shows the outline of the control part of the said drive system.
- Fig. 2 is a plan view showing the outline of the motorcycle;
- FIG. 1 shows a motorcycle 1 as an example of a straddle-type vehicle according to the present embodiment.
- the motorcycle 1 comprises a drive system S including an engine (internal combustion engine) E and two electric motors M1 and M2, and runs by cooperating engine power and motor power.
- the motorcycle 1 is a hybrid vehicle equipped with a so-called two-motor hybrid system. It should be noted that the present invention may be applied to a one-motor hybrid vehicle or an electric vehicle that does not have an internal combustion engine, as long as it does not depart from the gist of the present invention described below.
- the motorcycle 1 includes front wheels (steered wheels) 3 that are steered by a steering wheel 2 and rear wheels (driving wheels) 4 that are driven by a drive system S.
- the motorcycle 1 is a saddle type vehicle in which the rider straddles the vehicle body, and the vehicle body can be swung (banked) in the lateral direction (roll direction) with reference to ground contact points of the front and rear wheels 3 and 4 .
- the handle 2 may be a left and right integrated bar handle or a left and right separate separate handle, and may not be a bar type handle.
- the motorcycle 1 includes a vehicle body frame 5 that serves as a main frame of the vehicle body.
- the body frame 5 includes a head pipe 6, a main frame 7, a pivot frame 8 and a rear frame 9.
- the vehicle body frame 5 steerably supports a front fork 12 of a front wheel suspension 11 at a head pipe 6 positioned in the center of the front end portion in the left-right direction.
- the vehicle body frame 5 supports a swing arm 16 of a rear wheel suspension device 15 in a pivot frame 8 positioned in the front-rear intermediate portion so as to be capable of swinging up and down.
- the vehicle body frame 5 is integrally provided from the head pipe 6 to the rear frame 9 behind the pivot frame 8 by a joining means such as welding.
- a part of the vehicle body frame 5 (for example, the rear frame 9 and the like) may be detachable by bolting or the like.
- reference numeral 7a indicates a pair of left and right main frame members provided in the main frame 7
- reference numeral 8a indicates a pair of left and right pivot frame members provided in the pivot frame 8
- reference numeral 9a indicates a pair of left and right rear frame members provided in the rear frame 9, respectively.
- the pair of left and right frame members are separated from each other in the vehicle width direction.
- the head pipe 6 has a steering axis tilted backward with respect to the vertical direction.
- the head pipe 6 supports the front wheel 3 and the front wheel suspension device 11 so as to be rotatable about the steering axis.
- the front wheel suspension system 11 includes a pair of left and right front forks 12 . Upper portions of the left and right front forks 12 are supported by the head pipe 6 via a steering stem. Lower ends of the left and right front forks 12 support the axle 3 a of the front wheel 3 .
- the left and right front forks 12 are of a telescopic type, respectively, and constitute a front suspension of the motorcycle 1 .
- the front wheel suspension 11 is not limited to constituting a telescopic front suspension, and may constitute, for example, a link-type front suspension.
- the pivot frame 8 supports the front end of the swing arm 16 via a pivot shaft (swing shaft) 17 extending in the vehicle width direction.
- a rear end portion of the swing arm 16 supports an axle 4 a of the rear wheel 4 .
- a rear cushion is interposed between the front portion of the swing arm 16 and the front-rear middle portion of the body frame 5 (for example, the cross frame near the pivot frame 8).
- the swing arm 16 and the rear cushion constitute a rear suspension of the motorcycle 1. As shown in FIG.
- the rear cushion may be interposed between the rear portion of the swing arm 16 and the rear portion of the body frame 5 (for example, the rear frame 9).
- the entire vehicle body including the vehicle body frame 5 is covered with a vehicle body cover 19.
- the vehicle body cover 19 is divided into, for example, a front body cover 19a that covers the front part of the vehicle body and a rear body cover 19b that covers the rear part of the vehicle body, with the front-rear center of the vehicle body as a boundary.
- the rear frame 9 extends rearward and upward of the pivot frame 8 .
- a seat 21 for seating an occupant is supported on the rear frame 9 .
- the rear frame 9 supports the seating load of an occupant seated on the seat 21 .
- the rear frame 9 receives a reaction force when the cushion expands and contracts.
- the seat 21 integrally includes, for example, a front seating portion on which the driver sits and a rear seating portion on which the rear passenger sits.
- the periphery of the rear frame 9 is covered with a rear body cover 19b extending from below both sides of the seat 21 to the rear.
- the seat 21 is attached to, for example, the rear body cover 19b in a detachable or openable manner. By attaching/detaching or opening/closing the seat 21, the upper part of the rear body cover 19b is opened/closed. An occupant can sit on the seat 21 in the closed state in which the seat 21 is attached and the upper portion of the rear body cover 19b is closed. When the seat 21 is removed and the upper portion of the rear body cover 19b is opened, parts and spaces below the seat 21 can be accessed.
- the seat 21 is lockable in the closed state.
- the seat 21 may be configured to rotate around a hinge shaft provided at either the front or rear to open and close the upper portion of the rear body cover 19b.
- a vehicle component 23 having a knee grip portion is supported in front of the seat 21 and above the main frame 7 .
- the vehicle components 23 include, for example, existing vehicle components such as a fuel tank and air cleaner for the engine E, a 12V battery for auxiliary equipment, and an article storage section for loading and unloading luggage by the occupant. and PCU 34 may be included.
- the present invention may be applied to a scooter-type vehicle in which no vehicle components are provided in front of the seat 21 and a straddle space is formed.
- FIG. 2 is a block diagram showing the configuration of the drive system S.
- the drive system S includes an engine E, a first motor M1, a second motor M2, a power switching device 31, a PCU 34, and a battery 37.
- the engine E is, for example, a multi-cylinder engine, and generates rotational driving force for the crankshaft 26 from the reciprocating motion of the piston of each cylinder.
- the engine E is arranged with the rotation center axis C1 of the crankshaft 26 along the vehicle width direction (horizontal direction).
- the crankshaft 26 is housed inside a crankcase 27 .
- a cylinder block 28 protrudes from the crankcase 27, and a piston corresponding to each cylinder is fitted in the cylinder block 28.
- Each piston is connected to the crankshaft 26 via a connecting rod.
- first motor M1 and the second motor M2 are coaxial with each other and arranged in the left-right direction (see FIG. 8), and are arranged behind the engine E.
- the first motor M1 and the second motor M2 are electric motors independent of each other, with rotors and stators independent of each other.
- the first motor M1 and the second motor M2 may be configured as an integrated motor assembly using predetermined assembly members (cases, brackets, stays, bolts and nuts, etc.).
- the first motor M1 and the second motor M2 are brushless three-phase AC motors.
- the first motor M1 is a driving motor that generates rotational driving force for driving the rear wheels, and regenerates (generates power) when the vehicle decelerates.
- the second motor M2 is a power generating motor that receives the driving force of the engine E to generate power, and performs at least one of charging the battery 37 and supplying power to the first motor M1.
- variable speed driving is performed by, for example, VVVF (variable voltage variable frequency) control.
- VVVF variable voltage variable frequency
- the first motor M1 is speed-change controlled to have a continuously variable transmission, but is not limited to this, and may be speed-change controlled to have a stepped transmission.
- the operation of the first motor M1 may include driving as an assist motor that assists the driving of the engine E.
- Operation of the first motor M1 may include driving the engine E as a starter motor.
- the second motor M2 generates electricity by rotating the rotor with the rotational power of the crankshaft 26 while the engine E is running.
- the operation of the second motor M2 may include driving as an assist motor that assists the driving of the engine E.
- Operation of the second motor M2 may include driving the engine E as a starter motor.
- the power switching device 31 switches the power transmission path between the engine E, the first motor M1 and the second motor M2. Under the control of the power switching device 31, the engine E, the first motor M1 and the second motor M2 cooperate to drive the rear wheel 4 (make the motorcycle 1 run). Under the control of the power switching device 31, the first motor M1 and the second motor M2 can be driven to generate power.
- the drive system S and the rear wheels 4 are connected by a chain-type transmission mechanism 56, for example.
- the PCU (Power Control Unit) 34 is an integrated control unit including a PDU (Power Drive Unit) 34a and an ECU (Electric Control Unit) 34b.
- the PCU 34 mainly controls the operation (driving and power generation) of the first motor M1 and the second motor M2 based on various sensor information.
- PCU 34 controls the current and voltage between first motor M1 and second motor M2 and battery 37 .
- the PCU 34 includes a converter that raises and lowers voltage and an inverter that converts DC current to AC current.
- the inverter includes a bridge circuit using a plurality of switching elements such as transistors, a smoothing capacitor, and the like, and controls energization to each stator winding of the first motor M1 and the second motor M2.
- the first motor M ⁇ b>1 and the second motor M ⁇ b>2 switch between power running and power generation according to control by the PCU 34 .
- the battery 37 obtains a predetermined high voltage (eg, 48V to 192V) by connecting a plurality of unit batteries 37a in series, for example.
- the battery 37 includes a lithium ion battery as chargeable/dischargeable energy storage.
- the battery 37 supplies electric power to the first motor M1 and can store electric power regenerated by the first motor M1 and electric power generated by the second motor M2.
- Electric power from the battery 37 is supplied to the PDU 34a, which is the motor driver, via a contactor or the like that is interlocked with the main switch of the motorcycle 1, for example. Electric power from the battery 37 is converted from direct current to three-phase alternating current by the PDU 34a, and then supplied to the first motor M1 and the second motor M2.
- the output voltage from the battery 37 is stepped down through the DC-DC converter and used to charge the 12V sub-battery.
- the sub-battery supplies power to general electrical components such as lamps, meters, locking devices, and control system components such as ECUs. By installing a sub-battery, various electromagnetic locks can be operated even when the battery 37 is removed.
- the battery 37 can be charged by a charger connected to an external power supply while mounted on the vehicle body, for example.
- the battery 37 may be detached from the vehicle body and charged by a charger outside the vehicle.
- the battery 37 has a BMU (Battery Management Unit) that monitors the charge/discharge status, temperature, and so on. Information monitored by the BMU is shared with the ECU 34b when the battery 37 is mounted on the vehicle body.
- the ECU 34b drives and controls the first motor M1 and the second motor M2 via the PDU 34a based on detection information input from various sensors.
- FIG. 7 is a block diagram showing the configuration of the control section 41 of the drive system S.
- the control unit 41 includes a PCU 34, an engine ECU 42, and a clutch ECU 43.
- PCU 34 controls the operation (driving and power generation) of first motor M1 and second motor M2.
- the engine ECU 42 controls the start, operation and stop of the engine E by activating engine accessories such as an ignition device and a fuel injection device according to the degree of opening of the accelerator.
- the engine ECU 42 includes an accelerator opening sensor 46 for detecting the amount of operation of an accelerator operator (for example, an accelerator grip), an engine speed sensor 47 for detecting the engine speed, and a vehicle speed (for example, wheel speed) of the motorcycle 1. Detected information from the vehicle speed sensor 48 and the like is input.
- the engine ECU 42 operates engine accessories such as an ignition device and a fuel injection device based on various types of input detection information.
- the clutch ECU 43 is a power switching control section, and operates the power switching device 31 based on various sensor information.
- the clutch ECU 43 switches which of the engine E, the first motor M1 and the second motor M2 should be connected to the rear wheels 4 so as to be able to transmit power.
- the clutch ECU 43 is connected to a clutch actuator 32 that connects and disconnects a clutch in the power switching device 31, for example.
- the engine ECU 42 and the clutch ECU 43 may be provided separately or integrally.
- the control unit 41 includes, for example, a remaining fuel capacity sensor 45 for detecting the remaining capacity of the fuel tank of the engine E, an accelerator opening sensor 46 for detecting the accelerator opening (required output amount) of the passenger, and a rotational speed of the engine E.
- a remaining fuel capacity sensor 45 for detecting the remaining capacity of the fuel tank of the engine E
- an accelerator opening sensor 46 for detecting the accelerator opening (required output amount) of the passenger
- a rotational speed of the engine E Various sensors such as an engine rotation speed sensor 47 that detects the vehicle speed of the motorcycle 1, a vehicle speed sensor 48 that detects the vehicle speed of the motorcycle 1, and a remaining battery capacity sensor 49 that detects the remaining capacity of the battery 37 are connected.
- the control unit 41 is activated, for example, when the main switch of the motorcycle 1 is turned on, and starts controlling the drive system S.
- the control unit 41 stores, in memory, a map in which the correlation between the vehicle speed and the output (torque) is set for each accelerator opening, for example.
- the control unit 41 appropriately causes the engine E, the first motor M1 and the second motor M2 to cooperate based on the output from each sensor, a predetermined map, and the like.
- the control unit 41 applies torque from the drive system S to the rear wheel 4 to run the motorcycle 1 and enables the battery 37 to be charged.
- the control unit 41 has a plurality of control modes for cooperating the engine E, the first motor M1 and the second motor M2.
- the control unit 41 functions as a control mode switching unit that switches between a plurality of control modes. Switching of the control mode is functionally realized by processing executed based on a preset computer program.
- the plurality of control modes of control unit 41 include EV mode, hybrid mode, regeneration mode, and engine drive mode.
- EV mode the engine E is stopped, the first motor M1 is driven, and the motorcycle 1 is driven by the driving force of the first motor M1.
- hybrid mode the second motor M2 is driven by the engine E as a generator, and the motorcycle 1 is driven by the driving force of the first motor M1.
- the kinetic energy of the motorcycle 1 is used to drive the first motor M1 as a generator when the motorcycle 1 decelerates, and the battery 37 is charged with the electric power generated by the first motor M1.
- the driving force of the engine E is used to drive the motorcycle 1 .
- Each control mode can be automatically switched according to sensor output or the like, or can be arbitrarily switched by the operation of the passenger.
- the multiple control modes are described in more detail below.
- an EV (Electric Vehicle) mode in which the engine E is stopped and the vehicle is driven by the driving force of the first motor M1 will be described.
- the EV mode is a motor drive mode in which the motorcycle 1 can travel only by the driving force (motor torque) of the first motor M1, for example, when the motorcycle 1 is running at medium to low speeds (especially when cruising).
- the motorcycle 1 is run with the engine E and the second motor M2 disconnected from the rear wheel 4 .
- the EV mode it is also possible to drive the engine E and use the driving force of the engine E to generate electricity with the second motor M2 (hybrid mode).
- the power generated by the second motor M2 is stored in the battery 37, but may be directly supplied to the first motor M1.
- the hybrid mode is implemented, for example, when the motorcycle 1 starts running until it reaches a specified speed, when traveling uphill, when a sudden acceleration is required, and the like.
- the hybrid mode is also implemented when the remaining battery capacity is low. Since the motorcycle 1 is smaller than a passenger car and the mounting size (capacity) of the battery 37 is limited, the hybrid mode is more likely to be used than the EV mode.
- regenerative mode In EV mode and hybrid mode, when the motorcycle 1 decelerates or travels downhill, it shifts to "regenerative mode".
- the regeneration mode the rotational energy of the rear wheels 4 is input to the first motor M1 to regenerate (generate power), and the generated power is stored in the battery 37 .
- the connection between the engine E and the rear wheels 4 may be released, and regeneration may be performed efficiently.
- regenerative braking engine braking
- the first motor M1 may idle to stop regeneration.
- the power switching device 31 the engine E and the rear wheels 4 may be connected to generate engine braking.
- the power switching device 31 connects the engine E and the rear wheels 4 so that power can be transmitted, and the driving force of the engine E drives the motorcycle 1 (engine drive). mode).
- the driving force of the engine E may be used to drive the second motor M ⁇ b>2 to generate power, which may be stored in the battery 37 .
- the engine drive mode at least one of the first motor M1 and the second motor M2 may be driven to assist rear wheel drive.
- the engine E is configured without a transmission behind the crankshaft 26, and the front-to-rear width of the crankcase 27 is narrowed.
- a cylinder block 28 projects obliquely forward and upward from the front portion of the crankcase 27 .
- Reference symbol C2 in the drawing indicates an axis (center axis of the cylinder bore, cylinder axis) along the projecting direction of the cylinder block 28 .
- the cylinder block 28 has the cylinder axis C2 inclined forward with respect to the vertical direction.
- the forward inclination angle of the cylinder axis C2 with respect to the vertical direction is set to, for example, 45 degrees or more, thereby suppressing the vertical height of the engine E as a whole.
- the engine E is arranged at a height facing downward of the vehicle body in the vertical direction (a height at which the lower surface of the crankcase 27 is substantially located at the lower end of the vehicle body between the front and rear wheels 3 and 4).
- the first motor M1 is arranged on the rear left side of the crankcase 27 of the engine E. As shown in FIG. The first motor M1 is arranged at a height overlapping the crankcase 27 of the engine E in the vertical direction. The first motor M1 is arranged with the rotating shaft 151 extending in the left-right direction. The first motor M ⁇ b>1 is provided on a shaft separate from the crankshaft 26 . Reference symbol C3 in the drawing indicates the central axis of the rotation shaft 151 of the first motor M1.
- the first motor M1 is arranged at a height facing downward of the vehicle body in the vertical direction (a height at which the lower end is substantially located at the lower end of the vehicle body between the front and rear wheels 3 and 4).
- the first motor M1 is arranged forward of the pivot frame 8 in a side view.
- the rotation shaft 151 of the first motor M1 is arranged forward and below the pivot shaft 17 in a side view.
- the rotating shaft 151 of the first motor M1 is arranged behind and below the crankshaft 26 in a side view.
- an output shaft 55 parallel to the rotating shaft 151 is arranged above the rotating shaft 151 of the first motor M1.
- the output shaft 55 is an output portion of the drive system S, and outputs drive force (torque) via the power switching device 31 .
- the output shaft 55 is connected to the rear wheel 4 via a chain-type transmission mechanism 56, for example.
- a drive sprocket 56a of a transmission mechanism 56 is supported on the right end of the output shaft 55 so as to be integrally rotatable.
- the second motor M2 is arranged on the rear right side of the crankcase 27 of the engine E.
- the second motor M2 is arranged at a height overlapping the crankcase 27 of the engine E in the vertical direction.
- the second motor M2 is arranged with the rotating shaft 251 extending in the left-right direction.
- the second motor M2 is provided on a shaft separate from the crankshaft 26 .
- Reference symbol C4 in the drawing indicates the central axis of the rotating shaft 251 of the second motor M2.
- the first motor M1 and the second motor M2 are provided coaxially with each other.
- the first motor M1 and the second motor M2 are adjacent to each other in the left-right direction.
- the term "adjacent" used in this embodiment means that there is no other component between the two target components, or that only an assembly member (case, bracket, stay, bolt nut, etc.) is present.
- the first motor M1 and the second motor M2 each have a flat columnar shape with a reduced axial width.
- the first motor M1 is provided larger in both the radial direction and the axial direction than the second motor M2.
- the first motor M1 is offset to the left in the vehicle width direction with respect to the left-right center CL of the vehicle body.
- the second motor M2 is arranged so as to be offset to the right in the vehicle width direction with respect to the left-right center CL of the vehicle body.
- Displacement to one side in the vehicle width direction with respect to the left-right center CL of the vehicle body means that the entire motors M1 and M2 are arranged to one side of the left-right center CL of the vehicle body. is on one side of the vehicle body left-right center CL.
- the first motor M1 may be arranged so as to straddle the left and right center CL of the vehicle body. Enlarging the size of the first motor M1 makes it easier to secure the driving force of the motorcycle 1 .
- the second motor M2 is arranged offset to the left side in the vehicle width direction with respect to the left-right center CL of the vehicle body.
- a battery 37 as a power source for the drive system S is arranged below the seat 21. As shown in FIG. The battery 37 is arranged across the left and right center CL of the vehicle body. As a result, the center of gravity of the completed vehicle can be set near the left and right centers, which improves steering stability.
- the battery 37 is composed of, for example, a plurality of (for example, a pair of left and right) unit batteries 37a. Each unit battery 37a has the same configuration.
- Each unit battery 37a has, for example, a prismatic shape (rectangular parallelepiped shape) that has a rectangular cross section and extends in the longitudinal direction.
- Each unit battery 37a is arranged so that the longitudinal direction thereof is tilted rearward upward, so that it can be easily accommodated in the rearward upward rear body cover 19b as a whole.
- Each unit battery 37a is accommodated, for example, in an integrated battery box.
- the battery 37 generates a predetermined high voltage (48-72V) by connecting a plurality of unit batteries 37a in series.
- Each unit battery 37a is composed of, for example, a lithium ion battery as a chargeable/dischargeable energy storage.
- Each unit battery 37a is connected to the PCU 34 via a junction box (distributor) and a contactor (electromagnetic switch).
- a three-phase cable extends from the PCU 34 and is connected to the first motor M1.
- At least part of the battery 37 is arranged between the left and right rear frame members 9a.
- the battery 37 is spaced apart in front and above the rear wheel 4 in a side view.
- the battery 37 is supported by the left and right rear frame members 9a.
- the battery 37 is positioned below the seat 21 .
- the battery 37 can be accessed (including attachment/detachment and maintenance such as charging) from an upper opening of the rear body cover 19b by attaching/detaching or opening/closing the seat 21, for example.
- the PCU 34 has a rectangular parallelepiped outer shape and is arranged with one side along the vehicle width direction.
- the PCU 34 is arranged with its upper and lower surfaces substantially horizontal.
- the PCU 34 may be arranged with its upper and lower surfaces inclined when viewed from the side.
- the PCU 34 is arranged behind the engine E and above the first motor M1 and the second motor M2.
- the PCU 34 is arranged across the left and right center CL of the vehicle body.
- a battery 37 is arranged behind the PCU 34 .
- the PCU 34 overlaps the battery 37 in the vertical direction and overlaps the first motor M1 and the second motor M2 in the front-rear direction.
- the PCU 34 and the battery 37 approach each other, and the PCU 34 and each of the first motor M1 and the second motor M2 approach each other.
- the wiring between these electrical components can be shortened.
- the first motor M1 and the second motor M2 are arranged behind the engine E within the lateral width H1 of the engine E.
- the first motor M1 and the second motor M2 can be coaxial compact motor assemblies.
- the first motor M1 and the second motor M2 can be arranged more freely, and can be easily arranged within the lateral width H1 of the engine E.
- the first motor M1 and the second motor M2 are arranged substantially within the lateral width H1 of the engine E (in this embodiment, simply referred to as "engine E The same applies to the case where it is described as "arranged within the left and right width H1 of .”).
- At least one of the first motor M1 and the second motor M2 may be arranged within the lateral width H1 of the engine E. At least part of the motor arranged within the lateral width H1 of the engine E may be arranged within the lateral width H1 of the engine E.
- the PCU 34 is arranged above the first motor M1 and the second motor M2.
- the PCU 34 is arranged within the lateral width H1 of the engine E.
- the PCU 34 is arranged within the longitudinal width of the motor assembly including the first motor M1 and the second motor M2.
- the lower end of the PCU 34 is vertically adjacent to the upper ends of the first motor M1 and the second motor M2.
- the upper end of the PCU 34 is arranged above the upper end height Z1 of the engine E.
- the PCU 34 has a limited width in the left-right direction, a width in the front-rear direction, and a height at the lower end, but by giving flexibility to the height at the upper end, a necessary capacity is obtained.
- the PCU 34 is not limited to being arranged entirely within the lateral width H1 of the engine E, and may be arranged at least partially within the lateral width H1 of the engine E.
- the PCU 34 may be divided into a first motor control unit (drive PCU) that controls the first motor M1 and a second motor control unit (power generation PCU) that controls the second motor M2.
- drive PCU drives the first motor M1
- power generation PCU power generation PCU
- at least one of the drive PCU and the power generation PCU may be arranged within the lateral width H1 of the engine E.
- FIG. At least part of the PCU arranged within the lateral width H1 of the engine E may be arranged within the lateral width H1 of the engine E.
- a battery 37 is arranged behind the PCU 34 (above and behind the first motor M1 and the second motor M2).
- the battery 37 is arranged within the lateral width H1 of the engine E.
- the battery 37 is divided into a pair of left and right unit batteries 37a within the lateral width H1 of the engine E.
- the battery 37 is inclined forward and downward, and the front part of the battery 37 is arranged behind the upper part of the PCU 34 .
- the rear portion of the battery 37 is arranged above the upper end portion of the PCU 34 .
- the battery 37 is arranged flat under the seat 21 .
- the battery 37 has a limited lateral width, a vertical width and a front end position, but the rear end position is made flexible to increase the capacity.
- the battery 37 is not limited to being arranged entirely within the lateral width H1 of the engine E, and may be arranged at least partially within the lateral width H1 of the engine E.
- the battery 37 may be configured such that at least one of the plurality of unit batteries 37a is arranged within the lateral width H1 of the engine E. As shown in FIG. At least part of the unit batteries arranged within the lateral width H1 of the engine E may be arranged within the lateral width H1 of the engine E.
- the motorcycle 1 in the above embodiment includes the first driving motor M1 for applying driving force to the rear wheel 4, the battery 37 for supplying electric power to the first motor M1, and the first motor M1.
- a second motor M2 for power generation provided separately from the above, an engine E that drives the second motor M2 to generate power, and a PCU 34 that controls the first motor M1 and the second motor M2, At least one of the first motor M1 and the second motor M2 is disposed rearward of the engine E and within a lateral width H1 of the engine E so that at least a portion of the first motor M1 and the second motor M2 are located.
- the two motors M2 are arranged side by side so as to be adjacent to each other when viewed from above.
- the first motor M1 and the second motor M2 are arranged within the lateral width H1 of the engine E, an increase in the lateral width of the drive system S including the engine E and the two motors M1 and M2 is suppressed.
- the flexibility of the vehicle body layout can be increased.
- the motors M1 and M2 are brought closer together, and the wires connected to the motors M1 and M2 can be shortened.
- the first motor M1 and the second motor M2 are arranged so that the entirety is within the lateral width H1 of the engine E, so that the drive system S including the engine E and the two motors M1 and M2 can be positioned laterally. It is possible to reliably suppress the increase in width and increase the degree of freedom in the body layout.
- the PCU 34 is arranged above the first motor M1 and the second motor M2. According to this configuration, by stacking the PCU 34 above the first motor M1 and the second motor M2, an increase in the lateral width of the drive system S including the PCU 34 can be suppressed. In particular, by arranging the PCU 34 so that the whole is within the width H1 of the engine E, it is possible to reliably suppress an increase in the width of the drive system S including the PCU 34 .
- the battery 37 is arranged behind the PCU 34. As shown in FIG. According to this configuration, by arranging the batteries above and behind the first motor M1 and the second motor M2, it is possible to suppress an increase in the lateral width of the drive system S including the battery 37 .
- the battery 37 is arranged so that the entirety is within the lateral width H1 of the engine E, so that an increase in the lateral width of the drive system S including the battery 37 can be reliably suppressed.
- the battery 37 includes a plurality of unit batteries 37a, and the plurality of unit batteries 37a are arranged side by side. According to this configuration, the height of the entire battery 37 in the vertical direction can be suppressed, and the center of gravity of the battery 37 can be easily brought closer to the center of the vehicle body.
- the saddle-riding type vehicle includes general vehicles in which the driver straddles the vehicle body, motorcycles (motorized bicycles and scooter type vehicles). ), but also include vehicles with three wheels (including vehicles with two front wheels and one rear wheel, as well as vehicles with one front wheel and two rear wheels) or four-wheel vehicles (such as four-wheel buggies).
- the straddle-type vehicle includes not only a vehicle such as a motorcycle that turns in a direction in which the vehicle body is banked, but also a vehicle that turns by steering the steered wheels without banking the vehicle body.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Transportation (AREA)
- Mechanical Engineering (AREA)
- Electric Propulsion And Braking For Vehicles (AREA)
Abstract
This saddled vehicle comprises: a drive motor (M1) for imparting a driving force to a driving wheel (4); a battery (37) for providing electric power to the drive motor (M1); a second motor (M2) provided separately from the drive motor (M1); an internal combustion engine (E) for generating electric power by driving the second motor (M2); and a control device (34) for controlling the drive motor (M1) and the second motor (M2). At least one of the drive motor (M1) and the second motor (M2) is disposed such that at least a portion thereof is positioned backward of the internal combustion engine (E) and within a left-right width (H1) of the internal combustion engine (E). The drive motor (M1) and the second motor (M2) are juxtaposed on right and left sides so as to be adjacent to each other in a top view.
Description
本発明は、鞍乗り型車両に関する。
The present invention relates to a saddle-ride type vehicle.
例えば特許文献1には、発電機駆動用エンジンが搭載されたハイブリッド式自動二輪車が開示されている。この自動二輪車では、既存車両の変速機部分に駆動モータを配置し、この駆動モータと後輪とをドライブチェーン等で連結している。
例えば特許文献2には、ハイブリッド式自動二輪車において、駆動モータと発電モータとを備え、これら両モータをエンジンのクランク軸の両側に振り分けて配置することが開示されている。 For example,Patent Literature 1 discloses a hybrid motorcycle equipped with a generator-driving engine. In this motorcycle, the drive motor is arranged in the transmission portion of the existing vehicle, and the drive motor and the rear wheels are connected by a drive chain or the like.
For example,Patent Document 2 discloses that a hybrid motorcycle is provided with a drive motor and a generator motor, and these motors are distributed and arranged on both sides of the crankshaft of the engine.
例えば特許文献2には、ハイブリッド式自動二輪車において、駆動モータと発電モータとを備え、これら両モータをエンジンのクランク軸の両側に振り分けて配置することが開示されている。 For example,
For example,
ところで、エンジンおよび電動部品の両方が搭載されるハイブリッド式鞍乗り型車両では、乗用車に比べて小型であることもあり、エンジンおよび電動部品等の各コンポーネントのレイアウトの最適化が要望されている。一方、上記特許文献2のような2モータハイブリッドシステムを搭載する場合、特許文献2の構成は左右の重量バランスを向上させるものであるが、エンジンおよび両モータを含む駆動ユニットの左右幅を増加させるという課題がある。
By the way, hybrid saddle-riding vehicles, which are equipped with both an engine and electric parts, are smaller than passenger cars, and there is a demand for optimization of the layout of each component such as the engine and electric parts. On the other hand, when a two-motor hybrid system such as that of Patent Document 2 is installed, the configuration of Patent Document 2 improves the left-right weight balance, but increases the width of the drive unit including the engine and both motors. There is a problem.
そこで本発明は、駆動輪に駆動力を与える駆動モータ、ならびに発電用の第二モータおよびエンジンを備える鞍乗り型車両において、エンジンおよび両モータを含む駆動システムの左右幅の増大を抑えることを目的とする。
SUMMARY OF THE INVENTION Accordingly, it is an object of the present invention to suppress an increase in the lateral width of a drive system including the engine and the two motors in a saddle type vehicle that includes a drive motor that provides drive force to the drive wheels, a second motor for power generation, and an engine. and
上記課題の解決手段として、本発明は、駆動輪(4)に駆動力を与える駆動モータ(M1)と、前記駆動モータ(M1)に電力を与えるバッテリ(37)と、前記駆動モータ(M1)とは別に設けられる第二モータ(M2)と、前記第二モータ(M2)を駆動して発電させる内燃機関(E)と、前記駆動モータ(M1)および前記第二モータ(M2)を制御する制御装置(34)と、を備え、前記駆動モータ(M1)および前記第二モータ(M2)の少なくとも一方は、前記内燃機関(E)の後方で前記内燃機関(E)の左右幅(H1)内において、少なくとも一部が位置するように配置され、前記駆動モータ(M1)と前記第二モータ(M2)とは、上面視で互いに隣接するように左右に並んで配置されている鞍乗り型車両を提供する。
この構成によれば、駆動モータおよび第二モータを内燃機関の左右幅内に配置することで、内燃機関および両モータを含む駆動システムの左右幅の増大を抑え、車体レイアウトの自由度を高めることができる。駆動モータおよび第二モータを互いに隣接させることで、各モータが互いに接近してまとめられ、各モータに接続される配線を短くすることができる。 As means for solving the above problems, the present invention provides a drive motor (M1) that provides drive force to the drive wheels (4), a battery (37) that provides power to the drive motor (M1), and the drive motor (M1). Controls a second motor (M2) provided separately from, an internal combustion engine (E) that drives the second motor (M2) to generate power, the drive motor (M1) and the second motor (M2) and a control device (34), wherein at least one of the drive motor (M1) and the second motor (M2) is positioned rearward of the internal combustion engine (E) by a lateral width (H1) of the internal combustion engine (E). The drive motor (M1) and the second motor (M2) are arranged side by side so as to be adjacent to each other in top view. provide a vehicle.
According to this configuration, by arranging the drive motor and the second motor within the lateral width of the internal combustion engine, it is possible to suppress an increase in the lateral width of the drive system including the internal combustion engine and both motors, thereby increasing the flexibility of the vehicle body layout. can be done. By having the drive motor and the second motor adjacent to each other, the motors can be grouped closer together and the wiring connected to each motor can be shortened.
この構成によれば、駆動モータおよび第二モータを内燃機関の左右幅内に配置することで、内燃機関および両モータを含む駆動システムの左右幅の増大を抑え、車体レイアウトの自由度を高めることができる。駆動モータおよび第二モータを互いに隣接させることで、各モータが互いに接近してまとめられ、各モータに接続される配線を短くすることができる。 As means for solving the above problems, the present invention provides a drive motor (M1) that provides drive force to the drive wheels (4), a battery (37) that provides power to the drive motor (M1), and the drive motor (M1). Controls a second motor (M2) provided separately from, an internal combustion engine (E) that drives the second motor (M2) to generate power, the drive motor (M1) and the second motor (M2) and a control device (34), wherein at least one of the drive motor (M1) and the second motor (M2) is positioned rearward of the internal combustion engine (E) by a lateral width (H1) of the internal combustion engine (E). The drive motor (M1) and the second motor (M2) are arranged side by side so as to be adjacent to each other in top view. provide a vehicle.
According to this configuration, by arranging the drive motor and the second motor within the lateral width of the internal combustion engine, it is possible to suppress an increase in the lateral width of the drive system including the internal combustion engine and both motors, thereby increasing the flexibility of the vehicle body layout. can be done. By having the drive motor and the second motor adjacent to each other, the motors can be grouped closer together and the wiring connected to each motor can be shortened.
本発明において、前記駆動モータ(M1)および前記第二モータ(M2)は、前記内燃機関(E)の左右幅(H1)内に収まるように配置されている構成でもよい。
この構成によれば、内燃機関および両モータを含む駆動システムの左右幅の増大を確実に抑え、車体レイアウトの自由度を高めることができる。 In the present invention, the drive motor (M1) and the second motor (M2) may be arranged so as to fit within the lateral width (H1) of the internal combustion engine (E).
According to this configuration, it is possible to reliably suppress an increase in the lateral width of the drive system including the internal combustion engine and the two motors, and increase the flexibility of the vehicle body layout.
この構成によれば、内燃機関および両モータを含む駆動システムの左右幅の増大を確実に抑え、車体レイアウトの自由度を高めることができる。 In the present invention, the drive motor (M1) and the second motor (M2) may be arranged so as to fit within the lateral width (H1) of the internal combustion engine (E).
According to this configuration, it is possible to reliably suppress an increase in the lateral width of the drive system including the internal combustion engine and the two motors, and increase the flexibility of the vehicle body layout.
本発明において、前記駆動モータ(M1)および前記第二モータ(M2)の上方には、前記制御装置(34)が配置されている構成でもよい。
この構成によれば、駆動モータおよび第二モータの上方に制御装置を重ねることで、制御装置を含む駆動システムの左右幅の増大を抑えることができる。 In the present invention, the control device (34) may be arranged above the drive motor (M1) and the second motor (M2).
According to this configuration, by stacking the control device above the drive motor and the second motor, it is possible to suppress an increase in the lateral width of the drive system including the control device.
この構成によれば、駆動モータおよび第二モータの上方に制御装置を重ねることで、制御装置を含む駆動システムの左右幅の増大を抑えることができる。 In the present invention, the control device (34) may be arranged above the drive motor (M1) and the second motor (M2).
According to this configuration, by stacking the control device above the drive motor and the second motor, it is possible to suppress an increase in the lateral width of the drive system including the control device.
本発明において、前記制御装置(34)は、前記内燃機関(E)の左右幅(H1)内に収まるように配置されている構成でもよい。
この構成によれば、制御装置を含む駆動システムの左右幅の増大を確実に抑えることができる。 In the present invention, the control device (34) may be arranged so as to fit within the lateral width (H1) of the internal combustion engine (E).
According to this configuration, it is possible to reliably suppress an increase in the lateral width of the drive system including the control device.
この構成によれば、制御装置を含む駆動システムの左右幅の増大を確実に抑えることができる。 In the present invention, the control device (34) may be arranged so as to fit within the lateral width (H1) of the internal combustion engine (E).
According to this configuration, it is possible to reliably suppress an increase in the lateral width of the drive system including the control device.
本発明において、前記制御装置(34)の後方には、前記バッテリ(37)が配置されている構成でもよい。
この構成によれば、駆動モータおよび第二モータの上後方にバッテリを配置することで、バッテリを含む駆動システムの左右幅の増大を抑えることができる。 In the present invention, the battery (37) may be arranged behind the control device (34).
According to this configuration, by arranging the battery above and behind the drive motor and the second motor, it is possible to suppress an increase in the lateral width of the drive system including the battery.
この構成によれば、駆動モータおよび第二モータの上後方にバッテリを配置することで、バッテリを含む駆動システムの左右幅の増大を抑えることができる。 In the present invention, the battery (37) may be arranged behind the control device (34).
According to this configuration, by arranging the battery above and behind the drive motor and the second motor, it is possible to suppress an increase in the lateral width of the drive system including the battery.
本発明において、前記バッテリ(37)は、前記内燃機関(E)の左右幅(H1)内に収まるように配置されている構成でもよい。
この構成によれば、バッテリを含む駆動システムの左右幅の増大を確実に抑えることができる。 In the present invention, the battery (37) may be arranged to fit within the lateral width (H1) of the internal combustion engine (E).
With this configuration, it is possible to reliably suppress an increase in the lateral width of the drive system including the battery.
この構成によれば、バッテリを含む駆動システムの左右幅の増大を確実に抑えることができる。 In the present invention, the battery (37) may be arranged to fit within the lateral width (H1) of the internal combustion engine (E).
With this configuration, it is possible to reliably suppress an increase in the lateral width of the drive system including the battery.
本発明において、前記バッテリ(37)は、複数の単位バッテリ(37a)を備え、複数の前記単位バッテリ(37a)は、左右に並んで配置されている構成でもよい。
この構成によれば、バッテリ全体の上下方向の高さを抑え、バッテリの重心位置を車体中心に近づけやすくすることができる。 In the present invention, the battery (37) may include a plurality of unit batteries (37a), and the plurality of unit batteries (37a) may be arranged side by side.
According to this configuration, the height of the entire battery in the vertical direction can be suppressed, and the position of the center of gravity of the battery can be easily brought closer to the center of the vehicle body.
この構成によれば、バッテリ全体の上下方向の高さを抑え、バッテリの重心位置を車体中心に近づけやすくすることができる。 In the present invention, the battery (37) may include a plurality of unit batteries (37a), and the plurality of unit batteries (37a) may be arranged side by side.
According to this configuration, the height of the entire battery in the vertical direction can be suppressed, and the position of the center of gravity of the battery can be easily brought closer to the center of the vehicle body.
本発明によれば、駆動輪に駆動力を与える駆動モータ、ならびに発電用の第二モータおよびエンジンを備える鞍乗り型車両において、エンジンおよび両モータを含む駆動システムの左右幅の増大を抑えることができる。
According to the present invention, in a saddle-ride type vehicle that includes a drive motor that applies drive force to drive wheels, a second motor for power generation, and an engine, it is possible to suppress an increase in the lateral width of the drive system that includes the engine and both motors. can.
以下、本発明の実施形態について図面を参照して説明する。なお、以下の説明における前後左右等の向きは、特に記載が無ければ以下に説明する車両における向きと同一とする。また以下の説明に用いる図中適所には、車両前方を示す矢印FR、車両左方を示す矢印LH、車両上方を示す矢印UP、車体左右中央を示す線CLが示されている。本実施形態で用いる「中間」とは、対象の両端間の中央のみならず、対象の両端間の内側の範囲を含む意とする。
Hereinafter, embodiments of the present invention will be described with reference to the drawings. Note that the directions such as front, back, left, and right in the following description are the same as the directions of the vehicle described below unless otherwise specified. An arrow FR indicating the front of the vehicle, an arrow LH indicating the left of the vehicle, an arrow UP indicating the upper side of the vehicle, and a line CL indicating the left-right center of the vehicle are shown at appropriate locations in the drawings used in the following description. The term "intermediate" used in this embodiment is intended to include not only the center between the two ends of the target, but also the inner range between the two ends of the target.
<車両全体>
図1は、本実施形態の鞍乗り型車両の一例としての自動二輪車1を示す。自動二輪車1は、エンジン(内燃機関)Eおよび二つの電気モータM1,M2を含む駆動システムSを構成し、エンジン動力とモータ動力とを協働させて走行する。自動二輪車1は、いわゆる2モータハイブリッドシステムを搭載したハイブリッド車両である。なお、以下に説明する本発明の要旨を逸脱しない範囲であれば、1モータ式のハイブリッド車両や内燃機関を有さない電動車両に適用してもよい。 <Whole vehicle>
FIG. 1 shows amotorcycle 1 as an example of a straddle-type vehicle according to the present embodiment. The motorcycle 1 comprises a drive system S including an engine (internal combustion engine) E and two electric motors M1 and M2, and runs by cooperating engine power and motor power. The motorcycle 1 is a hybrid vehicle equipped with a so-called two-motor hybrid system. It should be noted that the present invention may be applied to a one-motor hybrid vehicle or an electric vehicle that does not have an internal combustion engine, as long as it does not depart from the gist of the present invention described below.
図1は、本実施形態の鞍乗り型車両の一例としての自動二輪車1を示す。自動二輪車1は、エンジン(内燃機関)Eおよび二つの電気モータM1,M2を含む駆動システムSを構成し、エンジン動力とモータ動力とを協働させて走行する。自動二輪車1は、いわゆる2モータハイブリッドシステムを搭載したハイブリッド車両である。なお、以下に説明する本発明の要旨を逸脱しない範囲であれば、1モータ式のハイブリッド車両や内燃機関を有さない電動車両に適用してもよい。 <Whole vehicle>
FIG. 1 shows a
自動二輪車1は、ハンドル2によって操舵される前輪(操舵輪)3と、駆動システムSによって駆動される後輪(駆動輪)4と、を備えている。自動二輪車1は、運転者が車体を跨いで乗車する鞍乗り型車両であり、前後輪3,4の接地点を基準に車体を左右方向(ロール方向)に揺動(バンク)可能である。ハンドル2は、左右一体のバーハンドルでも左右別体のセパレートハンドルでもよく、かつバータイプのハンドルでなくてもよい。
The motorcycle 1 includes front wheels (steered wheels) 3 that are steered by a steering wheel 2 and rear wheels (driving wheels) 4 that are driven by a drive system S. The motorcycle 1 is a saddle type vehicle in which the rider straddles the vehicle body, and the vehicle body can be swung (banked) in the lateral direction (roll direction) with reference to ground contact points of the front and rear wheels 3 and 4 . The handle 2 may be a left and right integrated bar handle or a left and right separate separate handle, and may not be a bar type handle.
自動二輪車1は、車体の主要骨格となる車体フレーム5を備えている。車体フレーム5は、ヘッドパイプ6、メインフレーム7、ピボットフレーム8、リヤフレーム9を備えている。
車体フレーム5は、前端部の左右中央に位置するヘッドパイプ6において、前輪懸架装置11のフロントフォーク12を転舵可能に支持する。車体フレーム5は、前後中間部に位置するピボットフレーム8において、後輪懸架装置15のスイングアーム16を上下揺動可能に支持する。車体フレーム5は、ヘッドパイプ6からピボットフレーム8よりも後方のリヤフレーム9に渡って、溶接等の結合手段によって一体に設けられている。車体フレーム5は、一部(例えばリヤフレーム9等)をボルト締結等で着脱可能としてもよい。 Themotorcycle 1 includes a vehicle body frame 5 that serves as a main frame of the vehicle body. The body frame 5 includes a head pipe 6, a main frame 7, a pivot frame 8 and a rear frame 9.
Thevehicle body frame 5 steerably supports a front fork 12 of a front wheel suspension 11 at a head pipe 6 positioned in the center of the front end portion in the left-right direction. The vehicle body frame 5 supports a swing arm 16 of a rear wheel suspension device 15 in a pivot frame 8 positioned in the front-rear intermediate portion so as to be capable of swinging up and down. The vehicle body frame 5 is integrally provided from the head pipe 6 to the rear frame 9 behind the pivot frame 8 by a joining means such as welding. A part of the vehicle body frame 5 (for example, the rear frame 9 and the like) may be detachable by bolting or the like.
車体フレーム5は、前端部の左右中央に位置するヘッドパイプ6において、前輪懸架装置11のフロントフォーク12を転舵可能に支持する。車体フレーム5は、前後中間部に位置するピボットフレーム8において、後輪懸架装置15のスイングアーム16を上下揺動可能に支持する。車体フレーム5は、ヘッドパイプ6からピボットフレーム8よりも後方のリヤフレーム9に渡って、溶接等の結合手段によって一体に設けられている。車体フレーム5は、一部(例えばリヤフレーム9等)をボルト締結等で着脱可能としてもよい。 The
The
図中符号7aはメインフレーム7が備える左右一対のメインフレーム部材、符号8aはピボットフレーム8が備える左右一対のピボットフレーム部材、符号9aはリヤフレーム9が備える左右一対のリヤフレーム部材をそれぞれ示す。左右一対のフレーム部材は、それぞれ車幅方向で互いに離隔している。
In the figure, reference numeral 7a indicates a pair of left and right main frame members provided in the main frame 7, reference numeral 8a indicates a pair of left and right pivot frame members provided in the pivot frame 8, and reference numeral 9a indicates a pair of left and right rear frame members provided in the rear frame 9, respectively. The pair of left and right frame members are separated from each other in the vehicle width direction.
ヘッドパイプ6は、鉛直方向に対して後傾したステアリング軸線を有している。ヘッドパイプ6は、前輪3および前輪懸架装置11をステアリング軸線回りに回動可能に支持している。例えば、前輪懸架装置11は、左右一対のフロントフォーク12を備えている。左右フロントフォーク12の上部は、ステアリングステムを介してヘッドパイプ6に支持されている。左右フロントフォーク12の下端部は、前輪3の車軸3aを支持している。左右フロントフォーク12は、それぞれテレスコピック式とされ、自動二輪車1のフロントサスペンションを構成している。前輪懸架装置11は、テレスコピック式のフロントサスペンションを構成するものに限らず、例えばリンク式のフロントサスペンションを構成してもよい。
The head pipe 6 has a steering axis tilted backward with respect to the vertical direction. The head pipe 6 supports the front wheel 3 and the front wheel suspension device 11 so as to be rotatable about the steering axis. For example, the front wheel suspension system 11 includes a pair of left and right front forks 12 . Upper portions of the left and right front forks 12 are supported by the head pipe 6 via a steering stem. Lower ends of the left and right front forks 12 support the axle 3 a of the front wheel 3 . The left and right front forks 12 are of a telescopic type, respectively, and constitute a front suspension of the motorcycle 1 . The front wheel suspension 11 is not limited to constituting a telescopic front suspension, and may constitute, for example, a link-type front suspension.
ピボットフレーム8は、車幅方向に延びるピボット軸(揺動軸)17を介して、スイングアーム16の前端部を支持している。スイングアーム16の後端部には、後輪4の車軸4aが支持されている。例えば、スイングアーム16の前部と車体フレーム5の前後中間部(例えばピボットフレーム8近傍のクロスフレーム)との間には、リヤクッションが介装されている。スイングアーム16およびリヤクッションは、自動二輪車1のリヤサスペンションを構成している。リヤクッションは、スイングアーム16の後部と車体フレーム5の後部(例えばリヤフレーム9)との間に介装されてもよい。
The pivot frame 8 supports the front end of the swing arm 16 via a pivot shaft (swing shaft) 17 extending in the vehicle width direction. A rear end portion of the swing arm 16 supports an axle 4 a of the rear wheel 4 . For example, a rear cushion is interposed between the front portion of the swing arm 16 and the front-rear middle portion of the body frame 5 (for example, the cross frame near the pivot frame 8). The swing arm 16 and the rear cushion constitute a rear suspension of the motorcycle 1. As shown in FIG. The rear cushion may be interposed between the rear portion of the swing arm 16 and the rear portion of the body frame 5 (for example, the rear frame 9).
車体フレーム5を含む車体の全体は、車体カバー19で覆われている。車体カバー19は、例えば車体前後中央を境に、車体前部を覆うフロントボディカバー19aと、車体後部を覆うリヤボディカバー19bと、に分けられる。
The entire vehicle body including the vehicle body frame 5 is covered with a vehicle body cover 19. The vehicle body cover 19 is divided into, for example, a front body cover 19a that covers the front part of the vehicle body and a rear body cover 19b that covers the rear part of the vehicle body, with the front-rear center of the vehicle body as a boundary.
リヤフレーム9は、ピボットフレーム8の後上方へ延びている。リヤフレーム9上には、乗員着座用のシート21が支持されている。リヤフレーム9は、シート21に着座した乗員の着座荷重を支持する。リヤフレーム9は、リヤクッションが連結される場合はクッション伸縮時の反力を受ける。
The rear frame 9 extends rearward and upward of the pivot frame 8 . A seat 21 for seating an occupant is supported on the rear frame 9 . The rear frame 9 supports the seating load of an occupant seated on the seat 21 . When the rear cushion is connected, the rear frame 9 receives a reaction force when the cushion expands and contracts.
シート21は、例えば運転者が座る前着座部と後部同乗者が座る後着座部とを一体に備えている。リヤフレーム9の周囲は、シート21の両側部の下方から後方に渡るリヤボディカバー19bで覆われている。
The seat 21 integrally includes, for example, a front seating portion on which the driver sits and a rear seating portion on which the rear passenger sits. The periphery of the rear frame 9 is covered with a rear body cover 19b extending from below both sides of the seat 21 to the rear.
シート21は、例えばリヤボディカバー19b側に着脱可能あるいは開閉可能に取り付けられている。シート21を着脱あるいは開閉することで、リヤボディカバー19bの上部が開閉される。シート21を取り付けてリヤボディカバー19bの上部を閉塞した閉状態において、乗員がシート21に着座可能となる。シート21を取り外してリヤボディカバー19bの上部を開放した開状態において、シート21下方の部品や空間にアクセス可能となる。シート21は、閉状態で施錠可能である。シート21は、例えば前後何れかに設けたヒンジ軸を中心に回動してリヤボディカバー19bの上部を開閉する構成でもよい。
The seat 21 is attached to, for example, the rear body cover 19b in a detachable or openable manner. By attaching/detaching or opening/closing the seat 21, the upper part of the rear body cover 19b is opened/closed. An occupant can sit on the seat 21 in the closed state in which the seat 21 is attached and the upper portion of the rear body cover 19b is closed. When the seat 21 is removed and the upper portion of the rear body cover 19b is opened, parts and spaces below the seat 21 can be accessed. The seat 21 is lockable in the closed state. For example, the seat 21 may be configured to rotate around a hinge shaft provided at either the front or rear to open and close the upper portion of the rear body cover 19b.
シート21の前方でメインフレーム7の上方には、ニーグリップ部を有する車両構成部品23が支持されている。車両構成部品23は、例えばエンジンE用の燃料タンクやエアクリーナ、補機用の12Vバッテリ、乗員が荷物を出し入れする物品収納部、等の既存の車両構成部品を含む他、駆動システムSのバッテリ37やPCU34を含んでもよい。
なお、本発明は、シート21の前方に車両構成部品を有さず跨ぎ空間を形成したスクータ型車両に適用してもよい。 Avehicle component 23 having a knee grip portion is supported in front of the seat 21 and above the main frame 7 . The vehicle components 23 include, for example, existing vehicle components such as a fuel tank and air cleaner for the engine E, a 12V battery for auxiliary equipment, and an article storage section for loading and unloading luggage by the occupant. and PCU 34 may be included.
The present invention may be applied to a scooter-type vehicle in which no vehicle components are provided in front of theseat 21 and a straddle space is formed.
なお、本発明は、シート21の前方に車両構成部品を有さず跨ぎ空間を形成したスクータ型車両に適用してもよい。 A
The present invention may be applied to a scooter-type vehicle in which no vehicle components are provided in front of the
<駆動システム>
図2は、駆動システムSの構成を示すブロック図である。
駆動システムSは、エンジンEと、第一モータM1と、第二モータM2と、動力切替装置31と、PCU34と、バッテリ37と、を備えている。 <Drive system>
FIG. 2 is a block diagram showing the configuration of the drive system S. As shown in FIG.
The drive system S includes an engine E, a first motor M1, a second motor M2, apower switching device 31, a PCU 34, and a battery 37.
図2は、駆動システムSの構成を示すブロック図である。
駆動システムSは、エンジンEと、第一モータM1と、第二モータM2と、動力切替装置31と、PCU34と、バッテリ37と、を備えている。 <Drive system>
FIG. 2 is a block diagram showing the configuration of the drive system S. As shown in FIG.
The drive system S includes an engine E, a first motor M1, a second motor M2, a
エンジンEは、例えば複数気筒エンジンであり、各気筒のピストンの往復動からクランクシャフト26の回転駆動力を生成する。
図1を併せて参照し、エンジンEは、クランクシャフト26の回転中心軸線C1を車幅方向(左右方向)に沿わせて配置されている。クランクシャフト26は、クランクケース27内に収容されている。クランクケース27からはシリンダブロック28が突出し、シリンダブロック28内には各気筒に対応するピストンが嵌装されている。各ピストンは、コネクティングロッドを介してクランクシャフト26に連結されている。 The engine E is, for example, a multi-cylinder engine, and generates rotational driving force for thecrankshaft 26 from the reciprocating motion of the piston of each cylinder.
Referring also to FIG. 1, the engine E is arranged with the rotation center axis C1 of thecrankshaft 26 along the vehicle width direction (horizontal direction). The crankshaft 26 is housed inside a crankcase 27 . A cylinder block 28 protrudes from the crankcase 27, and a piston corresponding to each cylinder is fitted in the cylinder block 28. As shown in FIG. Each piston is connected to the crankshaft 26 via a connecting rod.
図1を併せて参照し、エンジンEは、クランクシャフト26の回転中心軸線C1を車幅方向(左右方向)に沿わせて配置されている。クランクシャフト26は、クランクケース27内に収容されている。クランクケース27からはシリンダブロック28が突出し、シリンダブロック28内には各気筒に対応するピストンが嵌装されている。各ピストンは、コネクティングロッドを介してクランクシャフト26に連結されている。 The engine E is, for example, a multi-cylinder engine, and generates rotational driving force for the
Referring also to FIG. 1, the engine E is arranged with the rotation center axis C1 of the
本実施形態において、第一モータM1および第二モータM2は、互いに同軸をなして左右方向に並び(図8参照)、エンジンEの後方に配置されている。第一モータM1および第二モータM2は、互いに独立した電気モータであり、互いに別個のロータおよびステータを備えている。例えば、第一モータM1および第二モータM2は、所定の組み付け部材(ケース、ブラケット、ステー、ボルトナット等)を用いて、一体のモータ組体として構成されてもよい。
In this embodiment, the first motor M1 and the second motor M2 are coaxial with each other and arranged in the left-right direction (see FIG. 8), and are arranged behind the engine E. The first motor M1 and the second motor M2 are electric motors independent of each other, with rotors and stators independent of each other. For example, the first motor M1 and the second motor M2 may be configured as an integrated motor assembly using predetermined assembly members (cases, brackets, stays, bolts and nuts, etc.).
第一モータM1および第二モータM2は、それぞれブラシレスの三相交流モータである。第一モータM1は、後輪駆動用の回転駆動力を発生する駆動用モータであり、車両減速時等には回生(発電)を行う。第二モータM2は、エンジンEの駆動力を受けて発電を行う発電用モータであり、バッテリ37の充電および第一モータM1への電力供給の少なくとも一方を行う。
The first motor M1 and the second motor M2 are brushless three-phase AC motors. The first motor M1 is a driving motor that generates rotational driving force for driving the rear wheels, and regenerates (generates power) when the vehicle decelerates. The second motor M2 is a power generating motor that receives the driving force of the engine E to generate power, and performs at least one of charging the battery 37 and supplying power to the first motor M1.
第一モータM1は、後輪4を駆動させて自動二輪車1を走行させるとき、例えばVVVF(variable voltage variable frequency)制御による可変速駆動がなされる。第一モータM1は、無段変速機を有する如く変速制御されるが、これに限らず、有段変速機を有する如く変速制御されてもよい。第一モータM1の作動は、エンジンEの駆動補助を行うアシストモータとしての駆動を含んでもよい。第一モータM1の作動は、エンジンEのスタータモータとしての駆動を含んでもよい。
When the first motor M1 drives the rear wheels 4 and causes the motorcycle 1 to travel, variable speed driving is performed by, for example, VVVF (variable voltage variable frequency) control. The first motor M1 is speed-change controlled to have a continuously variable transmission, but is not limited to this, and may be speed-change controlled to have a stepped transmission. The operation of the first motor M1 may include driving as an assist motor that assists the driving of the engine E. Operation of the first motor M1 may include driving the engine E as a starter motor.
第一モータM1の駆動時、バッテリ37からの電力は、PCU34に供給され、直流から三相交流に変換されて、第一モータM1に供給される。第一モータM1の発電時、第一モータM1の発電電力は、レギュレータの整流回路等を経て、バッテリ37に蓄電される。
When driving the first motor M1, power from the battery 37 is supplied to the PCU 34, converted from direct current to three-phase alternating current, and supplied to the first motor M1. When the first motor M1 generates power, the power generated by the first motor M1 is stored in the battery 37 through the rectifier circuit of the regulator and the like.
第二モータM2は、エンジンEの運転中にクランクシャフト26の回転動力でロータを回転させて発電を行う。第二モータM2の作動は、エンジンEの駆動補助を行うアシストモータとしての駆動を含んでもよい。第二モータM2の作動は、エンジンEのスタータモータとしての駆動を含んでもよい。
The second motor M2 generates electricity by rotating the rotor with the rotational power of the crankshaft 26 while the engine E is running. The operation of the second motor M2 may include driving as an assist motor that assists the driving of the engine E. Operation of the second motor M2 may include driving the engine E as a starter motor.
第二モータM2の駆動時、バッテリ37からの電力は、PCU34に供給され、直流から三相交流に変換されて、第二モータM2に供給される。第二モータM2の発電時、第二モータM2の発電電力は、レギュレータの整流回路等を経て、バッテリ37に蓄電される。
When the second motor M2 is driven, power from the battery 37 is supplied to the PCU 34, converted from direct current to three-phase alternating current, and supplied to the second motor M2. When the second motor M2 generates power, the power generated by the second motor M2 is stored in the battery 37 through the rectifier circuit of the regulator and the like.
動力切替装置31は、エンジンE、第一モータM1および第二モータM2の間の動力伝達経路を切り替える。動力切替装置31の制御により、エンジンE、第一モータM1および第二モータM2が協働して後輪4を駆動させる(自動二輪車1を走行させる)。動力切替装置31の制御により、第一モータM1および第二モータM2が駆動して発電可能である。駆動システムSと後輪4との間は、例えばチェーン式の伝動機構56で連結されている。
The power switching device 31 switches the power transmission path between the engine E, the first motor M1 and the second motor M2. Under the control of the power switching device 31, the engine E, the first motor M1 and the second motor M2 cooperate to drive the rear wheel 4 (make the motorcycle 1 run). Under the control of the power switching device 31, the first motor M1 and the second motor M2 can be driven to generate power. The drive system S and the rear wheels 4 are connected by a chain-type transmission mechanism 56, for example.
図7を併せて参照し、PCU(Power Control Unit)34は、PDU(Power Drive Unit)34aおよびECU(Electric Control Unit)34bを備えた一体の制御ユニットである。PCU34は、各種センサ情報に基づいて、主に第一モータM1および第二モータM2の作動(駆動および発電)を制御する。PCU34は、第一モータM1および第二モータM2とバッテリ37との間の電流および電圧をコントロールする。
Also referring to FIG. 7, the PCU (Power Control Unit) 34 is an integrated control unit including a PDU (Power Drive Unit) 34a and an ECU (Electric Control Unit) 34b. The PCU 34 mainly controls the operation (driving and power generation) of the first motor M1 and the second motor M2 based on various sensor information. PCU 34 controls the current and voltage between first motor M1 and second motor M2 and battery 37 .
PCU34は、電圧を昇降させるコンバータと、DC電流をAC電流に変換するインバータと、を備えている。インバータは、トランジスタ等のスイッチング素子を複数用いたブリッジ回路及び平滑コンデンサ等を具備し、第一モータM1および第二モータM2の各ステータ巻線に対する通電を制御する。第一モータM1および第二モータM2は、PCU34による制御に応じて、力行運転と発電とを切り替える。
The PCU 34 includes a converter that raises and lowers voltage and an inverter that converts DC current to AC current. The inverter includes a bridge circuit using a plurality of switching elements such as transistors, a smoothing capacitor, and the like, and controls energization to each stator winding of the first motor M1 and the second motor M2. The first motor M<b>1 and the second motor M<b>2 switch between power running and power generation according to control by the PCU 34 .
バッテリ37は、例えば複数の単位バッテリ37aを直列に結線して所定の高電圧(例えば48V~192V)を得る。バッテリ37は、充放電が可能なエネルギーストレージとしてリチウムイオンバッテリを備えている。バッテリ37は、第一モータM1に電力を供給するとともに、第一モータM1による回生電力および第二モータM2による発電電力を蓄電可能である。
The battery 37 obtains a predetermined high voltage (eg, 48V to 192V) by connecting a plurality of unit batteries 37a in series, for example. The battery 37 includes a lithium ion battery as chargeable/dischargeable energy storage. The battery 37 supplies electric power to the first motor M1 and can store electric power regenerated by the first motor M1 and electric power generated by the second motor M2.
バッテリ37からの電力は、例えば自動二輪車1のメインスイッチと連動するコンタクタ等を介して、モータドライバたるPDU34aに供給される。バッテリ37からの電力は、PDU34aにて直流から三相交流に変換された後、第一モータM1および第二モータM2に供給される。
Electric power from the battery 37 is supplied to the PDU 34a, which is the motor driver, via a contactor or the like that is interlocked with the main switch of the motorcycle 1, for example. Electric power from the battery 37 is converted from direct current to three-phase alternating current by the PDU 34a, and then supplied to the first motor M1 and the second motor M2.
バッテリ37からの出力電圧は、DC-DCコンバータを介して降圧され、12Vのサブバッテリの充電に供される。サブバッテリは、灯火器等の一般電装部品、メーターおよび施錠装置、ならびにECU等の制御系部品に電力を供給する。サブバッテリを搭載することで、バッテリ37を取り外した状態等でも各種電磁ロック等を操作可能である。
The output voltage from the battery 37 is stepped down through the DC-DC converter and used to charge the 12V sub-battery. The sub-battery supplies power to general electrical components such as lamps, meters, locking devices, and control system components such as ECUs. By installing a sub-battery, various electromagnetic locks can be operated even when the battery 37 is removed.
バッテリ37は、例えば車体に搭載された状態で、外部電源に接続したチャージャーによって充電可能である。バッテリ37は、車体から取り外した状態で、車外の充電器によって充電可能でもよい。
The battery 37 can be charged by a charger connected to an external power supply while mounted on the vehicle body, for example. The battery 37 may be detached from the vehicle body and charged by a charger outside the vehicle.
バッテリ37は、充放電状況や温度等を監視するBMU(Battery Management Unit)を備えている。BMUが監視した情報は、バッテリ37を車体に搭載した際にECU34bに共有される。ECU34bは、各種センサから入力された検知情報に基づき、PDU34aを介して第一モータM1および第二モータM2を駆動制御する。
The battery 37 has a BMU (Battery Management Unit) that monitors the charge/discharge status, temperature, and so on. Information monitored by the BMU is shared with the ECU 34b when the battery 37 is mounted on the vehicle body. The ECU 34b drives and controls the first motor M1 and the second motor M2 via the PDU 34a based on detection information input from various sensors.
<制御部>
図7は、駆動システムSの制御部41の構成を示すブロック図である。
制御部41は、PCU34と、エンジンECU42と、クラッチECU43と、を備えている。
PCU34は、第一モータM1および第二モータM2の作動(駆動および発電)を制御する。 <Control section>
FIG. 7 is a block diagram showing the configuration of thecontrol section 41 of the drive system S. As shown in FIG.
Thecontrol unit 41 includes a PCU 34, an engine ECU 42, and a clutch ECU 43.
PCU 34 controls the operation (driving and power generation) of first motor M1 and second motor M2.
図7は、駆動システムSの制御部41の構成を示すブロック図である。
制御部41は、PCU34と、エンジンECU42と、クラッチECU43と、を備えている。
PCU34は、第一モータM1および第二モータM2の作動(駆動および発電)を制御する。 <Control section>
FIG. 7 is a block diagram showing the configuration of the
The
エンジンECU42は、アクセル開度等に応じて点火装置および燃料噴射装置といったエンジン補機を作動させて、エンジンEの始動、運転および停止を制御する。エンジンECU42には、アクセル操作子(例えばアクセルグリップ)の操作量を検出するアクセル開度センサ46、エンジン回転数を検出するエンジン回転数センサ47、自動二輪車1の車速(例えば車輪速度)を検出する車速センサ48、等の検出情報が入力される。エンジンECU42は、入力された各種の検出情報に基づき、点火装置および燃料噴射装置といったエンジン補機を作動させる。
The engine ECU 42 controls the start, operation and stop of the engine E by activating engine accessories such as an ignition device and a fuel injection device according to the degree of opening of the accelerator. The engine ECU 42 includes an accelerator opening sensor 46 for detecting the amount of operation of an accelerator operator (for example, an accelerator grip), an engine speed sensor 47 for detecting the engine speed, and a vehicle speed (for example, wheel speed) of the motorcycle 1. Detected information from the vehicle speed sensor 48 and the like is input. The engine ECU 42 operates engine accessories such as an ignition device and a fuel injection device based on various types of input detection information.
クラッチECU43は、動力切替制御部であり、各種センサ情報に基づいて動力切替装置31を作動させる。クラッチECU43は、エンジンE、第一モータM1および第二モータM2の何れを、後輪4と動力伝達可能に連結するかを切り替える。クラッチECU43には、例えば動力切替装置31内のクラッチを断接させるクラッチアクチュエータ32が接続されている。
エンジンECU42とクラッチECU43とは、互いに別体に設けられても一体に設けられてもよい。 Theclutch ECU 43 is a power switching control section, and operates the power switching device 31 based on various sensor information. The clutch ECU 43 switches which of the engine E, the first motor M1 and the second motor M2 should be connected to the rear wheels 4 so as to be able to transmit power. The clutch ECU 43 is connected to a clutch actuator 32 that connects and disconnects a clutch in the power switching device 31, for example.
Theengine ECU 42 and the clutch ECU 43 may be provided separately or integrally.
エンジンECU42とクラッチECU43とは、互いに別体に設けられても一体に設けられてもよい。 The
The
制御部41には、例えばエンジンEの燃料タンクの残容量を検知する燃料残容量センサ45、乗員のアクセル開度(出力要求量)を検知するアクセル開度センサ46、エンジンEの回転数を検知するエンジン回転数センサ47、自動二輪車1の車速を検知する車速センサ48、バッテリ37の残容量を検知するバッテリ残容量センサ49、等の各種センサが接続されている。
The control unit 41 includes, for example, a remaining fuel capacity sensor 45 for detecting the remaining capacity of the fuel tank of the engine E, an accelerator opening sensor 46 for detecting the accelerator opening (required output amount) of the passenger, and a rotational speed of the engine E. Various sensors such as an engine rotation speed sensor 47 that detects the vehicle speed of the motorcycle 1, a vehicle speed sensor 48 that detects the vehicle speed of the motorcycle 1, and a remaining battery capacity sensor 49 that detects the remaining capacity of the battery 37 are connected.
制御部41は、例えば自動二輪車1のメインスイッチがオンになると起動し、駆動システムSの制御を開始する。制御部41は、例えばアクセル開度毎に車速と出力(トルク)との相関を設定したマップを、メモリに記憶している。制御部41は、各センサからの出力および予め定められたマップ等に基づいて、エンジンE、第一モータM1および第二モータM2を適宜協働させる。制御部41は、駆動システムSから後輪4にトルクを付与して自動二輪車1を走行させるとともに、バッテリ37を充電可能とする。
The control unit 41 is activated, for example, when the main switch of the motorcycle 1 is turned on, and starts controlling the drive system S. The control unit 41 stores, in memory, a map in which the correlation between the vehicle speed and the output (torque) is set for each accelerator opening, for example. The control unit 41 appropriately causes the engine E, the first motor M1 and the second motor M2 to cooperate based on the output from each sensor, a predetermined map, and the like. The control unit 41 applies torque from the drive system S to the rear wheel 4 to run the motorcycle 1 and enables the battery 37 to be charged.
制御部41は、エンジンE、第一モータM1および第二モータM2を協働させる複数の制御モードを有している。制御部41は、複数の制御モードを切り替える制御モード切替部として機能する。制御モードの切り替えは、予め設定されたコンピュータプログラムに基づいて実行される処理によって、機能的に実現される。
The control unit 41 has a plurality of control modes for cooperating the engine E, the first motor M1 and the second motor M2. The control unit 41 functions as a control mode switching unit that switches between a plurality of control modes. Switching of the control mode is functionally realized by processing executed based on a preset computer program.
<制御モード>
制御部41の複数の制御モードは、EVモードと、ハイブリッドモードと、回生モードと、エンジンドライブモードと、を含む。
図3を参照し、EVモードは、エンジンEを停止して第一モータM1を駆動させ、第一モータM1の駆動力で自動二輪車1を走行させる。
図4を参照し、ハイブリッドモードは、エンジンEにより第二モータM2を発電機として駆動させつつ、第一モータM1の駆動力で自動二輪車1を走行させる。 <Control mode>
The plurality of control modes ofcontrol unit 41 include EV mode, hybrid mode, regeneration mode, and engine drive mode.
Referring to FIG. 3, in the EV mode, the engine E is stopped, the first motor M1 is driven, and themotorcycle 1 is driven by the driving force of the first motor M1.
Referring to FIG. 4, in the hybrid mode, the second motor M2 is driven by the engine E as a generator, and themotorcycle 1 is driven by the driving force of the first motor M1.
制御部41の複数の制御モードは、EVモードと、ハイブリッドモードと、回生モードと、エンジンドライブモードと、を含む。
図3を参照し、EVモードは、エンジンEを停止して第一モータM1を駆動させ、第一モータM1の駆動力で自動二輪車1を走行させる。
図4を参照し、ハイブリッドモードは、エンジンEにより第二モータM2を発電機として駆動させつつ、第一モータM1の駆動力で自動二輪車1を走行させる。 <Control mode>
The plurality of control modes of
Referring to FIG. 3, in the EV mode, the engine E is stopped, the first motor M1 is driven, and the
Referring to FIG. 4, in the hybrid mode, the second motor M2 is driven by the engine E as a generator, and the
図5を参照し、回生モードは、自動二輪車1の減速時等に自動二輪車1の運動エネルギーによって第一モータM1を発電機として駆動させ、第一モータM1の発電電力でバッテリ37を充電する。
図6を参照し、エンジンドライブモードは、エンジンEの駆動力で自動二輪車1を走行させる。
各制御モードは、センサ出力等に応じて自動的に切り替え可能、または乗員の操作によって任意に切り替え可能である。 Referring to FIG. 5, in the regeneration mode, the kinetic energy of themotorcycle 1 is used to drive the first motor M1 as a generator when the motorcycle 1 decelerates, and the battery 37 is charged with the electric power generated by the first motor M1.
Referring to FIG. 6 , in the engine drive mode, the driving force of the engine E is used to drive themotorcycle 1 .
Each control mode can be automatically switched according to sensor output or the like, or can be arbitrarily switched by the operation of the passenger.
図6を参照し、エンジンドライブモードは、エンジンEの駆動力で自動二輪車1を走行させる。
各制御モードは、センサ出力等に応じて自動的に切り替え可能、または乗員の操作によって任意に切り替え可能である。 Referring to FIG. 5, in the regeneration mode, the kinetic energy of the
Referring to FIG. 6 , in the engine drive mode, the driving force of the engine E is used to drive the
Each control mode can be automatically switched according to sensor output or the like, or can be arbitrarily switched by the operation of the passenger.
以下、複数の制御モードについてより詳細に説明する。
まず、エンジンEを停止して第一モータM1の駆動力で車両を走行させるEV(Electric Vehicle)モードについて説明する。EVモードは、例えば自動二輪車1の発進時から中低速の走行時(特にクルーズ走行時)等において、第一モータM1の駆動力(モータトルク)のみによって走行可能なモータドライブモードである。EVモードでは、エンジンEおよび第二モータM2と後輪4との連結を解除した状態で自動二輪車1を走行させる。 The multiple control modes are described in more detail below.
First, an EV (Electric Vehicle) mode in which the engine E is stopped and the vehicle is driven by the driving force of the first motor M1 will be described. The EV mode is a motor drive mode in which themotorcycle 1 can travel only by the driving force (motor torque) of the first motor M1, for example, when the motorcycle 1 is running at medium to low speeds (especially when cruising). In the EV mode, the motorcycle 1 is run with the engine E and the second motor M2 disconnected from the rear wheel 4 .
まず、エンジンEを停止して第一モータM1の駆動力で車両を走行させるEV(Electric Vehicle)モードについて説明する。EVモードは、例えば自動二輪車1の発進時から中低速の走行時(特にクルーズ走行時)等において、第一モータM1の駆動力(モータトルク)のみによって走行可能なモータドライブモードである。EVモードでは、エンジンEおよび第二モータM2と後輪4との連結を解除した状態で自動二輪車1を走行させる。 The multiple control modes are described in more detail below.
First, an EV (Electric Vehicle) mode in which the engine E is stopped and the vehicle is driven by the driving force of the first motor M1 will be described. The EV mode is a motor drive mode in which the
EVモードにおいて、エンジンEを駆動し、エンジンEの駆動力によって第二モータM2で発電を行うことも可能である(ハイブリッドモード)。ハイブリッドモードにおいて、第二モータM2の発電電力は、バッテリ37に蓄電されるが、第一モータM1に直接供給されてもよい。
In the EV mode, it is also possible to drive the engine E and use the driving force of the engine E to generate electricity with the second motor M2 (hybrid mode). In the hybrid mode, the power generated by the second motor M2 is stored in the battery 37, but may be directly supplied to the first motor M1.
ハイブリッドモードは、例えば自動二輪車1の発進時から規定速度に達するまでの間、上り坂走行時、急加速要求時等に実施される。ハイブリッドモードは、バッテリ残容量が少ない場合にも実施される。自動二輪車1は乗用車に比べて小型であり、バッテリ37の搭載サイズ(容量)も制限されるため、EVモードよりもハイブリッドモードとなる機会が多い。
The hybrid mode is implemented, for example, when the motorcycle 1 starts running until it reaches a specified speed, when traveling uphill, when a sudden acceleration is required, and the like. The hybrid mode is also implemented when the remaining battery capacity is low. Since the motorcycle 1 is smaller than a passenger car and the mounting size (capacity) of the battery 37 is limited, the hybrid mode is more likely to be used than the EV mode.
ハイブリッドモードにおいて、エンジンEおよび第二モータM2の駆動力の少なくとも一部を、駆動システムSの出力部に供給することも可能である。これにより、エンジンEおよび第二モータM2のトルクで後輪駆動をアシストすることが可能である。バッテリ残容量が第一の規定値を下回っている場合は、第二モータM2による駆動アシストを制限してもよい。また、バッテリ残容量がさらに低い第二の規定値を下回る場合は、第一モータM1による駆動を制限してエンジンドライブモードに切り替えてもよい。燃料タンクの残容量が規定値を下回る場合は、第一モータM1および第二モータM2による後輪駆動の割合を増やしてもよい。
It is also possible to supply at least part of the drive power of the engine E and the second motor M2 to the output of the drive system S in the hybrid mode. As a result, it is possible to assist the driving of the rear wheels with the torque of the engine E and the second motor M2. If the remaining battery charge is below the first specified value, the drive assist by the second motor M2 may be restricted. Further, when the remaining battery capacity is lower than a second specified value, the driving by the first motor M1 may be restricted and switched to the engine drive mode. When the remaining capacity of the fuel tank is below a specified value, the proportion of rear wheel drive by the first motor M1 and the second motor M2 may be increased.
EVモードおよびハイブリッドモードにおいて、自動二輪車1の減速時や下り坂走行時には、「回生モード」に移行する。回生モードでは、後輪4の回転エネルギーを第一モータM1に入力して回生(発電)を行い、この発電電力をバッテリ37に蓄電する。このとき、動力切替装置31の切り替えによって、エンジンEと後輪4との連結を解除し、効率よく回生を行う構成としてもよい。回生モードでは、後輪4に回生ブレーキ(機関ブレーキ)を発生させる。バッテリ37の充電量が規定値以上の場合には、第一モータM1を空転させて回生を停止してもよい。このとき、動力切替装置31の切り替えによって、エンジンEと後輪4とを連結し、エンジンブレーキを発生させてもよい。
In EV mode and hybrid mode, when the motorcycle 1 decelerates or travels downhill, it shifts to "regenerative mode". In the regeneration mode, the rotational energy of the rear wheels 4 is input to the first motor M1 to regenerate (generate power), and the generated power is stored in the battery 37 . At this time, by switching the power switching device 31, the connection between the engine E and the rear wheels 4 may be released, and regeneration may be performed efficiently. In the regenerative mode, regenerative braking (engine braking) is generated on the rear wheels 4 . When the amount of charge in the battery 37 is equal to or greater than a specified value, the first motor M1 may idle to stop regeneration. At this time, by switching the power switching device 31, the engine E and the rear wheels 4 may be connected to generate engine braking.
高速走行時(特に定速走行時)等では、動力切替装置31においてエンジンEと後輪4との間を動力伝達可能に連結し、エンジンEの駆動力によって自動二輪車1を走行させる(エンジンドライブモード)。エンジンドライブモードにおいて、エンジンEの駆動力によって第二モータM2を駆動して発電を行い、バッテリ37に蓄電してもよい。エンジンドライブモードにおいて、第一モータM1および第二モータM2の少なくとも一方を駆動させ、後輪駆動をアシストしてもよい。
During high-speed running (particularly during constant-speed running), etc., the power switching device 31 connects the engine E and the rear wheels 4 so that power can be transmitted, and the driving force of the engine E drives the motorcycle 1 (engine drive). mode). In the engine drive mode, the driving force of the engine E may be used to drive the second motor M<b>2 to generate power, which may be stored in the battery 37 . In the engine drive mode, at least one of the first motor M1 and the second motor M2 may be driven to assist rear wheel drive.
<エンジン配置>
図1を参照し、例えば、エンジンEは、クランクシャフト26の後方にトランスミッションを有さない構成であり、クランクケース27の前後幅を狭めている。本実施形態のエンジンEは、クランクケース27の前部から斜め前上方へシリンダブロック28を突出させている。図中符号C2はシリンダブロック28の突出方向に沿う軸線(シリンダボアの中心軸線、シリンダ軸線)を示す。シリンダブロック28は、シリンダ軸線C2を垂直方向に対して前方へ傾斜させている。シリンダ軸線C2の垂直方向に対する前傾角度は、例えば45度以上とされており、エンジンE全体の上下高さを抑えている。エンジンEは、上下方向で車体下方に臨む高さ(クランクケース27の下面が実質的に前後輪3,4間の車体下端に位置する高さ)に配置されている。 <Engine placement>
Referring to FIG. 1, for example, the engine E is configured without a transmission behind thecrankshaft 26, and the front-to-rear width of the crankcase 27 is narrowed. In the engine E of this embodiment, a cylinder block 28 projects obliquely forward and upward from the front portion of the crankcase 27 . Reference symbol C2 in the drawing indicates an axis (center axis of the cylinder bore, cylinder axis) along the projecting direction of the cylinder block 28 . The cylinder block 28 has the cylinder axis C2 inclined forward with respect to the vertical direction. The forward inclination angle of the cylinder axis C2 with respect to the vertical direction is set to, for example, 45 degrees or more, thereby suppressing the vertical height of the engine E as a whole. The engine E is arranged at a height facing downward of the vehicle body in the vertical direction (a height at which the lower surface of the crankcase 27 is substantially located at the lower end of the vehicle body between the front and rear wheels 3 and 4).
図1を参照し、例えば、エンジンEは、クランクシャフト26の後方にトランスミッションを有さない構成であり、クランクケース27の前後幅を狭めている。本実施形態のエンジンEは、クランクケース27の前部から斜め前上方へシリンダブロック28を突出させている。図中符号C2はシリンダブロック28の突出方向に沿う軸線(シリンダボアの中心軸線、シリンダ軸線)を示す。シリンダブロック28は、シリンダ軸線C2を垂直方向に対して前方へ傾斜させている。シリンダ軸線C2の垂直方向に対する前傾角度は、例えば45度以上とされており、エンジンE全体の上下高さを抑えている。エンジンEは、上下方向で車体下方に臨む高さ(クランクケース27の下面が実質的に前後輪3,4間の車体下端に位置する高さ)に配置されている。 <Engine placement>
Referring to FIG. 1, for example, the engine E is configured without a transmission behind the
<モータ配置>
図1、図8を参照し、第一モータM1は、エンジンEのクランクケース27の後方左側に配置されている。第一モータM1は、上下方向でエンジンEのクランクケース27と重なる高さに配置されている。第一モータM1は、回転軸151を左右方向に沿わせて配置されている。第一モータM1は、クランクシャフト26とは別軸に設けられている。図中符号C3は第一モータM1の回転軸151の中心軸線を示す。 <Motor arrangement>
1 and 8, the first motor M1 is arranged on the rear left side of thecrankcase 27 of the engine E. As shown in FIG. The first motor M1 is arranged at a height overlapping the crankcase 27 of the engine E in the vertical direction. The first motor M1 is arranged with the rotating shaft 151 extending in the left-right direction. The first motor M<b>1 is provided on a shaft separate from the crankshaft 26 . Reference symbol C3 in the drawing indicates the central axis of the rotation shaft 151 of the first motor M1.
図1、図8を参照し、第一モータM1は、エンジンEのクランクケース27の後方左側に配置されている。第一モータM1は、上下方向でエンジンEのクランクケース27と重なる高さに配置されている。第一モータM1は、回転軸151を左右方向に沿わせて配置されている。第一モータM1は、クランクシャフト26とは別軸に設けられている。図中符号C3は第一モータM1の回転軸151の中心軸線を示す。 <Motor arrangement>
1 and 8, the first motor M1 is arranged on the rear left side of the
第一モータM1は、上下方向で車体下方に臨む高さ(下端が実質的に前後輪3,4間の車体下端に位置する高さ)に配置されている。第一モータM1は、側面視でピボットフレーム8よりも前方に配置されている。第一モータM1の回転軸151は、側面視でピボット軸17よりも前方かつ下方に配置されている。第一モータM1の回転軸151は、側面視でクランクシャフト26よりも後方かつ下方に配置されている。
The first motor M1 is arranged at a height facing downward of the vehicle body in the vertical direction (a height at which the lower end is substantially located at the lower end of the vehicle body between the front and rear wheels 3 and 4). The first motor M1 is arranged forward of the pivot frame 8 in a side view. The rotation shaft 151 of the first motor M1 is arranged forward and below the pivot shaft 17 in a side view. The rotating shaft 151 of the first motor M1 is arranged behind and below the crankshaft 26 in a side view.
例えば、第一モータM1の回転軸151の上方には、回転軸151と平行な出力軸55が配置されている。出力軸55は、駆動システムSの出力部であり、動力切替装置31を介して駆動力(トルク)が出力される。出力軸55は、例えばチェーン式の伝動機構56を介して後輪4と連結されている。出力軸55の右端部には、伝動機構56のドライブスプロケット56aが一体回転可能に支持されている。
For example, an output shaft 55 parallel to the rotating shaft 151 is arranged above the rotating shaft 151 of the first motor M1. The output shaft 55 is an output portion of the drive system S, and outputs drive force (torque) via the power switching device 31 . The output shaft 55 is connected to the rear wheel 4 via a chain-type transmission mechanism 56, for example. A drive sprocket 56a of a transmission mechanism 56 is supported on the right end of the output shaft 55 so as to be integrally rotatable.
図1、図8を参照し、第二モータM2は、エンジンEのクランクケース27の後方右側に配置されている。第二モータM2は、上下方向でエンジンEのクランクケース27と重なる高さに配置されている。第二モータM2は、回転軸251を左右方向に沿わせて配置されている。第二モータM2は、クランクシャフト26とは別軸に設けられている。図中符号C4は第二モータM2の回転軸251の中心軸線を示す。
1 and 8, the second motor M2 is arranged on the rear right side of the crankcase 27 of the engine E. The second motor M2 is arranged at a height overlapping the crankcase 27 of the engine E in the vertical direction. The second motor M2 is arranged with the rotating shaft 251 extending in the left-right direction. The second motor M2 is provided on a shaft separate from the crankshaft 26 . Reference symbol C4 in the drawing indicates the central axis of the rotating shaft 251 of the second motor M2.
第一モータM1と第二モータM2とは、互いに同軸に設けられている。第一モータM1と第二モータM2とは、互いに左右方向で隣接している。本実施形態で用いる「隣接」とは、対象の二部品間に他部品が存在しないか、あるいは組み付け部材(ケース、ブラケット、ステー、ボルトナット等)のみが存在する意とする。第一モータM1と第二モータM2とは、それぞれ軸方向幅を抑えた偏平の円柱状をなしている。例えば、第一モータM1は、第二モータM2と比べて、径方向および軸方向の各々で大型に設けられている。
The first motor M1 and the second motor M2 are provided coaxially with each other. The first motor M1 and the second motor M2 are adjacent to each other in the left-right direction. The term "adjacent" used in this embodiment means that there is no other component between the two target components, or that only an assembly member (case, bracket, stay, bolt nut, etc.) is present. The first motor M1 and the second motor M2 each have a flat columnar shape with a reduced axial width. For example, the first motor M1 is provided larger in both the radial direction and the axial direction than the second motor M2.
例えば、第一モータM1は、車体左右中央CLに対して、車幅方向で左側にオフセットして配置されている。第二モータM2は、車体左右中央CLに対して、車幅方向で右側にオフセットして配置されている。車体左右中央CLに対して車幅方向一側にずれて配置されるとは、各モータM1,M2の全体が車体左右中央CLよりも一側に配置されることの他、各モータM1,M2の左右中央が車体左右中央CLよりも一側にあることを含む。第一モータM1は、車体左右中央CLを左右に跨ぐように配置されてもよい。第一モータM1を大型にすることで、自動二輪車1の駆動力を確保しやすくなる。
ここで、リヤタイヤ幅が太い場合、チェーンラインに合わせて第一モータM1が車体左側に大きく寄る場合は、第二モータM2が車体左右中央CLに対して、車幅方向で左側にオフセットして配置されてもよい。 For example, the first motor M1 is offset to the left in the vehicle width direction with respect to the left-right center CL of the vehicle body. The second motor M2 is arranged so as to be offset to the right in the vehicle width direction with respect to the left-right center CL of the vehicle body. Displacement to one side in the vehicle width direction with respect to the left-right center CL of the vehicle body means that the entire motors M1 and M2 are arranged to one side of the left-right center CL of the vehicle body. is on one side of the vehicle body left-right center CL. The first motor M1 may be arranged so as to straddle the left and right center CL of the vehicle body. Enlarging the size of the first motor M1 makes it easier to secure the driving force of themotorcycle 1 .
Here, when the width of the rear tire is large, and when the first motor M1 is largely shifted to the left side of the vehicle body in line with the chain line, the second motor M2 is arranged offset to the left side in the vehicle width direction with respect to the left-right center CL of the vehicle body. may be
ここで、リヤタイヤ幅が太い場合、チェーンラインに合わせて第一モータM1が車体左側に大きく寄る場合は、第二モータM2が車体左右中央CLに対して、車幅方向で左側にオフセットして配置されてもよい。 For example, the first motor M1 is offset to the left in the vehicle width direction with respect to the left-right center CL of the vehicle body. The second motor M2 is arranged so as to be offset to the right in the vehicle width direction with respect to the left-right center CL of the vehicle body. Displacement to one side in the vehicle width direction with respect to the left-right center CL of the vehicle body means that the entire motors M1 and M2 are arranged to one side of the left-right center CL of the vehicle body. is on one side of the vehicle body left-right center CL. The first motor M1 may be arranged so as to straddle the left and right center CL of the vehicle body. Enlarging the size of the first motor M1 makes it easier to secure the driving force of the
Here, when the width of the rear tire is large, and when the first motor M1 is largely shifted to the left side of the vehicle body in line with the chain line, the second motor M2 is arranged offset to the left side in the vehicle width direction with respect to the left-right center CL of the vehicle body. may be
<バッテリ配置>
図1、図8を参照し、シート21の下方には、駆動システムSの電源であるバッテリ37が配置されている。バッテリ37は、車体左右中央CLを左右に跨いで配置されている。これにより、完成車重心を左右センター付近に設定できるため、操安性能を高めることができる。バッテリ37は、例えば複数(例えば左右一対)の単位バッテリ37aで構成されている。各単位バッテリ37aは、互いに同一構成である。各単位バッテリ37aは、例えば断面矩形状をなして長手方向に延びる角柱状(直方体状)をなしている。各単位バッテリ37aは、長手方向を後上がりに傾斜させて配置され、全体的に後上がりのリヤボディカバー19b内に収まりやすくしている。各単位バッテリ37aは、例えば一体のバッテリボックスに収容されている。 <Battery placement>
1 and 8, abattery 37 as a power source for the drive system S is arranged below the seat 21. As shown in FIG. The battery 37 is arranged across the left and right center CL of the vehicle body. As a result, the center of gravity of the completed vehicle can be set near the left and right centers, which improves steering stability. The battery 37 is composed of, for example, a plurality of (for example, a pair of left and right) unit batteries 37a. Each unit battery 37a has the same configuration. Each unit battery 37a has, for example, a prismatic shape (rectangular parallelepiped shape) that has a rectangular cross section and extends in the longitudinal direction. Each unit battery 37a is arranged so that the longitudinal direction thereof is tilted rearward upward, so that it can be easily accommodated in the rearward upward rear body cover 19b as a whole. Each unit battery 37a is accommodated, for example, in an integrated battery box.
図1、図8を参照し、シート21の下方には、駆動システムSの電源であるバッテリ37が配置されている。バッテリ37は、車体左右中央CLを左右に跨いで配置されている。これにより、完成車重心を左右センター付近に設定できるため、操安性能を高めることができる。バッテリ37は、例えば複数(例えば左右一対)の単位バッテリ37aで構成されている。各単位バッテリ37aは、互いに同一構成である。各単位バッテリ37aは、例えば断面矩形状をなして長手方向に延びる角柱状(直方体状)をなしている。各単位バッテリ37aは、長手方向を後上がりに傾斜させて配置され、全体的に後上がりのリヤボディカバー19b内に収まりやすくしている。各単位バッテリ37aは、例えば一体のバッテリボックスに収容されている。 <Battery placement>
1 and 8, a
バッテリ37は、複数の単位バッテリ37aを直列に結線することで、所定の高電圧(48~72V)を発生させている。各単位バッテリ37aは、それぞれ充放電可能なエネルギーストレージとして、例えばリチウムイオンバッテリで構成されている。各単位バッテリ37aは、ジャンクションボックス(分配器)およびコンタクタ(電磁開閉器)を介して、PCU34に接続されている。PCU34からは三相ケーブルが延び、この三相ケーブルが第一モータM1に接続されている。
The battery 37 generates a predetermined high voltage (48-72V) by connecting a plurality of unit batteries 37a in series. Each unit battery 37a is composed of, for example, a lithium ion battery as a chargeable/dischargeable energy storage. Each unit battery 37a is connected to the PCU 34 via a junction box (distributor) and a contactor (electromagnetic switch). A three-phase cable extends from the PCU 34 and is connected to the first motor M1.
バッテリ37は、少なくとも一部が左右リヤフレーム部材9aの間に配置されている。バッテリ37は、側面視で後輪4の前上方に離間して配置されている。バッテリ37は、左右リヤフレーム部材9aに両持ち支持されている。バッテリ37は、シート21の下方に位置している。バッテリ37は、例えばシート21の着脱あるいは開閉により、リヤボディカバー19bの上部開口からアクセス(着脱および充電等のメンテナンスを含む)可能である。
At least part of the battery 37 is arranged between the left and right rear frame members 9a. The battery 37 is spaced apart in front and above the rear wheel 4 in a side view. The battery 37 is supported by the left and right rear frame members 9a. The battery 37 is positioned below the seat 21 . The battery 37 can be accessed (including attachment/detachment and maintenance such as charging) from an upper opening of the rear body cover 19b by attaching/detaching or opening/closing the seat 21, for example.
<PCU配置>
図1、図8を参照し、PCU34は、直方体状の外形をなし、一辺の方向を車幅方向に沿わせて配置されている。PCU34は、上下面を略水平にして配置されている。PCU34は、上下面を側面視で傾斜させて配置されてもよい。 <PCU placement>
Referring to FIGS. 1 and 8, thePCU 34 has a rectangular parallelepiped outer shape and is arranged with one side along the vehicle width direction. The PCU 34 is arranged with its upper and lower surfaces substantially horizontal. The PCU 34 may be arranged with its upper and lower surfaces inclined when viewed from the side.
図1、図8を参照し、PCU34は、直方体状の外形をなし、一辺の方向を車幅方向に沿わせて配置されている。PCU34は、上下面を略水平にして配置されている。PCU34は、上下面を側面視で傾斜させて配置されてもよい。 <PCU placement>
Referring to FIGS. 1 and 8, the
PCU34は、エンジンEの後方かつ第一モータM1および第二モータM2の上方に配置されている。PCU34は、車体左右中央CLを左右に跨いで配置されている。PCU34の後方には、バッテリ37が配置されている。PCU34は、バッテリ37と上下方向位置をラップさせるとともに、第一モータM1および第二モータM2と前後方向位置をラップさせている。これにより、PCU34とバッテリ37とが互いに近付くとともに、PCU34と第一モータM1および第二モータM2の各々とが互いに近付く。これにより、これら各電装部品間の配線の短縮化が図られる。
The PCU 34 is arranged behind the engine E and above the first motor M1 and the second motor M2. The PCU 34 is arranged across the left and right center CL of the vehicle body. A battery 37 is arranged behind the PCU 34 . The PCU 34 overlaps the battery 37 in the vertical direction and overlaps the first motor M1 and the second motor M2 in the front-rear direction. As a result, the PCU 34 and the battery 37 approach each other, and the PCU 34 and each of the first motor M1 and the second motor M2 approach each other. As a result, the wiring between these electrical components can be shortened.
図8を参照し、第一モータM1および第二モータM2は、エンジンEの後方でエンジンEの左右幅H1内に配置されている。第一モータM1および第二モータM2は、互いに同軸のコンパクトなモータ組体とすることが可能である。これにより、第一モータM1および第二モータM2の配置自由度が高まり、エンジンEの左右幅H1内に配置しやすくされている。第一モータM1および第二モータM2は、外装部や各種接続部等の部分的な突起を除き、実質的にエンジンEの左右幅H1内に配置されている(本実施形態で単に「エンジンEの左右幅H1内に配置」と記載した場合も同様の意とする。)。第一モータM1および第二モータM2の少なくとも一方が、エンジンEの左右幅H1内に配置される構成でもよい。エンジンEの左右幅H1内に配置されるモータの少なくとも一部が、エンジンEの左右幅H1内に配置される構成でもよい。
Referring to FIG. 8, the first motor M1 and the second motor M2 are arranged behind the engine E within the lateral width H1 of the engine E. As shown in FIG. The first motor M1 and the second motor M2 can be coaxial compact motor assemblies. As a result, the first motor M1 and the second motor M2 can be arranged more freely, and can be easily arranged within the lateral width H1 of the engine E. As shown in FIG. The first motor M1 and the second motor M2 are arranged substantially within the lateral width H1 of the engine E (in this embodiment, simply referred to as "engine E The same applies to the case where it is described as "arranged within the left and right width H1 of ."). At least one of the first motor M1 and the second motor M2 may be arranged within the lateral width H1 of the engine E. At least part of the motor arranged within the lateral width H1 of the engine E may be arranged within the lateral width H1 of the engine E.
第一モータM1および第二モータM2の上方には、PCU34が配置されている。PCU34は、エンジンEの左右幅H1内に配置されている。PCU34は、第一モータM1および第二モータM2を含むモータ組体の前後幅内に配置されている。PCU34の下端部は、第一モータM1および第二モータM2の上端部に上下方向で隣接している。PCU34の上端部は、エンジンEの上端高さZ1よりも上方に配置されている。PCU34は、左右幅および前後幅ならびに下端高さが制限されているが、上端高さに自由度を持たせることで、必要な容量を稼いでいる。
The PCU 34 is arranged above the first motor M1 and the second motor M2. The PCU 34 is arranged within the lateral width H1 of the engine E. As shown in FIG. The PCU 34 is arranged within the longitudinal width of the motor assembly including the first motor M1 and the second motor M2. The lower end of the PCU 34 is vertically adjacent to the upper ends of the first motor M1 and the second motor M2. The upper end of the PCU 34 is arranged above the upper end height Z1 of the engine E. As shown in FIG. The PCU 34 has a limited width in the left-right direction, a width in the front-rear direction, and a height at the lower end, but by giving flexibility to the height at the upper end, a necessary capacity is obtained.
PCU34は、全体がエンジンEの左右幅H1内に配置される構成に限らず、少なくとも一部がエンジンEの左右幅H1内に配置される構成でもよい。PCU34は、第一モータM1を制御する第一モータ制御部(駆動用PCU)と、第二モータM2を制御する第二モータ制御部(発電用PCU)と、に分割されてもよい。この場合、駆動用PCUおよび発電用PCUの少なくとも一方が、エンジンEの左右幅H1内に配置される構成でもよい。エンジンEの左右幅H1内に配置されるPCUの少なくとも一部が、エンジンEの左右幅H1内に配置される構成でもよい。
The PCU 34 is not limited to being arranged entirely within the lateral width H1 of the engine E, and may be arranged at least partially within the lateral width H1 of the engine E. The PCU 34 may be divided into a first motor control unit (drive PCU) that controls the first motor M1 and a second motor control unit (power generation PCU) that controls the second motor M2. In this case, at least one of the drive PCU and the power generation PCU may be arranged within the lateral width H1 of the engine E. FIG. At least part of the PCU arranged within the lateral width H1 of the engine E may be arranged within the lateral width H1 of the engine E.
PCU34の後方(第一モータM1および第二モータM2の上後方)には、バッテリ37が配置されている。バッテリ37は、エンジンEの左右幅H1内に配置されている。バッテリ37は、エンジンEの左右幅H1内で、左右一対の単位バッテリ37aに分割されている。バッテリ37は、前下がりに傾斜しており、このバッテリ37の前部がPCU34の上部の後方に配置されている。バッテリ37の後部は、PCU34の上端部よりも上方に配置されている。バッテリ37は、シート21の下方で平坦状に配置されている。バッテリ37は、左右幅および上下幅ならびに前端位置が制限されているが、後端位置に自由度を持たせて容量を稼いでいる。
A battery 37 is arranged behind the PCU 34 (above and behind the first motor M1 and the second motor M2). The battery 37 is arranged within the lateral width H1 of the engine E. As shown in FIG. The battery 37 is divided into a pair of left and right unit batteries 37a within the lateral width H1 of the engine E. As shown in FIG. The battery 37 is inclined forward and downward, and the front part of the battery 37 is arranged behind the upper part of the PCU 34 . The rear portion of the battery 37 is arranged above the upper end portion of the PCU 34 . The battery 37 is arranged flat under the seat 21 . The battery 37 has a limited lateral width, a vertical width and a front end position, but the rear end position is made flexible to increase the capacity.
バッテリ37は、全体がエンジンEの左右幅H1内に配置される構成に限らず、少なくとも一部がエンジンEの左右幅H1内に配置される構成でもよい。バッテリ37は、複数の単位バッテリ37aの少なくとも一つが、エンジンEの左右幅H1内に配置される構成でもよい。エンジンEの左右幅H1内に配置される単位バッテリの少なくとも一部が、エンジンEの左右幅H1内に配置される構成でもよい。
The battery 37 is not limited to being arranged entirely within the lateral width H1 of the engine E, and may be arranged at least partially within the lateral width H1 of the engine E. The battery 37 may be configured such that at least one of the plurality of unit batteries 37a is arranged within the lateral width H1 of the engine E. As shown in FIG. At least part of the unit batteries arranged within the lateral width H1 of the engine E may be arranged within the lateral width H1 of the engine E.
以上説明したように、上記実施形態における自動二輪車1は、後輪4に駆動力を与える駆動用の第一モータM1と、前記第一モータM1に電力を与えるバッテリ37と、前記第一モータM1とは別に設けられる発電用の第二モータM2と、前記第二モータM2を駆動して発電させるエンジンEと、前記第一モータM1および前記第二モータM2を制御するPCU34と、を備え、前記第一モータM1および前記第二モータM2の少なくとも一方は、前記エンジンEの後方で前記エンジンEの左右幅H1内において、少なくとも一部が位置するように配置され、前記第一モータM1と前記第二モータM2とは、上面視で互いに隣接するように左右に並んで配置されている。
この構成によれば、第一モータM1および第二モータM2をエンジンEの左右幅H1内に配置することで、エンジンEおよび両モータM1,M2を含む駆動システムSの左右幅の増大を抑え、車体レイアウトの自由度を高めることができる。第一モータM1および第二モータM2を互いに隣接させることで、各モータM1,M2が互いに接近してまとめられ、各モータM1,M2に接続される配線を短くすることができる。
特に、前記第一モータM1および前記第二モータM2は、全体が前記エンジンEの左右幅H1内に収まるように配置されることで、エンジンEおよび両モータM1,M2を含む駆動システムSの左右幅の増大を確実に抑え、車体レイアウトの自由度を高めることができる。 As described above, themotorcycle 1 in the above embodiment includes the first driving motor M1 for applying driving force to the rear wheel 4, the battery 37 for supplying electric power to the first motor M1, and the first motor M1. A second motor M2 for power generation provided separately from the above, an engine E that drives the second motor M2 to generate power, and a PCU 34 that controls the first motor M1 and the second motor M2, At least one of the first motor M1 and the second motor M2 is disposed rearward of the engine E and within a lateral width H1 of the engine E so that at least a portion of the first motor M1 and the second motor M2 are located. The two motors M2 are arranged side by side so as to be adjacent to each other when viewed from above.
According to this configuration, by arranging the first motor M1 and the second motor M2 within the lateral width H1 of the engine E, an increase in the lateral width of the drive system S including the engine E and the two motors M1 and M2 is suppressed. The flexibility of the vehicle body layout can be increased. By arranging the first motor M1 and the second motor M2 adjacent to each other, the motors M1 and M2 are brought closer together, and the wires connected to the motors M1 and M2 can be shortened.
In particular, the first motor M1 and the second motor M2 are arranged so that the entirety is within the lateral width H1 of the engine E, so that the drive system S including the engine E and the two motors M1 and M2 can be positioned laterally. It is possible to reliably suppress the increase in width and increase the degree of freedom in the body layout.
この構成によれば、第一モータM1および第二モータM2をエンジンEの左右幅H1内に配置することで、エンジンEおよび両モータM1,M2を含む駆動システムSの左右幅の増大を抑え、車体レイアウトの自由度を高めることができる。第一モータM1および第二モータM2を互いに隣接させることで、各モータM1,M2が互いに接近してまとめられ、各モータM1,M2に接続される配線を短くすることができる。
特に、前記第一モータM1および前記第二モータM2は、全体が前記エンジンEの左右幅H1内に収まるように配置されることで、エンジンEおよび両モータM1,M2を含む駆動システムSの左右幅の増大を確実に抑え、車体レイアウトの自由度を高めることができる。 As described above, the
According to this configuration, by arranging the first motor M1 and the second motor M2 within the lateral width H1 of the engine E, an increase in the lateral width of the drive system S including the engine E and the two motors M1 and M2 is suppressed. The flexibility of the vehicle body layout can be increased. By arranging the first motor M1 and the second motor M2 adjacent to each other, the motors M1 and M2 are brought closer together, and the wires connected to the motors M1 and M2 can be shortened.
In particular, the first motor M1 and the second motor M2 are arranged so that the entirety is within the lateral width H1 of the engine E, so that the drive system S including the engine E and the two motors M1 and M2 can be positioned laterally. It is possible to reliably suppress the increase in width and increase the degree of freedom in the body layout.
また、上記自動二輪車1において、前記第一モータM1および前記第二モータM2の上方には、前記PCU34が配置されている。
この構成によれば、第一モータM1および第二モータM2の上方にPCU34を重ねることで、PCU34を含む駆動システムSの左右幅の増大を抑えることができる。
特に、PCU34は、全体が前記エンジンEの左右幅H1内に収まるように配置されることで、PCU34を含む駆動システムSの左右幅の増大を確実に抑えることができる。 In themotorcycle 1, the PCU 34 is arranged above the first motor M1 and the second motor M2.
According to this configuration, by stacking thePCU 34 above the first motor M1 and the second motor M2, an increase in the lateral width of the drive system S including the PCU 34 can be suppressed.
In particular, by arranging thePCU 34 so that the whole is within the width H1 of the engine E, it is possible to reliably suppress an increase in the width of the drive system S including the PCU 34 .
この構成によれば、第一モータM1および第二モータM2の上方にPCU34を重ねることで、PCU34を含む駆動システムSの左右幅の増大を抑えることができる。
特に、PCU34は、全体が前記エンジンEの左右幅H1内に収まるように配置されることで、PCU34を含む駆動システムSの左右幅の増大を確実に抑えることができる。 In the
According to this configuration, by stacking the
In particular, by arranging the
また、上記自動二輪車1において、前記PCU34の後方には、前記バッテリ37が配置されている。
この構成によれば、第一モータM1および第二モータM2の上後方にバッテリを配置することで、バッテリ37を含む駆動システムSの左右幅の増大を抑えることができる。
特に、前記バッテリ37は、全体が前記エンジンEの左右幅H1内に収まるように配置されることで、バッテリ37を含む駆動システムSの左右幅の増大を確実に抑えることができる。 Further, in themotorcycle 1, the battery 37 is arranged behind the PCU 34. As shown in FIG.
According to this configuration, by arranging the batteries above and behind the first motor M1 and the second motor M2, it is possible to suppress an increase in the lateral width of the drive system S including thebattery 37 .
In particular, thebattery 37 is arranged so that the entirety is within the lateral width H1 of the engine E, so that an increase in the lateral width of the drive system S including the battery 37 can be reliably suppressed.
この構成によれば、第一モータM1および第二モータM2の上後方にバッテリを配置することで、バッテリ37を含む駆動システムSの左右幅の増大を抑えることができる。
特に、前記バッテリ37は、全体が前記エンジンEの左右幅H1内に収まるように配置されることで、バッテリ37を含む駆動システムSの左右幅の増大を確実に抑えることができる。 Further, in the
According to this configuration, by arranging the batteries above and behind the first motor M1 and the second motor M2, it is possible to suppress an increase in the lateral width of the drive system S including the
In particular, the
また、上記自動二輪車1において、前記バッテリ37は、複数の単位バッテリ37aを備え、複数の前記単位バッテリ37aは、左右に並んで配置されている。
この構成によれば、バッテリ37全体の上下方向の高さを抑え、バッテリ37の重心位置を車体中心に近づけやすくすることができる。 Further, in themotorcycle 1, the battery 37 includes a plurality of unit batteries 37a, and the plurality of unit batteries 37a are arranged side by side.
According to this configuration, the height of theentire battery 37 in the vertical direction can be suppressed, and the center of gravity of the battery 37 can be easily brought closer to the center of the vehicle body.
この構成によれば、バッテリ37全体の上下方向の高さを抑え、バッテリ37の重心位置を車体中心に近づけやすくすることができる。 Further, in the
According to this configuration, the height of the
なお、本発明は上記実施形態に限られるものではなく、例えば、鞍乗り型車両には、運転者が車体を跨いで乗車する車両全般が含まれ、自動二輪車(原動機付自転車及びスクータ型車両を含む)のみならず、三輪(前一輪かつ後二輪の他に、前二輪かつ後一輪の車両も含む)又は四輪(四輪バギー等)の車両も含まれる。鞍乗り型車両には、自動二輪車のように車体をバンクさせた方向に旋回する車両のみならず、車体をバンクさせずに操舵輪の転舵によって旋回する車両も含まれる。
The present invention is not limited to the above-described embodiments. For example, the saddle-riding type vehicle includes general vehicles in which the driver straddles the vehicle body, motorcycles (motorized bicycles and scooter type vehicles). ), but also include vehicles with three wheels (including vehicles with two front wheels and one rear wheel, as well as vehicles with one front wheel and two rear wheels) or four-wheel vehicles (such as four-wheel buggies). The straddle-type vehicle includes not only a vehicle such as a motorcycle that turns in a direction in which the vehicle body is banked, but also a vehicle that turns by steering the steered wheels without banking the vehicle body.
上記実施形態では、ハイブリッド式自動二輪車への適用例を示したが、これに限らず、駆動用モータを備える二輪、三輪および四輪の各種の鞍乗り型車両に適用してもよい。
そして、上記実施形態における構成は本発明の一例であり、実施形態の構成要素を周知の構成要素に置き換える等、本発明の要旨を逸脱しない範囲で種々の変更が可能である。 In the above embodiment, an example of application to a hybrid motorcycle has been shown, but the present invention is not limited to this, and may be applied to various types of saddle-riding vehicles including two-wheel, three-wheel and four-wheel drive motors.
The configuration in the above embodiment is an example of the present invention, and various modifications, such as replacing the constituent elements of the embodiment with known constituent elements, are possible without departing from the gist of the present invention.
そして、上記実施形態における構成は本発明の一例であり、実施形態の構成要素を周知の構成要素に置き換える等、本発明の要旨を逸脱しない範囲で種々の変更が可能である。 In the above embodiment, an example of application to a hybrid motorcycle has been shown, but the present invention is not limited to this, and may be applied to various types of saddle-riding vehicles including two-wheel, three-wheel and four-wheel drive motors.
The configuration in the above embodiment is an example of the present invention, and various modifications, such as replacing the constituent elements of the embodiment with known constituent elements, are possible without departing from the gist of the present invention.
1 自動二輪車(鞍乗り型車両)
4 後輪(駆動輪)
34 PCU(制御装置)
37 バッテリ
37a 単位バッテリ
E エンジン(内燃機関)
H1 左右幅
M1 第一モータ(駆動モータ)
M2 第二モータ 1 Motorcycle (saddle type vehicle)
4 rear wheels (drive wheels)
34 PCU (control unit)
37battery 37a unit battery E engine (internal combustion engine)
H1 Left-right width M1 First motor (driving motor)
M2 second motor
4 後輪(駆動輪)
34 PCU(制御装置)
37 バッテリ
37a 単位バッテリ
E エンジン(内燃機関)
H1 左右幅
M1 第一モータ(駆動モータ)
M2 第二モータ 1 Motorcycle (saddle type vehicle)
4 rear wheels (drive wheels)
34 PCU (control unit)
37
H1 Left-right width M1 First motor (driving motor)
M2 second motor
Claims (7)
- 駆動輪(4)に駆動力を与える駆動モータ(M1)と、
前記駆動モータ(M1)に電力を与えるバッテリ(37)と、
前記駆動モータ(M1)とは別に設けられる第二モータ(M2)と、
前記第二モータ(M2)を駆動して発電させる内燃機関(E)と、
前記駆動モータ(M1)および前記第二モータ(M2)を制御する制御装置(34)と、を備え、
前記駆動モータ(M1)および前記第二モータ(M2)の少なくとも一方は、前記内燃機関(E)の後方で前記内燃機関(E)の左右幅(H1)内において、少なくとも一部が位置するように配置され、
前記駆動モータ(M1)と前記第二モータ(M2)とは、上面視で互いに隣接するように左右に並んで配置されている鞍乗り型車両。 a driving motor (M1) for applying driving force to the driving wheels (4);
a battery (37) for powering said drive motor (M1);
a second motor (M2) provided separately from the drive motor (M1);
an internal combustion engine (E) that drives the second motor (M2) to generate electricity;
a control device (34) that controls the drive motor (M1) and the second motor (M2);
At least one of the drive motor (M1) and the second motor (M2) is located behind the internal combustion engine (E) within the lateral width (H1) of the internal combustion engine (E). is placed in
A straddle-type vehicle in which the drive motor (M1) and the second motor (M2) are arranged side by side so as to be adjacent to each other in top view. - 前記駆動モータ(M1)および前記第二モータ(M2)は、前記内燃機関(E)の左右幅(H1)内に収まるように配置されている請求項1に記載の鞍乗り型車両。 The straddle-type vehicle according to claim 1, wherein the drive motor (M1) and the second motor (M2) are arranged so as to fit within the lateral width (H1) of the internal combustion engine (E).
- 前記駆動モータ(M1)および前記第二モータ(M2)の上方には、前記制御装置(34)が配置されている請求項1又は2に記載の鞍乗り型車両。 The straddle-type vehicle according to claim 1 or 2, wherein the control device (34) is arranged above the drive motor (M1) and the second motor (M2).
- 前記制御装置(34)は、前記内燃機関(E)の左右幅(H1)内に収まるように配置されている請求項3に記載の鞍乗り型車両。 The saddle-ride type vehicle according to claim 3, wherein the control device (34) is arranged so as to fit within the lateral width (H1) of the internal combustion engine (E).
- 前記制御装置(34)の後方には、前記バッテリ(37)が配置されている請求項3又は4に記載の鞍乗り型車両。 The straddle-type vehicle according to claim 3 or 4, wherein the battery (37) is arranged behind the control device (34).
- 前記バッテリ(37)は、前記内燃機関(E)の左右幅(H1)内に収まるように配置されている請求項5に記載の鞍乗り型車両。 The saddle-ride type vehicle according to claim 5, wherein the battery (37) is arranged so as to fit within the lateral width (H1) of the internal combustion engine (E).
- 前記バッテリ(37)は、複数の単位バッテリ(37a)を備え、複数の前記単位バッテリ(37a)は、左右に並んで配置されている請求項1から6の何れか一項に記載の鞍乗り型車両。 The saddle riding according to any one of claims 1 to 6, wherein the battery (37) includes a plurality of unit batteries (37a), and the plurality of unit batteries (37a) are arranged side by side in the left and right direction. type vehicle.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2021/048770 WO2023127088A1 (en) | 2021-12-28 | 2021-12-28 | Saddled vehicle |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2021/048770 WO2023127088A1 (en) | 2021-12-28 | 2021-12-28 | Saddled vehicle |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023127088A1 true WO2023127088A1 (en) | 2023-07-06 |
Family
ID=86998415
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2021/048770 WO2023127088A1 (en) | 2021-12-28 | 2021-12-28 | Saddled vehicle |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2023127088A1 (en) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005231424A (en) * | 2004-02-17 | 2005-09-02 | Yamaha Motor Co Ltd | Hybrid vehicle |
JP2007001439A (en) * | 2005-06-23 | 2007-01-11 | Yamaha Motor Co Ltd | Driving unit of hybrid vehicle, and the hybrid vehicle with the unit mounted thereon |
JP2010100124A (en) * | 2008-10-22 | 2010-05-06 | Yamaha Motor Co Ltd | Hybrid striding type vehicle |
JP2012192785A (en) * | 2011-03-15 | 2012-10-11 | Honda Motor Co Ltd | Battery mounting structure for saddle-type electric vehicle |
JP2015077887A (en) * | 2013-10-16 | 2015-04-23 | スズキ株式会社 | Hybrid two-wheel vehicle |
JP2019119288A (en) * | 2017-12-28 | 2019-07-22 | 川崎重工業株式会社 | Hybrid straddle-type vehicle |
-
2021
- 2021-12-28 WO PCT/JP2021/048770 patent/WO2023127088A1/en active Search and Examination
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005231424A (en) * | 2004-02-17 | 2005-09-02 | Yamaha Motor Co Ltd | Hybrid vehicle |
JP2007001439A (en) * | 2005-06-23 | 2007-01-11 | Yamaha Motor Co Ltd | Driving unit of hybrid vehicle, and the hybrid vehicle with the unit mounted thereon |
JP2010100124A (en) * | 2008-10-22 | 2010-05-06 | Yamaha Motor Co Ltd | Hybrid striding type vehicle |
JP2012192785A (en) * | 2011-03-15 | 2012-10-11 | Honda Motor Co Ltd | Battery mounting structure for saddle-type electric vehicle |
JP2015077887A (en) * | 2013-10-16 | 2015-04-23 | スズキ株式会社 | Hybrid two-wheel vehicle |
JP2019119288A (en) * | 2017-12-28 | 2019-07-22 | 川崎重工業株式会社 | Hybrid straddle-type vehicle |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5914337B2 (en) | How to convert a vehicle to a hybrid vehicle | |
JP5595228B2 (en) | Electric vehicle | |
US9327586B2 (en) | Saddle-type electric vehicle | |
EP2778032B1 (en) | Straddle electric vehicle | |
US8833495B2 (en) | Saddle-ride type electric vehicle | |
CN102448806B (en) | Electric straddled vehicle | |
JP5759012B2 (en) | Motorcycle and driving method of the motorcycle | |
JP5225956B2 (en) | Electric saddle type vehicle | |
JP5525998B2 (en) | Saddle riding type electric vehicle | |
JP7118182B2 (en) | saddle type electric vehicle | |
JP3942772B2 (en) | Series hybrid electric motorcycle | |
JP5492742B2 (en) | Cooling duct routing structure for saddle-ride type electric vehicles | |
WO2023127088A1 (en) | Saddled vehicle | |
JP7097979B2 (en) | Saddle-type vehicle | |
WO2023127133A1 (en) | Saddled vehicle | |
WO2023127077A1 (en) | Saddled vehicle | |
WO2023127107A1 (en) | Saddled vehicle | |
WO2023127092A1 (en) | Saddled vehicle | |
WO2023161996A1 (en) | Saddled vehicle | |
WO2023127080A1 (en) | Saddle-ride vehicle | |
WO2023127108A1 (en) | Saddled vehicle | |
WO2023127117A1 (en) | Saddled vehicle | |
JP7580635B2 (en) | Saddle-type vehicle | |
WO2023162024A1 (en) | Saddled vehicle | |
WO2023127076A1 (en) | Saddled vehicle |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21969970 Country of ref document: EP Kind code of ref document: A1 |
|
DPE2 | Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101) | ||
NENP | Non-entry into the national phase |
Ref country code: DE |