WO2023085683A1 - High-pressure storage container and manufacturing method thereof - Google Patents
High-pressure storage container and manufacturing method thereof Download PDFInfo
- Publication number
- WO2023085683A1 WO2023085683A1 PCT/KR2022/017085 KR2022017085W WO2023085683A1 WO 2023085683 A1 WO2023085683 A1 WO 2023085683A1 KR 2022017085 W KR2022017085 W KR 2022017085W WO 2023085683 A1 WO2023085683 A1 WO 2023085683A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- liner
- hydrogen
- barrier layer
- pressure
- resin
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C13/00—Details of vessels or of the filling or discharging of vessels
- F17C13/002—Details of vessels or of the filling or discharging of vessels for vessels under pressure
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C1/00—Pressure vessels, e.g. gas cylinder, gas tank, replaceable cartridge
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C1/00—Pressure vessels, e.g. gas cylinder, gas tank, replaceable cartridge
- F17C1/005—Storage of gas or gaseous mixture at high pressure and at high density condition, e.g. in the single state phase
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C13/00—Details of vessels or of the filling or discharging of vessels
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2201/00—Vessel construction, in particular geometry, arrangement or size
- F17C2201/01—Shape
- F17C2201/0104—Shape cylindrical
- F17C2201/0109—Shape cylindrical with exteriorly curved end-piece
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2201/00—Vessel construction, in particular geometry, arrangement or size
- F17C2201/01—Shape
- F17C2201/0138—Shape tubular
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2201/00—Vessel construction, in particular geometry, arrangement or size
- F17C2201/05—Size
- F17C2201/056—Small (<1 m3)
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2203/00—Vessel construction, in particular walls or details thereof
- F17C2203/06—Materials for walls or layers thereof; Properties or structures of walls or their materials
- F17C2203/0602—Wall structures; Special features thereof
- F17C2203/0604—Liners
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2205/00—Vessel construction, in particular mounting arrangements, attachments or identifications means
- F17C2205/03—Fluid connections, filters, valves, closure means or other attachments
- F17C2205/0302—Fittings, valves, filters, or components in connection with the gas storage device
- F17C2205/0305—Bosses, e.g. boss collars
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2260/00—Purposes of gas storage and gas handling
- F17C2260/01—Improving mechanical properties or manufacturing
- F17C2260/011—Improving strength
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2260/00—Purposes of gas storage and gas handling
- F17C2260/03—Dealing with losses
- F17C2260/035—Dealing with losses of fluid
- F17C2260/036—Avoiding leaks
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2270/00—Applications
- F17C2270/01—Applications for fluid transport or storage
- F17C2270/0165—Applications for fluid transport or storage on the road
- F17C2270/0168—Applications for fluid transport or storage on the road by vehicles
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2270/00—Applications
- F17C2270/01—Applications for fluid transport or storage
- F17C2270/0165—Applications for fluid transport or storage on the road
- F17C2270/0184—Fuel cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/32—Hydrogen storage
Definitions
- the present invention relates to a high-pressure storage vessel and a method for manufacturing the same, and more particularly, to a high-pressure storage vessel for storing a fluid such as hydrogen under a high pressure and a method for manufacturing the same.
- the hydrogen storage tank of the hydrogen electric vehicle needs to have a shape that can be mounted in a rectangular space for mounting the battery of the electric vehicle. Accordingly, there is an increasing demand for development of a tubular or bent tubular hydrogen storage tank.
- the liner In order to manufacture a hydrogen storage tank in a tubular or bent tubular shape, the liner must be long or include a curved section. When the liner is long or includes a curved section, a problem in that durability easily deteriorates due to repeated pressure occurs. In particular, when the liner is made of a curved pipe, the liner is molded into a corrugated pipe shape, and a reinforcing part is formed in addition to the liner. this happens
- Patent Document 1 Korean Patent Registration No. 10-2242337
- the present invention is to solve the problems of the prior art, and an object of the present invention is to provide a high-pressure storage container having a pipe-shaped high-pressure storage container in which a liner has hydrogen tightness and durability, and a manufacturing method thereof.
- the hydrogen barrier layer may have a thickness of 0.3 to 10 ⁇ m.
- the hydrogen barrier layer may have a hydrogen permeability of 5.0 ⁇ 10 ⁇ 13 mol ⁇ m/(m2 ⁇ S ⁇ Pa) (@15°C) or less.
- the hydrogen barrier layer may be formed by coating a coating composition including a thermoplastic resin, a UV curable resin, a silane coupling agent, a hydrolysis resistant agent, and a photoinitiator.
- the thermoplastic resin is made of at least one of a urethane-based resin and a polyester-based resin
- the UV curable resin is an acrylate-based resin
- the silane coupling agent is It is composed of at least one of epoxy, vinyl, and methacyl
- the hydrolysis agent is an aromatic carbodiimide series
- the photoinitiator is benzophenone, thioctic It may consist of at least one of Thioxanthone and Ketone.
- the coating composition includes 30 to 60 wt% of the thermoplastic resin, 30 to 60 wt% of the UV curable resin, 5 to 10 wt% of the silane coupling agent, and 0.1 to 60 wt% of the hydrolysis agent.
- 2wt% and the photoinitiator may be composed of 0.1 ⁇ 2wt%.
- the high-pressure storage vessel may further include a shell disposed while covering an outer surface of the liner.
- a storage space in which high-pressure hydrogen is stored and forming a tubular liner with one end open in the longitudinal direction; forming a hydrogen barrier layer on at least one of an outer surface and an inner surface of the liner to prevent high-pressure hydrogen in the storage space from passing through the liner to the outside; and coupling a boss to one end of the liner in the longitudinal direction so that the outside and the storage space communicate with each other.
- the hydrogen barrier layer may be coated on the outer surface of the liner to a thickness of 0.3 to 10 ⁇ m.
- the hydrogen barrier layer may be formed by coating a coating composition including a thermoplastic resin, a UV curable resin, a silane coupling agent, a hydrolysis resistant agent, and a photoinitiator.
- the thermoplastic resin is made of at least one of a urethane-based resin and a polyester-based resin
- the UV curable resin is an acrylate-based resin
- the silane couple The ringing agent is composed of at least one of epoxy, vinyl, and methacyl
- the hydrolysis agent is an aromatic carbodiimides series
- the photoinitiator is benzophenone, It may consist of at least one of Thioxanthone and Ketone.
- the coating composition includes 30 to 60 wt% of the thermoplastic resin, 30 to 60 wt% of the UV curable resin, 5 to 10 wt% of the silane coupling agent, and the hydrolysis-resistant agent 0.1 ⁇ 2wt% and may be composed of 0.1 ⁇ 2wt% of the photoinitiator.
- the coating composition in the step of forming the hydrogen barrier layer, may be diluted in a solvent, coated, and then cured to form the hydrogen barrier layer.
- the coating composition may be coated on the outer surface of the liner through a spray method, and then UV cured after hot air drying.
- a hydrogen barrier layer for blocking hydrogen permeation is provided in a pipe-shaped liner, a high-pressure storage container having improved hydrogen airtightness and excellent durability against repeated pressure can be provided.
- FIG. 1 is a view showing a high-pressure storage vessel according to an embodiment of the present invention.
- FIG. 2 is a cross-sectional view of part A of FIG. 1 .
- FIG. 3 is a view showing a case where the position of the hydrogen barrier layer in FIG. 2 is changed to the inner surface of the liner.
- FIG. 4 is a view showing a modified example of a high-pressure storage vessel according to an embodiment of the present invention.
- FIG. 5 is a flowchart of a method for manufacturing a high-pressure storage vessel according to an embodiment of the present invention.
- spatially relative terms such as “front”, “rear”, “side”, “upper” or “lower” may be used to describe correlations with components shown in the drawings. These are relative terms based on what is shown in the drawings, and the positional relationship may be interpreted in the opposite way according to the orientation.
- the fact that certain components are “connected” to other components includes cases where they are not only directly connected to each other but also indirectly connected to each other unless there are special circumstances.
- FIG. 1 is a view showing a high-pressure storage vessel according to an embodiment of the present invention.
- 2 is a cross-sectional view of part A of FIG. 1 .
- the high-pressure storage vessel 1 is for storing a fluid such as hydrogen in a high-pressure state.
- the high-pressure storage vessel 1 according to an embodiment of the present invention may have an atypical shape such as a tubular tube or a bent tube compared to a conventional cylindrical high-pressure storage vessel.
- a high-pressure storage vessel 1 includes a liner 100, a boss 200, a hydrogen barrier layer 300, and a shell 400.
- the hydrogen barrier layer 300 can ensure the hydrogen tightness of the liner 100, Durability can be maintained even under repeated pressure.
- the liner 100 provides a storage space in which high-pressure hydrogen is stored.
- the liner 100 may have a pipe shape with one end opened in the longitudinal direction.
- the liner 100 may be made of a resin material, a polymer material, or the like.
- the liner 100 may be made of high-density polyethylene material (HDPE), amide-based material (PA6, PA66, PA11, PA12), polyurethane-based material (TPU), or the like.
- the boss 200 communicates the outside with the storage space and is coupled to one end of the liner 100 in the longitudinal direction.
- the boss 200 is a part to which a valve for injecting fluid into the high-pressure storage container 1 is coupled.
- the boss 200 may be made of a metal material.
- the boss 200 may be made of aluminum.
- the hydrogen barrier layer 300 is formed on at least one of the outer and inner surfaces of the liner 100 to prevent high-pressure hydrogen in the storage space from passing through the liner 100 to the outside.
- the hydrogen barrier layer 300 may be formed by coating the outer surface of the liner 100 .
- the hydrogen barrier layer 300 may be disposed between the liner 100 and the shell 400 .
- the hydrogen blocking layer 300 may have a thickness of 0.3 to 10 ⁇ m.
- the hydrogen barrier layer 300 may have a hydrogen permeability of 5.0 ⁇ 10 ⁇ 13 mol ⁇ m/(m2 ⁇ S ⁇ Pa) (@15°C) or less.
- the hydrogen barrier layer 300 may be formed through coating. More specifically, the hydrogen barrier layer 300 may be formed by coating a coating composition including a thermoplastic resin, a UV curable resin, a silane coupling agent, a hydrolysis resistant agent, and a photoinitiator.
- the thermoplastic resin is made of at least one of a urethane-based resin and a polyester-based resin
- the UV curable resin is an acrylate-based resin
- the silane coupling agent is an epoxy, vinyl, and methacrylic resin.
- the hydrolysis agent is an aromatic carbodiimide series
- the photoinitiator is any one or more of benzophenone, thioxanthone, and ketone series.
- the coating composition may be composed of 30 to 60 wt% of the thermoplastic resin, 30 to 60 wt% of the UV curable resin, 5 to 10 wt% of the silane coupling agent, 0.1 to 2 wt% of the hydrolysis agent, and 0.1 to 2 wt% of the photoinitiator. .
- the hydrogen barrier layer 300 may be formed by curing after the coating composition is diluted in a solvent and coated. At this time, as the solvent, an alcohol-based composition, a ketone-based composition, or the like may be used.
- the hydrogen barrier layer 300 may be formed by coating the outer surface of the liner 100 with the coating composition through a spray method, drying with hot air, and UV curing.
- Table 1 below shows composition ratios of coating compositions applied to the high-pressure storage vessel 1 according to an embodiment of the present invention and comparative examples.
- thermoplastic profit UV curable profit Silane coupling agent my number disintegrant photoinitiator hydrogen permeability
- Example 1 45wt% 45wt% 8wt% 1wt% 1wt% 1.28*10 -13
- Example 2 30wt% 60wt% 8wt% 1wt% 1wt% 1.04*10 -13
- Example 3 60wt% 30wt% 8wt% 1wt% 1wt% 1.58*10 -13
- Comparative Example 1 70wt% 20wt% 8wt% 1wt% 1wt% 4.65*10 -12
- Comparative Example 2 20wt% 70wt% 8wt% 1wt% 1wt% 4.65*10 -10
- Comparative Example 3 40wt% 55wt% 3wt% 1wt% 1wt% 4.65* 10-11
- thermoplastic resin is thermoplastic polyurethane (TPU)
- UV curable resin is urethane acrylate
- silane coupling agent is 3Glycidoxypropyl trimethoxysilane (a glycidyl group, that is, an epoxy group)
- I Aromatic carbodiimides were used as the hydrolysis agent, and hydroxycyclohexyl phenyl ketone (alpha hydroxy ketone) was used as the photoinitiator.
- the coating composition was coated on a PET substrate to a thickness of 0.3 ⁇ m to make samples, and the hydrogen permeability of each sample was measured using an evaluation device (TOYOSEIKI, BT-1) at an evaluation temperature of 15 ° C and an evaluation pressure of 1 bar.
- Examples 1, 2 and 3 show hydrogen permeability of 5.0 ⁇ 10 -13 mol ⁇ m/(m2 ⁇ S ⁇ Pa) (@15°C) or less.
- Comparative Examples 1 to 3 were found to have hydrogen permeability exceeding 5.0 ⁇ 10 -13 mol ⁇ m/(m2 ⁇ S ⁇ Pa) (@15°C).
- the amine group included in the UV curable resin, urethane acrylate is sufficiently cross-linked with epoxy silane, and the vinyl group of the UV curable resin, urethane acrylate, is cross-linked to show high cross-linking density. It is believed to be due to On the other hand, when the content of the TPU resin is less than 30wt%, the molecular weight of the entire matrix is not sufficient, making it difficult to form a uniform film.
- urethane acrylate which is a UV curable resin
- the crosslinking of the composition is not sufficient
- the content exceeds 60wt% the molecular weight is not large enough, so brittleness is increased and the coating film cracks ( cracks) may occur.
- the content of the silane coupling agent is less than 5wt%, sufficient cross-linking is not formed, and when the content is 10wt% or more, unreacted silane coupling agent remains and causes a decrease in hydrogen permeability.
- the hydrolysis-resistant agent and the photoinitiator when the content thereof is 2 wt% or more, it acts as an impurity and lowers the hydrogen permeability.
- the coating composition includes 30 to 60 wt% of the thermoplastic resin, 30 to 60 wt% of the UV curable resin, 5 to 10 wt% of the silane coupling agent, 0.1 to 2 wt% of the hydrolysis agent, and 0.1 to 2 wt% of the photoinitiator. % is found to be optimal.
- the shell 400 surrounds the outer surface of the liner 100 and is disposed.
- the shell 400 may be disposed to surround an outer surface of the liner 100 and at least a portion of a portion of the boss 200 exposed to the outside of the liner 100 .
- the shell 400 provides pressure resistance to the high-pressure storage vessel 1 .
- the liner 100 forms a storage space therein, and the shell 400 provides pressure resistance capable of withstanding the pressure of the high-pressure hydrogen stored in the storage space. can
- the shell 400 may be formed on the outer surface of the liner 100 through a method such as brazing or winding.
- the shell 400 may be made of a composite material.
- the shell 400 may be made of carbon fiber composites, thermosetting resins, and thermoplastic resins.
- FIG. 3 is a view showing a case where the position of the hydrogen barrier layer in FIG. 2 is deformed to the inner surface of the liner.
- the hydrogen barrier layer 300 may be formed on the inner surface of the liner 100 instead of the outer surface of the liner 100 . In other words, even when the hydrogen barrier layer 300 is formed on the inner surface of the liner 100, the hydrogen airtightness of the liner 100 can be secured.
- FIG. 4 is a view showing a modified example of a high-pressure storage vessel according to an embodiment of the present invention.
- a modified example of the high-pressure storage vessel 1 according to an embodiment of the present invention is formed in a curved tube shape. That is, the liner 100 has a curved pipe shape and the shell 400 also has a corresponding shape. Meanwhile, the above descriptions of the liner 100, the boss 200, the hydrogen barrier layer 300, and the shell 400 are the same in the modified example of the high-pressure storage vessel 1 according to an embodiment of the present invention.
- FIG. 5 is a flowchart of a method for manufacturing a high-pressure storage vessel according to an embodiment of the present invention.
- a method for manufacturing a high-pressure storage vessel according to an embodiment of the present invention is for manufacturing a high-pressure storage vessel according to an embodiment of the present invention as described above.
- hydrogen airtightness can be improved by forming the hydrogen barrier layer 300 on the liner 100 .
- the method for manufacturing a high-pressure storage vessel provides a storage space in which high-pressure hydrogen is stored and forms a tubular liner 100 with one open end in the longitudinal direction (S100), Forming a hydrogen barrier layer 300 on at least one of the outer and inner surfaces of the liner 100 to block the high-pressure hydrogen in the storage space from passing through the liner 100 to the outside (S200), A step of coupling the boss 200 to one end of the longitudinal direction of the liner 100 so that the space communicates (S300) and a step of disposing the shell 400 so as to surround the outer surface of the liner 100 (S400).
- the liner 100 may be manufactured by extrusion. At this time, the liner 100 may be continuously molded into a pipe shape.
- the hydrogen blocking layer 300 may be coated on the outer surface of the liner 100 to a thickness of 0.3 to 10 ⁇ m. More specifically, the hydrogen barrier layer 300 may be formed by coating a coating composition including a thermoplastic resin, a UV curable resin, a silane coupling agent, a hydrolysis resistant agent, and a photoinitiator.
- the thermoplastic resin is made of at least one of a urethane-based resin and a polyester-based resin
- the UV curable resin is an acrylate-based resin
- the silane coupling agent is an epoxy or vinyl and methacyl
- the hydrolysis agent is an aromatic carbodiimide series
- the photoinitiator is benzophenone, thioxanthone, and ketone. It may consist of any one or more of the systems.
- the coating composition may be composed of 30 to 60 wt% of the thermoplastic resin, 30 to 60 wt% of the UV curable resin, 5 to 10 wt% of the silane coupling agent, 0.1 to 2 wt% of the hydrolysis agent, and 0.1 to 2 wt% of the photoinitiator.
- the hydrogen barrier layer 300 may be formed by curing after the coating composition is diluted in a solvent and coated. At this time, as the solvent, an alcohol-based composition, a ketone-based composition, or the like may be used. In addition, the hydrogen barrier layer 300 may be formed by UV curing after the coating composition is coated on the outer surface of the liner 100 through a spray method, followed by hot air drying. For example, the hydrogen barrier layer 300 may be formed by diluting the coating composition with a solid content of 25 to 35 wt % in a methyl ethyl ketone (MEK) solvent, coating it by a spray method, and then drying and UV curing.
- MEK methyl ethyl ketone
- the boss 200 is coupled to the longitudinal end of the liner 100.
- the boss 200 is a part to which a valve for injecting fluid into the high-pressure storage container 1 is coupled, and may be made of a metal material.
- the boss 200 may be made of aluminum.
- the shell 400 may be formed on the outer surface of the liner 100 through a method such as brazing or winding.
- the shell 400 may be made of a composite material.
- the shell 400 may be made of carbon fiber composites, thermosetting resins, and thermoplastic resins.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Filling Or Discharging Of Gas Storage Vessels (AREA)
Abstract
Disclosed are a high-pressure storage container and a manufacturing method thereof. The high-pressure storage container according to an embodiment of the present invention comprises: a tubular liner which provides a storage space for storing high-pressure hydrogen and is open at one end in the longitudinal direction; a boss which allows the storage space to communicate with the outside and is coupled to the one end of the liner in the longitudinal direction; and a hydrogen blocking layer which is formed on at least one of the outer surface or inner surface of the liner to prevent the high-pressure hydrogen inside the storage space from passing through the liner to the outside.
Description
본 발명은 고압 저장 용기 및 그 제조 방법에 관한 것으로, 더욱 상세하게는 수소 등의 유체를 고압 상태로 저장하기 위한 고압 저장 용기 및 그 제조 방법에 관한 것이다.The present invention relates to a high-pressure storage vessel and a method for manufacturing the same, and more particularly, to a high-pressure storage vessel for storing a fluid such as hydrogen under a high pressure and a method for manufacturing the same.
근래 들어 환경에 대한 중요성이 강조되면서 친환경 자동차 시장이 빠르게 성장하고 있으며, 전기차와 수소 전기차는 각각 장단점을 가지고 경쟁하고 있다. 이러한 상황 속에서 자동차 제조 업체들은 생산성 향상과 유연한 시장 대응 등을 위해 전기차와 수소 전기차의 플랫폼을 공용화 하려고 노력하고 있다.In recent years, as the importance of the environment has been emphasized, the eco-friendly vehicle market is growing rapidly, and electric vehicles and hydrogen electric vehicles are competing with each other with their strengths and weaknesses. In this situation, automobile manufacturers are trying to share the platform of electric vehicles and hydrogen electric vehicles in order to improve productivity and respond flexibly to the market.
전기차와 수소 전기차의 플랫폼 공용화를 위해서는 수소 전기차의 수소 저장 탱크가 전기차의 배터리 탑재를 위한 직사각형상의 공간에도 탑재될 수 있는 형상을 가질 필요가 있다. 이에 따라 세관형 또는 곡관형 수소 저장 탱크에 대한 개발 요구가 커지고 있는 실정이다.In order to share the platform of electric vehicles and hydrogen electric vehicles, the hydrogen storage tank of the hydrogen electric vehicle needs to have a shape that can be mounted in a rectangular space for mounting the battery of the electric vehicle. Accordingly, there is an increasing demand for development of a tubular or bent tubular hydrogen storage tank.
수소 저장 탱크를 세관형 또는 곡관형으로 제조하기 위해서는 라이너가 길어지거나 곡선 구간을 포함해야 한다. 라이너가 길어지거나 곡선 구간을 포함하게 되면 압력 반복에 의해 내구성이 쉽게 저하되는 문제가 발생한다. 특히, 라이너가 곡관형으로 이루어질 경우 라이너를 주름관 형상으로 성형하고, 라이너에 추가적으로 보강부를 형성하기도 하는데, 이럴 경우 보강부와 라이너 사이에 공극이 생기면서 파열압 또는 압력 반복에 의해 내구성이 저하되는 현상이 발생한다.In order to manufacture a hydrogen storage tank in a tubular or bent tubular shape, the liner must be long or include a curved section. When the liner is long or includes a curved section, a problem in that durability easily deteriorates due to repeated pressure occurs. In particular, when the liner is made of a curved pipe, the liner is molded into a corrugated pipe shape, and a reinforcing part is formed in addition to the liner. this happens
(특허문헌 1) 한국등록특허공보 제10-2242337호(Patent Document 1) Korean Patent Registration No. 10-2242337
본 발명은 전술한 종래기술의 문제점을 해결하기 위한 것으로, 본 발명의 목적은 파이프 형상을 가지는 고압 저장 용기에 있어서 라이너가 수소 기밀성 및 내구성을 가지는 고압 저장 용기 및 그 제조 방법을 제공하는 것이다.The present invention is to solve the problems of the prior art, and an object of the present invention is to provide a high-pressure storage container having a pipe-shaped high-pressure storage container in which a liner has hydrogen tightness and durability, and a manufacturing method thereof.
본 발명의 일 측면에 따르면, 고압 수소가 저장되는 저장 공간을 제공하며 길이 방향 일단부가 개방된 관형의 라이너; 외부와 상기 저장 공간을 연통시키며 상기 라이너의 길이 방향 일단부에 결합되는 보스; 및 상기 저장 공간 내의 고압 수소가 상기 라이너를 통과하여 외부로 투과되지 못하도록 상기 라이너의 외면 및 내면 중 어느 하나 이상에 형성되는 수소 차단층;을 포함하는 고압 저장 용기가 제공된다.According to one aspect of the present invention, providing a storage space in which high-pressure hydrogen is stored and a tubular liner with one end open in the longitudinal direction; a boss coupled to one end of the liner in the longitudinal direction and communicating the storage space with the outside; and a hydrogen barrier layer formed on at least one of an outer surface and an inner surface of the liner to prevent high-pressure hydrogen in the storage space from passing through the liner to the outside.
본 발명의 일 실시예에 따른 고압 저장 용기에 있어서, 상기 수소 차단층은 0.3~10㎛의 두께를 가질 수 있다.In the high-pressure storage container according to an embodiment of the present invention, the hydrogen barrier layer may have a thickness of 0.3 to 10 μm.
본 발명의 일 실시예에 따른 고압 저장 용기에 있어서, 상기 수소 차단층은 5.0×10-13 mol·m/(㎡·S·Pa)(@15℃)이하의 수소 투과도를 가질 수 있다.In the high-pressure storage container according to an embodiment of the present invention, the hydrogen barrier layer may have a hydrogen permeability of 5.0×10 −13 mol·m/(m²·S·Pa) (@15°C) or less.
본 발명의 일 실시예에 따른 고압 저장 용기에 있어서, 상기 수소 차단층은 열가소성 수지, UV 경화성 수지, 실란 커플링제, 내가수분해제 및 광개시제를 포함하는 코팅 조성물이 코팅되어 형성될 수 있다.In the high pressure storage container according to an embodiment of the present invention, the hydrogen barrier layer may be formed by coating a coating composition including a thermoplastic resin, a UV curable resin, a silane coupling agent, a hydrolysis resistant agent, and a photoinitiator.
본 발명의 일 실시예에 따른 고압 저장 용기에 있어서, 상기 열가소성 수지는 우레탄계 수지 및 폴리에스테르계 수지 중 어느 하나 이상으로 이루어지고, 상기 UV 경화성 수지는 아크렐레이트계 수지이고, 상기 실란 커플링제는 에폭시(Epoxy), 비닐(Vinyl) 및 메타크릴(methacyl) 중 어느 하나 이상으로 이루어지고, 상기 내가수분해제는 방향족 카르보디이미드(aromatic carbodiimides) 계열이고, 상기 광개시제는 벤조페논(benzophenone), 티오크산톤(Thioxanthone) 및 케톤(Ketone)계 중 어느 하나 이상으로 이루어질 수 있다.In the high-pressure storage container according to an embodiment of the present invention, the thermoplastic resin is made of at least one of a urethane-based resin and a polyester-based resin, the UV curable resin is an acrylate-based resin, and the silane coupling agent is It is composed of at least one of epoxy, vinyl, and methacyl, the hydrolysis agent is an aromatic carbodiimide series, and the photoinitiator is benzophenone, thioctic It may consist of at least one of Thioxanthone and Ketone.
본 발명의 일 실시예에 따른 고압 저장 용기에 있어서, 상기 코팅 조성물은 상기 열가소성 수지 30~60wt%, 상기 UV 경화성 수지 30~60wt%, 상기 실란 커플링제 5~10wt%, 상기 내가수분해제 0.1~2wt% 및 상기 광개시제 0.1~2wt%로 구성될 수 있다.In the high-pressure storage container according to an embodiment of the present invention, the coating composition includes 30 to 60 wt% of the thermoplastic resin, 30 to 60 wt% of the UV curable resin, 5 to 10 wt% of the silane coupling agent, and 0.1 to 60 wt% of the hydrolysis agent. 2wt% and the photoinitiator may be composed of 0.1 ~ 2wt%.
본 발명의 일 실시예에 따른 고압 저장 용기는, 상기 라이너의 외면을 감싸며 배치되는 쉘;을 더 포함할 수 있다.The high-pressure storage vessel according to an embodiment of the present invention may further include a shell disposed while covering an outer surface of the liner.
본 발명의 다른 일 측면에 따르면, 고압 수소가 저장되는 저장 공간을 제공하며 길이 방향 일단부가 개방된 관형의 라이너를 성형하는 단계; 상기 라이너의 외면 및 내면 중 어느 하나 이상에 상기 저장 공간 내의 고압 수소가 상기 라이너를 통과하여 외부로 투과되지 못하도록 차단하는 수소 차단층을 형성하는 단계; 및 외부와 상기 저장 공간이 연통되도록 상기 라이너의 길이 방향 일단부에 보스를 결합시키는 단계;를 포함하는 고압 저장 용기 제조 방법이 제공된다.According to another aspect of the present invention, providing a storage space in which high-pressure hydrogen is stored and forming a tubular liner with one end open in the longitudinal direction; forming a hydrogen barrier layer on at least one of an outer surface and an inner surface of the liner to prevent high-pressure hydrogen in the storage space from passing through the liner to the outside; and coupling a boss to one end of the liner in the longitudinal direction so that the outside and the storage space communicate with each other.
본 발명의 일 실시예에 따른 고압 저장 용기 제조 방법에 있어서, 상기 수소 차단층은 상기 라이너의 외면에 0.3~10㎛의 두께로 코팅될 수 있다.In the high-pressure storage container manufacturing method according to an embodiment of the present invention, the hydrogen barrier layer may be coated on the outer surface of the liner to a thickness of 0.3 to 10 μm.
본 발명의 일 실시예에 따른 고압 저장 용기 제조 방법에 있어서, 상기 수소 차단층은 열가소성 수지, UV 경화성 수지, 실란 커플링제, 내가수분해제 및 광개시제를 포함하는 코팅 조성물이 코팅되어 형성될 수 있다.In the high-pressure storage container manufacturing method according to an embodiment of the present invention, the hydrogen barrier layer may be formed by coating a coating composition including a thermoplastic resin, a UV curable resin, a silane coupling agent, a hydrolysis resistant agent, and a photoinitiator.
본 발명의 일 실시예에 따른 고압 저장 용기 제조 방법에 있어서, 상기 열가소성 수지는 우레탄계 수지 및 폴리에스테르계 수지 중 어느 하나 이상으로 이루어지고, 상기 UV 경화성 수지는 아크렐레이트계 수지이고, 상기 실란 커플링제는 에폭시(Epoxy), 비닐(Vinyl) 및 메타크릴(methacyl) 중 어느 하나 이상으로 이루어지고, 상기 내가수분해제는 방향족 카르보디이미드(aromatic carbodiimides) 계열이고, 상기 광개시제는 벤조페논(benzophenone), 티오크산톤(Thioxanthone) 및 케톤(Ketone)계 중 어느 하나 이상으로 이루어질 수 있다.In the high-pressure storage container manufacturing method according to an embodiment of the present invention, the thermoplastic resin is made of at least one of a urethane-based resin and a polyester-based resin, the UV curable resin is an acrylate-based resin, and the silane couple The ringing agent is composed of at least one of epoxy, vinyl, and methacyl, the hydrolysis agent is an aromatic carbodiimides series, and the photoinitiator is benzophenone, It may consist of at least one of Thioxanthone and Ketone.
본 발명의 일 실시예에 따른 고압 저장 용기 제조 방법에 있어서, 상기 코팅 조성물은 상기 열가소성 수지 30~60wt%, 상기 UV 경화성 수지 30~60wt%, 상기 실란 커플링제 5~10wt%, 상기 내가수분해제 0.1~2wt% 및 상기 광개시제 0.1~2wt%로 구성될 수 있다.In the high-pressure storage container manufacturing method according to an embodiment of the present invention, the coating composition includes 30 to 60 wt% of the thermoplastic resin, 30 to 60 wt% of the UV curable resin, 5 to 10 wt% of the silane coupling agent, and the hydrolysis-resistant agent 0.1 ~ 2wt% and may be composed of 0.1 ~ 2wt% of the photoinitiator.
본 발명의 일 실시예에 따른 고압 저장 용기 제조 방법에 있어서, 상기 수소 차단층을 형성하는 단계에서 상기 코팅 조성물은 용매에 희석되어 코팅된 후 경화됨으로써 상기 수소 차단층을 형성할 수 있다.In the method for manufacturing the high-pressure storage vessel according to an embodiment of the present invention, in the step of forming the hydrogen barrier layer, the coating composition may be diluted in a solvent, coated, and then cured to form the hydrogen barrier layer.
본 발명의 일 실시예에 따른 고압 저장 용기 제조 방법에 있어서, 상기 코팅 조성물은 스프레이 공법을 통해 상기 라이너의 외면에 코팅된 후 열풍 건조 후 UV 경화될 수 있다.In the high-pressure storage container manufacturing method according to an embodiment of the present invention, the coating composition may be coated on the outer surface of the liner through a spray method, and then UV cured after hot air drying.
본 발명의 실시예에 따르면, 파이프 형상을 가지는 라이너에 수소의 투과를 막아주는 수소차단층이 구비됨으로써 수소 기밀성이 향상되고 반복 압력에도 우수한 내구성을 발휘하는 고압 저장 용기를 제공받을 수 있다.According to an embodiment of the present invention, since a hydrogen barrier layer for blocking hydrogen permeation is provided in a pipe-shaped liner, a high-pressure storage container having improved hydrogen airtightness and excellent durability against repeated pressure can be provided.
도 1은 본 발명의 일 실시예에 따른 고압 저장 용기를 나타낸 도면이다.1 is a view showing a high-pressure storage vessel according to an embodiment of the present invention.
도 2는 도 1의 A부분의 단면도이다.2 is a cross-sectional view of part A of FIG. 1 .
도 3은 도 2에서 수소 차단층의 위치가 라이너의 내면으로 변경된 경우를 나타낸 도면이다.FIG. 3 is a view showing a case where the position of the hydrogen barrier layer in FIG. 2 is changed to the inner surface of the liner.
도 4는 본 발명의 일 실시예에 따른 고압 저장 용기의 변형예를 나타낸 도면이다.4 is a view showing a modified example of a high-pressure storage vessel according to an embodiment of the present invention.
도 5는 본 발명의 일 실시예에 따른 고압 저장 용기 제조 방법의 순서도이다.5 is a flowchart of a method for manufacturing a high-pressure storage vessel according to an embodiment of the present invention.
이하, 첨부한 도면을 참고로 하여 본 발명의 실시예에 대하여 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다. 본 발명을 명확하게 설명하기 위해서 도면에서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 동일 또는 유사한 구성요소에 대해서는 동일한 참조 부호를 붙였다.Hereinafter, with reference to the accompanying drawings, embodiments of the present invention will be described in detail so that those skilled in the art can easily carry out the present invention. This invention may be embodied in many different forms and is not limited to the embodiments set forth herein. In order to clearly describe the present invention, parts irrelevant to the description are omitted in the drawings, and the same reference numerals are attached to the same or similar components throughout the specification.
본 명세서에서, "포함하다" 또는 "가지다" 등의 용어는 명세서 상에 기재된 특징, 숫자, 단계, 동작, 구성 요소, 부품 또는 이들을 조합한 것이 존재함을 설명하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성 요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.In this specification, terms such as "include" or "have" are intended to describe the presence of features, numbers, steps, operations, components, parts, or combinations thereof described in the specification, but one or more other features It should be understood that the presence or addition of numbers, steps, operations, components, parts, or combinations thereof is not precluded.
본 명세서에서, 도면에 도시된 구성 요소들과의 상관 관계를 설명하기 위해 공간적으로 상대적인 용어인 "전방", "후방", "측방", "상부" 또는 "하부" 등이 사용될 수 있다. 이들은 도면에 도시된 것을 기준으로 정하여진 상대적인 용어들로서 배향에 따라 위치 관계는 반대로 해석될 수도 있다. 또한, 어떤 구성 요소가 다른 구성 요소와 "연결"되어 있다는 것은 특별한 사정이 없는 한 서로 직접 연결되는 것뿐만 아니라 간접적으로 서로 연결되는 경우도 포함한다.In this specification, spatially relative terms such as "front", "rear", "side", "upper" or "lower" may be used to describe correlations with components shown in the drawings. These are relative terms based on what is shown in the drawings, and the positional relationship may be interpreted in the opposite way according to the orientation. In addition, the fact that certain components are “connected” to other components includes cases where they are not only directly connected to each other but also indirectly connected to each other unless there are special circumstances.
도 1은 본 발명의 일 실시예에 따른 고압 저장 용기를 나타낸 도면이다. 또한, 도 2는 도 1의 A부분의 단면도이다.1 is a view showing a high-pressure storage vessel according to an embodiment of the present invention. 2 is a cross-sectional view of part A of FIG. 1 .
본 발명의 일 실시예에 따른 고압 저장 용기(1)는 수소 등의 유체를 고압 상태로 저장하기 위한 것이다. 본 발명의 일 실시예에 따른 고압 저장 용기(1)는 종래의 원통형 고압 저장 용기와 비교하여 세관형, 곡관형 등의 비정형적인 형상을 가질 수 있다.The high-pressure storage vessel 1 according to an embodiment of the present invention is for storing a fluid such as hydrogen in a high-pressure state. The high-pressure storage vessel 1 according to an embodiment of the present invention may have an atypical shape such as a tubular tube or a bent tube compared to a conventional cylindrical high-pressure storage vessel.
도 1 및 도 2를 참조하면, 본 발명의 일 실시예에 따른 고압 저장 용기(1)는 라이너(100), 보스(200), 수소 차단층(300) 및 쉘(400)을 포함한다. 본 발명의 일 실시예에 의할 경우 라이너(100)가 직경에 비하여 길이가 상대적으로 긴 파이프 형상을 가지는 경우에도 수소 차단층(300)에 의해 라이너(100)의 수소 기밀성이 확보될 수 있으며, 반복 압력에도 내구성을 유지할 수 있다.Referring to FIGS. 1 and 2 , a high-pressure storage vessel 1 according to an embodiment of the present invention includes a liner 100, a boss 200, a hydrogen barrier layer 300, and a shell 400. According to one embodiment of the present invention, even when the liner 100 has a relatively long pipe shape compared to its diameter, the hydrogen barrier layer 300 can ensure the hydrogen tightness of the liner 100, Durability can be maintained even under repeated pressure.
라이너(100)는 고압 수소가 저장되는 저장 공간을 제공한다. 라이너(100)는 길이 방향 일단부가 개방된 파이프 형상을 가질 수 있다. 또한, 라이너(100)는 수지 재질, 폴리머 소재 등으로 이루어질 수 있다. 예를 들면, 라이너(100)는 고밀도 폴리에틸렌 소재(HDPE), 아마이드계 소재(PA6, PA66, PA11, PA12), 폴리 우레탄계 소재(TPU) 등으로 이루어질 수 있다.The liner 100 provides a storage space in which high-pressure hydrogen is stored. The liner 100 may have a pipe shape with one end opened in the longitudinal direction. In addition, the liner 100 may be made of a resin material, a polymer material, or the like. For example, the liner 100 may be made of high-density polyethylene material (HDPE), amide-based material (PA6, PA66, PA11, PA12), polyurethane-based material (TPU), or the like.
보스(200)는 외부와 저장 공간을 연통시키며 라이너(100)의 길이 방향 일단부에 결합된다. 보스(200)는 고압 저장 용기(1) 내로 유체를 주입하기 위한 밸브가 결합되는 부분이다. 보스(200)는 금속 재질로 이루어질 수 있다. 예를 들면, 보스(200)는 알루미늄 재질로 이루어질 수 있다.The boss 200 communicates the outside with the storage space and is coupled to one end of the liner 100 in the longitudinal direction. The boss 200 is a part to which a valve for injecting fluid into the high-pressure storage container 1 is coupled. The boss 200 may be made of a metal material. For example, the boss 200 may be made of aluminum.
수소 차단층(300)은 저장 공간 내의 고압 수소가 라이너(100)를 통과하여 외부로 투과되지 못하도록 라이너(100)의 외면 및 내면 중 어느 하나 이상에 형성된다. 본 발명의 일 실시예에서, 수소 차단층(300)은 라이너(100)의 외면에 코팅되어 형성될 수 있다. 다시 말하면, 수소 차단층(300)은 라이너(100)와 쉘(400) 사이에 배치될 수 있다.The hydrogen barrier layer 300 is formed on at least one of the outer and inner surfaces of the liner 100 to prevent high-pressure hydrogen in the storage space from passing through the liner 100 to the outside. In one embodiment of the present invention, the hydrogen barrier layer 300 may be formed by coating the outer surface of the liner 100 . In other words, the hydrogen barrier layer 300 may be disposed between the liner 100 and the shell 400 .
수소 차단층(300)은 0.3~10㎛의 두께를 가질 수 있다. 또한, 수소 차단층(300)은 5.0×10-13 mol·m/(㎡·S·Pa)(@15℃)이하의 수소 투과도를 가질 수 있다.The hydrogen blocking layer 300 may have a thickness of 0.3 to 10 μm. In addition, the hydrogen barrier layer 300 may have a hydrogen permeability of 5.0×10 −13 mol·m/(m²·S·Pa) (@15°C) or less.
전술한 바와 같이, 수소 차단층(300)은 코팅을 통해 형성될 수 있다. 더욱 상세하게, 수소 차단층(300)은 열가소성 수지, UV 경화성 수지, 실란 커플링제, 내가수분해제 및 광개시제를 포함하는 코팅 조성물이 코팅되어 형성될 수 있다. 상기 열가소성 수지는 우레탄계 수지 및 폴리에스테르계 수지 중 어느 하나 이상으로 이루어지고, 상기 UV 경화성 수지는 아크렐레이트계 수지이고, 상기 실란 커플링제는 에폭시(Epoxy), 비닐(Vinyl) 및 메타크릴(methacyl) 중 어느 하나 이상으로 이루어지고, 상기 내가수분해제는 방향족 카르보디이미드(aromatic carbodiimides) 계열이고, 상기 광개시제는 벤조페논(benzophenone), 티오크산톤(Thioxanthone) 및 케톤(Ketone)계 중 어느 하나 이상으로 이루어질 수 있다.As described above, the hydrogen barrier layer 300 may be formed through coating. More specifically, the hydrogen barrier layer 300 may be formed by coating a coating composition including a thermoplastic resin, a UV curable resin, a silane coupling agent, a hydrolysis resistant agent, and a photoinitiator. The thermoplastic resin is made of at least one of a urethane-based resin and a polyester-based resin, the UV curable resin is an acrylate-based resin, and the silane coupling agent is an epoxy, vinyl, and methacrylic resin. ), wherein the hydrolysis agent is an aromatic carbodiimide series, and the photoinitiator is any one or more of benzophenone, thioxanthone, and ketone series. can be made with
상기 코팅 조성물은 상기 열가소성 수지 30~60wt%, 상기 UV 경화성 수지 30~60wt%, 상기 실란 커플링제 5~10wt%, 상기 내가수분해제 0.1~2wt% 및 상기 광개시제 0.1~2wt%로 구성될 수 있다. 수소 차단층(300)은 상기 코팅 조성물이 용매에 희석되어 코팅된 후 경화되어 형성될 수 있다. 이때, 용매는 조성물은 알코올계, 케톤계 등이 사용될 수 있다. 예를 들면, 수소 차단층(300)은 상기 코팅 조성물이 스프레이 공법을 통해 라이너(100)의 외면에 코팅된 후 열풍 건조 후 UV 경화되어 형성될 수 있다.The coating composition may be composed of 30 to 60 wt% of the thermoplastic resin, 30 to 60 wt% of the UV curable resin, 5 to 10 wt% of the silane coupling agent, 0.1 to 2 wt% of the hydrolysis agent, and 0.1 to 2 wt% of the photoinitiator. . The hydrogen barrier layer 300 may be formed by curing after the coating composition is diluted in a solvent and coated. At this time, as the solvent, an alcohol-based composition, a ketone-based composition, or the like may be used. For example, the hydrogen barrier layer 300 may be formed by coating the outer surface of the liner 100 with the coating composition through a spray method, drying with hot air, and UV curing.
아래의 표 1에는 본 발명의 일 실시예에 따른 고압 저장 용기(1)에 적용되는 코팅 조성물들과 비교예들의 조성비가 나타나 있다.Table 1 below shows composition ratios of coating compositions applied to the high-pressure storage vessel 1 according to an embodiment of the present invention and comparative examples.
열가소성 수지thermoplastic profit |
UV경화성 수지UV curable profit |
실란 커플링제Silane coupling agent |
내가수 분해제my number disintegrant |
광개시제photoinitiator |
수소 투과도hydrogen permeability |
|
실시예 1Example 1 | 45wt%45wt% | 45wt%45wt% | 8wt%8wt% | 1wt%1wt% | 1wt%1wt% | 1.28*10-13 1.28*10 -13 |
실시예 2Example 2 | 30wt%30wt% | 60wt%60wt% | 8wt%8wt% | 1wt%1wt% | 1wt%1wt% | 1.04*10-13 1.04*10 -13 |
실시예 3Example 3 | 60wt%60wt% | 30wt%30wt% | 8wt%8wt% | 1wt%1wt% | 1wt%1wt% | 1.58*10-13 1.58*10 -13 |
비교예 1Comparative Example 1 | 70wt%70wt% | 20wt%20wt% | 8wt%8wt% | 1wt%1wt% | 1wt%1wt% | 4.65*10-12 4.65*10 -12 |
비교예 2Comparative Example 2 | 20wt%20wt% | 70wt%70wt% | 8wt%8wt% | 1wt%1wt% | 1wt%1wt% | 4.65*10-10 4.65*10 -10 |
비교예 3Comparative Example 3 | 40wt%40wt% | 55wt%55wt% | 3wt%3wt% | 1wt%1wt% | 1wt%1wt% | 4.65*10-11 4.65* 10-11 |
표 1에 나타난 실시예와 비교예에서 열가소성 수지는 열가소성 폴리우레탄(TPU), UV 경화성 수지는 우레탄 아크릴레이트(Urethane Acrylate), 실란 커플링제는 3Glycidoxypropyl trimethoxysilane(글리시딜그룹 즉, 에폭시 그룹), 내가수분해제는 방향족 카르보디이미드(aromatic carbodiimides) 계열, 광개시제는 hydroxycyclohexyl phenyl ketone(알파 하이드록시 케톤계)이 사용되었다. 또한, 코팅 조성물은 PET기재에 0.3㎛로 코팅되어 샘플로 제작되었으며, 각 샘플의 수소 투과도는 평가온도 15℃, 평가 압력 1bar에서 평가기기(TOYOSEIKI, BT-1)를 사용하여 측정되었다. 실시예 1, 2 및 3의 경우 5.0×10-13mol·m/(㎡·S·Pa)(@15℃) 이하의 수소 투과도를 나타낸다. 그러나 비교예 1 내지 3은 5.0×10-13mol·m/(㎡·S·Pa)(@15℃)을 초과하는 수소 투과도를 가지는 것으로 나타났다.이것은 실시예에 의할 경우 열가소성수지인 TPU와 UV경화성 수지인 우레탄 아크릴레이트에 포함된 아민그룹(amine group)이 에폭시 실란과 충분한 가교 결합을 하고, UV경화성 수지인 우레탄 아크릴레이트의 바이닐 그룹(vinyl Group)이 가교 결합하여 높은 가교 밀도를 나타내기 때문인 것으로 판단된다. 반면, TPU 수지의 함량이 30wt% 미만일때는 전체 메트릭스(Matrix)의 분자량이 충분치 않아 균일한 막 형성이 어렵고, 그 함량이 60wt% 초과일때는 점도 상승으로 인해 가교 결합력이 떨어지게 된다.In the examples and comparative examples shown in Table 1, the thermoplastic resin is thermoplastic polyurethane (TPU), the UV curable resin is urethane acrylate, the silane coupling agent is 3Glycidoxypropyl trimethoxysilane (a glycidyl group, that is, an epoxy group), I Aromatic carbodiimides were used as the hydrolysis agent, and hydroxycyclohexyl phenyl ketone (alpha hydroxy ketone) was used as the photoinitiator. In addition, the coating composition was coated on a PET substrate to a thickness of 0.3 μm to make samples, and the hydrogen permeability of each sample was measured using an evaluation device (TOYOSEIKI, BT-1) at an evaluation temperature of 15 ° C and an evaluation pressure of 1 bar. Examples 1, 2 and 3 show hydrogen permeability of 5.0 × 10 -13 mol·m/(m²·S·Pa) (@15°C) or less. However, Comparative Examples 1 to 3 were found to have hydrogen permeability exceeding 5.0×10 -13 mol·m/(m²·S·Pa) (@15°C). The amine group included in the UV curable resin, urethane acrylate, is sufficiently cross-linked with epoxy silane, and the vinyl group of the UV curable resin, urethane acrylate, is cross-linked to show high cross-linking density. It is believed to be due to On the other hand, when the content of the TPU resin is less than 30wt%, the molecular weight of the entire matrix is not sufficient, making it difficult to form a uniform film.
또한, UV 경화성 수지인 우레탄 아크릴레이트의 함량이 30wt% 미만일때는 조성물의 가교 결합이 충분치 않게 되며, 그 함량이 60wt%초과일때는 분자량이 충분히 크지 않아 취성(brittleness)이 높아지며 해지며 코팅막에 크랙(crack)이 발생하는 문제가 생길 수 있다. In addition, when the content of urethane acrylate, which is a UV curable resin, is less than 30wt%, the crosslinking of the composition is not sufficient, and when the content exceeds 60wt%, the molecular weight is not large enough, so brittleness is increased and the coating film cracks ( cracks) may occur.
또한, 실란 커플링제의 함량이 5wt% 미만일때는 충분한 가교 결합을 형성하지 않으며, 10wt% 이상일때는 미반응 실란커플링제가 잔류하여 수소 투과도 저하를 일으킨다. In addition, when the content of the silane coupling agent is less than 5wt%, sufficient cross-linking is not formed, and when the content is 10wt% or more, unreacted silane coupling agent remains and causes a decrease in hydrogen permeability.
내가수분해제와 광개시제의 경우도 그 함량이 2wt% 이상일때 불순물로 작용하여 수소 투과도를 떨어뜨리게 된다.Even in the case of the hydrolysis-resistant agent and the photoinitiator, when the content thereof is 2 wt% or more, it acts as an impurity and lowers the hydrogen permeability.
이러한 결과를 고려할 때, 상기 코팅 조성물은 상기 열가소성 수지 30~60wt%, 상기 UV 경화성 수지 30~60wt%, 상기 실란 커플링제 5~10wt%, 상기 내가수분해제 0.1~2wt% 및 상기 광개시제 0.1~2wt%로 구성되는 것이 최적인 것으로 확인된다.Considering these results, the coating composition includes 30 to 60 wt% of the thermoplastic resin, 30 to 60 wt% of the UV curable resin, 5 to 10 wt% of the silane coupling agent, 0.1 to 2 wt% of the hydrolysis agent, and 0.1 to 2 wt% of the photoinitiator. % is found to be optimal.
쉘(400)은 라이너(100)의 외면을 감싸며 배치된다. 쉘(400)은 라이너(100)의 외면과, 보스(200) 중 라이너(100)의 외측으로 노출된 부분의 적어도 일부분을 감싸며 배치될 수 있다. 쉘(400)은 고압 저장 용기(1)에 내압 성능을 제공한다. 본 발명의 일 실시예에 따른 고압 저장 용기(1)에서 라이너(100)는 내부에 저장 공간을 형성하고, 쉘(400)은 저장 공간 내에 저장된 고압 수소의 압력을 견딜 수 있는 내압 성능을 제공할 수 있다.The shell 400 surrounds the outer surface of the liner 100 and is disposed. The shell 400 may be disposed to surround an outer surface of the liner 100 and at least a portion of a portion of the boss 200 exposed to the outside of the liner 100 . The shell 400 provides pressure resistance to the high-pressure storage vessel 1 . In the high-pressure storage vessel 1 according to an embodiment of the present invention, the liner 100 forms a storage space therein, and the shell 400 provides pressure resistance capable of withstanding the pressure of the high-pressure hydrogen stored in the storage space. can
쉘(400)은 라이너(100)의 외부면에 브레이징(brazing), 와인딩(winding) 등의 방법을 통해 형성될 수 있다. 쉘(400)은 복합 재료로 이루어질 수 있다. 예를 들면, 쉘(400)은 탄소 섬유 복합재, 열경화성 수지 및 열가소성 수지 등으로 제조될 수 있다.The shell 400 may be formed on the outer surface of the liner 100 through a method such as brazing or winding. The shell 400 may be made of a composite material. For example, the shell 400 may be made of carbon fiber composites, thermosetting resins, and thermoplastic resins.
도 3은 도 2에서 수소 차단층의 위치가 라이너의 내면으로 변형된 경우를 나타낸 도면이다.FIG. 3 is a view showing a case where the position of the hydrogen barrier layer in FIG. 2 is deformed to the inner surface of the liner.
도 3을 참조하면, 본 발명의 일 실시예에서 수소 차단층(300)은 라이너(100)의 외면이 아니라 라이너(100)의 내면에 형성될 수도 있다. 다시 말하면, 수소 차단층(300)이 라이너(100)의 내면에 형성되어도 라이너(100)의 수소 기밀성이 확보될 수 있다.Referring to FIG. 3 , in one embodiment of the present invention, the hydrogen barrier layer 300 may be formed on the inner surface of the liner 100 instead of the outer surface of the liner 100 . In other words, even when the hydrogen barrier layer 300 is formed on the inner surface of the liner 100, the hydrogen airtightness of the liner 100 can be secured.
도 4는 본 발명의 일 실시예에 따른 고압 저장 용기의 변형예를 나타낸 도면이다.4 is a view showing a modified example of a high-pressure storage vessel according to an embodiment of the present invention.
도 4를 참조하면, 본 발명의 일 실시예에 따른 고압 저장 용기(1)의 변형예는 곡관형으로 이루어져 있다. 즉, 라이너(100)가 곡관 형상을 가지고 쉘(400)도 이에 상응하는 형상을 가지고 있다. 한편, 라이너(100), 보스(200), 수소 차단층(300) 및 쉘(400)에 관해서 앞서서 살펴본 내용들은 본 발명의 일 실시예에 따른 고압 저장 용기(1)의 변형예에서도 동일하다.Referring to FIG. 4 , a modified example of the high-pressure storage vessel 1 according to an embodiment of the present invention is formed in a curved tube shape. That is, the liner 100 has a curved pipe shape and the shell 400 also has a corresponding shape. Meanwhile, the above descriptions of the liner 100, the boss 200, the hydrogen barrier layer 300, and the shell 400 are the same in the modified example of the high-pressure storage vessel 1 according to an embodiment of the present invention.
도 5는 본 발명의 일 실시예에 따른 고압 저장 용기 제조 방법의 순서도이다.5 is a flowchart of a method for manufacturing a high-pressure storage vessel according to an embodiment of the present invention.
본 발명의 일 실시예에 따른 고압 저장 용기 제조 방법은 앞서 살펴본 바와 같은 본 발명의 실시예에 따른 고압 저장 용기를 제조하기 위한 것이다. 본 발명의 일 실시예에 따른 고압 저장 용기 제조 방법에 의할 경우 라이너(100)에 수소 차단층(300)을 형성함으로써 수소 기밀성을 향상시킬 수 있다.A method for manufacturing a high-pressure storage vessel according to an embodiment of the present invention is for manufacturing a high-pressure storage vessel according to an embodiment of the present invention as described above. In the case of the method for manufacturing a high-pressure storage vessel according to an embodiment of the present invention, hydrogen airtightness can be improved by forming the hydrogen barrier layer 300 on the liner 100 .
도 5를 참조하면, 본 발명의 일 실시예에 따른 고압 저장 용기 제조 방법은 고압 수소가 저장되는 저장 공간을 제공하며 길이 방향 일단부가 개방된 관형의 라이너(100)를 성형하는 단계(S100), 라이너(100)의 외면 및 내면 중 어느 하나 이상에 저장 공간 내의 고압 수소가 라이너(100)를 통과하여 외부로 투과되지 못하도록 차단하는 수소 차단층(300)을 형성하는 단계(S200), 외부와 저장 공간이 연통되도록 라이너(100)의 길이 방향 일단부에 보스(200)를 결합시키는 단계(S300) 및 라이너(100)의 외면을 감싸도록 쉘(400)을 배치하는 단계(S400)를 포함한다.Referring to FIG. 5 , the method for manufacturing a high-pressure storage vessel according to an embodiment of the present invention provides a storage space in which high-pressure hydrogen is stored and forms a tubular liner 100 with one open end in the longitudinal direction (S100), Forming a hydrogen barrier layer 300 on at least one of the outer and inner surfaces of the liner 100 to block the high-pressure hydrogen in the storage space from passing through the liner 100 to the outside (S200), A step of coupling the boss 200 to one end of the longitudinal direction of the liner 100 so that the space communicates (S300) and a step of disposing the shell 400 so as to surround the outer surface of the liner 100 (S400).
라이너(100)를 성형하는 단계(S100)에서, 라이너(100)는 압출 방식으로 제조될 수 있다. 이때, 라이너(100)는 파이프 형태로 연속적으로 성형될 수 있다.In the step of molding the liner 100 (S100), the liner 100 may be manufactured by extrusion. At this time, the liner 100 may be continuously molded into a pipe shape.
수소 차단층(300)을 형성하는 단계(S200)에서, 수소 차단층(300)은 라이너(100)의 외면에 0.3~10㎛의 두께로 코팅될 수 있다. 더욱 상세하게, 수소 차단층(300)은 열가소성 수지, UV 경화성 수지, 실란 커플링제, 내가수분해제 및 광개시제를 포함하는 코팅 조성물이 코팅되어 형성될 수 있다.In the step of forming the hydrogen blocking layer 300 (S200), the hydrogen blocking layer 300 may be coated on the outer surface of the liner 100 to a thickness of 0.3 to 10 μm. More specifically, the hydrogen barrier layer 300 may be formed by coating a coating composition including a thermoplastic resin, a UV curable resin, a silane coupling agent, a hydrolysis resistant agent, and a photoinitiator.
앞서 살펴본 바와 같이, 상기 열가소성 수지는 우레탄계 수지 및 폴리에스테르계 수지 중 어느 하나 이상으로 이루어지고, 상기 UV 경화성 수지는 아크렐레이트계 수지이고, 상기 실란 커플링제는 에폭시(Epoxy), 비닐(Vinyl) 및 메타크릴(methacyl) 중 어느 하나 이상으로 이루어지고, 상기 내가수분해제는 방향족 카르보디이미드(aromatic carbodiimides) 계열이고, 상기 광개시제는 벤조페논(benzophenone), 티오크산톤(Thioxanthone) 및 케톤(Ketone)계 중 어느 하나 이상으로 이루어질 수 있다. 또한, 상기 코팅 조성물은 상기 열가소성 수지 30~60wt%, 상기 UV 경화성 수지 30~60wt%, 상기 실란 커플링제 5~10wt%, 상기 내가수분해제 0.1~2wt% 및 상기 광개시제 0.1~2wt%로 구성될 수 있다.As described above, the thermoplastic resin is made of at least one of a urethane-based resin and a polyester-based resin, the UV curable resin is an acrylate-based resin, and the silane coupling agent is an epoxy or vinyl and methacyl, wherein the hydrolysis agent is an aromatic carbodiimide series, and the photoinitiator is benzophenone, thioxanthone, and ketone. It may consist of any one or more of the systems. In addition, the coating composition may be composed of 30 to 60 wt% of the thermoplastic resin, 30 to 60 wt% of the UV curable resin, 5 to 10 wt% of the silane coupling agent, 0.1 to 2 wt% of the hydrolysis agent, and 0.1 to 2 wt% of the photoinitiator. can
수소 차단층(300)은 상기 코팅 조성물이 용매에 희석되어 코팅된 후 경화되어 형성될 수 있다. 이때, 용매는 조성물은 알코올계, 케톤계 등이 사용될 수 있다. 또한, 수소 차단층(300)은 상기 코팅 조성물이 스프레이 공법을 통해 라이너(100)의 외면에 코팅된 후 열풍 건조 후 UV 경화되어 형성될 수 있다. 예를 들면, 수소 차단층(300)은 상기 코팅 조성물이 고형분 25~35wt%로 메틸에틸케톤(MEK) 용매에 희석되어 스프레이 공법으로 코팅된 후 건조 및 UV 경화되어 형성될 수 있다.The hydrogen barrier layer 300 may be formed by curing after the coating composition is diluted in a solvent and coated. At this time, as the solvent, an alcohol-based composition, a ketone-based composition, or the like may be used. In addition, the hydrogen barrier layer 300 may be formed by UV curing after the coating composition is coated on the outer surface of the liner 100 through a spray method, followed by hot air drying. For example, the hydrogen barrier layer 300 may be formed by diluting the coating composition with a solid content of 25 to 35 wt % in a methyl ethyl ketone (MEK) solvent, coating it by a spray method, and then drying and UV curing.
보스(200)를 결합시키는 단계(S300)에서, 보스(200)는 라이너(100)의 길이 방향 단부에 결합된다. 보스(200)는 고압 저장 용기(1) 내로 유체를 주입하기 위한 밸브가 결합되는 부분으로 금속 재질로 이루어질 수 있다. 예를 들면, 보스(200)는 알루미늄 재질로 이루어질 수 있다.In the step of coupling the boss 200 (S300), the boss 200 is coupled to the longitudinal end of the liner 100. The boss 200 is a part to which a valve for injecting fluid into the high-pressure storage container 1 is coupled, and may be made of a metal material. For example, the boss 200 may be made of aluminum.
쉘(400)을 배치하는 단계(S400)에서, 쉘(400)은 라이너(100)의 외부면에 브레이징(brazing), 와인딩(winding) 등의 방법을 통해 형성될 수 있다. 쉘(400)은 복합 재료로 이루어질 수 있다. 예를 들면, 쉘(400)은 탄소 섬유 복합재, 열경화성 수지 및 열가소성 수지 등으로 제조될 수 있다.In the step of disposing the shell 400 (S400), the shell 400 may be formed on the outer surface of the liner 100 through a method such as brazing or winding. The shell 400 may be made of a composite material. For example, the shell 400 may be made of carbon fiber composites, thermosetting resins, and thermoplastic resins.
본 발명의 일 실시예에 대하여 설명하였으나, 본 발명의 사상은 본 명세서에 제시되는 실시예에 의해 제한되지 아니하며, 본 발명의 사상을 이해하는 당업자는 동일한 사상의 범위 내에서, 구성요소의 부가, 변경, 삭제, 추가 등에 의해서 다른 실시예를 용이하게 제안할 수 있을 것이다. 그러나 이 또한 본 발명의 사상범위 내에 든다고 할 것이다.Although one embodiment of the present invention has been described, the spirit of the present invention is not limited by the embodiments presented herein, and those skilled in the art who understand the spirit of the present invention, within the scope of the same spirit, the addition of components, Other embodiments may be easily suggested by changes, deletions, additions, and the like. However, it will be said that this is also within the scope of the present invention.
Claims (14)
- 고압 수소가 저장되는 저장 공간을 제공하며 길이 방향 일단부가 개방된 관형의 라이너;a tubular liner having one open end in a longitudinal direction and providing a storage space in which high-pressure hydrogen is stored;외부와 상기 저장 공간을 연통시키며 상기 라이너의 길이 방향 일단부에 결합되는 보스; 및a boss coupled to one end of the liner in the longitudinal direction and communicating the storage space with the outside; and상기 저장 공간 내의 고압 수소가 상기 라이너를 통과하여 외부로 투과되지 못하도록 상기 라이너의 외면 및 내면 중 어느 하나 이상에 형성되는 수소 차단층;을 포함하는 고압 저장 용기.and a hydrogen barrier layer formed on at least one of outer and inner surfaces of the liner to prevent high-pressure hydrogen in the storage space from passing through the liner to the outside.
- 제 1 항에 있어서,According to claim 1,상기 수소 차단층은 0.3~10㎛의 두께를 가지는 고압 저장 용기.The hydrogen barrier layer is a high pressure storage container having a thickness of 0.3 ~ 10㎛.
- 제 1 항에 있어서,According to claim 1,상기 수소 차단층은 5.0×10-13 mol·m/(㎡·S·Pa)(@15℃)이하의 수소 투과도를 가지는 고압 저장 용기.The hydrogen barrier layer is a high-pressure storage container having a hydrogen permeability of 5.0 × 10 -13 mol · m / (m 2 · S · Pa) (@ 15 ℃) or less.
- 제 1 항에 있어서,According to claim 1,상기 수소 차단층은 열가소성 수지, UV 경화성 수지, 실란 커플링제, 내가수분해제 및 광개시제를 포함하는 코팅 조성물이 코팅되어 형성되는 고압 저장 용기.The hydrogen barrier layer is formed by coating a coating composition containing a thermoplastic resin, a UV curable resin, a silane coupling agent, a hydrolysis resistant agent and a photoinitiator.
- 제 4 항에 있어서,According to claim 4,상기 열가소성 수지는 우레탄계 수지 및 폴리에스테르계 수지 중 어느 하나 이상으로 이루어지고, 상기 UV 경화성 수지는 아크렐레이트계 수지이고, 상기 실란 커플링제는 에폭시(Epoxy), 비닐(Vinyl) 및 메타크릴(methacyl) 중 어느 하나 이상으로 이루어지고, 상기 내가수분해제는 방향족 카르보디이미드(aromatic carbodiimides) 계열이고, 상기 광개시제는 벤조페논(benzophenone), 티오크산톤(Thioxanthone) 및 케톤(Ketone)계 중 어느 하나 이상으로 이루어지는 고압 저장 용기.The thermoplastic resin is made of at least one of a urethane-based resin and a polyester-based resin, the UV curable resin is an acrylate-based resin, and the silane coupling agent is an epoxy, vinyl, and methacrylic resin. ), wherein the hydrolysis agent is an aromatic carbodiimide series, and the photoinitiator is any one or more of benzophenone, thioxanthone, and ketone series. A high-pressure storage vessel made of.
- 제 4 항에 있어서,According to claim 4,상기 코팅 조성물은 상기 열가소성 수지 30~60wt%, 상기 UV 경화성 수지 30~60wt%, 상기 실란 커플링제 5~10wt%, 상기 내가수분해제 0.1~2wt% 및 상기 광개시제 0.1~2wt%로 구성된 고압 저장 용기.The coating composition is a high-pressure storage container composed of 30 to 60 wt% of the thermoplastic resin, 30 to 60 wt% of the UV curable resin, 5 to 10 wt% of the silane coupling agent, 0.1 to 2 wt% of the hydrolysis agent, and 0.1 to 2 wt% of the photoinitiator. .
- 제 1 항에 있어서,According to claim 1,상기 라이너의 외면을 감싸며 배치되는 쉘;을 더 포함하는 고압 저장 용기.The high-pressure storage vessel further comprising a shell disposed while surrounding the outer surface of the liner.
- 고압 수소가 저장되는 저장 공간을 제공하며 길이 방향 일단부가 개방된 관형의 라이너를 성형하는 단계;forming a tubular liner having an open longitudinal end and providing a storage space in which high-pressure hydrogen is stored;상기 라이너의 외면 및 내면 중 어느 하나 이상에 상기 저장 공간 내의 고압 수소가 상기 라이너를 통과하여 외부로 투과되지 못하도록 차단하는 수소 차단층을 형성하는 단계; 및forming a hydrogen barrier layer on at least one of an outer surface and an inner surface of the liner to prevent high-pressure hydrogen in the storage space from passing through the liner to the outside; and외부와 상기 저장 공간이 연통되도록 상기 라이너의 길이 방향 일단부에 보스를 결합시키는 단계;를 포함하는 고압 저장 용기 제조 방법.and coupling a boss to one end of the liner in the longitudinal direction so that the outside and the storage space communicate with each other.
- 제 8 항에 있어서,According to claim 8,상기 수소 차단층은 상기 라이너의 외면에 0.3~10㎛의 두께로 코팅되는 고압 저장 용기 제조 방법.The hydrogen barrier layer is coated on the outer surface of the liner to a thickness of 0.3 to 10 μm.
- 제 8 항에 있어서,According to claim 8,상기 수소 차단층은 열가소성 수지, UV 경화성 수지, 실란 커플링제, 내가수분해제 및 광개시제를 포함하는 코팅 조성물이 코팅되어 형성되는 고압 저장 용기 제조 방법.The hydrogen barrier layer is formed by coating a coating composition containing a thermoplastic resin, a UV curable resin, a silane coupling agent, a hydrolysis resistant agent and a photoinitiator.
- 제 10 항에 있어서,According to claim 10,상기 열가소성 수지는 우레탄계 수지 및 폴리에스테르계 수지 중 어느 하나 이상으로 이루어지고, 상기 UV 경화성 수지는 아크렐레이트계 수지이고, 상기 실란 커플링제는 에폭시(Epoxy), 비닐(Vinyl) 및 메타크릴(methacyl) 중 어느 하나 이상으로 이루어지고, 상기 내가수분해제는 방향족 카르보디이미드(aromatic carbodiimides) 계열이고, 상기 광개시제는 벤조페논(benzophenone), 티오크산톤(Thioxanthone) 및 케톤(Ketone)계 중 어느 하나 이상으로 이루어지는 고압 저장 용기 제조 방법.The thermoplastic resin is made of at least one of a urethane-based resin and a polyester-based resin, the UV curable resin is an acrylate-based resin, and the silane coupling agent is an epoxy, vinyl, and methacrylic resin. ), wherein the hydrolysis agent is an aromatic carbodiimide series, and the photoinitiator is any one or more of benzophenone, thioxanthone, and ketone series. Method for manufacturing a high-pressure storage vessel consisting of.
- 제 10 항에 있어서,According to claim 10,상기 코팅 조성물은 상기 열가소성 수지 30~60wt%, 상기 UV 경화성 수지 30~60wt%, 상기 실란 커플링제 5~10wt%, 상기 내가수분해제 0.1~2wt% 및 상기 광개시제 0.1~2wt%로 구성된 고압 저장 용기 제조 방법.The coating composition is a high-pressure storage container composed of 30 to 60 wt% of the thermoplastic resin, 30 to 60 wt% of the UV curable resin, 5 to 10 wt% of the silane coupling agent, 0.1 to 2 wt% of the hydrolysis agent, and 0.1 to 2 wt% of the photoinitiator. manufacturing method.
- 제 10 항에 있어서,According to claim 10,상기 수소 차단층을 형성하는 단계에서 상기 코팅 조성물은 용매에 희석되어 코팅된 후 경화됨으로써 상기 수소 차단층을 형성하는 고압 저장 용기 제조 방법.In the step of forming the hydrogen barrier layer, the coating composition is diluted in a solvent, coated, and then cured to form the hydrogen barrier layer.
- 제 13 항에 있어서,According to claim 13,상기 코팅 조성물은 스프레이 공법을 통해 상기 라이너의 외면에 코팅된 후 열풍 건조 후 UV 경화되는 고압 저장 용기 제조 방법.The coating composition is coated on the outer surface of the liner through a spray method and then UV cured after hot air drying.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2021-0156606 | 2021-11-15 | ||
KR1020210156606A KR20230070730A (en) | 2021-11-15 | 2021-11-15 | High pressure storage container and method for manufacturing the same |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023085683A1 true WO2023085683A1 (en) | 2023-05-19 |
Family
ID=86336054
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2022/017085 WO2023085683A1 (en) | 2021-11-15 | 2022-11-03 | High-pressure storage container and manufacturing method thereof |
Country Status (2)
Country | Link |
---|---|
KR (1) | KR20230070730A (en) |
WO (1) | WO2023085683A1 (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002188794A (en) * | 2000-12-21 | 2002-07-05 | Honda Motor Co Ltd | High pressure hydrogen tank and manufacturing method thereof |
JP2013227997A (en) * | 2012-04-24 | 2013-11-07 | Chugoku Kogyo Co Ltd | High pressure gas container and method for manufacturing high pressure gas container |
KR20150104384A (en) * | 2014-03-05 | 2015-09-15 | 도레이첨단소재 주식회사 | Plastic liner with excellent anti-crack and gas barrier properties and method for manufacturing thereof |
US20180149312A1 (en) * | 2014-06-24 | 2018-05-31 | Plastic Omnium Advanced Innovation And Research | Plastic liner for a composite pressure vessel |
KR20210003924A (en) * | 2018-06-26 | 2021-01-12 | 플라스틱 옴니엄 어드벤스드 이노베이션 앤드 리서치 | Composite pressure vessel reinforced with inner liner and method of manufacturing same |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102242337B1 (en) | 2020-03-04 | 2021-06-28 | 주식회사 티포엘 | Apparatus of manufacturing the pressure vessel for storing high pressure gas |
-
2021
- 2021-11-15 KR KR1020210156606A patent/KR20230070730A/en not_active Application Discontinuation
-
2022
- 2022-11-03 WO PCT/KR2022/017085 patent/WO2023085683A1/en unknown
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002188794A (en) * | 2000-12-21 | 2002-07-05 | Honda Motor Co Ltd | High pressure hydrogen tank and manufacturing method thereof |
JP2013227997A (en) * | 2012-04-24 | 2013-11-07 | Chugoku Kogyo Co Ltd | High pressure gas container and method for manufacturing high pressure gas container |
KR20150104384A (en) * | 2014-03-05 | 2015-09-15 | 도레이첨단소재 주식회사 | Plastic liner with excellent anti-crack and gas barrier properties and method for manufacturing thereof |
US20180149312A1 (en) * | 2014-06-24 | 2018-05-31 | Plastic Omnium Advanced Innovation And Research | Plastic liner for a composite pressure vessel |
KR20210003924A (en) * | 2018-06-26 | 2021-01-12 | 플라스틱 옴니엄 어드벤스드 이노베이션 앤드 리서치 | Composite pressure vessel reinforced with inner liner and method of manufacturing same |
Also Published As
Publication number | Publication date |
---|---|
KR20230070730A (en) | 2023-05-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6968106B2 (en) | Air blown fiber (ABF) cable with low composite coefficient of thermal expansion | |
JP4082372B2 (en) | Fiber optic cable | |
WO2022092575A1 (en) | Pressure vessel and manufacturing method therefor | |
KR101905938B1 (en) | Curable epoxy resin compositions and composites made therefrom | |
US6850681B2 (en) | Radiation-curable flame retardant optical fiber coatings | |
WO2023085683A1 (en) | High-pressure storage container and manufacturing method thereof | |
WO2014054868A1 (en) | Functional film for improving impregnation properties of composite material and method for manufacturing composite material using same | |
US6541541B2 (en) | Aqueous resin composition | |
WO2014035073A1 (en) | Core material for sandwich panel and method for manufacturing same, and sandwich panel comprising core material | |
CN101203537A (en) | Active energy ray-curable resin composition and article and molded product using the same | |
JP2994447B2 (en) | An improved method for transferring fiber strength to composite pressure vessels. | |
EP1127680B1 (en) | Method of making fluorocarbon coated braided hose assemblies | |
JPS5819468B2 (en) | Exhaust horse | |
US20040071416A1 (en) | Optical cable having an increased resistance to dry band arcing and method for its manufacture | |
US6741780B2 (en) | Coating for optical fibers and method of manufacturing thereof | |
WO2022255693A1 (en) | Composition and liner for high-pressure gas storage tank comprising same | |
US6292613B1 (en) | Fiber coated with a crosslinked epoxidized-polydiene oligomer | |
EP0462672B1 (en) | Multi-layered tube, piping consisting of several such tubes and method for the gas-tight and liquid-tight connection of two such tubes | |
WO2023085684A1 (en) | High-pressure storage vessel | |
WO2019132213A1 (en) | Composition for heat-shrinkable tube and heat-shrinkable tube manufactured therefrom | |
US6834147B2 (en) | Thin conductor ribbon | |
JP3973532B2 (en) | Photopolymerizable composition | |
WO2017159921A1 (en) | Liner for fuel storage tank and fuel storage tank comprising same | |
WO2021025267A1 (en) | Pressure vessel and manufacturing method therefor | |
JP3400912B2 (en) | RTM molding method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22893105 Country of ref document: EP Kind code of ref document: A1 |