WO2023117837A1 - Verfahren zur herstellung von deuterierten organischen verbindungen - Google Patents

Verfahren zur herstellung von deuterierten organischen verbindungen Download PDF

Info

Publication number
WO2023117837A1
WO2023117837A1 PCT/EP2022/086545 EP2022086545W WO2023117837A1 WO 2023117837 A1 WO2023117837 A1 WO 2023117837A1 EP 2022086545 W EP2022086545 W EP 2022086545W WO 2023117837 A1 WO2023117837 A1 WO 2023117837A1
Authority
WO
WIPO (PCT)
Prior art keywords
compounds
organic
compound
solvent
organic compound
Prior art date
Application number
PCT/EP2022/086545
Other languages
English (en)
French (fr)
Inventor
Philipp Stoessel
Christoph WETZEL
Stefan Lehmann
Original Assignee
Merck Patent Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Merck Patent Gmbh filed Critical Merck Patent Gmbh
Priority to CN202280083792.6A priority Critical patent/CN118354991A/zh
Priority to KR1020247024139A priority patent/KR20240128020A/ko
Priority to EP22840088.3A priority patent/EP4452909A1/de
Publication of WO2023117837A1 publication Critical patent/WO2023117837A1/de
Priority to US18/750,108 priority patent/US20240343676A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C211/00Compounds containing amino groups bound to a carbon skeleton
    • C07C211/43Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton
    • C07C211/57Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings being part of condensed ring systems of the carbon skeleton
    • C07C211/61Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings being part of condensed ring systems of the carbon skeleton with at least one of the condensed ring systems formed by three or more rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B59/00Introduction of isotopes of elements into organic compounds ; Labelled organic compounds per se
    • C07B59/001Acyclic or carbocyclic compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/42Platinum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/44Palladium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/19Catalysts containing parts with different compositions
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B59/00Introduction of isotopes of elements into organic compounds ; Labelled organic compounds per se
    • C07B59/002Heterocyclic compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B59/00Introduction of isotopes of elements into organic compounds ; Labelled organic compounds per se
    • C07B59/004Acyclic, carbocyclic or heterocyclic compounds containing elements other than carbon, hydrogen, halogen, oxygen, nitrogen, sulfur, selenium or tellurium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C25/00Compounds containing at least one halogen atom bound to a six-membered aromatic ring
    • C07C25/02Monocyclic aromatic halogenated hydrocarbons
    • C07C25/06Monochloro-benzene
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C25/00Compounds containing at least one halogen atom bound to a six-membered aromatic ring
    • C07C25/18Polycyclic aromatic halogenated hydrocarbons
    • C07C25/22Polycyclic aromatic halogenated hydrocarbons with condensed rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/56Ring systems containing three or more rings
    • C07D209/80[b, c]- or [b, d]-condensed
    • C07D209/82Carbazoles; Hydrogenated carbazoles
    • C07D209/86Carbazoles; Hydrogenated carbazoles with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to carbon atoms of the ring system
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings
    • C07D403/04Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings
    • C07D403/10Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings linked by a carbon chain containing aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/02Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings
    • C07D405/04Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/14Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B2200/00Indexing scheme relating to specific properties of organic compounds
    • C07B2200/05Isotopically modified compounds, e.g. labelled
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of noble metals
    • C07C2523/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of noble metals of the platinum group metals
    • C07C2523/42Platinum
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of noble metals
    • C07C2523/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of noble metals of the platinum group metals
    • C07C2523/44Palladium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2603/00Systems containing at least three condensed rings
    • C07C2603/93Spiro compounds
    • C07C2603/94Spiro compounds containing "free" spiro atoms

Definitions

  • the present invention relates to a method for producing deuterated organic compounds and deuterated compounds produced by this method.
  • Deuterium is an isotope of hydrogen and has a natural occurrence of 0.015%.
  • Deuterated compounds with a high proportion of deuterium are known, and deuterated aromatic compounds have often been used in studies of the course of chemical reactions or conversions in metabolism.
  • Deuterated aromatic compounds are used as a starting material for pharmaceutical compounds or markers.
  • Organic-based charge transport materials e.g. triarylamine-based hole transporters
  • organic or polymer light-emitting diodes OLEDs or PLEDs
  • O-SC organic solar cells
  • O-FET organic field effect transistors
  • O-TFT organic thin-film transistors
  • O-IC organic switching elements
  • O-lasers organic laser diodes
  • Electronic devices within the meaning of this invention are understood to mean organic electronic devices which contain organic semiconductor materials as functional materials.
  • the electronic devices stand for electroluminescent devices such as OLEDs.
  • OLEDs electroluminescent devices
  • the construction of OLEDs in which organic compounds are used as functional materials is known to the person skilled in the art from the prior art.
  • OLEDs are electronic devices that have one or more layers that include organic compounds and emit light when a voltage is applied.
  • Electronic devices usually comprise a cathode, an anode and at least one functional, preferably emissive, layer. In addition to these layers, they can also contain other layers, for example one or more hole injection layers, hole transport layers, hole blocking layers, electron transport layers, electron injection layers, exciton blocking layers, electron blocking layers and/or charge generation layers ).
  • deuteration is performed late in the manufacturing process, especially for compounds for electronic devices, since deuteration is usually a very expensive step.
  • precursors to electronic device compounds, intermediates of such compounds, or the electronic device compounds themselves can be deuterated.
  • Still other processes use D2 gas, D2O, or a deuterated solvent such as CeDe and a metallic catalyst.
  • JP2020070291 describes a process for producing deuterated compounds in an aliphatic hydrocarbon having more than 6 carbon atoms as a solvent, a deuterium source and a metal catalyst.
  • an alcohol is also used as an additive.
  • the decalin used is also difficult to remove.
  • the compounds obtained are difficult to purify.
  • WO2016073425A2 describes a process of deuterated compounds at high pressure and temperature in D2O optionally with solvent.
  • the object of the present invention is to provide a process for the preparation of deuterated compounds with high conversion rate and high yield and economical use of the deuterum source.
  • the object is achieved by a method for preparing a deuterated organic compound, comprising the following steps: a) providing at least one heterogeneous metal catalyst, the provision comprising drying the metal catalyst; b) Preparation of a liquid composition comprising at least one organic compound, at least one heterogeneous metal catalyst, at least one deuterium source and at least one aliphatic hydrocarbon as solvent. c) heating the composition to deuterate the organic compound.
  • At least one heterogeneous metal catalyst is provided, this comprising drying the metal catalyst.
  • the heterogeneous metal catalyst is preferably selected from the group comprising platinum, palladium, rhodium, ruthenium, nickel, cobalt, oxides thereof and combinations thereof, preferably platinum or palladium and/or oxides thereof.
  • the metal of at least one metal catalyst is preferably present in the oxidation state 0 to 2, preferably 0. At least one metal catalyst is preferably present as an elemental metal and/or metal oxide, preferably as an elemental metal.
  • the metal catalyst preferably comprises at least one heterogeneous metal catalyst.
  • the metal of the metal catalyst is preferably present as a metal, preferably supported on a solid phase which is not soluble in the composition.
  • the solid phase can be any suitable material, for example carbon such as activated charcoal or soot, silicates, molecular sieves, polymers.
  • the solid phase is stable under the reaction conditions, preference being given to carbon as the solid phase.
  • Such catalysts are referred to as Pd/C or Pt/C, for example.
  • Preferred metal catalysts are platinum, palladium or mixtures of platinum and palladium, particularly preferably as metal, particularly preferably as heterogeneous catalyst.
  • the at least one metal catalyst is preferably selected from platinum on carbon (Pt/C), palladium on carbon (Pd/C) or a mixture of Pt/C and Pd/C.
  • Pt/C platinum on carbon
  • Pd/C palladium on carbon
  • a mixture of Pt/C and Pd/C a mixture of 10:1 to 1:2 of Pt/C to Pd/C, preferably 7:1 to 1:1, in particular 5:1 to 1:1, measured by weight, is preferred.
  • the content of metal on the carbon of the metal catalyst is preferably from 1 to 10% by weight, in particular from 3 to 7% by weight, particularly preferably 5% by weight.
  • the molar ratio of catalyst to organic compound is preferably from 2:1 to 100:1, in particular from 2:1 to 70:1, preferably from 2:1 to 30:1. With a higher amount of catalyst, fewer by-products are generally formed.
  • the heterogeneous metal catalyst is water-moist before drying, the water content being at least 10% (according to Karl Fischer).
  • the heterogeneous metal catalyst is dried. This is preferably carried out at elevated temperature, in particular at 20° C. to 200° C., preferably at 20 to 100° C., particularly preferably under reduced pressure, in particular below 100 mbar. Drying is preferably carried out until the water content is below 5% by weight, preferably 2% by weight (according to Karl Fischer), preferably below 1%.
  • the drying will preferably carried out for at least 24 hours, in particular at least 48 hours. Drying between 24 and 96 hours, in particular 48 to 96 hours, is preferred.
  • the metal catalysts in particular are often stored moist with water. Surprisingly, it has now been found that the previous drying significantly improves the activity of the catalyst, in particular when using D2O as a deuterium source.
  • the pretreated metal catalyst can be used in the next step without further treatment.
  • deuteration means that some or all of the hydrogen atoms are exchanged for deuterium (D) in the course of the reaction.
  • deuterium In a deuterated compound, deuterium is more than 100 times more abundant than its natural abundance. Percentages refer to the ratio of deuterium to the sum of protons and deuterium for a specific compound.
  • a liquid composition comprising the organic compound, the heterogeneous catalyst, at least one deuterium source and at least one aliphatic hydrocarbon as solvent is prepared.
  • the individual components are mixed.
  • the organic compound can be dissolved and/or partially dispersed in the composition.
  • the organic compound is preferably dissolved in the composition, in particular dissolved under the conditions in step c). This means, that the organic compound is dissolved in the composition after heating.
  • the organic compound is preferably an aromatic or heteroaromatic compound, in particular a hydrocarbon compound, or an organometallic compound. This is preferably a compound with at least one aromatic or heteroaromatic ring system.
  • the connection is particularly preferably suitable for use in an electronic device, in particular an OLED, or a precursor of such a connection.
  • An aromatic ring system within the meaning of this invention contains 6 to 60 carbon atoms, preferably 6 to 40 carbon atoms in the ring system.
  • a heteroaromatic ring system within the meaning of this invention contains 1 to 60 carbon atoms, preferably 1 to 40 carbon atoms and at least one heteroatom in the ring system, with the proviso that the sum of carbon atoms and heteroatoms is at least 5.
  • the heteroatoms are preferably selected from N, O and/or S.
  • An aromatic or heteroaromatic ring system in the context of this invention is to be understood as meaning a system which does not necessarily only contain aryl or heteroaryl groups, but also in which several aryl or heteroaryl groups a non-aromatic moiety (preferably less than 10% of the non-H atoms), such as e.g. B. a C, N or O atom or carbonyl group can be connected.
  • systems are to be understood here in which two or more aryl or heteroaryl groups are linked directly to one another, such as, for. B. biphenyl, terphenyl, bipyridine or phenylpyridine.
  • systems such as fluorene, 9,9'-spirobifluorene, 9,9-diarylfluorene, triarylamine, diaryl ether, stilbene, etc. should also be understood as aromatic ring systems in the context of this invention, and also systems in which two or more aryl groups, for example are connected through a linear or cyclic alkyl group or through a silyl group.
  • Preferred aromatic or heteroaromatic ring systems are simple aryl or heteroaryl groups and groups in which two or more aryl or heteroaryl groups are linked directly to one another, for example Biphenyl, terphenyl, quaterphenyl or bipyridine, as well as fluorene or spirobifluorene.
  • the connected heteroaromatic ring systems particular preference is given to ring systems having N atoms connected to aryl or heteroaryl groups.
  • An aryl group within the meaning of this invention contains 6 to 40 carbon atoms; a heteroaryl group within the meaning of this invention contains 5 to 40 carbon atoms and at least one heteroatom, with the proviso that the sum of carbon atoms and heteroatoms is at least 5.
  • the heteroatoms are preferably selected from N, 0 and/or S.
  • An aryl group or heteroaryl group is either a simple aromatic cycle, ie benzene, or a simple heteroaromatic cycle, for example pyridine, pyrimidine, thiophene, etc., or one fused (fused) aryl or heteroaryl group, for example naphthalene, anthracene, phenanthrene, quinoline, isoquinoline, etc. understood.
  • aromatics linked to one another by a single bond, such as biphenyl are not referred to as aryl or heteroaryl groups, but as aromatic ring systems.
  • An electron-rich heteroaromatic ring system is characterized in that it is a heteroaromatic ring system that does not contain any electron-deficient heteroaryl groups.
  • An electron-deficient heteroaryl group is a six-membered-membered heteroaryl group containing at least one nitrogen atom or a five-membered-membered heteroaryl group containing at least two heteroatoms, one of which is a nitrogen atom and the other is oxygen, sulfur or a substituted nitrogen atom, further aryl or heteroaryl groups being attached to each of these groups can be condensed.
  • electron-rich heteroaryl groups are five-membered-membered heteroaryl groups with exactly one heteroatom selected from oxygen, sulfur or substituted nitrogen, to which further aryl groups and/or further electron-rich five-membered-membered heteroaryl groups can be fused.
  • examples of electron-rich heteroaryl groups are pyrrole, furan, thiophene, indole, benzofuran, benzothiophene, carbazole, dibenzofuran, dibenzothiophene or indenocarbazole.
  • An electron-rich heteroaryl group is also referred to as an electron-rich heteroaromatic radical.
  • An electron-deficient heteroaromatic ring system is characterized as containing at least one electron-deficient heteroaryl group, and more preferably no electron-rich heteroaryl groups.
  • the organic compound can comprise one or more aliphatic hydrocarbon residues or alkyl, alkenyl or alkynyl groups. You can also be substituted with other groups such as F, CN, CI, Br, I alkoxy or thioalkyl groups. It is important that these groups do not react under the reaction conditions.
  • alkyl group is used as a generic term both for linear or branched alkyl groups and for cyclic alkyl groups.
  • alkenyl group and alkynyl group are used as generic terms both for linear or branched alkenyl or alkynyl groups and for cyclic alkenyl or alkynyl groups.
  • an aliphatic hydrocarbon radical or an alkyl group or an alkenyl or alkynyl group which can contain 1 to 40 carbon atoms and in which individual non-adjacent CH2 groups are also represented by 0, C ⁇ O, ( C ⁇ O)O, can be substituted, preferably the radicals methyl, ethyl, n-propyl, i-propyl, n-butyl, i-butyl, s-butyl, t-butyl, 2-methylbutyl, n-pentyl, s -pentyl, t-pentyl, 2-pentyl, neo-pentyl, cyclopentyl, n-hexyl, s-hexyl, t-hexyl, 2-hexyl, 3-hexyl, neo-hexyl, cyclohexyl, 1-methylcyclopentyl, 2-methylp
  • An alkoxy group having 1 to 40 carbon atoms is preferably methoxy, trifluoromethoxy, ethoxy, n-propoxy, i-propoxy, n-butoxy, i-butoxy, s-butoxy, t-butoxy, n-pentoxy, s-pentoxy, 2-Methylbutoxy, n-hexoxy, cyclohexyloxy, n-heptoxy, cycloheptyloxy, n-octyloxy, cyclooctyloxy, 2-ethylhexyloxy, pentafluoroethoxy and 2,2,2-trifluoroethoxy understood.
  • a thioalkyl group having 1 to 40 carbon atoms is, in particular, methylthio, ethylthio, n-propylthio, i-propylthio, n-butylthio, i-butylthio, s-butylthio, t-butylthio, n-pentylthio, s-pentylthio, n- Hexylthio, cyclohexylthio, n-heptylthio, cycloheptylthio, n-octylthio, cyclooctylthio, 2-ethylhexylthio, trifluoromethylthio, pentafluoroethylthio, 2,2,2-trifluoroethylthio, ethenylthio, propenylthio, butenylthio, pentenylthio, cyclopentenylthi
  • alkyl, alkoxy or thioalkyl groups according to the present invention can be straight-chain, branched or cyclic, in which case one or more non-adjacent CH2 groups can be replaced by the groups mentioned above; furthermore, one or more H atoms can also be replaced by D, F, Cl, Br, I, CN or NO2, preferably F, Cl or CN, particularly preferably F or CN.
  • aromatic or heteroaromatic ring system with 5-60 aromatic ring atoms, preferably 5-40 aromatic ring atoms, which can be substituted in each case with the abovementioned radicals or a hydrocarbon radical and which can be linked via any positions on the aromatic or heteroaromatic are in particular understood groups derived from benzene, naphthalene, anthracene, benzanthracene, phenanthrene, pyrene, chrysene, perylene, fluoranthene, naphthacene, pentacene, benzopyrene, biphenyl, biphenylene, terphenyl, triphenylene, fluorene, spirobifluorene, Dihydrophenanthrene, dihydropyrene, tetrahydropyrene, cis or trans indenofluorene, cis or trans indenocarbazole, cis or trans indolocarbazole, cis or trans
  • the above formulation should also be understood to mean that if one of the two radicals is hydrogen, the second radical binds to the position to which the hydrogen atom was bonded, forming a ring. This should be illustrated by the following scheme:
  • an organometallic compound it is preferably a compound comprising copper, molybdenum, tungsten, rhenium, ruthenium, osmium, rhodium, iridium, palladium, platinum, silver, gold or europium, in particular compounds such as iridium or platinum, particularly preferably platinum , which have at least one heteroaromatic ring system.
  • Compounds which are suitable as phosphorescent compounds are preferred. Examples of such compounds can be found in the cited applications for phosphorescent compounds.
  • These compounds are preferably metal chelate complexes, in particular with at least one heteroaromatic ring system as a chelate ligand for the metal.
  • At least one heteroaromatic ring system which bonds to the metal via at least one nitrogen atom and via at least one carbon atom is preferred.
  • These atoms are preferably each part of an aryl group or heteroaryl group which are connected via at least one single bond. Examples of such a compound are 2-phenylpyridine or analogous compounds in which the above aryl groups or heteroaryl groups are linked via a single bond.
  • the deuterium source is preferably selected from heavy water, D2O, d6-benzene or d8-toluene, preferably heavy water or D2O, particularly preferably D2O.
  • heavy water or D2O is a cheaper source of deuterium than the other compounds.
  • Heavy water is water in which 50 mol% of all hydrogen atoms have been exchanged for deuterium, preferably at least 70 mol%, particularly preferably at least 80 mol%, in particular at least 90% or 99%.
  • the solvent serves in particular to increase the solubility of the organic compound in the composition.
  • the aliphatic solvent is preferably an aliphatic solvent with a boiling point above 75° C., in particular above 80° C. (measured at atmospheric pressure).
  • the solvent is preferably a cycloalkane, and a solvent having at least one ring with 6 aliphatic carbon atoms is preferred.
  • Particularly preferably cyclohexane, methylcyclohexane or fused cycloalkanes such as decalin. Cyclohexane and decalin, in particular cyclohexane, are preferred.
  • the decalin can be present as a cis or trans isomer or as a mixture of isomers.
  • the solvent is preferably non-deuterated.
  • the deuterium source especially D2O, is the only deuterated compound in the composition.
  • the composition preferably does not include any aliphatic alcohols, in particular those having 1 to 10 carbon atoms; the composition preferably does not include any aliphatic alcohols.
  • the composition preferably does not comprise any organic compounds with hydroxyl groups.
  • the ratio of hydrogen atoms of the organic compound to the deuterium of the deuterium source is at least 1:1.5, preferably 1:1.5 to 1:1000, preferably 1:2 to 1:500, particularly preferably 1:5 to 1:200. A ratio of 1:5 to 1:100 is particularly preferred.
  • the aliphatic solvent is used in such an amount that the organic compound dissolves at least partially; measured in volume, preferably in a deuterium source:solvent ratio of 2:1 to 1:50, preferably 1:1 to 1:30, in particular 1:1.5 to 1:30, very particularly at 1:1.5 to 1:10.
  • the ideal amount depends on the solubility of the compound.
  • step c) the composition is heated, which results in deuteration.
  • the reaction can be carried out with pressure equalization with the environment, i.e. in an open or in a closed vessel.
  • the autogenous pressure can lead to an increase in pressure due to heating.
  • a pressure equalization procedure can also mean heating under reflux conditions.
  • Step c) is therefore preferably carried out at a pressure of 1 bar or more. Preferably below 6 bar.
  • the reaction is preferably not carried out in the presence of additional reactive gases such as H2 or D2.
  • the reaction is preferably carried out in an inert atmosphere such as nitrogen or argon. Inert here means that the gas or the gas mixture does not react under the process conditions.
  • step c) the reaction is carried out with heating.
  • the heating can take place at a temperature of at least 40.degree. C., in particular at least 70.degree. C., in particular at least 100.degree.
  • the temperature is preferably up to 250.degree. C., in particular up to 160.degree. Particularly preferably at 70°C to 200°C, in particular at 70°C to 160°C.
  • the reaction is preferably not carried out under supercritical conditions.
  • reaction can also be carried out under reflux.
  • the solvent can then be chosen accordingly so that the desired reaction temperature is achieved.
  • the inventive method is preferably carried out until a deuteration of at least 20%, in particular 30%, is achieved.
  • This information relates to the degree of deuteration of the highest mass peak of the product mixture.
  • the process is preferably carried out until a conversion of at least 90% (measured by HPLC) is achieved. This means that a maximum of 10% educt is still present. A conversion of at least 95% is preferred.
  • the reaction is preferably carried out for 1 to 200 hours, particularly for 10 to 100 hours.
  • the reaction is particularly preferably carried out until the degree of deuteration is at least 20% with less than 15% by-products is achieved, preferably of at least 30% with less than 10% by-products, in particular at least 40% with less than 10%.
  • the deuterated compound is preferably isolated using known techniques. This may involve extraction, precipitation, filtration, distillation, chromatography or similar methods.
  • the composition comprises at least one additive to improve deuteration and/or reduce by-products.
  • the at least one additive is preferably selected from alkylamines, preferably alkylamines with alkyl groups having 1 to 40 carbon atoms, where individual non-adjacent CH2 groups can be substituted by O and at least two alkyl groups can form a ring with one another, metal salts and/or metal oxides of salts or oxides of palladium, platinum, rhodium, ruthenium, silver, gold, copper, nickel or cobalt, preference being given to salts or oxides of silver or palladium, in particular of Pd(II).
  • the salts it can be, for example, the chlorides, bromides, iodides, nitrates, sulfates, carboxylic acid salts such as acetates, propionates, pivalates, such as Pd(OAc)2, Ag(OAc) or Pd(OPiv)2.
  • carboxylic acid salts such as acetates, propionates, pivalates, such as Pd(OAc)2, Ag(OAc) or Pd(OPiv)2.
  • Carboxylic acid salts such as Pd(OAc)2, Ag(OAc) or Pd(OPiv)2 are particularly preferred.
  • Preferred alkylamines are alkylamines with at least two, preferably three, alkyl groups, in particular with 1 to 40 carbon atoms, where individual non-adjacent CFb groups can be substituted by O and at least two alkyl groups can form a ring.
  • Preferred alkyl groups are methyl, ethyl, n-propyl, i-propyl, n-butyl, i-butyl, s-butyl, t-butyl, 2-methylbutyl, n-pentyl, s-pentyl, t-pentyl, 2-pentyl , neo-pentyl, cyclopentyl, n-hexyl, s-hexyl, t-hexyl, 2-hexyl, 3-hexyl, neo-hexyl, cyclohexyl, 1-methylcyclopentyl, 2-methylpentyl, n-heptyl, 2-heptyl, 3 - heptyl, 4-heptyl, cycloheptyl, 1-methylcyclohexyl.
  • alkylamines with three alkyl groups (tertiary amines) with 1 to 5 carbon atoms
  • examples of such amines are triethylamine, dimethylethylamine, diethylmethylamine, diisopropylethylamine, with triethylamine being preferred.
  • cyclic amines are morpholine derivatives, in particular N-alkyl morpholines such as N-methyl morpholine, N-ethyl morpholine, N-propyl morpholine.
  • the amine used is preferably soluble in the composition.
  • the aforementioned metal salts are particularly preferred.
  • alkylamines, silver salts and/or palladium salts promote deuteration and reduce the formation of by-products. This may make it possible to carry out the reaction for longer or at a higher temperature.
  • the use of the additives can depend on the compound to be deuterated.
  • the additives can be used in different amounts depending on the reaction procedure and the organic compound.
  • the at least one additive is preferably used in a molar ratio of additive to organic compound of 1:2 to 1:100, preferably 1:2 to 1:50, in particular 1:2 to 1:30.
  • the composition comprises at least one aromatic or heteroaromatic compound, platinum on carbon and/or palladium on carbon, D2O, and cyclohexane and/or decalin, preferably cyclohexane, and optionally at least one additive, the additive being selected from alkylamines, Metal salts and/or metal oxides selected from salts or oxides of palladium, platinum, rhodium, ruthenium, silver, gold, copper, nickel or cobalt.
  • the composition consists of at least one aromatic or heteroaromatic compound, platinum on carbon and/or palladium on carbon, D2O, and Cyclohexane and / or decalin, preferably cyclohexane, and optionally at least one additive, wherein the additive is selected from alkylamines, metal salts and / or metal oxides selected from salts or oxides of palladium, platinum, rhodium, ruthenium, silver, gold, copper, nickel or Cobalt.
  • the additive is selected from alkylamines, metal salts and / or metal oxides selected from salts or oxides of palladium, platinum, rhodium, ruthenium, silver, gold, copper, nickel or Cobalt.
  • the compounds deuterated according to the invention are suitable for use in an electronic device, in particular in an organic electroluminescent device (OLED). Depending on the substitution, the compounds can be used in different functions and layers.
  • OLED organic electroluminescent device
  • An electronic device within the meaning of the present invention is a device which contains at least one layer which contains at least one organic compound.
  • the component can also contain inorganic materials or also layers which are made up entirely of inorganic materials.
  • the electronic device is preferably selected from the group consisting of organic electroluminescent devices (OLEDs), organic integrated circuits (O-ICs), organic field effect transistors (O-FETs), organic thin-film transistors (O-TFTs), organic light-emitting transistors ( O-LETs), organic solar cells (O-SCs), dye-sensitized organic solar cells (DSSCs), organic optical detectors, organic photoreceptors, organic field quench devices (O-FQDs), light-emitting electrochemical cells (LECs), organic laser diodes (O -laser) and organic plasmon emitting devices, but preferably organic electroluminescent devices (OLEDs).
  • O-ICs organic integrated circuits
  • O-FETs organic field effect transistors
  • OF-TFTs organic thin-film transistors
  • O-LETs organic light-emitting transistors
  • O-SCs organic solar cells
  • DSSCs dye-sensitized organic solar cells
  • organic optical detectors organic photore
  • the device is particularly preferably an organic electroluminescent device comprising cathode, anode and at least one emitting layer, wherein at least one organic layer, which can be an emitting layer, hole transport layer, electron transport layer, hole blocking layer, electron blocking layer or another functional layer, at least one according to the invention includes deuterated compound.
  • the layer depends on the substitution of the compound.
  • the organic electroluminescent device can contain other layers, for example one or more hole injection layers, hole transport layers, hole blocking layers, electron transport layers, electron injection layers, exciton blocking layers, electron blocking layers, charge generation layers (charge generation layers) and/or organic or inorganic p/n transitions.
  • interlayers can be introduced between two emitting layers, which have an exciton-blocking function, for example. However, it should be pointed out that each of these layers does not necessarily have to be present.
  • the organic electroluminescence device can contain an emitting layer, or it can contain a plurality of emitting layers. If several emission layers are present, these preferably have a total of several emission maxima between 380 nm and 750 nm, resulting in white emission overall, i. H. in the emitting layers different emitting compounds are used which can fluoresce or phosphoresce. Systems with three emitting layers are particularly preferred, with the three layers exhibiting blue, green and orange or red emission (the basic structure is described, for example, in WO 2005/011013).
  • the organic electroluminescence device according to the invention can also be a tandem OLED, in particular for white-emitting OLEDs.
  • the organic electroluminescent device may include one or more phosphorescent emitters.
  • the organic electroluminescent device can contain an emitting layer, or it can contain a plurality of emitting layers, with at least one layer containing at least one deuterated layer connection contains.
  • the compound deuterated according to the invention can also be used in an electron transport layer and/or in a hole blocking layer and/or in a hole transport layer and/or in an exciton blocking layer.
  • phosphorescent compound typically refers to compounds where the emission of light occurs through a spin-forbidden transition, e.g. B. a transition from a triplet excited state or a state with a higher spin quantum number, e.g. B. a quintet state.
  • Suitable phosphorescent compounds are in particular compounds which, when excited appropriately, emit light, preferably in the visible range, and also at least one atom with an atomic number greater than 20, preferably greater than 38 and less than 84, particularly preferably greater than 56 and less than 80 included. All luminescent complexes with transition metals or lanthanides are considered to be preferred as phosphorescent compounds, particularly if they contain copper, molybdenum, tungsten, rhenium, ruthenium, osmium, rhodium, iridium, palladium, platinum, silver, gold or europium, particularly compounds containing iridium, contain platinum or copper. In the context of the present invention, all luminescent iridium, platinum or copper complexes are considered to be phosphorescent emitting compounds.
  • Examples of the emitter described above can be registered where 00/70655, where 2002/02714, WO 2002/15645, EP 1191612, EP 1191614, WO 05/019373, US 2005/ 0258742, WO 2009/146770, WO 2010/015307, WO 2010/031485, WO 2010/054731, WO 2010/054728, WO 2010/086089, WO 2010/099852, WO 2010/102709, WO 2011/032626, WO 2011/ 066898, WO 2011/157339, WO 2012/007086, WO 2014/008982, WO 2014/023377, WO 2014/094961, WO 2014/094960, WO 2015/036074, WO 2015/104045, WO 2015/117718, WO 2016/ 015815, WO 2016/124304, WO 2017/032439, WO 2018/011186, WO 2018/041769, WO 2019/020538, WO 2018/178
  • the deuterated compound is used as a hole transport material in a hole transport layer, a hole injection layer or an electron blocking layer
  • the compound can be used as a pure material, i.e. in a proportion of 100%, in the hole transport layer, or it can be used in combination with one or more other compounds be used.
  • the organic layer containing the deuterated compound then additionally contains one or more p-type dopants.
  • P-type dopants used in accordance with the present invention are preferably those organic electron acceptor compounds capable of oxidizing one or more of the other compounds in the mixture.
  • p-dopants are those in WO 2011/073149, EP 1968131, EP 2276085, EP 2213662, EP 1722602, EP 2045848, DE 102007031220, US 8044390, US 8057712, WO 2009/00 3455, WO 2010/094378, WO 2011/120709, US 2010/0096600, WO 2012/095143 and DE 102012209523.
  • Particularly preferred p-dopants are quinodimethane compounds, azaindenofluorenediones, azaphenylenes, azatriphenylenes, h, metal halides, preferably transition metal halides, metal oxides, preferably metal oxides containing at least one transition metal or a metal of main group 3, and transition metal complexes, preferably complexes of Cu, Co, Ni , Pd, and Pt with ligands containing at least one oxygen atom as a binding site.
  • Transition metal oxides are also preferred as dopants, preferably oxides of rhenium, molybdenum and tungsten, particularly preferably Re2O?, MoOs, WO3 and ReOs.
  • the p-type dopants are preferably present in a substantially homogeneous distribution in the p-type layers. This can e.g. B. be achieved by co-evaporation of the p-dopant and the hole transport material matrix.
  • the deuterated compound can also be used in an emitting layer as matrix material in combination with one or more emitting compounds, preferably phosphorescent compounds.
  • the proportion of the matrix material in the emitting layer is between 50.0 and 99.9% by volume, preferably between 80.0 and 99.5% by volume, particularly preferably between 92.0 and 99.5% by volume -%. for fluorescent emitting layers and between 85.0 and 97.0% by volume for phosphorescent emitting layers.
  • the proportion of the emitting compound is between 0.1 and 50.0% by volume, preferably between 0.5 and 20.0% by volume, particularly preferably between 0.5 and 8.0% by volume for fluorescent ones emissive layers and between 3.0 and 15.0% by volume. for phosphorescent emitting layers.
  • An emitting layer of an organic electroluminescent device can also comprise systems that contain a multiplicity of matrix materials (mixed matrix systems) and/or a multiplicity of emitting compounds.
  • the emitting compounds are usually those that have the smaller proportion in the system and the matrix materials are those that have the larger proportion in the system.
  • the proportion of a single matrix material in the system can be lower than the proportion of a single emitting compound.
  • Preferred fluorescent emitting compounds are selected from the class of arylamines.
  • an arylamine or an aromatic amine is understood as meaning a compound which contains three substituted or unsubstituted aromatic or heteroaromatic ring systems which are bonded directly to the nitrogen.
  • At least one of these aromatic or heteroaromatic ring systems is a fused ring system, more preferably having at least 14 aromatic ring atoms.
  • Preferred examples of these are aromatic anthracenamines, aromatic anthracenediamines, aromatic pyrenamines, aromatic pyrenediamines, aromatic chrysenamines or aromatic chrysenediamines.
  • An anthracene aromatic amine is understood to mean a compound in which a diarylamino group is attached directly to an anthracene group, preferably in the 9-position.
  • An aromatic anthracenediamine is understood to mean a compound in which two diarylamino groups are bonded directly to an anthracene group, preferably in the 9, 10-positions or 1, 6-position are attached to the pyrene.
  • Further preferred emitting compounds are indenofluorenamines or fluorenediamines, for example according to WO 2006/108497 or WO 2006/122630, benzoindenofluorenamines or -fluorenediamines, for example according to WO 2008/006449, and dibenzoindenofluorenamines or -diamines, for example according to WO 2007/140847, and those in WO 2010/012328 disclosed indenofluorene derivatives with fused aryl groups.
  • the pyrenearylamines disclosed in WO 2012/048780 and in WO 2013/185871 are also preferred. Also preferred are the benzoindenofluoreneamines disclosed in WO 2014/037077, the benzofluoreneamines disclosed in WO 2014/106522, the extended benzoindenofluorenes disclosed in WO 2014/111269 and in WO 2017/036574, the extended benzoindenofluorenes disclosed in WO 2017/028940 and in WO 2017/028 941 revealed Phenoxazines and the fluorine derivatives bonded to furan units or to thiophene units disclosed in WO 2016/150544.
  • Useful matrix materials, preferably for fluorescent compounds, include materials from different classes of substances.
  • Preferred matrix materials are selected from the classes of oligoaryls (e.g. 2,2',7,7'-tetraphenylspirobifluorene according to EP 676461 or dinaphthylanthracene), in particular the oligoaryls with fused aromatic groups, the oligoarylenevinylenes (e.g. DPVBi or spiro-DPVBi according to EP 676461) , the polypodal metal complexes (e.g. according to WO 2004/081017), the hole-conducting compounds (e.g. according to WO 2004/058911), the electron-conducting compounds, in particular ketones, phosphine oxides, sulfoxides etc.
  • oligoaryls e.g. 2,2',7,7'-tetraphenylspirobifluorene according to EP 676461 or dinaphthylanthracene
  • Particularly preferred matrix materials are selected from the classes of oligoarylenes with naphthalene, anthracene, benzanthracene and/or pyrene or atropisomers of these compounds, oligoarylenevinylenes, ketones, phosphine oxides and sulfoxides.
  • Very particularly preferred matrix materials are selected from the classes of oligoarylenes, which include anthracene, benzanthracene, benzophenanthrene and/or pyrene or atropisomers of these compounds.
  • an oligoarylene is a compound in which at least three aryl or arylene groups are connected to one another.
  • WO 2006/097208, WO 2006/131192, WO 2007/065550, WO 2007/110129, WO 2007/065678, WO 2008/145239, WO 2009/100925, WO 2011/054442 and EP 155 3154 disclosed anthracene derivatives, the pyrene compounds disclosed in EP 1749809, EP 1905754 and US 2012/0187826, the benzanthracenylanthracene compounds disclosed in WO 2015/158409, the indenobenzofurans disclosed in WO 2017/025165 and the phenanthrylanthracenes disclosed in WO 2017/036573.
  • Preferred matrix materials for phosphorescent compounds are aromatic ketones, aromatic phosphine oxides or aromatic sulfoxides or sulfones, e.g. B. according to WO 2004/013080, WO 2004/093207, WO 2006/005627 or WO 2010/006680, triarylamines, carbazole derivatives, e.g. B. CBP (N, N-biscarbazolylbiphenyl) or according to WO 2005/039246, US 2005/0069729, JP 2004/288381, EP 1205527, WO 2008/086851 or WO 2013/041176, indolocarbazole derivatives, z. B.
  • CBP N, N-biscarbazolylbiphenyl
  • WO 2012/048781 lactams, z. B. according to WO 2011/116865 or WO 2011/137951, or dibenzofuran derivatives, z. according to WO 2015/169412, WO 2016/015810, WO 2016/023608, WO 2017/148564 or WO 2017/148565.
  • another phosphorescent emitter which emits at a shorter wavelength than the actual emitter, can be present as a co-host in the mixture, or a compound that does not participate, or does not participate to a significant extent, in charge transport, as described for example in WO 2010/108579.
  • Suitable charge transport materials as can be used in the hole injection or hole transport layer or in the electron blocking layer or in the electron transport layer of the electronic component, in addition to the deuterated compounds are, for example, those described in Y. Shirota et al., Chem. Rev. 2007, 107(4) , 953-1010, or other materials used in these prior art layers.
  • the one OLED preferably comprises two or more different hole-transporting layers.
  • the deuterated compound can be in one or more or in all hole-transporting layers be used.
  • Other compounds that are preferably used in hole-transporting layers of the OLEDs are, in particular, indenofluorenamine derivatives (e.g. according to WO 06/122630 or WO 06/100896), the amine derivatives disclosed in EP 1661888, hexaazatriphenylene derivatives (e.g.
  • amine derivatives with fused aromatics for example according to US 5,061,569), the amine derivatives disclosed in WO 95/09147, monobenzoindenofluorenamines (for example according to WO 08/006449), dibenzoindenofluorenamines (for example according to WO 07/140847), spirobifluorenamines (for example According to Wo 2012/034627 or Wo 2013/120577), fluorenamine (for example after where 2014/015937, where 2014/015935 and where 2015/082056), Spirodibenzopyranamine (for example according to where 2013/083216), dihydroacridin derivatives (for example according to WO 2012/150001), spirodibenzofurans and spirodibenzothiophenes (for example according to WO 2015/022051, WO 2016/102048 and WO 2016/131521), phenanthrene diarylamines (for example according to WO 2015/022051, WO 2016/102048 and
  • spirobifluorenes substituted by diarylamino groups in the 4-position as hole-transporting compounds is very particularly preferred, in particular the use of those compounds which are claimed and disclosed in WO 2013/120577, and the use of spirobifluorenes substituted by diarylamino groups in the 2-position as hole-transporting compounds Compounds, in particular the use of those compounds claimed and disclosed in WO 2012/034627.
  • Aluminum complexes eg Alq3, zirconium complexes, eg Zrq4, lithium complexes, eg Liq, benzimidazole derivatives, triazine derivatives, pyrimidine derivatives, pyridine derivatives, pyrazine derivatives, quinoxaline derivatives, quinoline derivatives, oxadiazole derivatives, aromatic ketones, lactams, boranes , diazaphosphole derivatives and phosphine oxide derivatives.
  • Other suitable materials are derivatives of the aforementioned compounds, as disclosed in JP 2000/053957, WO 2003/060956, WO 2004/028217, WO 2004/080975 and WO 2010/072300.
  • Preferred cathodes of the electronic component are metals with a low work function, metal alloys or multilayer structures made of different metals, e.g. B. alkaline earth metals, alkali metals, main group metals or lanthanides (e.g. Ca, Ba, Mg, Al, In, Mg, Yb, Sm, etc.). Additionally suitable are alloys of an alkali or alkaline earth metal and silver, e.g. B. an alloy of magnesium and silver. In the case of multilayer structures, in addition to the metals mentioned, other metals with a relatively high work function can also be used, e.g. B. Ag or Al, usually combinations of metals such. B.
  • Ca / Ag, Mg / Ag or Ba / Ag can be used. It may also be advantageous to introduce a thin intermediate layer of high dielectric constant material between a metallic cathode and the organic semiconductor.
  • suitable materials are alkali or alkaline earth metal fluorides, but also the corresponding oxides or carbonates (e.g. LiF, L12O, BaF2, MgO, NaF, CsF, CS2CO3, etc.). It is also possible to use lithium quinolinate (LiQ) for this purpose.
  • the layer thickness of this layer is preferably between 0.5 and 5 nm.
  • Preferred anodes are high work function materials.
  • the anode has a work function greater than 4.5 eV versus vacuum.
  • metals with a high redox potential e.g. B. Ag, Pt or Au.
  • metal/metal oxide electrodes e.g. Al/Ni/NiOx, Al/PtOx
  • at least one of the electrodes must be transparent or partially transparent to allow the irradiation of the organic material (organic solar cell) or the emission of light (OLED, O- laser) to allow.
  • Preferred anode materials here are conductive mixed metal oxides. Indium tin oxide (ITO) or indium zinc oxide (IZO) are particularly preferred.
  • the anode can also consist of two or more layers, for example an inner layer of ITO and an outer layer of a metal oxide, preferably tungsten oxide, molybdenum oxide or vanadium oxide.
  • the device is structured, contacted and finally sealed accordingly (depending on the application) in order to exclude harmful influences from water and air.
  • organic electroluminescent device it is possible to use all materials that are customarily used in accordance with the prior art.
  • the person skilled in the art can therefore use all materials known for organic electroluminescent devices in combination with the deuterated compounds without any inventive step.
  • the aforementioned compounds, in particular the aromatic or heteroaromatic compounds can also be deuterated using the method according to the invention, in particular in order to improve their lifetime.
  • an organic electroluminescent device characterized in that one or more layers are coated using a sublimation process.
  • the materials are vapour-deposited in vacuum sublimation systems at an initial pressure of less than 10' 5 mbar, preferably less than 10' 6 mbar. However, it is also possible for the initial pressure to be even lower, for example less than 10-7 mbar.
  • An organic electroluminescent device is also preferred, characterized in that one or more layers are coated using the OVPD (organic vapor phase deposition) method or with the aid of carrier gas sublimation.
  • the materials are applied at a pressure of between 10'5 mbar and 1 bar.
  • This process is the OVJP (Organic Vapor Jet Printing) process, in which the materials are applied directly through a nozzle and thus structured.
  • an organic electroluminescent device characterized in that one or more layers of solution, such as. B. by spin coating, or with any printing method, such as. B. screen printing, flexographic printing, offset printing, LITI (Light Induced Thermal Imaging, thermal transfer printing), ink-jet printing (ink jet printing) or nozzle printing.
  • any printing method such as. B. screen printing, flexographic printing, offset printing, LITI (Light Induced Thermal Imaging, thermal transfer printing), ink-jet printing (ink jet printing) or nozzle printing.
  • Hybrid processes are also possible, in which, for example, one or more layers are applied from solution and one or more further layers are vapor-deposited.
  • the electronic devices containing one or more deuterated compounds can be used in displays, as light sources in lighting applications, and as light sources in medical and/or cosmetic applications (e.g., light therapy).
  • the deuterated compounds and the organic electroluminescent devices according to the invention are distinguished by one or more of the following properties:
  • the compounds according to the invention lead to long lifetimes. 2.
  • the compounds according to the invention lead to high efficiencies, in particular to a high EQE.
  • the solvents and reagents can e.g. B. from Sigma-ALDRICH or ABCR.
  • the respective information in square brackets or the numbers given for individual compounds relate to the CAS numbers of the compounds known from the literature.
  • Methylcyclopentane - Mcp MerckMillipore (>99.5%)
  • Triethylamine MerckMillipore (>99.0%)
  • the water-moist catalysts (Pd/C and Pt/C) were dried for 3 days at 60° C. and 20 mbar in a vacuum drying cabinet. Water content according to Karl Fischer approx. 1%.
  • a stirred autoclave is charged with the compound V, D2O, a solvent (LM), a cat bar nitrogen rendered inert or degassed by a single injection and release of 30 bar nitrogen and for the specified reaction time R at the specified temperature? with an inclined blade stirrer at 1000 rpm. touched.
  • the exact batch amounts are shown below.
  • the stirred autoclave is allowed to cool, the reaction mixture is removed and the catalyst is filtered off and the cyclohexane phase is separated off.
  • the catalyst is washed with THF and then extracted with hot THF until it no longer contains any product.
  • the combined organic phases are evaporated to dryness under reduced pressure on a rotary evaporator (p approx. 20 mbar, T approx. 60° C.).
  • the conversion (area % of the deuterated product) and the by-products (sum of the area % of all by-products) are determined using HPLC, Merck Hitachi D-7000, detection wavelength 254 nm, column: StarRP18e 250/4.5 5 pm, THF/ACN/H2O- mixtures determined.
  • the degree of deuteration MD is determined using HPLC-MS, Agilent 1260 Infinity II, ionization: APCI, column: Agilent Zorbax-C18 600 bar, 2.1X50 mm, 1.8 pm, THF/ACN/H2O mixtures.
  • the degree of deuteration MD is calculated using the following formula:
  • the process according to the invention also gives good results under reflux conditions, in particular few by-products.
  • the addition of an alcohol again increases the amount of by-products.
  • V3B1 undried catalyst
  • V3B1 methylcyclopropane
  • the addition of the additives reduces the by-products and, in the case of the Pd salts, also increases the degree of deuteration. This can increase sales.
  • the additives again lead to an increase in the degree of deuteration and/or a reduction in the by-products.
  • the example shows that chlorine groups are also tolerated.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung einer deuterierten organischen Verbindung umfassend folgende Schritte: Bereitstellung mindestens eines heterogenen Metallkatalysators, wobei die Bereitstellung die Trocknung des Metallkatalysators umfasst; Herstellen einer flüssigen Zusammensetzung umfassend die organische Verbindung, der mindestens eine heterogene Katalysator, mindestens eine Deuteriumquelle, sowie mindestens ein aliphatischer Kohlenwasserstoff als Lösungsmittel; Erwärmen der Zusammensetzung unter Deuterierung der organischen Verbindung.

Description

Verfahren zur Herstellung von deuterierten organischen Verbindungen
Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung von deuterierten organischen Verbindungen und deuterierte Verbindungen, welche mit diesem Verfahren hergestellt wurden.
Deuterium ist ein Isotop des Wasserstoffs und hat eine natürliches Vorkommen von 0,015%. Deuterierte Verbindungen mit hohem Anteil an Deuterium sind bekannt, wobei deuterierte aromatische Verbindungen häufig in Studien zum Ablauf von chemischen Reaktionen oder Umsetzungen im Metabolismus verwendet wurden.
Deuterierte aromatische Verbindungen werden als Ausgangsprodukt für pharmazeutische Verbindungen oder Marker eingesetzt.
Elektronische Vorrichtungen, welche organische, metallorganische und/oder polymere Halbleiter enthalten, gewinnen zunehmend an Bedeutung, wobei diese aus Kostengründen und aufgrund ihrer Leistungsfähigkeit in vielen kommerziellen Produkten eingesetzt werden. Als Beispiele seien hier Ladungstransportmaterialien auf organischer Basis (z.B. Lochtransporter auf Triarylamin-Basis) in Kopiergeräten, organischen oder polymeren Leuchtdioden (OLEDs oder PLEDs) in Anzeige- und Displayvorrichtungen oder organische Photorezeptoren in Kopierern genannt. Organische Solarzellen (O-SC), organische Feldeffekt- Transistoren (O-FET), organische Dünnfilm-Transistoren (O-TFT), organische Schaltelemente (O-IC), organische optische Verstärker und organische Laserdioden (O-Laser) sind in einem fortgeschrittenen Entwicklungsstand und können in der Zukunft große Bedeutung erlangen.
Als elektronische Vorrichtungen im Sinne dieser Erfindung werden organische elektronische Vorrichtungen verstanden, welche organische Halbleitermaterialien als funktionelle Materialien enthalten. Insbesondere stehen die elektronischen Vorrichtungen für Elektrolumineszenzvorrichtungen wie OLEDs. Der Aufbau von OLEDs, in welchen organische Verbindungen als funktionelle Materialien verwendet werden, ist dem Fachmann aus dem Stand der Technik bekannt. Im Allgemeinen werden unter OLEDs elektronische Vorrichtungen verstanden, welche eine oder mehrere Schichten haben, welche organische Verbindungen umfassen, und beim Anlegen einer Spannung Licht emittieren.
In elektronischen Vorrichtungen, insbesondere OLEDs, gibt es einen großen Bedarf, die Leistungsdaten, insbesondere Lebensdauer, Effizienz und Betriebsspannung zu verbessern. Für diese Aspekte konnte bisher keine zufriedenstellende Lösung gefunden werden.
Elektronische Vorrichtungen umfassen üblicherweise Kathode, Anode und mindestens eine funktionale, bevorzugt emittierende Schicht. Außer diesen Schichten können sie noch weitere Schichten enthalten, beispielsweise jeweils eine oder mehrere Lochinjektionsschichten, Loch -'trän sport-1 schichten, Lochblockienschichten, Elektronen-,transportschichten, Elektroneninjektionsschichten, Exzitonenblockierschichten, Elektronenblockierschichten und/oder Ladungs-'erzeugungsschichten (Charge-Generation Layers).
Einen großen Einfluss auf die Leistungsdaten von elektronischen Vorrichtungen haben die Lochtransportschichten und Elektronentransportschichten.
Kürzlich wurde festgestellt, dass der Austausch eines Wasserstoffatoms in einer organischen elektronischen Vorrichtung, die Lebensdauer der organischen elektronischen Vorrichtung erhöht. Dies könnte dadurch hervorgerufen werden, dass die C-D-Bindung etwas stärker ist als eine C- H-Bindung und so bestimmte Zerfallsreaktionen unterdrückt werden.
Zur Herstellung von deuterierten Verbindungen ist es vorteilhaft, wenn die Deuterierung erst spät im Herstellungsprozess, insbesondere bei Verbindungen für elektronische Vorrichtungen, durchgeführt wird, da die Deuterierung in der Regel einen sehr kostspieligen Schritt darstellt. Es können daher Vorstufen für Verbindungen für elektronische Vorrichtungen, Zwischenstufen solcher Verbindungen oder die Verbindungen für elektronische Vorrichtung selbst deuteriert werden.
Üblicherweise werden undeuterierte Verbindungen mit deutierierten Säuren wie D2SO4 oder D3PO4 für mehrere Stunden behandelt, um deuterierte Verbindungen zu erhalten.
Es ist auch möglich die undeuterierte Verbindung in einem deuterierten Lösungsmittel in Gegenwart eine Lewis-Säure wie Aluminiumtrichlorid umzusetzen.
Andere Verfahren verwenden hohe Temperaturen und elektrische Spannung oder Strahlung.
Wieder andere Verfahren verwenden D2-Gas, D2O oder ein deuteriertes Lösungsmittel wie CeDe und einen metallischen Katalysator.
Allerdings ist die Umsetzung oft sehr langsam und unzuverlässig. Auch sind die Deuteriumquellen wie CeDe oder d8-Toluol sehr teuer und schlecht verfügbar.
JP2020070291 beschreibt ein Verfahren zur Herstellung von deuterierten Verbindungen in einem aliphatischen Kohlenwasserstoff mit mehr als 6 Kohlenstoffatomen als Lösungsmittel, einer Deuteriumquelle und einem Metallkatalysator. Allerdings wird zusätzlich noch ein Alkohol als Additiv eingesetzt. Das eingesetzte Decalin ist außerdem nur schlecht entfernbar. Die erhaltenen Verbindungen sind schwierig zu reinigen.
WO2016073425A2 beschreibt ein Verfahren von deuterierten Verbindungen bei hohem Druck und Temperatur in D2O optional mit Lösungsmittel.
Aufgabe der vorliegenden Erfindung ist die Bereitstellung eines Verfahrens zur Herstellung von deuterierten Verbindungen mit hoher Konversionsrate und hoher Ausbeute und sparsamer Verwendung der Deuterumquelle.
Die Aufgabe wird gelöst durch ein Verfahren zur Herstellung einer deuterierten organischen Verbindung umfassend folgende Schritte: a) Bereitstellung mindestens eines heterogenen Metallkatalysators, wobei die Bereitstellung die Trocknung des Metallkatalysators umfasst; b) Herstellen einer flüssigen Zusammensetzung umfassend mindestens eine organische Verbindung, der mindestens eine heterogene Metallkatalysator, mindestens eine Deuteriumquelle, sowie mindestens ein aliphatischer Kohlenwasserstoff als Lösungsmittel. c) Erwärmen der Zusammensetzung unter Deuterierung der organischen Verbindung.
In einem ersten Schritt wird mindestens ein heterogener Metallkatalysator bereitgestellt, wobei dies die Trocknung des Metallkatalysators umfasst.
Der heterogene Metallkatalysator ist bevorzugt ausgewählt aus der Gruppe umfassend Platin, Palladium, Rhodium, Ruthenium, Nickel, Kobalt, Oxiden davon und Kombinationen davon, bevorzugt Platin oder Palladium und/oder Oxiden davon.
Bevorzugt liegt das Metall mindestens eines Metallkatalysators in der Oxidationsstufe 0 bis 2, bevorzugt 0 vor. Bevorzugt liegt mindestens ein Metallkatalysator als elementares Metall und/oder Metalloxid vor, bevorzugt als elementares Metall.
Der Metallkatalysator umfasst bevorzugt mindestens einen heterogenen Metallkatalysator. Das Metall des Metallkatalysator liegt bevorzugt als Metall vor, bevorzugt aufgebracht auf einer festen Phase, welche in der Zusammensetzung nicht löslich ist. Die feste Phase kann ein geeignetes Material sein, beispielsweise Kohlenstoff wie Aktivkohle oder Ruß, Silikate, Molekularsieb, Polymere. Die feste Phase ist unter den Reaktionsbedingungen stabil, bevorzugt ist Kohlenstoff als feste Phase. Solche Katalysatoren werden beispielsweise als Pd/C oder Pt/C bezeichnet.
Bevorzugte Metallkatalysatoren sind Platin, Palladium oder Mischungen von Platin und Palladium, insbesondere bevorzugt als Metall, besonders bevorzugt als heterogener Katalysator.
Bevorzugt ist der mindestens eine Metallkatalysator ausgewählt aus Platin auf Kohlenstoff (Pt/C), Palladium auf Kohlenstoff (Pd/C) oder einer Mischung aus Pt/C und Pd/C. Im Falle einer Mischung ist eine Mischung von 10:1 bis 1 :2 von Pt/C zu Pd/C, bevorzugt 7:1 bis 1 :1 , insbesondere 5:1 bis 1 :1 , gemessen nach Gewicht, bevorzugt.
Bevorzugt liegt der Gehalt an Metall auf dem Kohlenstoff des Metallkatalysators bei 1 bis 10 Gew.-%, insbesondere bei 3 bis 7 Gew.-%, besonders bevorzugt 5 Gew.-%.
Das molare Verhältnis von Katalysator zur organischer Verbindung liegt bevorzugt bei 2: 1 bis 100: 1 , insbesondere bei 2: 1 bis 70: 1 , bevorzugt 2:1 bis 30:1 . Bei einer höheren Menge an Katalysator werden in der Regel weniger Nebenprodukte gebildet.
In einer Ausführungsform der Erfindung ist der heterogene Metallkatalysator vor der Trocknung wasserfeucht, wobei der Wassergehalt mindestens 10 % (nach Karl-Fischer) beträgt.
Der heterogene Metallkatalysator wird getrocknet. Dies wird bevorzugt unter erhöhter Temperatur, insbesondere bei 20 °C bis 200 °C, bevorzugt bei 20 bis 100 °C, besonders bevorzugt unter reduziertem Druck, insbesondere unter 100 mbar, vorgenommen. Die Trocknung wird bevorzugt so lange durchgeführt, bis der Wassergehalt unter 5 Gew.-%, bevorzugt 2 Gew.-% (nach Karl-Fischer), bevorzugt unter 1 % liegt.
Besonders bevorzugt ist eine Trocknung bei 50 °C bis 70 °C bei unter 50 mbar, insbesondere 50 bis 70 °C bei unter 30 mbar, ganz besonders bevorzugt bei 55 °C bis 75 °C bei 1 bis 30 mbar. Die Trocknung wird bevorzugt für mindestens 24 Stunden, insbesondere mindestens 48 Stunden durchgeführt. Bevorzugt ist eine Trocknung zwischen 24 und 96 Stunden, insbesondere 48 bis 96 Stunden.
Die Bereitstellung wird bevorzugt unter Luft oder Inertgas wie Stickstoff oder Argon durchgeführt. Es findet keine Aktivierung mit Wasserstoff oder Deuteriumgas statt.
Gerade die Metallkatalysatoren werden häufig wasserfeucht gelagert. Überraschenderweise wurde nun gefunden, dass die vorherige Trocknung insbesondere bei Verwendung von D2O als Deuteriumquelle, die Aktivität des Katalysators deutlich verbessert.
Der vorbehandelte Metallkatalysator kann ohne weitere Behandlung im nächsten Schritt eingesetzt werden.
Deuterierung im Sinne der Erfindung bedeutet, dass ein Teil oder alle Wasserstoffatome im Laufe der Umsetzung mit Deuterium (D) ausgetauscht werden. In einer deuterierten Verbindung liegt Deuterium mehr als 100 mal häufiger vor als gemäß der natürlichen Häufigkeit. Bei prozentualen Angaben bezieht sich die Angabe auf das Verhältnis an Deuterium zur Summe aus Protonen und Deuterium für eine bestimmte Verbindung.
Im nächsten Schritt wird eine flüssige Zusammensetzung umfassend die organische Verbindung, der heterogene Katalysator, mindestens eine Deuteriumquelle, sowie mindestens ein aliphatischer Kohlenwasserstoff als Lösungsmittel hergestellt.
Dazu werden die einzelnen Bestandteile gemischt. Dabei kann die organische Verbindung in der Zusammensetzung gelöst und/oder teilweise dispergiert vorliegen.
Die organische Verbindung ist bevorzugt gelöst in der Zusammensetzung, insbesondere gelöst unter den Bedingungen in Schritt c). Dies bedeutet, dass die organische Verbindung nach dem Erwärmen in der Zusammensetzung gelöst ist.
Die organische Verbindung ist bevorzugt eine aromatische oder heteroaromatische Verbindung, insbesondere eine Kohlenwasserstoffverbindung, oder eine metallorganische Verbindung. Dies ist bevorzugt eine Verbindung mit mindestens einem aromatischen oder heteroaromatischen Ringsystem. Besonders bevorzugt ist die Verbindung zum Einsatz in einer elektronischen Vorrichtung, insbesondere einem OLED geeignet, oder eine Vorstufe einer solchen Verbindung.
Ein aromatisches Ringsystem im Sinne dieser Erfindung enthält 6 bis 60 C-Atome, bevorzugt 6 bis 40 C-Atome im Ringsystem. Ein heteroaromatisches Ringsystem im Sinne dieser Erfindung enthält 1 bis 60 C-Atome, bevorzugt 1 bis 40 C-Atome und mindestens ein Heteroatom im Ringsystem, mit der Maßgabe, dass die Summe aus C-Atomen und Heteroatomen mindestens 5 ergibt. Die Heteroatome sind bevorzugt ausgewählt aus N, O und/oder S. Unter einem aromatischen oder heteroaromatischen Ringsystem im Sinne dieser Erfindung soll ein System verstanden werden, das nicht notwendigerweise nur Aryl- oder Heteroarylgruppen enthält, sondern in dem auch mehrere Aryl- oder Heteroarylgruppen durch eine nicht-aromatische Einheit (bevorzugt weniger als 10 % der von H verschiedenen Atome), wie z. B. ein C-, N- oder O-Atom oder Carbonylgruppe, verbunden sein können. Ebenso sollen hierunter Systeme verstanden werden, in denen zwei oder mehr Aryl- bzw. Heteroarylgruppen direkt miteinander verknüpft sind, wie z. B. Biphenyl, Terphenyl, Bipyridin oder Phenylpyridin. So sollen beispielsweise auch Systeme wie Fluoren, 9,9‘-Spirobifluoren, 9,9-Diarylfluoren, Triarylamin, Diarylether, Stilben, etc. als aromatische Ringsysteme im Sinne dieser Erfindung verstanden werden, und ebenso Systeme, in denen zwei oder mehrere Arylgruppen beispielsweise durch eine lineare oder cyclische Alkylgruppe oder durch eine Silylgruppe verbunden sind. Bevorzugte aromatische bzw. heteroaromatische Ringsysteme sind einfache Aryl- bzw. Heteroarylgruppen sowie Gruppen, in denen zwei oder mehr Aryl- bzw. Heteroarylgruppen direkt miteinander verknüpft sind, beispielsweise Biphenyl, Terphenyl, Quaterphenyl oder Bipyridin, sowie Fluoren oder Spirobifluoren. Bei den verbundenen heteroaromatischen Ringsystemen sind insbesondere Ringsysteme mit N-Atomen verbundene Aryl- oder Heteroarylgruppen bevorzugt.
Eine Arylgruppe im Sinne dieser Erfindung enthält 6 bis 40 C-Atome; eine Heteroarylgruppe im Sinne dieser Erfindung enthält 5 bis 40 C-Atome und mindestens ein Heteroatom, mit der Maßgabe, dass die Summe aus C-Atomen und Heteroatomen mindestens 5 ergibt. Die Heteroatome sind bevorzugt ausgewählt aus N, 0 und/oder S. Dabei wird unter einer Arylgruppe bzw. Heteroarylgruppe entweder ein einfacher aromatischer Zyklus, also Benzol, bzw. ein einfacher heteroaromatischer Zyklus, beispielsweise Pyridin, Pyrimidin, Thiophen, etc., oder eine kondensierte (anellierte) Aryl- oder Heteroarylgruppe, beispielsweise Naphthalin, Anthracen, Phenanthren, Chinolin, Isochinolin, etc., verstanden. Miteinander durch Einfachbindung verknüpfte Aromaten, wie zum Beispiel Biphenyl, werden dagegen nicht als Aryl- oder Heteroarylgruppe, sondern als aromatisches Ringsystem bezeichnet.
Ein elektronenreiches heteroaromatisches Ringsystem ist dadurch gekennzeichnet, dass es sich dabei um ein heteroaromatisches Ringsystem handelt, das keine elektronenarmen Heteroarylgruppen enthält. Eine elektronenarme Heteroarylgruppe ist eine Sechsring-Heteroarylgruppe mit mindestens einem Stickstoffatom oder eine Fünfring-Heteroarylgruppe mit mindestens zwei Heteroatomen, von denen eines ein Stickstoffatom und das andere Sauerstoff, Schwefel oder ein substituiertes Stickstoffatom ist, wobei an diese Gruppen jeweils noch weitere Aryl- oder Heteroarylgruppen ankondensiert sein können. Dagegen sind elektronenreiche Heteroarylgruppen Fünfring-Heteroarylgruppen mit genau einem Heteroatom, ausgewählt aus Sauerstoff, Schwefel oder substituiertem Stickstoff, an welche noch weitere Arylgruppen und/oder weitere elektronenreiche Fünfring-Heteroarylgruppen ankondensiert sein können. So sind Beispiele für elektronenreiche Heteroarylgruppen Pyrrol, Furan, Thiophen, Indol, Benzofuran, Benzothiophen, Carbazol, Dibenzofuran, Dibenzothiophen oder Indenocarbazol. Eine elektronenreiche Heteroarylgruppe wird auch als elektronenreicher heteroaromatischer Rest bezeichnet. Ein elektronenarmes heteroaromatisches Ringsystem ist dadurch gekennzeichnet, dass es mindestens eine elektronenarme Heteroarylgruppe enthält, und insbesondere bevorzugt keine elektronenreichen Heteroarylgruppen.
Die organische Verbindung kann eine oder mehrere aliphatische Kohlenwasserstoffreste, bzw. Alkyl-, Alkenyl- oder Alkinylgruppen umfassen. Sie kann außerdem mit weiteren Gruppen wie F, CN, CI, Br, I Alkoxy- oder Thioalkylgruppen substituiert sein. Wichtig ist dabei, dass diese Gruppen unter den Reaktionsbedingungen nicht reagieren.
Im Rahmen der vorliegenden Erfindung wird der Begriff Alkylgruppe als Oberbegriff sowohl für lineare oder verzweigte Alkylgruppen wie auch für zyklische Alkylgruppen verwendet. Analog werden die Begriffe Alkenyl- gruppe bzw. Alkinylgruppe als Oberbegriffe sowohl für lineare oder verzweigte Alkenyl- bzw. Alkinylgruppen wie auch für zyklische Alkenyl- bzw. Alkinylgruppen verwendet.
Im Rahmen der vorliegenden Erfindung werden unter einem aliphatischen Kohlenwasserstoffrest bzw. einer Alkylgruppe bzw. einer Alkenyl- oder Alkinylgruppe, die 1 bis 40 C-Atome enthalten kann, und in der auch einzelne nicht benachbarte CH2-Gruppen durch 0, C=O, (C=O)O, substituiert sein können, bevorzugt die Reste Methyl, Ethyl, n-Propyl, i- Propyl, n-Butyl, i-Butyl, s-Butyl, t-Butyl, 2-Methylbutyl, n-Pentyl, s-Pentyl, t- Pentyl, 2-Pentyl, neo-Pentyl, Cyclopentyl, n-Hexyl, s-Hexyl, t-Hexyl, 2-Hexyl, 3-Hexyl, neo-Hexyl, Cyclohexyl, 1 -Methylcyclopentyl, 2- Methylpentyl, n-Heptyl, 2-Heptyl, 3-Heptyl, 4-Heptyl, Cycloheptyl, 1 - Methylcyclohexyl, n-Octyl, Cyclooctyl, 2-Ethylhexyl, 1 -Bicyclo[2,2,2]octyl, 2-Bicyclo[2,2,2]octyl, 2-(2,6-Dimethyl)octyl, 3-(3,7-Dimethyl)octyl, Adamantyl, Trifluormethyl, Pentafluorethyl, 2,2,2-Trifluorethyl, 1 , 1 - Dimethyl-n-hex-1 -yl, 1 , 1 -Dimethyl-n-hept-1 -yl, 1 , 1 -Dimethyl-n-oct-1 -yl, 1 , 1 - Dimethyl-n-dec-1 -yl, 1 ,1 -Dimethyl-n-dodec-1 -yl, 1 ,1 -Dimethyl-n-tetradec-1 - yl, 1 ,1 -Dimethyl-n-hexadec-1 -yl, 1 ,1 -Dimethyl-n-octadec-1 -yl, 1 ,1 -Diethyl- n-hex-1 -yl, 1 , 1 -Diethyl-n-hept-1 -yl, 1 , 1 -Diethyl-n-oct-1 -yl, 1 , 1 -Diethyl-n- dec-1 -yl, 1 , 1 -Diethyl-n-dodec-1 -yl, 1 , 1 -Diethyl-n-tetradec-1 -yl, 1 , 1 - Diethyln-n-hexadec-1 -y I, 1 , 1 -Diethyl-n-octadec-1 -yl, 1 -(n-Propyl)-cyclohex- 1-yl, 1 -(n-Butyl)-cyclohex-1 -yl, 1-(n-Hexyl)-cyclohex-1 -yl, 1-(n-0ctyl)- cyclohex-1 -yl und 1-(n-Decyl)-cyclohex-1-yl, Ethenyl, Propenyl, Butenyl, Pentenyl, Cyclopentenyl, Hexenyl, Cyclohexenyl, Heptenyl, Cycloheptenyl, Octenyl, Cyclooctenyl, Cyclooctadienyl, Ethinyl, Propinyl, Butinyl, Pentinyl, Hexinyl, Heptinyl oder Octinyl verstanden. Unter einer Alkoxygruppe mit 1 bis 40 C-Atomen werden bevorzugt Methoxy, Trifluormethoxy, Ethoxy, n-Propoxy, i-Propoxy, n-Butoxy, i-Butoxy, s-Butoxy, t-Butoxy, n-Pentoxy, s-Pentoxy, 2-Methylbutoxy, n-Hexoxy, Cyclohexyloxy, n-Heptoxy, Cyclo- heptyloxy, n-Octyloxy, Cyclooctyloxy, 2-Ethylhexyloxy, Pentafluorethoxy und 2,2,2-Trifluorethoxy verstanden. Unter einer Thioalkylgruppe mit 1 bis 40 C-Atomen werden insbesondere Methylthio, Ethylthio, n-Propylthio, i-Propylthio, n-Butylthio, i-Butylthio, s-Butylthio, t-Butylthio, n-Pentylthio, s-Pentylthio, n-Hexylthio, Cyclohexylthio, n-Heptylthio, Cycloheptylthio, n-Octylthio, Cyclooctylthio, 2-Ethylhexylthio, Trifluormethylthio, Pentafluor- ethylthio, 2,2,2-Trifluorethylthio, Ethenylthio, Propenylthio, Butenylthio, Pentenylthio, Cyclopentenylthio, Hexenylthio, Cyclohexenylthio, Heptenyl- thio, Cycloheptenylthio, Octenylthio, Cyclooctenylthio, Ethinylthio, Propinylthio, Butinylthio, Pentinylthio, Hexinylthio, Heptinylthio oder Octinylthio verstanden. Allgemein können Alkyl-, Alkoxy- oder Thioalkylgruppen gemäß der vorliegenden Erfindung geradkettig, verzweigt oder zyklisch sein, wobei eine oder mehrere nicht-benachbarte CH2-Gruppen durch die oben genannten Gruppen ersetzt sein können; weiterhin können auch ein oder mehrere H-Atome durch D, F, CI, Br, I, CN oder NO2, bevorzugt F, CI oder CN, besonders bevorzugt F oder CN ersetzt sein.
Unter einem aromatischen oder heteroaromatischen Ringsystem mit 5 - 60 aromatischen Ringatomen, vorzugsweise 5 - 40 aromatischen Ringatomen, welches noch jeweils mit den oben genannten Resten oder einem Kohlenwasserstoffrest substituiert sein kann und welches über beliebige Positionen am Aromaten bzw. Heteroaromaten verknüpft sein kann, werden insbesondere Gruppen verstanden, die abgeleitet sind von Benzol, Naphthalin, Anthracen, Benzanthracen, Phenanthren, Pyren, Chrysen, Perylen, Fluoranthen, Naphthacen, Pentacen, Benzpyren, Biphenyl, Biphenylen, Terphenyl, Triphenylen, Fluoren, Spirobifluoren, Dihydrophenanthren, Dihydropyren, Tetrahydropyren, cis- oder trans- Indenofluoren, cis- oder trans-lndenocarbazol, cis- oder trans-lndolo- carbazol, cis- oder trans-Monobenzoindenofluoren, cis- oder trans- Dibenzoindenofluoren, Truxen, Isotruxen, Spirotruxen, Spiroisotruxen, Furan, Benzofuran, Isobenzofuran, Dibenzofuran, Thiophen, Benzothio- phen, Isobenzothiophen, Dibenzothiophen, Pyrrol, Indol, Isoindol, Carba- zol, Pyridin, Chinolin, Isochinolin, Acridin, Phenanthridin, Benzo-5,6-chino- lin, Benzo-6,7-chinolin, Benzo-7,8-chinolin, Phenothiazin, Phenoxazin, Pyrazol, Indazol, Imidazol, Benzimidazol, Naphthimidazol, Phenanthrimi- dazol, Pyridimidazol, Pyrazinimidazol, Chinoxalinimidazol, Oxazol, Benz- oxazol, Naphthoxazol, Anthroxazol, Phenanthroxazol, Isoxazol, 1 ,2- Thiazol, 1 ,3-Thiazol, Benzothiazol, Pyridazin, Hexaazatriphenylen, Benzo- pyridazin, Pyrimidin, Benzpyrimidin, Chinoxalin, 1 ,5-Diazaanthracen, 2,7- Diazapyren, 2,3-Diazapyren, 1 ,6-Diazapyren, 1 ,8-Diazapyren, 4,5-Diaza- pyren, 4,5,9, 10-Tetraazaperylen, Pyrazin, Phenazin, Phenoxazin, Pheno- thiazin, Fluorubin, Naphthyridin, Azacarbazol, Benzocarbolin, Phenan- throlin, 1 ,2,3-Triazol, 1 ,2,4-Triazol, Benzotriazol, 1 ,2,3-Oxadiazol, 1 ,2,4- Oxadiazol, 1 ,2,5-Oxadiazol, 1 ,3,4-Oxadiazol, 1 ,2,3-Thiadiazol, 1 ,2,4-Thia- diazol, 1 ,2,5-Thiadiazol, 1 ,3,4-Thiadiazol, 1 ,3,5-Triazin, 1 ,2,4-Triazin, 1 ,2,3-Triazin, Tetrazol, 1 ,2,4,5-Tetrazin, 1 ,2,3,4-Tetrazin, 1 ,2,3,5-Tetrazin, Purin, Pteridin, Indolizin und Benzothiadiazol oder Gruppen, die abgeleitet sind von Kombinationen dieser Systeme, welche insbesondere über Einfachbindungen und/oder N-Atome miteinander verbunden sind.
Unter der Formulierung, dass zwei oder mehr Reste miteinander ein Ringsystem bilden können, soll im Rahmen der vorliegenden Beschreibung unter anderem verstanden werden, dass die beiden Reste miteinander durch eine chemische Bindung unter formaler Abspaltung von zwei Wasserstoffatomen verknüpft sind. Dies wird durch das folgende Schema verdeutlicht:
Rin bildun
Figure imgf000012_0001
Weiterhin soll unter der oben genannten Formulierung aber auch verstanden werden, dass für den Fall, dass einer der beiden Reste Wasserstoff darstellt, der zweite Rest unter Bildung eines Rings an die Position, an die das Wasserstoffatom gebunden war, bindet. Dies soll durch das folgende Schema verdeutlicht werden:
Figure imgf000013_0001
Im Falle einer metallorganischen Verbindung handelt es sich bevorzugt um eine Verbindung umfassend Kupfer, Molybdän, Wolfram, Rhenium, Ruthenium, Osmium, Rhodium, Iridium, Palladium, Platin, Silber, Gold oder Europium, insbesondere Verbindungen, wie Iridium oder Platin, besonders bevorzugt Platin, welche mindestens ein heteroaromatisches Ringsystem aufweisen. Bevorzugt sind Verbindungen, welche sich als phosphoreszierende Verbindungen (= Triplettemitter) eignen. Beispiele für solche Verbindungen können den zitierten Anmeldungen für phosphoreszierende Verbindungen entnommen werden.
Bevorzugt sind dies Verbindungen Metallchelatkomplexe, insbesondere mit mindestens einem heteroaromatischen Ringsystem als Chelatligand für das Metall. Bevorzugt ist mindestens ein heteroaromatisches Ringsystem, welches über mindestens ein Stickstoffatom und über mindestens ein Kohlenstoffatom an das Metall bindet. Bevorzugt sind diese Atome jeweils Teil einer Arylgruppe oder Heteroarylgruppe, welche mindestens über eine Einfachbindung verbunden sind. Beispiele für eine solche Verbindung sind 2-Phenylpyridin oder analoge Verbindungen, bei denen vorstehend genannte Arylgruppen oder Heteroarylgruppen über eine Einfachbindung verknüpft sind.
Die Deuteriumquelle ist bevorzugt auswählt aus schwerem Wasser, D2O, d6-Benzol oder d8-Toluol, bevorzugt schweres Wasser oder D2O, besonders bevorzugt D2O. Insbesondere schweres Wasser oder D2O sind eine günstigere Deuteriumquelle als die anderen Verbindungen. Unter schwerem Wasser wird Wasser verstanden, bei welchem 50 mol% aller Wasserstoffatome gegen Deuterium ausgetauscht sind, bevorzugt mindestens 70 mol%, besonders bevorzugt mindestens 80 mol%, insbesondere mindestens 90% oder 99 %.
Das Lösungsmittel dient dabei insbesondere zur Erhöhung der Löslichkeit der organischen Verbindung in der Zusammensetzung.
Überraschenderweise wurde gefunden, dass das Lösungsmittel, insbesondere Cycloalkane, die Deuterierung begünstigt.
Das aliphatische Lösungsmittel ist bevorzugt ein aliphatisches Lösungsmittel mit einem Siedepunkt von über 75 °C, insbesondere über 80 °C (gemessen bei Normaldruck). Bevorzugt ist das Lösungsmittel ein Cycloalkan, bevorzugt ist ein Lösungsmittel mit mindestens einem Ring mit 6 aliphatischen Kohlenstoffatomen. Besonders bevorzugt Cyclohexan, Methylcyclohexan oder fusionierte Cycloalkane wie Decalin. Bevorzugt ist Cyclohexan und Decalin, insbesondere Cyclohexan. Das Decalin kann dabei als cis- oder trans-isomer oder als Isomerengemisch vorliegen.
Das Lösungsmittel ist bevorzugt nicht deuteriert. Bevorzugt ist die Deuteriumquelle, insbesondere D2O, die einzige deuterierte Verbindung der Zusammensetzung.
Die Zusammensetzung umfasst bevorzugt keine aliphatischen Alkohole, insbesondere mit 1 bis 10 Kohlenstoffatomen, bevorzugt umfasst die Zusammensetzung keine aliphatischen Alkohole. Die Zusammensetzung umfasst bevorzugt keine organischen Verbindungen mit Hydroxylgruppen.
Aus dem Stand der Technik ist bekannt, dass in Gegenwart von aliphatischen Alkoholen mit 1 bis 10 Kohlenstoffatomen die Deuterierung begünstigt ist. Überraschenderweise wurde gefunden, dass die Umsetzung mit dem vorbehandelten Metallkatalysator in Gegenwart eines aliphatischen Alkohols zur Zunahme von Zersetzungsprodukten führt. In Abwesenheit eines aliphatischen Alkohols wird eine beschleunigte und saubere Deuterierung erreicht. In der Zusammensetzung liegt das Verhältnis von Wasserstoffatomen der organischen Verbindung zum Deuterium der Deuteriumquelle bei mindestens 1 :1.5, bevorzugt bei 1 :1.5 bis 1 :1000, bevorzugt 1 :2 bis 1 :500, besonders bevorzugt 1 :5 bis 1 :200. Besonders bevorzugt ist ein Verhältnis von 1 :5 bis 1 :100.
Das aliphatische Lösungsmittel wird in einer solchen Menge eingesetzt, dass sich die organische Verbindung mindestens teilweise löst; gemessen in Volumen bevorzugt in einem Verhältnis Deuteriumquelle : Lösungsmittel von 2:1 bis 1 :50, bevorzugt 1 :1 bis 1 :30, insbesondere 1 :1.5 bis 1 :30, ganz besonders bei 1 :1 .5 bis 1 :10. Die ideale Menge hängt dabei von der Löslichkeit der Verbindung ab.
In Schritt c) wird die Zusammensetzung erwärmt, wobei es zur Deuterierung kommt.
Die Reaktion kann dabei mit Druckausgleich mit der Umgebung, d.h. im offenen, oder im geschlossenen Gefäß durchgeführt werden. Im letzteren Fall kann es durch den autogenen Druck zur Druckerhöhung durch das Erwärmen kommen. Eine Durchführung mit Druckausgleich kann auch Erwärmen unter Rückflussbedingungen bedeuten. Schritt c) wird daher bevorzugt bei einem Druck von 1 bar oder mehr durchgeführt. Bevorzugt bei unter 6 bar.
Die Reaktion wird bevorzugt nicht in Gegenwart von zusätzlichen reaktiven Gasen wie H2 oder D2 durchgeführt. Bevorzugt wird die Reaktion in inerter Atmosphäre wie Stickstoff oder Argon durchgeführt. Inert bedeutet dabei, dass das Gas oder die Gasmischung unter den Verfahrensbedingungen nicht reagiert.
Es kann erforderlich sein, die Zusammensetzung vor der Durchführung zu entgasen. Dies kann beispielsweise durch mehrfache Beaufschlagung mit der Reaktionsatmosphäre geschehen. In Schritt c) wird die Reaktion unter Erwärmen durchgeführt. Das Erwärmen kann bei einer Temperatur von mindestens 40 °C, insbesondere mindestens 70 °C, insbesondere mindestens 100 °C, erfolgen. Bevorzugt liegt die Temperatur bei bis zu 250 °C, insbesondere bis zu 160 °C. Besonders bevorzugt bei 70 °C bis 200 °C, insbesondere bei 70 °C bis 160 °C. Die Reaktion wird bevorzugt nicht unter superkritischen Bedingungen durchgeführt.
Abhängig von der Reaktionsführung kann die Reaktion auch unter Rückfluss durchgeführt werden. Das Lösungsmittel kann dann entsprechend gewählt werden, so dass die gewünschte Reaktionstemperatur erreicht wird.
Das erfinderische Verfahren wird bevorzugt so lange durchgeführt, bis eine Deuterierung von mindestens 20 %, insbesondere 30 % erreicht wird. Dabei bezieht sich diese Angabe auf den Deuterierungsgrad des höchsten Massepeaks der Produktmischung.
Neben der Deuterierung ist auch die Bildung von Nebenprodukten beim Verfahren von hoher Bedeutung. Gerade bei der Anwendung auf komplexe Verbindungen, kann eine geringere Bildung von Nebenprodukten vorteilhafter sein, als eine möglichst hohe Deuterierung. Dies ist auch darin begründet, dass nicht alle Protonen einer Verbindung gleich zugänglich sind.
Bevorzugt wird das Verfahren durchgeführt, bis eine Umsetzung von mindestens 90 % (gemessen mit HPLC) erreicht wird. Dies bedeutet, dass noch maximal 10 % Edukt vorhanden ist. Bevorzugt ist ein Umsatz von mindesten 95 %.
Die Reaktion wird bevorzugt für 1 bis 200 Stunden, insbesondere für 10 bis 100 Stunden durchgeführt.
Besonders bevorzugt wird die Reaktion so lange durchgeführt, bis ein Deuterierungsgrad von mindestens 20 % bei unter 15 % Nebenprodukte erreicht wird, bevorzugt von mindestens 30 % bei unter 10 % Nebenprodukte, insbesondere mindestens 40 % bei unter 10 %.
Nach Abkühlung, sowie ggf. Druckausgleich, wird die deuterierte Verbindung mit bekannten Techniken bevorzugt isoliert. Dies kann Extraktion, Fällung, Filtrierung, Destillation, Chromatographie oder ähnliche Verfahren umfassen.
In einer Ausführungsform der Erfindung umfasst die Zusammensetzung mindestens ein Additiv zur Verbesserung der Deuterierung und/oder Reduzierung der Nebenprodukte. Bevorzugt ist das mindestens eine Additiv ausgewählt aus Alkylaminen, bevorzugt Alkylamine mit Alkylgruppen mit 1 bis 40 C-Atomen, wobei einzelne nicht benachbarte CH2-Gruppen durch O substituiert sein können und mindestens zwei Alkylgruppen miteinander einen Ring bilden können, Metallsalzen und/oder Metalloxiden ausgewählt aus Salzen oder Oxiden von Palladium, Platin, Rhodium, Ruthenium, Silber, Gold, Kupfer, Nickel oder Kobalt, wobei Salze oder Oxide von Silber oder Palladium, insbesondere von Pd(ll), bevorzugt sind. Im Falle der Salze können es beispielsweise die Chloride, Bromide, Iodide, Nitrate, Sulfate, Karbonsäuresalze wie Acetate, Propionate, Pivalate sein, wie beispielsweise Pd(OAc)2, Ag(OAc) oder Pd(OPiv)2. Besonders bevorzugt sind Karbonsäuresalze wie Pd(OAc)2, Ag(OAc) oder Pd(OPiv)2.
Bevorzugte Alkylamine sind Alkylamine mit mindestens zwei, bevorzugt drei Alkylgruppen, insbesondere mit 1 bis 40 C-Atomen, wobei einzelne nicht benachbarte CFb-Gruppen durch O substituiert sein können und mindestens zwei Alkylgruppen einen Ring bilden können. Bevorzugte Alkylgruppen sind Methyl, Ethyl, n-Propyl, i-Propyl, n-Butyl, i-Butyl, s-Butyl, t-Butyl, 2-Methylbutyl, n-Pentyl, s-Pentyl, t-Pentyl, 2-Pentyl, neo-Pentyl, Cyclopentyl, n-Hexyl, s-Hexyl, t-Hexyl, 2-Hexyl, 3-Hexyl, neo-Hexyl, Cyclohexyl, 1 -Methylcyclopentyl, 2-Methylpentyl, n-Heptyl, 2-Heptyl, 3- Heptyl, 4-Heptyl, Cycloheptyl, 1 -Methylcyclohexyl. Bevorzugt sind Alkylamine mit drei Alkylgruppen (tertiäre Amine) mit 1 bis 5 C-Atomen, sowie Alkylamine mit drei Alkylgruppen, wobei zwei Alkylgruppen einen Ring bilden, wobei der Ring ein O-Atom enthalten kann. Beispiele für solche Amine sind Triethylamin, Dimethylethylamin, Diethylmethylamin, Diisopropylethylamin, wobei Triethylamin bevorzugt ist. Beispiele für cyclische Amine sind Morpholinderivate, insbesondere N- Alkyl-Morpholine wie N-Methylmorpholin, N-Ethylmorpholin, N- Propylmorpholin.
Bevorzugt ist das eingesetzte Amin in der Zusammensetzung löslich.
Dabei sind die vorgenannten Metallsalze besonders bevorzugt.
Überraschenderweise wurde gefunden, dass insbesondere Alkylamine, Silbersalze und/oder Palladiumsalze die Deuterierung begünstigen und die Bildung von Nebenprodukten vermindern. Dadurch kann es möglich sein, die Reaktion länger oder bei höherer Temperatur durchzuführen. Der Einsatz der Additive kann abhängig von der zu deuterierenden Verbindung sein.
Die Additive können in unterschiedlichen Mengen abhängig von der Reaktionsführung und der organischen Verbindung eingesetzt werden. Bevorzugt wird das mindestens eine Additiv in einem molaren Verhältnis von Additiv zur organischen Verbindung von 1 :2 bis 1 : 100, bevorzugt 1 :2 bis 1 :50, insbesondere 1 :2 bis 1 :30 eingesetzt.
In einer bevorzugten Ausführungsform umfasst die Zusammensetzung mindestens eine aromatische oder heteroaromatische Verbindung, Platin auf Kohlenstoff und/oder Palladium auf Kohlenstoff, D2O, sowie Cyclohexan und/oder Decalin, bevorzugt Cyclohexan, und optional mindestens ein Additiv, wobei das Additiv ausgewählt ist aus Alkylaminen, Metallsalzen und/oder Metalloxiden ausgewählt aus Salzen oder Oxiden von Palladium, Platin, Rhodium, Ruthenium, Silber, Gold, Kupfer, Nickel oder Kobalt.
In einer bevorzugten Ausführungsform besteht die Zusammensetzung aus mindestens einer aromatische oder heteroaromatischen Verbindung, Platin auf Kohlenstoff und/oder Palladium auf Kohlenstoff, D2O, sowie Cyclohexan und/oder Decalin, bevorzugt Cyclohexan, und optional mindestens einem Additiv, wobei das Additiv ausgewählt ist aus Alkylaminen, Metallsalzen und/oder Metalloxiden ausgewählt aus Salzen oder Oxiden von Palladium, Platin, Rhodium, Ruthenium, Silber, Gold, Kupfer, Nickel oder Kobalt.
Die erfindungsgemäß deuterierten Verbindungen eignen sich für die Verwendung in einer elektronischen Vorrichtung, insbesondere in einer organischen Elektrolumineszenzvorrichtung (OLED). Abhängig von der Substituierung können die Verbindungen in unterschiedlichen Funktionen und Schichten verwendet werden.
Eine elektronische Vorrichtung im Sinne der vorliegenden Erfindung ist eine Vorrichtung, welche mindestens eine Schicht enthält, die mindestens eine organische Verbindung enthält. Das Bauteil kann dabei auch anorganische Materialien enthalten oder auch Schichten, welche vollständig aus anorganischen Materialien aufgebaut sind.
Die elektronische Vorrichtung ist bevorzugt ausgewählt aus der Gruppe bestehend aus organischen Elektrolumineszenzvorrichtungen (OLEDs), organischen integrierten Schaltungen (O-ICs), organischen Feld-Effekt- Transistoren (O-FETs), organischen Dünnfilmtransistoren (O-TFTs), organischen lichtemittierenden Transistoren (O-LETs), organischen Solarzellen (O-SCs), farbstoffsensibilisierten organischen Solarzellen (DSSCs), organischen optischen Detektoren, organischen Photorezeptoren, organischen Feld-Quench-Devices (O-FQDs), lichtemittierenden elektrochemischen Zellen (LECs), organischen Laserdioden (O-Laser) und „organic plasmon emitting devices“, bevorzugt aber organischen Elektrolumineszenzvorrichtungen (OLEDs).
Die Vorrichtung ist besonders bevorzugt eine organische Elektrolumineszenzvorrichtung umfassend Kathode, Anode und mindestens eine emittierende Schicht, wobei mindestens eine organische Schicht, welche eine emittierende Schicht, Lochtransportschicht, Elektronentransportschicht, Lochblockierschicht, Elektronenblockierschicht oder eine andere funktionelle Schicht sein kann, mindestens eine erfindungsgemäß deuterierte Verbindung umfasst. Die Schicht ist abhängig von der Substitution der Verbindung.
Außer diesen Schichten kann die organische Elektrolumineszenzvorrichtung noch weitere Schichten enthalten, beispielsweise jeweils eine oder mehrere Lochinjektionsschichten, Lochtransportschichten, Lochblockierschichten, Elektronentransportschichten, Elektroneninjektionsschichten, Exzitonenblockierschichten, Elektronenblockierschichten, Ladungserzeugungsschichten (Charge- Generation Layers) und/oder organische oder anorganische p/n Übergänge. Ebenso können zwischen zwei emittierende Schichten Interlayer eingebracht sein, welche beispielsweise eine exzitonenblockierende Funktion aufweisen. Es sei aber darauf hingewiesen, dass nicht notwendigerweise jede dieser Schichten vorhanden sein muss.
Dabei kann die organische Elektrolumineszenzvorrichtung eine emittierende Schicht enthalten, oder sie kann mehrere emittierende Schichten enthalten. Wenn mehrere Emissionsschichten vorhanden sind, weisen diese bevorzugt insgesamt mehrere Emissionsmaxima zwischen 380 nm und 750 nm auf, sodass insgesamt weiße Emission resultiert, d. h. in den emittierenden Schichten werden verschiedene emittierende Verbindungen verwendet, die fluoreszieren oder phosphoreszieren können. Insbesondere bevorzugt sind Systeme mit drei emittierenden Schichten, wobei die drei Schichten blaue, grüne und orange oder rote Emission zeigen (Der prinzipielle Aufbau ist beispielsweise in WO 2005/011013 beschrieben). Es kann sich bei der erfindungsgemäßen organischen Elektrolumineszenzvorrichtung auch um eine Tandem-OLED handeln, insbesondere für weiß emittierende OLEDs.
Die organische Elektrolumineszenzvorrichtung kann eine oder mehrere phosphoreszierende Emitter umfassen.
Dabei kann die organische Elektrolumineszenzvorrichtung eine emittierende Schicht enthalten, oder sie kann mehrere emittierende Schichten enthalten, wobei mindestens eine Schicht mindestens eine deuterierte Verbindung enthält. Weiterhin kann die erfindungsgemäß deuterierte Verbindung auch in einer Elektronentransportschicht und/oder in einer Lochblockierschicht und/oder in einer Lochtransportschicht und/oder in einer Exzitonenblockierschicht eingesetzt werden.
Der Ausdruck „phosphoreszierende Verbindung“ bezeichnet typischerweise Verbindungen, bei denen die Aussendung von Licht durch einen spin-verbotenen Übergang erfolgt, z. B. einen Übergang von einem angeregten Triplett-Zustand oder einem Zustand mit einer höheren Spin- Quantenzahl, z. B. einem Quintett-Zustand.
Geeignete phosphoreszierende Verbindungen (= Triplettemitter) sind insbesondere Verbindungen, die bei geeigneter Anregung Licht, vorzugsweise im sichtbaren Bereich, emittieren und außerdem mindestens ein Atom der Ordnungszahl größer als 20, vorzugsweise größer als 38 und kleiner als 84, besonders bevorzugt größer als 56 und kleiner als 80 enthalten. Bevorzugt werden als phosphoreszierende Verbindungen alle lumineszierenden Komplexe mit Übergangsmetallen oder Lanthaniden angesehen, insbesondere wenn sie Kupfer, Molybdän, Wolfram, Rhenium, Ruthenium, Osmium, Rhodium, Iridium, Palladium, Platin, Silber, Gold oder Europium enthalten, insbesondere Verbindungen, die Iridium, Platin oder Kupfer enthalten. Im Rahmen der vorliegenden Erfindung werden alle lumineszierenden Iridium-, Platin- oder Kupferkomplexe als phosphoreszierende emittierende Verbindungen betrachtet.
Beispiele der oben beschriebenen Emitter können den Anmeldungen WO 00/70655, WO 2001/41512, WO 2002/02714, WO 2002/15645, EP 1191613, EP 1191612, EP 1191614, WO 05/033244, WO 05/019373, US 2005/0258742, WO 2009/146770, WO 2010/015307, WO 2010/031485, WO 2010/054731 , WO 2010/054728, WO 2010/086089, WO 2010/099852, WO 2010/102709, WO 2011/032626, WO 2011/066898, WO 2011/157339, WO 2012/007086, WO 2014/008982, WO 2014/023377, WO 2014/094961 , WO 2014/094960, WO 2015/036074, WO 2015/104045, WO 2015/117718, WO 2016/015815, WO 2016/124304, WO 2017/032439, WO 2018/011186, WO 2018/041769, WO 2019/020538, WO 2018/178001 , WO 2019/115423 und WO 2019/158453 entnommen werden. Generell eignen sich alle phosphoreszierenden Komplexe, wie sie gemäß dem Stand der Technik für phosphoreszierende OLEDs verwendet werden und wie sie dem Fachmann auf dem Gebiet der organischen Elektrolumineszenz bekannt sind, und der Fachmann kann ohne erfinderisches Zutun weitere phosphoreszierende Komplexe verwenden. Überraschenderweise wurde festgestellt, dass sich solche Verbindungen mit dem erfindungsgemäßen Verfahren deuterieren lassen.
Wird die deuterierte Verbindung als Lochtransportmaterial in einer Lochtransportschicht, einer Lochinjektionsschicht oder einer Elektronenblockierschicht verwendet, so kann die Verbindung als reines Material, d.h. in einem Anteil von 100 %, in der Lochtransportschicht eingesetzt werden, oder sie kann in Kombination mit einer oder mehreren weiteren Verbindungen verwendet werden. In einer bevorzugten Ausführungsform enthält die organische Schicht, die die deuterierte Verbindung enthält, dann zusätzlich ein oder mehrere p-Dotiermittel. p- Dotiermittel, die gemäß der vorliegenden Erfindung verwendet werden, sind vorzugsweise solche organischen Elektronenakzeptorverbindungen, die in der Lage sind, eine oder mehrere der anderen Verbindungen in der Mischung zu oxidieren.
Besonders bevorzugte Ausführungsformen von p-Dotiermitteln sind die in WO 2011/073149, EP 1968131 , EP 2276085, EP 2213662, EP 1722602, EP 2045848, DE 102007031220, US 8044390, US 8057712, WO 2009/003455, WO 2010/094378, WO 2011/120709, US 2010/0096600, WO 2012/095143 und DE 102012209523 offenbarten Verbindungen.
Besonders bevorzugte p-Dotiermittel sind Chinodimethanverbindungen, Azaindenofluorendione, Azaphenylene, Azatriphenylene, h, Metallhalogenide, vorzugsweise Übergangsmetallhalogenide, Metalloxide, vorzugsweise Metalloxide, die mindestens ein Übergangsmetall oder ein Metall der 3. Hauptgruppe enthalten, und Übergangsmetallkomplexe, vorzugsweise Komplexe von Cu, Co, Ni, Pd und Pt mit Liganden, die mindestens ein Sauerstoffatom als Bindungsstelle enthalten. Bevorzugt werden ferner Übergangsmetalloxide als Dotiermittel, vorzugsweise Oxide von Rhenium, Molybdän und Wolfram, besonders bevorzugt Re2O?, MoOs, WO3 und ReOs, verwendet.
Die p-Dotiermittel liegen vorzugsweise in einer im Wesentlichen homogenen Verteilung in den p-dotierten Schichten vor. Dies kann z. B. durch Coevaporation des p-Dotiermittels und der Lochtransportmaterialmatrix erreicht werden.
Die deuterierte Verbindung kann auch in einer emittierenden Schicht als Matrixmaterial in Kombination mit einer oder mehreren emittierenden Verbindungen, vorzugsweise phosphoreszierenden Verbindungen, eingesetzt werden.
Der Anteil des Matrixmaterials in der emittierenden Schicht liegt in diesem Fall zwischen 50,0 und 99,9 Vol.-%, bevorzugt zwischen 80,0 und 99,5 Vol.-%, besonders bevorzugt zwischen 92,0 und 99,5 Vol-%. für fluoreszierende emittierende Schichten und zwischen 85,0 und 97,0 Vol.- % für phosphoreszierende emittierende Schichten.
Entsprechend liegt der Anteil der emittierenden Verbindung zwischen 0,1 und 50,0 Vol.-%, bevorzugt zwischen 0,5 und 20,0 Vol.-%, besonders bevorzugt zwischen 0,5 und 8,0 Vol.-% für fluoreszierende emittierende Schichten und zwischen 3,0 und 15,0 Vol.-%. für phosphoreszierende emittierende Schichten.
Eine emittierende Schicht einer organischen Elektrolumineszenzvorrichtung kann auch Systeme umfassen, die eine Vielzahl von Matrixmaterialien (Mischmatrixsysteme) und/oder eine Vielzahl von emittierenden Verbindungen enthalten. Auch in diesem Fall sind in der Regel die emittierenden Verbindungen diejenigen, die den kleineren Anteil im System haben und die Matrixmaterialien diejenigen, die den größeren Anteil im System haben. In Einzelfällen kann jedoch der Anteil eines einzelnen Matrixmaterials im System geringer sein als der Anteil einer einzelnen emittierenden Verbindung. Bevorzugte fluoreszierende emittierende Verbindungen sind ausgewählt aus der Klasse der Arylamine. Unter einem Arylamin oder einem aromatischen Amin wird im Rahmen der vorliegenden Erfindung eine Verbindung verstanden, die drei substituierte oder unsubstituierte aromatische oder heteroaromatische Ringsysteme enthält, die direkt an den Stickstoff gebunden sind. Vorzugsweise ist mindestens eines dieser aromatischen oder heteroaromatischen Ringsysteme ein kondensiertes Ringsystem, besonders bevorzugt mit mindestens 14 aromatischen Ringatomen. Bevorzugte Beispiele hierfür sind aromatische Anthracenamine, aromatische Anthracendiamine, aromatische Pyrenamine, aromatische Pyrenediamine, aromatische Chrysenamine oder aromatische Chrysendiam ine. Unter einem aromatischen Anthracenamin versteht man eine Verbindung, bei der eine Diarylaminogruppe direkt an eine Anthracengruppe, vorzugsweise in Position 9, gebunden ist. Unter einem aromatischen Anthracendiamin ist eine Verbindung zu verstehen, in der zwei Diarylaminogruppen direkt an eine Anthracengruppe gebunden sind, vorzugsweise in den Positionen 9, 10. Analog sind aromatische Pyrenamine, Pyrendiamine, Chrysenamine und Chrysendiamine definiert, bei denen die Diarylaminogruppen vorzugsweise in 1 -Position oder 1 ,6-Position an das Pyren gebunden sind. Weitere bevorzugte emittierende Verbindungen sind Indenofluorenamine oder Fluorendiamine, beispielsweise nach WO 2006/108497 oder WO 2006/122630, Benzoindenofluorenamine oder -fluorendiamine, beispielsweise nach WO 2008/006449, und Dibenzoindenofluorenamine oder -diamine, beispielsweise nach WO 2007/140847, sowie die in WO 2010/012328 offenbarten Indenofluorenderivate mit kondensierten Arylgruppen. Ebenso bevorzugt sind die in WO 2012/048780 und in WO 2013/185871 offenbarten Pyrenearylamine. Ebenfalls bevorzugt sind die in WO 2014/037077 offenbarten Benzoindenofluorenamine, die in WO 2014/106522 offenbarten Benzofluorenamine, die in WO 2014/111269 und in WO 2017/036574 offenbarten verlängerten Benzoindenofluorene, die in WO 2017/028940 und in WO 2017/028941 offenbarten Phenoxazine und die in WO 2016/150544 offenbarten an Furaneinheiten oder an Thiopheneinheiten gebundenen Fluorderivate. Nützliche Matrixmaterialien, vorzugsweise für fluoreszierende Verbindungen, umfassen Materialien verschiedener Substanzklassen. Bevorzugte Matrixmaterialien sind ausgewählt aus den Klassen der Oligoaryle (z.B. 2,2',7,7'-Tetraphenylspirobifluoren nach EP 676461 oder Dinaphthylanthracen), insbesondere der Oligoaryle mit anellierten aromatischen Gruppen, der Oligoarylenvinylene (z.B. DPVBi oder Spiro- DPVBi gemäß EP 676461 ), der polypodalen Metallkomplexe (z.B. gemäß WO 2004/081017), der lochleitenden Verbindungen (z.B. gemäß WO 2004/058911 ), der elektronenleitenden Verbindungen, insbesondere Ketone, Phosphinoxide, Sulfoxide etc. (zum Beispiel nach WO 2005/084081 und WO 2005/084082), die Atropisomere (zum Beispiel nach WO 2006/048268), die Boronsäurederivate (zum Beispiel nach WO 2006/117052) oder die Benzanthracene (zum Beispiel nach WO 2008/145239). Besonders bevorzugte Matrixmaterialien sind ausgewählt aus den Klassen der Oligoarylene mit Naphthalin, Anthracen, Benzanthracen und/oder Pyren oder Atropisomeren dieser Verbindungen, den Oligoarylenvinylenen, den Ketonen, den Phosphinoxiden und den Sulfoxiden. Ganz besonders bevorzugte Matrixmaterialien sind ausgewählt aus den Klassen der Oligoarylene, die Anthracen, Benzanthracen, Benzophenanthren und/oder Pyren oder Atropisomere dieser Verbindungen umfassen. Unter einem Oligoarylen ist im Rahmen der vorliegenden Erfindung eine Verbindung zu verstehen, in der mindestens drei Aryl- oder Arylengruppen miteinander verbunden sind. Weiter bevorzugt sind die in WO 2006/097208, WO 2006/131192, WO 2007/065550, WO 2007/110129, WO 2007/065678, WO 2008/145239, WO 2009/100925, WO 2011/054442 und EP 1553154 offenbarten Anthracenderivate, die in EP 1749809, EP 1905754 und US 2012/0187826 offenbarten Pyrenverbindungen, die in WO 2015/158409 offenbarten Benzanthracenylanthracenverbindungen, die in WO 2017/025165 offenbarten Indenobenzofurane und die in WO 2017/036573 offenbarten Phenanthrylanthracene.
Bevorzugte Matrixmaterialien für phosphoreszierende Verbindungen sind aromatische Ketone, aromatische Phosphinoxide oder aromatische Sulfoxide oder Sulfone, z. B. gemäß WO 2004/013080, WO 2004/093207, WO 2006/005627 oder WO 2010/006680, Triarylamine, Carbazolderivate, z. B. CBP (N,N-Biscarbazolylbiphenyl) oder gemäß WO 2005/039246, US 2005/0069729, JP 2004/288381 , EP 1205527, WO 2008/086851 oder WO 2013/041176, Indolocarbazolderivate, z. B. gemäß WO 2007/063754 oder WO 2008/056746, Indenocarbazolderivate, z. B. gemäß WO 2010/136109, WO 2011/000455, WO 2013/041176 oder WO 2013/056776, Azacarbazolderivate, z. B. gemäß EP 1617710, EP 1617711 , EP 1731584, JP 2005/347160, bipolare Matrixmaterialien, z. B. gemäß WO 2007/137725, Silane, z. B. gemäß WO 2005/111172, Aza- borole oder Boronester, z. B. gemäß WO 2006/117052, Triazinderivate, z. B. gemäß WO 2007/063754, WO 2008/056746, WO 2010/015306, WO 2011/057706, WO 2011/060859 oder WO 2011/060877, Zinkkomplexe, z. B. gemäß EP 652273 oder WO 2009/062578, Diazasilol- bzw. Tetra- azasilol-Derivate, z. B. gemäß WO 2010/054729, Diazaphosphol-Derivate, z. B. gemäß WO 2010/054730, verbrückte Carbazol-Derivate, z. B. gemäß WO 2011/042107, WO 2011/060867, WO 2011/088877 und WO 2012/143080, Triphenylenderivate, z. B. gemäß WO 2012/048781 , Lactame, z. B. gemäß WO 2011/116865 oder WO 2011/137951 , oder Dibenzofuranderivate, z. B. gemäß WO 2015/169412, WO 2016/015810, WO 2016/023608, WO 2017/148564 oder WO 2017/148565. Ebenso kann ein weiterer phosphoreszierender Emitter, welcher kürzerwellig als der eigentliche Emitter emittiert, als Co-Host in der Mischung vorhanden sein oder eine Verbindung, die nicht oder nicht in wesentlichem Umfang am Ladungstransport teilnimmt, wie beispielsweise in WO 2010/108579 beschrieben.
Geeignete Ladungstransportmaterialien, wie sie in der Lochinjektionsoder Lochtransportschicht oder in der Elektronensperrschicht oder in der Elektronentransportschicht des elektronischen Bauelements verwendet werden können, sind neben den deuterierten Verbindungen zum Beispiel die in Y. Shirota et al., Chem. Rev. 2007, 107(4), 953-1010 genannten, oder andere Materialien, wie sie in diesen Schichten gemäß dem Stand der Technik verwendet werden.
Vorzugsweise umfasst die eine OLED zwei oder mehr verschiedene löchertransportierende Schichten. Die deuterierte Verbindung kann dabei in einer oder mehreren oder in allen löchertransportierenden Schichten verwendet werden. Weitere Verbindungen, die vorzugsweise in löchertransportierenden Schichten der OLEDs eingesetzt werden, sind insbesondere Indenofluorenamin-Derivate (z.B. nach WO 06/122630 oder WO 06/100896), die in EP 1661888 offenbarten Aminderivate, Hexaazatriphenylen-Derivate (z.B. nach WO 01/049806), Aminderivate mit anellierten Aromaten (zum Beispiel nach US 5,061 ,569), die in WO 95/09147 offenbarten Aminderivate, Monobenzoindenofluorenamine (zum Beispiel nach WO 08/006449), Dibenzoindenofluorenamine (zum Beispiel nach WO 07/140847), Spirobifluorenamine (zum Beispiel nach WO 2012/034627 oder WO 2013/120577), Fluorenamine (zum Beispiel nach WO 2014/015937, WO 2014/015938, WO 2014/015935 und WO 2015/082056), Spirodibenzopyranamine (zum Beispiel gemäß WO 2013/083216), Dihydroacridin-Derivate (zum Beispiel gemäß WO 2012/150001 ), Spirodibenzofurane und Spirodibenzothiophene (zum Beispiel nach WO 2015/022051 , WO 2016/102048 und WO 2016/131521 ), Phenanthrendiarylamine (zum Beispiel nach WO 2015/131976), Spirotribenzotropolone (zum Beispiel gemäß WO 2016/087017), Spirobifluorene mit meta-Phenyldiamingruppen (zum Beispiel gemäß WO 2016/078738), Spirobisacridine (zum Beispiel gemäß WO 2015/158411 ), Xanthendiarylamine (zum Beispiel gemäß WO 2014/072017), und 9,10-Dihydroanthracen-Spiroverbindungen mit Diarylaminogruppen gemäß WO 2015/086108.
Ganz besonders bevorzugt ist die Verwendung von durch Diarylaminogruppen in 4-Position substituierten Spirobifluorenen als löchertransportierende Verbindungen, insbesondere die Verwendung derjenigen Verbindungen, die in WO 2013/120577 beansprucht und offenbart sind, und die Verwendung von durch Diarylaminogruppen in 2- Position substituierten Spirobifluorenen als löchertransportierende Verbindungen, insbesondere die Verwendung derjenigen Verbindungen, die in WO 2012/034627 beansprucht und offenbart sind.
Als Materialien für die Elektronentransportschicht können alle Materialien verwendet werden, die nach dem Stand der Technik als Elektronentransportmaterialien in der Elektronentransportschicht eingesetzt werden. Besonders geeignet sind Aluminiumkomplexe, z.B. Alq3, Zirkoniumkomplexe, z.B. Zrq4, Lithiumkomplexe, z.B. Liq, Benzimidazol-Derivate, Triazin-Derivate, Pyrimidin-Derivate, Pyridin- Derivate, Pyrazin-Derivate, Chinoxalin-Derivate, Chinolin-Derivate, Oxadiazol-Derivate, aromatische Ketone, Lactame, Borane, Diazaphosphol-Derivate und Phosphinoxid-Derivate. Weitere geeignete Materialien sind Derivate der vorgenannten Verbindungen, wie sie in JP 2000/053957, WO 2003/060956, WO 2004/028217, WO 2004/080975 und WO 2010/072300 offenbart sind.
Bevorzugte Kathoden des elektronischen Bauelements sind Metalle mit geringer Austrittsarbeit, Metalllegierungen oder Mehrschichtstrukturen aus verschiedenen Metallen, z. B. Erdalkalimetallen, Alkalimetallen, Hauptgruppenmetallen oder Lanthanoiden (z. B. Ca, Ba, Mg, AI, In, Mg, Yb, Sm, etc ). Zusätzlich geeignet sind Legierungen aus einem Alkalioder Erdalkalimetall und Silber, z. B. eine Legierung aus Magnesium und Silber. Bei Mehrschichtstrukturen können neben den genannten Metallen auch weitere Metalle mit einer relativ hohen Austrittsarbeit verwendet werden, z. B. Ag oder AI, wobei in der Regel Kombinationen der Metalle wie z. B. Ca/Ag, Mg/Ag oder Ba/Ag eingesetzt werden. Es kann auch vorteilhaft sein, eine dünne Zwischenschicht aus einem Material mit einer hohen Dielektrizitätskonstante zwischen einer metallischen Kathode und dem organischen Halbleiter einzuführen. Beispiele für geeignete Materialien sind Alkali- oder Erdalkalimetallfluoride, aber auch die entsprechenden Oxide oder Carbonate (z. B. LiF, L12O, BaF2, MgO, NaF, CsF, CS2CO3 usw.). Es ist auch möglich, Lithiumchinolinat (LiQ) zu diesem Zweck zu verwenden. Die Schichtdicke dieser Schicht liegt vorzugsweise zwischen 0,5 und 5 nm.
Bevorzugte Anoden sind Materialien mit einer hohen Austrittsarbeit. Vorzugsweise hat die Anode eine Austrittsarbeit von mehr als 4,5 eV gegen Vakuum. Dazu eignen sich erstens Metalle mit hohem Redoxpotential, z. B. Ag, Pt oder Au. Zum anderen können auch Metall/Metalloxid-Elektroden (z. B. AI/Ni/NiOx, Al/PtOx) bevorzugt werden. Für einige Anwendungen muss mindestens eine der Elektroden transparent oder teiltransparent sein, um die Bestrahlung des organischen Materials (organische Solarzelle) oder die Emission von Licht (OLED, O- Laser) zu ermöglichen. Bevorzugte Anodenmaterialien sind hier leitfähige Metailm ischoxide. Besonders bevorzugt sind Indiumzinnoxid (ITO) oder Indiumzinkoxid (IZO). Weiter bevorzugt sind leitfähig dotierte organische Materialien, insbesondere leitfähig dotierte Polymere. Darüber hinaus kann die Anode auch aus zwei oder mehr Schichten bestehen, zum Beispiel aus einer inneren Schicht aus ITO und einer äußeren Schicht aus einem Metalloxid, vorzugsweise Wolframoxid, Molybdänoxid oder Vanadiumoxid.
Die Vorrichtung wird entsprechend (je nach Anwendung) strukturiert, kontaktiert und abschließend versiegelt, um schädliche Einflüsse durch Wasser und Luft auszuschließen.
In den weiteren Schichten der organischen Elektrolumineszenzvorrichtung können alle Materialien verwendet werden, wie sie üblicherweise gemäß dem Stand der Technik eingesetzt werden. Der Fachmann kann daher ohne erfinderisches Zutun alle für organische Elektrolumineszenzvorrichtungen bekannten Materialien in Kombination mit den deuterierten Verbindungen einsetzen. Auch können die vorgenannten Verbindungen, insbesondere die aromatischen oder heteroaromatischen Verbindungen mit dem erfindungsgemäßen Verfahren deuteriert werden, insbesondere um ihre Lebendsdauer zu verbessern.
Weiterhin bevorzugt ist eine organische Elektrolumineszenzvorrichtung, dadurch gekennzeichnet, dass eine oder mehrere Schichten mit einem Sublimationsverfahren beschichtet werden. Dabei werden die Materialien in Vakuum-Sublimationsanlagen bei einem Anfangsdruck kleiner 10'5 mbar, bevorzugt kleiner 10'6 mbar aufgedampft. Es ist aber auch möglich, dass der Anfangsdruck noch geringer ist, beispielsweise kleiner 10-7 mbar.
Bevorzugt ist ebenfalls eine organische Elektrolumineszenzvorrichtung, dadurch gekennzeichnet, dass eine oder mehrere Schichten mit dem OVPD (Organic Vapour Phase Deposition) Verfahren oder mit Hilfe einer Trägergassublimation beschichtet werden. Dabei werden die Materialien bei einem Druck zwischen 10'5 mbar und 1 bar aufgebracht. Ein Spezialfall dieses Verfahrens ist das OVJP (Organic Vapour Jet Printing) Verfahren, bei dem die Materialien direkt durch eine Düse aufgebracht und so strukturiert werden.
Weiterhin bevorzugt ist eine organische Elektrolumineszenzvorrichtung, dadurch gekennzeichnet, dass eine oder mehrere Schichten aus Lösung, wie z. B. durch Spincoating, oder mit einem beliebigen Druckverfahren, wie z. B. Siebdruck, Flexodruck, Offsetdruck, LITI (Light Induced Thermal Imaging, Thermotransferdruck), Ink-Jet Druck (Tintenstrahldruck) oder Nozzle Printing, hergestellt werden. Hierfür sind lösliche Verbindungen nötig, welche beispielsweise durch geeignete Substitution erhalten werden.
Weiterhin sind Hybridverfahren möglich, bei denen beispielsweise eine oder mehrere Schichten aus Lösung aufgebracht werden und eine oder mehrere weitere Schichten aufgedampft werden.
Diese Verfahren sind dem Fachmann generell bekannt und können von ihm ohne erfinderisches Zutun auf organische Elektrolumineszenzvorrichtungen enthaltend die erfindungsgemäßen Verbindungen angewandt werden.
Insbesondere können die elektronischen Vorrichtungen, die eine oder mehrere deuterierte Verbindungen enthalten, in Displays, als Lichtquellen in Beleuchtungsanwendungen und als Lichtquellen in medizinischen und/oder kosmetischen Anwendungen (z.B. Lichttherapie) eingesetzt werden.
Die deuterierten Verbindungen und die erfindungsgemäßen organischen Elektrolumineszenzvorrichtungen zeichnen sich durch einen oder mehrere der folgenden Eigenschaften aus:
1 . Die erfindungsgemäßen Verbindungen führen zu langen Lebensdauern. 2. Die erfindungsgemäßen Verbindungen führen zu hohen Effizienzen, insbesondere zu einer hohen EQE.
3. Die erfindungsgemäßen Verbindungen führen zu geringen Betriebsspannungen.
Die Erfindung wird durch die nachfolgenden Beispiele näher erläutert, ohne sie dadurch einschränken zu wollen. Der Fachmann kann aus den Schilderungen die Erfindung im gesamten offenbarten Bereich ausführen und ohne erfinderisches Zutun weitere deuterierte Verbindungen herstellen und diese in elektronischen Vorrichtungen verwenden bzw. das erfindungsgemäße Verfahren anwenden.
Beispiele:
Die nachfolgenden Synthesen werden, sofern nicht anders angegeben, unter einer Schutzgasatmosphäre in getrockneten Lösungsmitteln durchgeführt. Die Lösungsmittel und Reagenzien können z. B. von Sigma- ALDRICH bzw. ABCR bezogen werden. Die jeweiligen Angaben in eckigen Klammern bzw. die zu einzelnen Verbindungen angegebenen Nummern beziehen sich auf die CAS-Nummern der literaturbekannten Verbindungen.
Verwendete Verbindungen:
Figure imgf000031_0001
Figure imgf000032_0001
Verwendete Materialien:
Deuteriumoxid - D2O: Sigma Aldrich (>99.9 atom%D)
Cyclohexan - Cy: MerckMillipore (>99.5%)
Methylcyclopentan - Mcp: MerckMillipore (>99.5%)
Decalin - Dec: cis-/trans-lsomerengemisch MerckMillipore (>99.0%)
Palladium / Kohle - Pd/C; 5 Gew.-% Pd; Evonic Operations GmbH
Platin / Kohle - Pt/C: 5 Gew.-% Pt; Evonic Operations GmbH
Triethylamin: MerckMillipore (>99.0%)
Iso-Propanol - i-PrOH: MerckMillipore (>99.5%)
2-Pentanol - 2-P-OH: MerckMillipore (>99.5%)
Kaliumacetat - KOAc: Sigma Aldrich (>99.9%)
Palladium(ll)acetat - Pd(OAc)2: Sigma Aldrich (99.98% trace metals basis)
Palladium(ll)pivalate - Pd(OPiv)2: Sigma Aldrich (97% essay)
Silber(l)acetat - Ag(OAc): Sigma Aldrich (99.99% trace metals basis) Trocknung der Katalysatoren:
Die wasserfeuchten Katalysatoren (Pd/C und Pt/C) wurden für 3 d bei 60 °C und 20 mbar in einem Vakuumtrockenschrank getrocknet. Wassergehalt nach Karl-Fischer ca. 1 %.
Allgemeine Durchführungsbeschreibung:
Methode 1: Reaktionsführung im Autoklaven unter Eigendruck
Ein Rührautoklav wird mit der Verbindung V, D2O, einem Lösungsmittel (LM), einem Katalysator Kat.1 , gegebenenfalls einem Katalysator Kat.2 und gegebenenfalls Additiven Add.1 , Add.2, etc. beschickt, durch zweimaliges Aufpressen und Entspannen von 5 bar Stickstoff inertisiert oder durch einmaliges Aufpressen und Entspannen von 30 bar Stickstoff entgast und für die angegebene Reaktionszeit R bei der angegebenen Temperatur ? mit einem Schrägblattrüher mit 1000 U/min. gerührt. Die genauen Ansatzmengen werden unten ausgewiesen. Man lässt den Rührautoklaven erkalten, entnimmt die Reaktionsmischung und filtriert den Katalysator ab und trennt die Cyclohexanphase ab. Der Katalysator wird mit THF nachgewaschen und anschließend mit heißem THF extrahiert, bis er kein Produkt mehr enthält. Die vereinigten organischen Phasen unter reduziertem Druck am Rotationsverdampfer (p ca. 20 mbar, T ca. 60 °C) zur Trockene eingeengt.
Wird, wie in den Vergleichsbeispielen beschrieben, cis-/trans-Decalin mit einen Siedepunkt von 189-191 °C verwendet, kann es nicht an einem Laborüblichen Rotationsverdampfer entfernt werden, es muss über eine Brücke im Ölpumpenvakuum (p ca. 10'2 mbar, T ca. 80 °C) entfernt werden.
Methode 2: Reaktionsführung gegen Atmosphärendruck
Durchführung wie oben beschrieben, jedoch in einer Standard- Rührapparatur (z.B. 2 I oder 4 I Vierhalskolben, KPG-Rührer mit Lochrührblatt aus Teflon - 350-4500 U/Min., Innenthermometer, Rückflusskühler, Schutzgasüberlagerung (Stickstoff oder Argon)) unter Schutzgas und Rückfluss RF (ca. 72 °C) gegen Atmosphärendruck. Der Eintrag RF in der Spalte der Reaktionstemperatur zeigt an, dass Methode 2 verwendet wird. Aufarbeitung wie oben beschrieben.
Bestimmung der Reinheit und des Deuterierungsgrades:
Der Umsatz (Flächen-% des deuterierten Produktes) und die Nebenprodukte (Summe der Flächen-% aller Nebenprodukte) wird mittels HPLC, Merck Hitachi D-7000, Detektionswellenlänge 254 nm, Säule: StarRP18e 250/4.5 5pm, THF/ACN/H2O-Gemische bestimmt.
Der Deuterierungsgrad MD wird mittels HPLC-MS, Agilent 1260 Infinity II, Ionisation: APCI, Säule: Agilent Zorbax-C18 600 bar, 2.1X50 mm, 1.8 pm, THF/ACN/H2O-Gemische bestimmt. Dazu wird ein HPLC-MS Chromatogramm erstellt. Aus diesem wird die Masse M+H+ der intensivsten Isotopenkomination ermittelt. Der ermittelte M+H+ Wert wird um 1 erniedrigt MD = M+H+ - 1.
Der Deuterierungsgrad MD wird mit der folgenden Formel berechnet:
Deuterierungsgrad = (MD - MH) / NH
NH: Anzahl der Protonen H
MH: Rechnerische Molekülmasse (ChemDraw) des nicht deuterierten Edukts
MD: Mittels HPLC-MS bestimmte und um 1 erniedrigte Masse der intensivsten Isotopenkombination
Umsetzung von V1:
Ansatz und Reaktionsbedingungen:
Figure imgf000034_0001
Figure imgf000035_0001
Ergebnis:
Figure imgf000035_0002
Bei der Zugabe eines Alkohols nehmen die Nebenprodukte deutlich zu. Durch die Verwendung eines Katalysatorengemisches wird die Menge an Nebenprodukten nochmals reduziert. Eine Erhöhung des Menge an Katalysator verbessert die Deuterierung.
Umsetzung von V2:
Ansatz und Reaktionsbedingungen:
Figure imgf000036_0001
Ergebnis:
Figure imgf000036_0002
Figure imgf000037_0001
Das erfindungsgemäße Verfahren führt auch unter Rückflussbedingungen zu guten Ergebnissen, insbesondere zu geringen Nebenprodukten. Die Zugabe eines Alkohols erhöht erneut die Menge an Nebenprodukten.
Umsetzung von V3:
Ansatz und Reaktionsbedingungen:
Figure imgf000037_0002
Katalysator wurde nicht getrocknet
Ergebnis:
Figure imgf000037_0003
Figure imgf000038_0001
Die Verwendung von nicht getrockneten Katalysator (V3B1 ) führt zu keiner Umsetzung. Auch die Verwendung von Methylcyclopropan führt zu keinem Produkt. Die Verlängerung der Reaktionsdauer erhöht Nebenprodukte aber auch den Grad der Deuterierung.
Umsetzung von V4:
Ansatz und Reaktionsbedingungen:
Figure imgf000038_0002
Figure imgf000039_0001
Ergebnis:
Figure imgf000039_0002
Die Zugabe der Additive senkt die Nebenprodukte und erhöht im Falle der Pd-Salze auch den Grad der Deuterierung. Dadurch kann der Umsatz erhöht werden.
Umsetzung von V5: Ansatz und Reaktionsbedingungen:
Figure imgf000040_0001
Ergebnis:
Figure imgf000040_0002
Die Additive führen erneut zur Erhöhung des Deuterierungsgrad und/oder zur Verminderung der Nebenprodukte.
Umsetzung von V6:
Ansatz und Reaktionsbedingungen:
Figure imgf000040_0003
Ergebnis:
Figure imgf000041_0001
Das Beispiel zeigt, dass auch Chlorgruppen toleriert werden.

Claims

Patentansprüche
1 . Verfahren zur Herstellung einer deuterierten organischen Verbindung umfassend folgende Schritte: a) Bereitstellung mindestens eines heterogenen Metallkatalysators, wobei die Bereitstellung die Trocknung des Metallkatalysators umfasst; b) Herstellen einer flüssigen Zusammensetzung umfassend mindestens eine organische Verbindung, der mindestens eine heterogene Metallkatalysator, mindestens eine Deuteriumquelle, sowie mindestens ein aliphatischer Kohlenwasserstoff als Lösungsmittel. c) Erwärmen der Zusammensetzung unter Deuterierung der organischen Verbindung.
2. Verfahren nach Anspruch 1 , wobei der heterogene Metallkatalysator ausgewählt ist aus der Gruppe umfassend Platin, Palladium, Rhodium, Ruthenium, Nickel, Kobalt, Oxiden davon und Kombinationen davon.
3. Verfahren nach einem oder mehreren der Ansprüche 1 oder 2, wobei die Trocknung bis zu einem Wassergehalt von unter 5 Gew.-% (nach Karl-Fischer) durchgeführt wird.
4. Verfahren nach einem oder mehreren der Ansprüche 1 bis 3, wobei die organische Verbindung eine aromatische oder heteroaromatische Verbindung oder eine metallorganische Verbindung ist.
5. Verfahren nach einem oder mehreren der Ansprüche 1 bis 4, wobei die Deuteriumquelle ausgewählt ist aus schwerem Wasser, D2O, d6- Benzol oder d8-Toluol, bevorzugt schweres Wasser oder D2O.
6. Verfahren nach einem oder mehreren der Ansprüche 1 bis 5, wobei das Lösungsmittel ein aliphatische Lösungsmittel mit einem Siedepunkt von über 75 °C ist.
7. Verfahren nach einem oder mehreren der Ansprüche 1 bis 6, wobei die Zusammensetzung keine aliphatischen Alkohole umfasst.
8. Verfahren nach einem oder mehreren der Ansprüche 1 bis 7, wobei das Verhältnis von Wasserstoffatomen der organischen Verbindung zu Deuterium der Deuteriumquelle bei mindestens 1 :1 .5 liegt.
9. Verfahren nach einem oder mehreren der Ansprüche 1 bis 8, wobei das Verhältnis von Deuteriumquelle zu Lösungsmittel gemessen in Volumen von 2:1 bis 1 :50 liegt.
10. Verfahren nach einem oder mehreren der Ansprüche 1 bis 9, wobei in Schritt c) auf eine Temperatur von mindestens 40 °C, bevorzugt mindestens 70 °C, erwärmt wird.
11 . Verfahren nach einem oder mehreren der Ansprüche 1 bis 10, wobei in Schritt c) auf eine Temperatur von bis zu 200 °C, bevorzugt bis zu 160 °C erwärmt wird.
12. Verfahren nach einem oder mehreren der Ansprüche 1 bis 11 , wobei in Schritt c) mit oder ohne Druckausgleich mit der Umgebung durchgeführt wird.
13. Verfahren nach einem oder mehreren der Ansprüche 1 bis 12, wobei die Zusammensetzung mindestens ein Additiv ausgewählt aus Alkylaminen, Metallsalzen und/oder Metalloxiden ausgewählt aus Salzen oder Oxiden von Palladium, Platin, Rhodium, Ruthenium, Silber, Gold, Kupfer, Nickel oder Kobalt umfasst.
14. Verfahren nach einem der Ansprüche 1 bis 13, wobei das Lösungsmittel Cyclohexan ist.
PCT/EP2022/086545 2021-12-21 2022-12-19 Verfahren zur herstellung von deuterierten organischen verbindungen WO2023117837A1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202280083792.6A CN118354991A (zh) 2021-12-21 2022-12-19 用于制备氘化的有机化合物的方法
KR1020247024139A KR20240128020A (ko) 2021-12-21 2022-12-19 중수소화 유기 화합물의 제조 방법
EP22840088.3A EP4452909A1 (de) 2021-12-21 2022-12-19 Verfahren zur herstellung von deuterierten organischen verbindungen
US18/750,108 US20240343676A1 (en) 2021-12-21 2024-06-21 Process for preparing deuterated organic compounds

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP21216585.6 2021-12-21
EP21216585 2021-12-21

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/750,108 Continuation US20240343676A1 (en) 2021-12-21 2024-06-21 Process for preparing deuterated organic compounds

Publications (1)

Publication Number Publication Date
WO2023117837A1 true WO2023117837A1 (de) 2023-06-29

Family

ID=79018714

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2022/086545 WO2023117837A1 (de) 2021-12-21 2022-12-19 Verfahren zur herstellung von deuterierten organischen verbindungen

Country Status (5)

Country Link
US (1) US20240343676A1 (de)
EP (1) EP4452909A1 (de)
KR (1) KR20240128020A (de)
CN (1) CN118354991A (de)
WO (1) WO2023117837A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024132993A1 (de) 2022-12-19 2024-06-27 Merck Patent Gmbh Materialien für elektronische vorrichtungen

Citations (156)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5061569A (en) 1990-07-26 1991-10-29 Eastman Kodak Company Electroluminescent device with organic electroluminescent medium
WO1995009147A1 (fr) 1993-09-29 1995-04-06 Idemitsu Kosan Co., Ltd. Element electroluminescent organique et derive d'arylenediamine
EP0652273A1 (de) 1993-11-09 1995-05-10 Shinko Electric Industries Co. Ltd. Organisches Material für elektrolumineszente Vorrichtung und elektrolumineszente Vorrichtung
EP0676461A2 (de) 1994-04-07 1995-10-11 Hoechst Aktiengesellschaft Spiroverbindungen und ihre Verwendung als Elektrolumineszenzmaterialien
JP2000053957A (ja) 1998-06-23 2000-02-22 Koto Gijutsu Kenkyuin Kenkyu Kumiai 新規な有機金属発光物質およびそれを含む有機電気発光素子
WO2000070655A2 (en) 1999-05-13 2000-11-23 The Trustees Of Princeton University Very high efficiency organic light emitting devices based on electrophosphorescence
WO2001041512A1 (en) 1999-12-01 2001-06-07 The Trustees Of Princeton University Complexes of form l2mx as phosphorescent dopants for organic leds
WO2001049806A1 (en) 1999-12-31 2001-07-12 Lg Chemical Co., Ltd Electronic device comprising organic compound having p-type semiconducting characteristics
WO2002002714A2 (en) 2000-06-30 2002-01-10 E.I. Du Pont De Nemours And Company Electroluminescent iridium compounds with fluorinated phenylpyridines, phenylpyrimidines, and phenylquinolines and devices made with such compounds
WO2002015645A1 (en) 2000-08-11 2002-02-21 The Trustees Of Princeton University Organometallic compounds and emission-shifting organic electrophosphorescence
EP1191613A2 (de) 2000-09-26 2002-03-27 Canon Kabushiki Kaisha Lumineszente Vorrichtung, Bildanzeigevorrichtung und Metallkoordinationsverbindung
EP1191612A2 (de) 2000-09-26 2002-03-27 Canon Kabushiki Kaisha Lumineszente Vorrichtung, Bildanzeigevorrichtung und Metallkoordinationsverbindung
EP1191614A2 (de) 2000-09-26 2002-03-27 Canon Kabushiki Kaisha Lumineszente Vorrichtung und dafür verwendete Metallkoordinationsverbindung
EP1205527A1 (de) 2000-03-27 2002-05-15 Idemitsu Kosan Co., Ltd. Organische elektrolumineszierende vorrichtung
WO2003060956A2 (en) 2002-01-18 2003-07-24 Lg Chem, Ltd. New material for transporting electrons and organic electroluminescent display using the same
WO2004013080A1 (en) 2002-08-01 2004-02-12 Covion Organic Semiconductors Gmbh Spirobifluorene derivatives, their preparation and uses thereof
WO2004028217A1 (ja) 2002-09-20 2004-04-01 Idemitsu Kosan Co., Ltd. 有機エレクトロルミネッセンス素子
WO2004058911A2 (de) 2002-12-23 2004-07-15 Covion Organic Semiconductors Gmbh Organisches elektrolumineszenzelement
WO2004080975A1 (ja) 2003-03-13 2004-09-23 Idemitsu Kosan Co., Ltd. 新規含窒素複素環誘導体及びそれを用いた有機エレクトロルミネッセンス素子
WO2004081017A1 (de) 2003-03-11 2004-09-23 Covion Organic Semiconductors Gmbh Metallkomplexe
JP2004288381A (ja) 2003-03-19 2004-10-14 Konica Minolta Holdings Inc 有機エレクトロルミネッセンス素子
WO2004093207A2 (de) 2003-04-15 2004-10-28 Covion Organic Semiconductors Gmbh Mischungen von organischen zur emission befähigten halbleitern und matrixmaterialien, deren verwendung und elektronikbauteile enthaltend diese mischungen
WO2005011013A1 (de) 2003-07-21 2005-02-03 Covion Organic Semiconductors Gmbh Organisches elektrolumineszenzelement
WO2005019373A2 (de) 2003-08-19 2005-03-03 Basf Aktiengesellschaft Übergangsmetallkomplexe mit carbenliganden als emitter für organische licht-emittierende dioden (oleds)
US20050069729A1 (en) 2003-09-30 2005-03-31 Konica Minolta Holdings, Inc. Organic electroluminescent element, illuminator, display and compound
WO2005033244A1 (de) 2003-09-29 2005-04-14 Covion Organic Semiconductors Gmbh Metallkomplexe
EP1553154A1 (de) 2002-08-23 2005-07-13 Idemitsu Kosan Co., Ltd. Organische elektrolumineszenzvorrichtung und anthracenderivat
WO2005084081A1 (de) 2004-02-20 2005-09-09 Merck Patent Gmbh Organische elektronische vorrichtungen
WO2005111172A2 (de) 2004-05-11 2005-11-24 Merck Patent Gmbh Neue materialmischungen für die elektrolumineszenz
US20050258742A1 (en) 2004-05-18 2005-11-24 Yui-Yi Tsai Carbene containing metal complexes as OLEDs
JP2005347160A (ja) 2004-06-04 2005-12-15 Konica Minolta Holdings Inc 有機エレクトロルミネッセンス素子、照明装置及び表示装置
EP1617710A1 (de) 2003-04-23 2006-01-18 Konica Minolta Holdings, Inc. Material für ein organisches elektrolumineszenzgerät, organisches elektrolumineszenzgerät, beleuchtungsvorrichtung und anzeige
WO2006005627A1 (en) 2004-07-15 2006-01-19 Merck Patent Gmbh Oligomeric derivatives of spirobifluorene, their preparation and use
WO2006048268A1 (de) 2004-11-06 2006-05-11 Merck Patent Gmbh Organische elektrolumineszenzvorrichtung
EP1661888A1 (de) 2004-11-29 2006-05-31 Samsung SDI Co., Ltd. Phenylcarbazole basierte Verbindungen und deren Verwendung als organische Elektroluminiszierende Vorrichtung
WO2006097208A1 (de) 2005-03-16 2006-09-21 Merck Patent Gmbh Neue materialien für organische elektrolumineszenzvorrichtungen
WO2006100896A1 (ja) 2005-03-18 2006-09-28 Idemitsu Kosan Co., Ltd. 芳香族アミン誘導体及びそれを用いた有機エレクトロルミネッセンス素子
WO2006108497A1 (de) 2005-04-14 2006-10-19 Merck Patent Gmbh Verbindungen für organische elektronische vorrichtungen
WO2006117052A1 (de) 2005-05-03 2006-11-09 Merck Patent Gmbh Organische elektrolumineszenzvorrichtung und in deren herstellung verwendete boronsäure- und borinsäure-derivate
EP1722602A1 (de) 2004-03-05 2006-11-15 Idemitsu Kosan Co., Ltd. Organische elektrolumineszenzeinrichtung und organisches elektrolumineszenzdisplay
WO2006122630A1 (de) 2005-05-20 2006-11-23 Merck Patent Gmbh Verbindungen für organische elektronische vorrichtungen
EP1731584A1 (de) 2004-03-31 2006-12-13 Konica Minolta Holdings, Inc. Organischer elektrolumineszenzvorrichtungsstoff, organische elektrolumineszenzvorrichtung, display und beleuchtungsvorrichtung
WO2006131192A1 (de) 2005-06-09 2006-12-14 Merck Patent Gmbh Neue materialien für organische elektrolumineszenzvorrichtungen
EP1749809A1 (de) 2004-05-27 2007-02-07 Idemitsu Kosan Co., Ltd. Asymmetrisches pyrenderivat und organische elektrolumineszente vorrichtung, bei der dieses verwendet wird
WO2007063754A1 (ja) 2005-12-01 2007-06-07 Nippon Steel Chemical Co., Ltd. 有機電界発光素子用化合物及び有機電界発光素子
WO2007065678A1 (de) 2005-12-08 2007-06-14 Merck Patent Gmbh Neue materialien für organische elektroluminieszenzvorrichtungen
WO2007065550A1 (de) 2005-12-08 2007-06-14 Merck Patent Gmbh Neue materialien für organische elektrolumineszenzvorrichtungen
WO2007110129A1 (de) 2006-03-24 2007-10-04 Merck Patent Gmbh Neue materialien für organische elektrolumineszenzvorrichtungen
WO2007137725A1 (de) 2006-05-31 2007-12-06 Merck Patent Gmbh Neue materialien für organische elektrolumineszenzvorrichtungen
WO2007140847A1 (de) 2006-06-02 2007-12-13 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
WO2008006449A1 (de) 2006-07-11 2008-01-17 Merck Patent Gmbh Neue materialien für organische elektrolumineszenzvorrichtungen
EP1905754A1 (de) 2005-07-06 2008-04-02 Idemitsu Kosan Co., Ltd. Pyrenderivat und gerät mit organischer elektrolumineszenz, bei dem dieses verwendet wird
WO2008056746A1 (fr) 2006-11-09 2008-05-15 Nippon Steel Chemical Co., Ltd. Composé pour un dispositif électroluminescent organique et dispositif électroluminescent organique
WO2008086851A1 (de) 2007-01-18 2008-07-24 Merck Patent Gmbh Carbazol-derivate für organische elektrolumineszenzvorrichtungen
EP1968131A1 (de) 2005-12-27 2008-09-10 Idemitsu Kosan Co., Ltd. Material für ein organisches elektrolumineszenzgerät und organisches elektrolumineszenzgerät
WO2008145239A2 (de) 2007-05-29 2008-12-04 Merck Patent Gmbh Benzanthracen-derivate für organische elektrolumineszenzvorrichtungen
WO2009003455A1 (de) 2007-07-04 2009-01-08 Novaled Ag Chinoide verbindungen und deren verwendung in halbleitenden matrixmaterialien, elektronischen und optoelektronischen bauelementen
EP2045848A1 (de) 2007-07-18 2009-04-08 Idemitsu Kosan Co., Ltd. Material für ein organisches elektrolumineszenzgerät und organisches elektrolumineszenzgerät
WO2009062578A1 (de) 2007-11-12 2009-05-22 Merck Patent Gmbh Organische elektrolumineszenzvorrichtungen enthaltend azomethin-metall-komplexe
WO2009100925A1 (de) 2008-02-13 2009-08-20 Merck Patent Gmbh Neue materialien für organische elektrolumineszenzvorrichtungen
WO2009146770A2 (de) 2008-06-05 2009-12-10 Merck Patent Gmbh Elektronische vorrichtung enthaltend metallkomplexe
WO2010006680A1 (de) 2008-07-18 2010-01-21 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
WO2010012328A1 (de) 2008-07-29 2010-02-04 Merck Patent Gmbh Verbindungen für elektronische vorrichtungen
WO2010015307A1 (de) 2008-08-04 2010-02-11 Merck Patent Gmbh Elektronische vorrichtung enthaltend metallkomplexe mit isonitrilliganden
WO2010015306A1 (de) 2008-08-08 2010-02-11 Merck Patent Gmbh, Organische elektrolumineszenzvorrichtung
WO2010031485A1 (de) 2008-09-22 2010-03-25 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
US20100096600A1 (en) 2008-10-16 2010-04-22 Novaled Ag Square Planar Transition Metal Complexes and Organic Semiconductive Materials Using Them as Well as Electronic or Optoelectric Components
WO2010054731A1 (de) 2008-11-13 2010-05-20 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
WO2010054729A2 (de) 2008-11-11 2010-05-20 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
WO2010054730A1 (de) 2008-11-11 2010-05-20 Merck Patent Gmbh Organische elektrolumineszenzvorrichtungen
WO2010054728A1 (de) 2008-11-13 2010-05-20 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
WO2010072300A1 (de) 2008-12-22 2010-07-01 Merck Patent Gmbh Organische elektrolumineszenzvorrichtung mit triazinderivaten
EP2213662A1 (de) 2007-11-30 2010-08-04 Idemitsu Kosan Co., Ltd. Azaindenofluorendionderivat, material für ein organisches elektrolumineszierendes gerät und organisches lumineszierendes gerät
WO2010086089A1 (de) 2009-02-02 2010-08-05 Merck Patent Gmbh Metallkomplexe
WO2010094378A1 (de) 2009-02-17 2010-08-26 Merck Patent Gmbh Organische elektronische vorrichtung
WO2010099852A1 (de) 2009-03-02 2010-09-10 Merck Patent Gmbh Metallkomplexe mit azaborol-liganden und elektronische vorrichtung damit
WO2010102709A1 (de) 2009-03-13 2010-09-16 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
WO2010108579A1 (de) 2009-03-23 2010-09-30 Merck Patent Gmbh Organische elektrolumineszenzvorrichtung
WO2010136109A1 (de) 2009-05-29 2010-12-02 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
WO2011000455A1 (de) 2009-06-30 2011-01-06 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
EP2276085A1 (de) 2008-03-27 2011-01-19 Nippon Steel Chemical Co., Ltd. Organisches elektrolumineszenzbauelement
WO2011032626A1 (de) 2009-09-16 2011-03-24 Merck Patent Gmbh Metallkomplexe
WO2011042107A2 (de) 2009-10-08 2011-04-14 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
WO2011054442A2 (de) 2009-11-06 2011-05-12 Merck Patent Gmbh Materialien für elektronische vorrichtungen
WO2011057706A2 (de) 2009-11-14 2011-05-19 Merck Patent Gmbh Materialien für elektronische vorrichtungen
WO2011060867A1 (de) 2009-11-18 2011-05-26 Merck Patent Gmbh Stickstoffhaltige kondensierte heterozyklen für oleds
WO2011060877A2 (de) 2009-11-17 2011-05-26 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
WO2011060859A1 (de) 2009-11-17 2011-05-26 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
WO2011066898A1 (de) 2009-12-05 2011-06-09 Merck Patent Gmbh Elektronische vorrichtung enthaltend metallkomplexe
WO2011073149A1 (de) 2009-12-14 2011-06-23 Basf Se Metallkomplexe, enthaltend diazabenzimidazolcarben-liganden und deren verwendung in oleds
WO2011088877A1 (de) 2010-01-25 2011-07-28 Merck Patent Gmbh Verbindungen für elektronische vorrichtungen
WO2011116865A1 (de) 2010-03-25 2011-09-29 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
WO2011120709A1 (de) 2010-03-31 2011-10-06 Osram Opto Semiconductors Gmbh Dotierstoff für eine lochleiterschicht für organische halbleiterbauelemente und verwendung dazu
US8044390B2 (en) 2007-05-25 2011-10-25 Idemitsu Kosan Co., Ltd. Material for organic electroluminescent device, organic electroluminescent device, and organic electroluminescent display
WO2011137951A1 (de) 2010-05-04 2011-11-10 Merck Patent Gmbh Organische elektrolumineszenzvorrichtungen
US8057712B2 (en) 2008-04-29 2011-11-15 Novaled Ag Radialene compounds and their use
WO2011157339A1 (de) 2010-06-15 2011-12-22 Merck Patent Gmbh Metallkomplexe
WO2012007086A1 (de) 2010-07-16 2012-01-19 Merck Patent Gmbh Metallkomplexe
WO2012034627A1 (de) 2010-09-15 2012-03-22 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
WO2012048781A1 (de) 2010-10-15 2012-04-19 Merck Patent Gmbh Materialien auf basis von triphenylen für organische elektrolumineszenzvorrichtungen
WO2012048780A1 (de) 2010-10-15 2012-04-19 Merck Patent Gmbh Verbindungen für elektronische vorrichtungen
WO2012095143A1 (de) 2011-01-13 2012-07-19 Merck Patent Gmbh Verbindungen für organische elektrolumineszenzvorrichtungen
US20120187826A1 (en) 2009-12-21 2012-07-26 Idemitsu Kosan Co., Ltd. Organic electroluminescent element using pyrene derivative
WO2012143080A2 (de) 2011-04-18 2012-10-26 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
WO2012150001A1 (de) 2011-05-05 2012-11-08 Merck Patent Gmbh Verbindungen für elektronische vorrichtungen
WO2013041176A1 (de) 2011-09-21 2013-03-28 Merck Patent Gmbh Carbazolderivate für organische elektrolumineszenzvorrichtungen
WO2013056776A1 (de) 2011-10-20 2013-04-25 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
WO2013083216A1 (de) 2011-11-17 2013-06-13 Merck Patent Gmbh Spiro -dihydroacridinderivate und ihre verwendung als materialien für organische elektrolumineszenzvorrichtungen
WO2013120577A1 (en) 2012-02-14 2013-08-22 Merck Patent Gmbh Spirobifluorene compounds for organic electroluminescent devices
DE102012209523A1 (de) 2012-06-06 2013-12-12 Osram Opto Semiconductors Gmbh Hauptgruppenmetallkomplexe als p-Dotanden für organische elektronische Matrixmaterialien
WO2013185871A1 (en) 2012-06-12 2013-12-19 Merck Patent Gmbh Compounds for electronic devices
WO2014008982A1 (de) 2012-07-13 2014-01-16 Merck Patent Gmbh Metallkomplexe
WO2014015937A1 (de) 2012-07-23 2014-01-30 Merck Patent Gmbh Verbindungen und organische elektrolumineszierende vorrichtungen
WO2014015938A1 (de) 2012-07-23 2014-01-30 Merck Patent Gmbh Derivate von 2-diarylaminofluoren und diese enthaltnde organische elektronische verbindungen
WO2014015935A2 (de) 2012-07-23 2014-01-30 Merck Patent Gmbh Verbindungen und organische elektronische vorrichtungen
WO2014023377A2 (de) 2012-08-07 2014-02-13 Merck Patent Gmbh Metallkomplexe
WO2014037077A1 (de) 2012-09-04 2014-03-13 Merck Patent Gmbh Verbindungen für elektronische vorrichtungen
WO2014072017A1 (de) 2012-11-12 2014-05-15 Merck Patent Gmbh Materialien für elektronische vorrichtungen
WO2014094960A1 (de) 2012-12-21 2014-06-26 Merck Patent Gmbh Metallkomplexe
WO2014094961A1 (de) 2012-12-21 2014-06-26 Merck Patent Gmbh Metallkomplexe
WO2014106522A1 (de) 2013-01-03 2014-07-10 Merck Patent Gmbh Materialien für elektronische vorrichtungen
WO2014111269A2 (de) 2013-10-14 2014-07-24 Merck Patent Gmbh Materialien für elektronische vorrichtungen
WO2015022051A1 (de) 2013-08-15 2015-02-19 Merck Patent Gmbh Materialien für elektronische vorrichtungen
WO2015036074A1 (de) 2013-09-11 2015-03-19 Merck Patent Gmbh Metallkomplexe
WO2015082056A1 (de) 2013-12-06 2015-06-11 Merck Patent Gmbh Verbindungen und organische elektronische vorrichtungen
WO2015086108A1 (de) 2013-12-12 2015-06-18 Merck Patent Gmbh Materialien für elektronische vorrichtungen
WO2015104045A1 (de) 2014-01-13 2015-07-16 Merck Patent Gmbh Metallkomplexe
WO2015117718A1 (de) 2014-02-05 2015-08-13 Merck Patent Gmbh Metallkomplexe
WO2015131976A1 (de) 2014-03-07 2015-09-11 Merck Patent Gmbh Materialien für elektronische vorrichtungen
WO2015158411A1 (de) 2014-04-14 2015-10-22 Merck Patent Gmbh Materialien für elektronische vorrichtungen
WO2015158409A1 (de) 2014-04-16 2015-10-22 Merck Patent Gmbh Materialien für elektronische vorrichtungen
WO2015169412A1 (de) 2014-05-05 2015-11-12 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
WO2016015810A1 (de) 2014-07-29 2016-02-04 Merck Patent Gmbh Materialien f?r organische elektrolumineszenzvorrichtungen
WO2016015815A1 (de) 2014-07-28 2016-02-04 Merck Patent Gmbh Metallkomplexe
WO2016023608A1 (de) 2014-08-13 2016-02-18 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
WO2016073425A2 (en) 2014-11-06 2016-05-12 E. I. Du Pont De Nemours And Company Method for preparing deuterated aromatic compounds
WO2016078738A1 (en) 2014-11-18 2016-05-26 Merck Patent Gmbh Materials for organic electroluminescent devices
WO2016087017A1 (de) 2014-12-01 2016-06-09 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
WO2016102048A1 (de) 2014-12-22 2016-06-30 Merck Patent Gmbh Materialien für elektronische vorrichtungen
WO2016124304A1 (de) 2015-02-03 2016-08-11 Merck Patent Gmbh Metallkomplexe
WO2016131521A1 (de) 2015-02-16 2016-08-25 Merck Patent Gmbh Materialien auf basis von spirobifluorenderivaten für elektronische vorrichtungen
WO2016150544A1 (en) 2015-03-25 2016-09-29 Merck Patent Gmbh Materials for organic electroluminescent devices
WO2017025165A1 (de) 2015-08-12 2017-02-16 Merck Patent Gmbh Materialien für elektronische vorrichtungen
WO2017028941A1 (en) 2015-08-14 2017-02-23 Merck Patent Gmbh Phenoxazine derivatives for organic electroluminescent devices
WO2017028940A1 (en) 2015-08-14 2017-02-23 Merck Patent Gmbh Phenoxazine derivatives for organic electroluminescent devices
WO2017032439A1 (de) 2015-08-25 2017-03-02 Merck Patent Gmbh Metallkomplexe
WO2017036573A1 (en) 2015-08-28 2017-03-09 Merck Patent Gmbh Compounds for electronic devices
WO2017036574A1 (de) 2015-08-28 2017-03-09 Merck Patent Gmbh 6,9,15,18-tetrahydro-s-indaceno[1,2-b:5,6-b']difluoren- derivate und ihre verwendung in elektronischen vorrichtungen
WO2017148564A1 (de) 2016-03-03 2017-09-08 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
WO2018011186A1 (de) 2016-07-14 2018-01-18 Merck Patent Gmbh Metallkomplexe
WO2018041769A1 (de) 2016-08-30 2018-03-08 Merck Patent Gmbh Bl- und trinukleare metallkomplexe aufgebaut aus zwei miteinander verknüpften tripodalen hexadentaten liganden zur verwendung in elektrolumineszenzvorrichtungen
WO2018178001A1 (de) 2017-03-29 2018-10-04 Merck Patent Gmbh Metallkomplexe
WO2019020538A1 (de) 2017-07-25 2019-01-31 Merck Patent Gmbh Metallkomplexe
WO2019115423A1 (de) 2017-12-13 2019-06-20 Merck Patent Gmbh Metallkomplexe
WO2019158453A1 (de) 2018-02-13 2019-08-22 Merck Patent Gmbh Metallkomplexe
JP2020070291A (ja) 2018-10-30 2020-05-07 マテリアル サイエンス カンパニー リミテッドMaterial Science Co.,Ltd. 重水素化有機化合物の製造方法

Patent Citations (161)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5061569A (en) 1990-07-26 1991-10-29 Eastman Kodak Company Electroluminescent device with organic electroluminescent medium
WO1995009147A1 (fr) 1993-09-29 1995-04-06 Idemitsu Kosan Co., Ltd. Element electroluminescent organique et derive d'arylenediamine
EP0652273A1 (de) 1993-11-09 1995-05-10 Shinko Electric Industries Co. Ltd. Organisches Material für elektrolumineszente Vorrichtung und elektrolumineszente Vorrichtung
EP0676461A2 (de) 1994-04-07 1995-10-11 Hoechst Aktiengesellschaft Spiroverbindungen und ihre Verwendung als Elektrolumineszenzmaterialien
JP2000053957A (ja) 1998-06-23 2000-02-22 Koto Gijutsu Kenkyuin Kenkyu Kumiai 新規な有機金属発光物質およびそれを含む有機電気発光素子
WO2000070655A2 (en) 1999-05-13 2000-11-23 The Trustees Of Princeton University Very high efficiency organic light emitting devices based on electrophosphorescence
WO2001041512A1 (en) 1999-12-01 2001-06-07 The Trustees Of Princeton University Complexes of form l2mx as phosphorescent dopants for organic leds
WO2001049806A1 (en) 1999-12-31 2001-07-12 Lg Chemical Co., Ltd Electronic device comprising organic compound having p-type semiconducting characteristics
EP1205527A1 (de) 2000-03-27 2002-05-15 Idemitsu Kosan Co., Ltd. Organische elektrolumineszierende vorrichtung
WO2002002714A2 (en) 2000-06-30 2002-01-10 E.I. Du Pont De Nemours And Company Electroluminescent iridium compounds with fluorinated phenylpyridines, phenylpyrimidines, and phenylquinolines and devices made with such compounds
WO2002015645A1 (en) 2000-08-11 2002-02-21 The Trustees Of Princeton University Organometallic compounds and emission-shifting organic electrophosphorescence
EP1191613A2 (de) 2000-09-26 2002-03-27 Canon Kabushiki Kaisha Lumineszente Vorrichtung, Bildanzeigevorrichtung und Metallkoordinationsverbindung
EP1191612A2 (de) 2000-09-26 2002-03-27 Canon Kabushiki Kaisha Lumineszente Vorrichtung, Bildanzeigevorrichtung und Metallkoordinationsverbindung
EP1191614A2 (de) 2000-09-26 2002-03-27 Canon Kabushiki Kaisha Lumineszente Vorrichtung und dafür verwendete Metallkoordinationsverbindung
WO2003060956A2 (en) 2002-01-18 2003-07-24 Lg Chem, Ltd. New material for transporting electrons and organic electroluminescent display using the same
WO2004013080A1 (en) 2002-08-01 2004-02-12 Covion Organic Semiconductors Gmbh Spirobifluorene derivatives, their preparation and uses thereof
EP1553154A1 (de) 2002-08-23 2005-07-13 Idemitsu Kosan Co., Ltd. Organische elektrolumineszenzvorrichtung und anthracenderivat
WO2004028217A1 (ja) 2002-09-20 2004-04-01 Idemitsu Kosan Co., Ltd. 有機エレクトロルミネッセンス素子
WO2004058911A2 (de) 2002-12-23 2004-07-15 Covion Organic Semiconductors Gmbh Organisches elektrolumineszenzelement
WO2004081017A1 (de) 2003-03-11 2004-09-23 Covion Organic Semiconductors Gmbh Metallkomplexe
WO2004080975A1 (ja) 2003-03-13 2004-09-23 Idemitsu Kosan Co., Ltd. 新規含窒素複素環誘導体及びそれを用いた有機エレクトロルミネッセンス素子
JP2004288381A (ja) 2003-03-19 2004-10-14 Konica Minolta Holdings Inc 有機エレクトロルミネッセンス素子
WO2004093207A2 (de) 2003-04-15 2004-10-28 Covion Organic Semiconductors Gmbh Mischungen von organischen zur emission befähigten halbleitern und matrixmaterialien, deren verwendung und elektronikbauteile enthaltend diese mischungen
EP1617710A1 (de) 2003-04-23 2006-01-18 Konica Minolta Holdings, Inc. Material für ein organisches elektrolumineszenzgerät, organisches elektrolumineszenzgerät, beleuchtungsvorrichtung und anzeige
EP1617711A1 (de) 2003-04-23 2006-01-18 Konica Minolta Holdings, Inc. Organisches elektrolumineszenzbauelement und anzeige
WO2005011013A1 (de) 2003-07-21 2005-02-03 Covion Organic Semiconductors Gmbh Organisches elektrolumineszenzelement
WO2005019373A2 (de) 2003-08-19 2005-03-03 Basf Aktiengesellschaft Übergangsmetallkomplexe mit carbenliganden als emitter für organische licht-emittierende dioden (oleds)
WO2005033244A1 (de) 2003-09-29 2005-04-14 Covion Organic Semiconductors Gmbh Metallkomplexe
US20050069729A1 (en) 2003-09-30 2005-03-31 Konica Minolta Holdings, Inc. Organic electroluminescent element, illuminator, display and compound
WO2005039246A1 (ja) 2003-09-30 2005-04-28 Konica Minolta Holdings, Inc. 有機エレクトロルミネッセンス素子、照明装置、表示装置
WO2005084081A1 (de) 2004-02-20 2005-09-09 Merck Patent Gmbh Organische elektronische vorrichtungen
WO2005084082A1 (de) 2004-02-20 2005-09-09 Merck Patent Gmbh Organische elektronische vorrichtungen
EP1722602A1 (de) 2004-03-05 2006-11-15 Idemitsu Kosan Co., Ltd. Organische elektrolumineszenzeinrichtung und organisches elektrolumineszenzdisplay
EP1731584A1 (de) 2004-03-31 2006-12-13 Konica Minolta Holdings, Inc. Organischer elektrolumineszenzvorrichtungsstoff, organische elektrolumineszenzvorrichtung, display und beleuchtungsvorrichtung
WO2005111172A2 (de) 2004-05-11 2005-11-24 Merck Patent Gmbh Neue materialmischungen für die elektrolumineszenz
US20050258742A1 (en) 2004-05-18 2005-11-24 Yui-Yi Tsai Carbene containing metal complexes as OLEDs
EP1749809A1 (de) 2004-05-27 2007-02-07 Idemitsu Kosan Co., Ltd. Asymmetrisches pyrenderivat und organische elektrolumineszente vorrichtung, bei der dieses verwendet wird
JP2005347160A (ja) 2004-06-04 2005-12-15 Konica Minolta Holdings Inc 有機エレクトロルミネッセンス素子、照明装置及び表示装置
WO2006005627A1 (en) 2004-07-15 2006-01-19 Merck Patent Gmbh Oligomeric derivatives of spirobifluorene, their preparation and use
WO2006048268A1 (de) 2004-11-06 2006-05-11 Merck Patent Gmbh Organische elektrolumineszenzvorrichtung
EP1661888A1 (de) 2004-11-29 2006-05-31 Samsung SDI Co., Ltd. Phenylcarbazole basierte Verbindungen und deren Verwendung als organische Elektroluminiszierende Vorrichtung
WO2006097208A1 (de) 2005-03-16 2006-09-21 Merck Patent Gmbh Neue materialien für organische elektrolumineszenzvorrichtungen
WO2006100896A1 (ja) 2005-03-18 2006-09-28 Idemitsu Kosan Co., Ltd. 芳香族アミン誘導体及びそれを用いた有機エレクトロルミネッセンス素子
WO2006108497A1 (de) 2005-04-14 2006-10-19 Merck Patent Gmbh Verbindungen für organische elektronische vorrichtungen
WO2006117052A1 (de) 2005-05-03 2006-11-09 Merck Patent Gmbh Organische elektrolumineszenzvorrichtung und in deren herstellung verwendete boronsäure- und borinsäure-derivate
WO2006122630A1 (de) 2005-05-20 2006-11-23 Merck Patent Gmbh Verbindungen für organische elektronische vorrichtungen
WO2006131192A1 (de) 2005-06-09 2006-12-14 Merck Patent Gmbh Neue materialien für organische elektrolumineszenzvorrichtungen
EP1905754A1 (de) 2005-07-06 2008-04-02 Idemitsu Kosan Co., Ltd. Pyrenderivat und gerät mit organischer elektrolumineszenz, bei dem dieses verwendet wird
WO2007063754A1 (ja) 2005-12-01 2007-06-07 Nippon Steel Chemical Co., Ltd. 有機電界発光素子用化合物及び有機電界発光素子
WO2007065678A1 (de) 2005-12-08 2007-06-14 Merck Patent Gmbh Neue materialien für organische elektroluminieszenzvorrichtungen
WO2007065550A1 (de) 2005-12-08 2007-06-14 Merck Patent Gmbh Neue materialien für organische elektrolumineszenzvorrichtungen
EP1968131A1 (de) 2005-12-27 2008-09-10 Idemitsu Kosan Co., Ltd. Material für ein organisches elektrolumineszenzgerät und organisches elektrolumineszenzgerät
WO2007110129A1 (de) 2006-03-24 2007-10-04 Merck Patent Gmbh Neue materialien für organische elektrolumineszenzvorrichtungen
WO2007137725A1 (de) 2006-05-31 2007-12-06 Merck Patent Gmbh Neue materialien für organische elektrolumineszenzvorrichtungen
WO2007140847A1 (de) 2006-06-02 2007-12-13 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
WO2008006449A1 (de) 2006-07-11 2008-01-17 Merck Patent Gmbh Neue materialien für organische elektrolumineszenzvorrichtungen
WO2008056746A1 (fr) 2006-11-09 2008-05-15 Nippon Steel Chemical Co., Ltd. Composé pour un dispositif électroluminescent organique et dispositif électroluminescent organique
WO2008086851A1 (de) 2007-01-18 2008-07-24 Merck Patent Gmbh Carbazol-derivate für organische elektrolumineszenzvorrichtungen
US8044390B2 (en) 2007-05-25 2011-10-25 Idemitsu Kosan Co., Ltd. Material for organic electroluminescent device, organic electroluminescent device, and organic electroluminescent display
WO2008145239A2 (de) 2007-05-29 2008-12-04 Merck Patent Gmbh Benzanthracen-derivate für organische elektrolumineszenzvorrichtungen
WO2009003455A1 (de) 2007-07-04 2009-01-08 Novaled Ag Chinoide verbindungen und deren verwendung in halbleitenden matrixmaterialien, elektronischen und optoelektronischen bauelementen
DE102007031220A1 (de) 2007-07-04 2009-01-08 Novaled Ag Chinoide Verbindungen und deren Verwendung in halbleitenden Matrixmaterialien, elektronischen und optoelektronischen Bauelementen
EP2045848A1 (de) 2007-07-18 2009-04-08 Idemitsu Kosan Co., Ltd. Material für ein organisches elektrolumineszenzgerät und organisches elektrolumineszenzgerät
WO2009062578A1 (de) 2007-11-12 2009-05-22 Merck Patent Gmbh Organische elektrolumineszenzvorrichtungen enthaltend azomethin-metall-komplexe
EP2213662A1 (de) 2007-11-30 2010-08-04 Idemitsu Kosan Co., Ltd. Azaindenofluorendionderivat, material für ein organisches elektrolumineszierendes gerät und organisches lumineszierendes gerät
WO2009100925A1 (de) 2008-02-13 2009-08-20 Merck Patent Gmbh Neue materialien für organische elektrolumineszenzvorrichtungen
EP2276085A1 (de) 2008-03-27 2011-01-19 Nippon Steel Chemical Co., Ltd. Organisches elektrolumineszenzbauelement
US8057712B2 (en) 2008-04-29 2011-11-15 Novaled Ag Radialene compounds and their use
WO2009146770A2 (de) 2008-06-05 2009-12-10 Merck Patent Gmbh Elektronische vorrichtung enthaltend metallkomplexe
WO2010006680A1 (de) 2008-07-18 2010-01-21 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
WO2010012328A1 (de) 2008-07-29 2010-02-04 Merck Patent Gmbh Verbindungen für elektronische vorrichtungen
WO2010015307A1 (de) 2008-08-04 2010-02-11 Merck Patent Gmbh Elektronische vorrichtung enthaltend metallkomplexe mit isonitrilliganden
WO2010015306A1 (de) 2008-08-08 2010-02-11 Merck Patent Gmbh, Organische elektrolumineszenzvorrichtung
WO2010031485A1 (de) 2008-09-22 2010-03-25 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
US20100096600A1 (en) 2008-10-16 2010-04-22 Novaled Ag Square Planar Transition Metal Complexes and Organic Semiconductive Materials Using Them as Well as Electronic or Optoelectric Components
WO2010054730A1 (de) 2008-11-11 2010-05-20 Merck Patent Gmbh Organische elektrolumineszenzvorrichtungen
WO2010054729A2 (de) 2008-11-11 2010-05-20 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
WO2010054728A1 (de) 2008-11-13 2010-05-20 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
WO2010054731A1 (de) 2008-11-13 2010-05-20 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
WO2010072300A1 (de) 2008-12-22 2010-07-01 Merck Patent Gmbh Organische elektrolumineszenzvorrichtung mit triazinderivaten
WO2010086089A1 (de) 2009-02-02 2010-08-05 Merck Patent Gmbh Metallkomplexe
WO2010094378A1 (de) 2009-02-17 2010-08-26 Merck Patent Gmbh Organische elektronische vorrichtung
WO2010099852A1 (de) 2009-03-02 2010-09-10 Merck Patent Gmbh Metallkomplexe mit azaborol-liganden und elektronische vorrichtung damit
WO2010102709A1 (de) 2009-03-13 2010-09-16 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
WO2010108579A1 (de) 2009-03-23 2010-09-30 Merck Patent Gmbh Organische elektrolumineszenzvorrichtung
WO2010136109A1 (de) 2009-05-29 2010-12-02 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
WO2011000455A1 (de) 2009-06-30 2011-01-06 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
WO2011032626A1 (de) 2009-09-16 2011-03-24 Merck Patent Gmbh Metallkomplexe
WO2011042107A2 (de) 2009-10-08 2011-04-14 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
WO2011054442A2 (de) 2009-11-06 2011-05-12 Merck Patent Gmbh Materialien für elektronische vorrichtungen
WO2011057706A2 (de) 2009-11-14 2011-05-19 Merck Patent Gmbh Materialien für elektronische vorrichtungen
WO2011060877A2 (de) 2009-11-17 2011-05-26 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
WO2011060859A1 (de) 2009-11-17 2011-05-26 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
WO2011060867A1 (de) 2009-11-18 2011-05-26 Merck Patent Gmbh Stickstoffhaltige kondensierte heterozyklen für oleds
WO2011066898A1 (de) 2009-12-05 2011-06-09 Merck Patent Gmbh Elektronische vorrichtung enthaltend metallkomplexe
WO2011073149A1 (de) 2009-12-14 2011-06-23 Basf Se Metallkomplexe, enthaltend diazabenzimidazolcarben-liganden und deren verwendung in oleds
US20120187826A1 (en) 2009-12-21 2012-07-26 Idemitsu Kosan Co., Ltd. Organic electroluminescent element using pyrene derivative
WO2011088877A1 (de) 2010-01-25 2011-07-28 Merck Patent Gmbh Verbindungen für elektronische vorrichtungen
WO2011116865A1 (de) 2010-03-25 2011-09-29 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
WO2011120709A1 (de) 2010-03-31 2011-10-06 Osram Opto Semiconductors Gmbh Dotierstoff für eine lochleiterschicht für organische halbleiterbauelemente und verwendung dazu
WO2011137951A1 (de) 2010-05-04 2011-11-10 Merck Patent Gmbh Organische elektrolumineszenzvorrichtungen
WO2011157339A1 (de) 2010-06-15 2011-12-22 Merck Patent Gmbh Metallkomplexe
WO2012007086A1 (de) 2010-07-16 2012-01-19 Merck Patent Gmbh Metallkomplexe
WO2012034627A1 (de) 2010-09-15 2012-03-22 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
WO2012048781A1 (de) 2010-10-15 2012-04-19 Merck Patent Gmbh Materialien auf basis von triphenylen für organische elektrolumineszenzvorrichtungen
WO2012048780A1 (de) 2010-10-15 2012-04-19 Merck Patent Gmbh Verbindungen für elektronische vorrichtungen
WO2012095143A1 (de) 2011-01-13 2012-07-19 Merck Patent Gmbh Verbindungen für organische elektrolumineszenzvorrichtungen
WO2012143080A2 (de) 2011-04-18 2012-10-26 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
WO2012150001A1 (de) 2011-05-05 2012-11-08 Merck Patent Gmbh Verbindungen für elektronische vorrichtungen
WO2013041176A1 (de) 2011-09-21 2013-03-28 Merck Patent Gmbh Carbazolderivate für organische elektrolumineszenzvorrichtungen
WO2013056776A1 (de) 2011-10-20 2013-04-25 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
WO2013083216A1 (de) 2011-11-17 2013-06-13 Merck Patent Gmbh Spiro -dihydroacridinderivate und ihre verwendung als materialien für organische elektrolumineszenzvorrichtungen
WO2013120577A1 (en) 2012-02-14 2013-08-22 Merck Patent Gmbh Spirobifluorene compounds for organic electroluminescent devices
DE102012209523A1 (de) 2012-06-06 2013-12-12 Osram Opto Semiconductors Gmbh Hauptgruppenmetallkomplexe als p-Dotanden für organische elektronische Matrixmaterialien
WO2013185871A1 (en) 2012-06-12 2013-12-19 Merck Patent Gmbh Compounds for electronic devices
WO2014008982A1 (de) 2012-07-13 2014-01-16 Merck Patent Gmbh Metallkomplexe
WO2014015937A1 (de) 2012-07-23 2014-01-30 Merck Patent Gmbh Verbindungen und organische elektrolumineszierende vorrichtungen
WO2014015938A1 (de) 2012-07-23 2014-01-30 Merck Patent Gmbh Derivate von 2-diarylaminofluoren und diese enthaltnde organische elektronische verbindungen
WO2014015935A2 (de) 2012-07-23 2014-01-30 Merck Patent Gmbh Verbindungen und organische elektronische vorrichtungen
WO2014023377A2 (de) 2012-08-07 2014-02-13 Merck Patent Gmbh Metallkomplexe
WO2014037077A1 (de) 2012-09-04 2014-03-13 Merck Patent Gmbh Verbindungen für elektronische vorrichtungen
WO2014072017A1 (de) 2012-11-12 2014-05-15 Merck Patent Gmbh Materialien für elektronische vorrichtungen
WO2014094960A1 (de) 2012-12-21 2014-06-26 Merck Patent Gmbh Metallkomplexe
WO2014094961A1 (de) 2012-12-21 2014-06-26 Merck Patent Gmbh Metallkomplexe
WO2014106522A1 (de) 2013-01-03 2014-07-10 Merck Patent Gmbh Materialien für elektronische vorrichtungen
WO2015022051A1 (de) 2013-08-15 2015-02-19 Merck Patent Gmbh Materialien für elektronische vorrichtungen
WO2015036074A1 (de) 2013-09-11 2015-03-19 Merck Patent Gmbh Metallkomplexe
WO2014111269A2 (de) 2013-10-14 2014-07-24 Merck Patent Gmbh Materialien für elektronische vorrichtungen
WO2015082056A1 (de) 2013-12-06 2015-06-11 Merck Patent Gmbh Verbindungen und organische elektronische vorrichtungen
WO2015086108A1 (de) 2013-12-12 2015-06-18 Merck Patent Gmbh Materialien für elektronische vorrichtungen
WO2015104045A1 (de) 2014-01-13 2015-07-16 Merck Patent Gmbh Metallkomplexe
WO2015117718A1 (de) 2014-02-05 2015-08-13 Merck Patent Gmbh Metallkomplexe
WO2015131976A1 (de) 2014-03-07 2015-09-11 Merck Patent Gmbh Materialien für elektronische vorrichtungen
WO2015158411A1 (de) 2014-04-14 2015-10-22 Merck Patent Gmbh Materialien für elektronische vorrichtungen
WO2015158409A1 (de) 2014-04-16 2015-10-22 Merck Patent Gmbh Materialien für elektronische vorrichtungen
WO2015169412A1 (de) 2014-05-05 2015-11-12 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
WO2016015815A1 (de) 2014-07-28 2016-02-04 Merck Patent Gmbh Metallkomplexe
WO2016015810A1 (de) 2014-07-29 2016-02-04 Merck Patent Gmbh Materialien f?r organische elektrolumineszenzvorrichtungen
WO2016023608A1 (de) 2014-08-13 2016-02-18 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
WO2016073425A2 (en) 2014-11-06 2016-05-12 E. I. Du Pont De Nemours And Company Method for preparing deuterated aromatic compounds
WO2016078738A1 (en) 2014-11-18 2016-05-26 Merck Patent Gmbh Materials for organic electroluminescent devices
WO2016087017A1 (de) 2014-12-01 2016-06-09 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
WO2016102048A1 (de) 2014-12-22 2016-06-30 Merck Patent Gmbh Materialien für elektronische vorrichtungen
WO2016124304A1 (de) 2015-02-03 2016-08-11 Merck Patent Gmbh Metallkomplexe
WO2016131521A1 (de) 2015-02-16 2016-08-25 Merck Patent Gmbh Materialien auf basis von spirobifluorenderivaten für elektronische vorrichtungen
WO2016150544A1 (en) 2015-03-25 2016-09-29 Merck Patent Gmbh Materials for organic electroluminescent devices
WO2017025165A1 (de) 2015-08-12 2017-02-16 Merck Patent Gmbh Materialien für elektronische vorrichtungen
WO2017028941A1 (en) 2015-08-14 2017-02-23 Merck Patent Gmbh Phenoxazine derivatives for organic electroluminescent devices
WO2017028940A1 (en) 2015-08-14 2017-02-23 Merck Patent Gmbh Phenoxazine derivatives for organic electroluminescent devices
WO2017032439A1 (de) 2015-08-25 2017-03-02 Merck Patent Gmbh Metallkomplexe
WO2017036573A1 (en) 2015-08-28 2017-03-09 Merck Patent Gmbh Compounds for electronic devices
WO2017036574A1 (de) 2015-08-28 2017-03-09 Merck Patent Gmbh 6,9,15,18-tetrahydro-s-indaceno[1,2-b:5,6-b']difluoren- derivate und ihre verwendung in elektronischen vorrichtungen
WO2017148564A1 (de) 2016-03-03 2017-09-08 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
WO2017148565A1 (de) 2016-03-03 2017-09-08 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
WO2018011186A1 (de) 2016-07-14 2018-01-18 Merck Patent Gmbh Metallkomplexe
WO2018041769A1 (de) 2016-08-30 2018-03-08 Merck Patent Gmbh Bl- und trinukleare metallkomplexe aufgebaut aus zwei miteinander verknüpften tripodalen hexadentaten liganden zur verwendung in elektrolumineszenzvorrichtungen
WO2018178001A1 (de) 2017-03-29 2018-10-04 Merck Patent Gmbh Metallkomplexe
WO2019020538A1 (de) 2017-07-25 2019-01-31 Merck Patent Gmbh Metallkomplexe
WO2019115423A1 (de) 2017-12-13 2019-06-20 Merck Patent Gmbh Metallkomplexe
WO2019158453A1 (de) 2018-02-13 2019-08-22 Merck Patent Gmbh Metallkomplexe
JP2020070291A (ja) 2018-10-30 2020-05-07 マテリアル サイエンス カンパニー リミテッドMaterial Science Co.,Ltd. 重水素化有機化合物の製造方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
JENS ATZRODT ET AL: "C-H Functionalisation for Hydrogen Isotope Exchange", ANGEWANDTE CHEMIE INTERNATIONAL EDITION, VERLAG CHEMIE, HOBOKEN, USA, vol. 57, no. 12, 2 February 2018 (2018-02-02), pages 3022 - 3047, XP072100570, ISSN: 1433-7851, DOI: 10.1002/ANIE.201708903 *
JENS ATZRODT ET AL: "The Renaissance of H/D Exchange", ANGEWANDTE CHEMIE INTERNATIONAL EDITION, vol. 46, no. 41, 15 October 2007 (2007-10-15), pages 7744 - 7765, XP055192405, ISSN: 1433-7851, DOI: 10.1002/anie.200700039 *
Y. SHIROTA ET AL., CHEM. REV., vol. 107, no. 4, 2007, pages 953 - 1010

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024132993A1 (de) 2022-12-19 2024-06-27 Merck Patent Gmbh Materialien für elektronische vorrichtungen

Also Published As

Publication number Publication date
KR20240128020A (ko) 2024-08-23
US20240343676A1 (en) 2024-10-17
CN118354991A (zh) 2024-07-16
EP4452909A1 (de) 2024-10-30

Similar Documents

Publication Publication Date Title
EP3335253B1 (de) Materialien für elektronische vorrichtungen
EP3080229B1 (de) Materialien für elektronische vorrichtungen
EP2705552B1 (de) Verbindungen für elektronische vorrichtungen
DE112010004381B4 (de) Materialien für elektronische Vorrichtungen
EP2740165B1 (de) Materialien für elektronische vorrichtungen
EP2922932B1 (de) Materialien für elektronische vorrichtungen
EP3172775A1 (de) Materialien für elektronische vorrichtungen
EP2858980A1 (de) Phenanthrenverbindungen für organische elektronische vorrichtungen
EP2875699A1 (de) Derivate von 2-diarylaminofluoren und diese enthaltnde organische elektronische verbindungen
EP3347354B1 (de) Materialien für organische elektrolumineszenzvorrichtungen
WO2014044344A1 (de) Materialien für elektronische vorrichtungen
EP3052477A1 (de) Triarylamin-substituierte benzo[h]chinolin-derivate als materialien für elektronische vorrichtungen
WO2015197156A1 (de) Materialien für organische elektrolumineszenzvorrichtungen
WO2014106524A2 (de) Materialien für elektronische vorrichtungen
EP3887478A1 (de) Verbindungen für elektronische vorrichtungen
EP2926385A1 (de) Elektronische vorrichtung
WO2019101719A1 (de) Materialien für elektronische vorrichtungen
WO2023117837A1 (de) Verfahren zur herstellung von deuterierten organischen verbindungen
EP3583104B1 (de) Materialien für organische elektrolumineszenzvorrichtungen
WO2023222559A1 (de) Verfahren zur herstellung von deuterierten organischen verbindungen
WO2024013004A1 (de) Materialien für elektronische vorrichtungen
WO2023052313A1 (de) Materialien für elektronische vorrichtungen
WO2023052314A1 (de) Materialien für elektronische vorrichtungen
WO2023094412A1 (de) Materialien für elektronische vorrichtungen
WO2024126322A1 (de) Materialien für elektronische vorrichtungen

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22840088

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280083792.6

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 20247024139

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022840088

Country of ref document: EP

Effective date: 20240722