WO2023058287A1 - 電磁吸入弁機構及び燃料ポンプ - Google Patents
電磁吸入弁機構及び燃料ポンプ Download PDFInfo
- Publication number
- WO2023058287A1 WO2023058287A1 PCT/JP2022/027353 JP2022027353W WO2023058287A1 WO 2023058287 A1 WO2023058287 A1 WO 2023058287A1 JP 2022027353 W JP2022027353 W JP 2022027353W WO 2023058287 A1 WO2023058287 A1 WO 2023058287A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- valve
- peripheral surface
- stopper
- valve body
- press
- Prior art date
Links
- 239000000446 fuel Substances 0.000 title claims abstract description 240
- 230000007246 mechanism Effects 0.000 title claims abstract description 126
- 230000002093 peripheral effect Effects 0.000 claims abstract description 121
- 238000004891 communication Methods 0.000 claims abstract description 50
- 230000007423 decrease Effects 0.000 claims description 13
- 238000007599 discharging Methods 0.000 claims description 3
- 230000010349 pulsation Effects 0.000 description 12
- 230000006835 compression Effects 0.000 description 7
- 238000007906 compression Methods 0.000 description 7
- 239000012530 fluid Substances 0.000 description 6
- 239000002828 fuel tank Substances 0.000 description 6
- 238000003825 pressing Methods 0.000 description 6
- 238000002485 combustion reaction Methods 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- 238000002347 injection Methods 0.000 description 4
- 239000007924 injection Substances 0.000 description 4
- 238000003754 machining Methods 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 230000009467 reduction Effects 0.000 description 4
- 239000002184 metal Substances 0.000 description 3
- 238000000926 separation method Methods 0.000 description 3
- 238000011144 upstream manufacturing Methods 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000002452 interceptive effect Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000010705 motor oil Substances 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 230000001154 acute effect Effects 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 230000004323 axial length Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 239000010687 lubricating oil Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 238000003892 spreading Methods 0.000 description 1
- 230000007480 spreading Effects 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M59/00—Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps
- F02M59/20—Varying fuel delivery in quantity or timing
- F02M59/36—Varying fuel delivery in quantity or timing by variably-timed valves controlling fuel passages to pumping elements or overflow passages
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16K—VALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
- F16K15/00—Check valves
- F16K15/02—Check valves with guided rigid valve members
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/12—Improving ICE efficiencies
Definitions
- the present invention relates to an electromagnetic intake valve mechanism and a fuel pump equipped with the electromagnetic intake valve mechanism.
- Fuel pumps that are widely used in the market today include piston pumps equipped with electromagnetic intake valves. Some electromagnetic intake valves are composed of an intake valve that passively opens and closes with respect to fluid movement, and an electromagnetic actuator that engages with the intake valve to regulate the operation of the intake valve.
- a spring pushes the valve body toward the valve opening side when the electromagnetic intake valve is open. At that time, the valve body is also pushed to the valve opening side by the fluid force of the fuel flowing in from the upstream side of the fuel passage.
- the electromagnetic suction valve closes, the magnetic attraction force generated by the magnetic circuit causes the mover to move the valve body in the valve closing direction.
- the electromagnetic suction valve is provided with a spring that pushes the valve body in the valve closing direction. When the electromagnetic suction valve closes, the valve body is also pushed in the valve closing direction by the fluid force of the fuel flowing back from the pressurizing chamber side.
- An object of the present invention is to provide an electromagnetic intake valve mechanism and a fuel pump that can reduce the force of fuel pushing the valve body in the valve closing direction, in consideration of the above problems.
- the electromagnetic suction valve mechanism of the present invention comprises a valve body, a valve seat on which the valve body is seated, and a stopper that restricts the movement of the valve body in the valve opening direction.
- the valve body has a seating surface in contact with the valve seat and an outer peripheral surface substantially orthogonal to the seating surface.
- the stopper is formed in a cylindrical shape and has an inner peripheral surface facing the outer peripheral surface of the valve body and an outer peripheral surface opposite to the inner peripheral surface. and a plurality of communication grooves serving as fuel passages. A portion of the press-fitting portion is positioned closer to the valve seat than the seating surface of the valve disc when the valve disc is in the valve-open state where movement in the valve-opening direction is restricted by the stopper.
- the fuel pump of the present invention comprises a body having a pressurizing chamber, a plunger supported by the body so as to be able to reciprocate and increasing or decreasing the capacity of the pressurizing chamber by reciprocating motion, and the plunger for discharging fuel into the pressurizing chamber. and an intake valve mechanism.
- FIG. 1 is an overall configuration diagram of a fuel supply system using a high-pressure fuel supply pump according to a first embodiment of the present invention
- FIG. 1 is a longitudinal sectional view of a high-pressure fuel supply pump according to a first embodiment of the invention
- FIG. 3 is a cross-sectional view taken along line AA shown in FIG. 2
- FIG. 4 is a cross-sectional view showing an enlarged valve open state of the electromagnetic intake valve mechanism according to the first embodiment of the present invention
- 5 is a cross-sectional view obtained by rotating the cross-sectional view shown in FIG. 4 by 45° about the central axis of the rod;
- FIG. 3 is an enlarged cross-sectional view showing a closed state of the electromagnetic suction valve mechanism according to the first embodiment of the present invention
- 7 is a cross-sectional view obtained by rotating the cross-sectional view shown in FIG. 6 by 45° around the central axis of the rod
- FIG. FIG. 4 is a perspective view of a stopper of the electromagnetic intake valve mechanism according to the first embodiment of the present invention
- FIG. 4 is a front view of a stopper of the electromagnetic intake valve mechanism according to the first embodiment of the present invention
- FIG. 5 is a cross-sectional view showing a second example of the stopper of the electromagnetic suction valve mechanism according to the first embodiment of the present invention
- FIG. 7 is a cross-sectional view showing a third example of the stopper of the electromagnetic intake valve mechanism according to the first embodiment of the invention
- FIG. 4 is an explanatory diagram showing the flow of fuel in the valve open state of the electromagnetic intake valve mechanism according to the first embodiment of the present invention
- FIG. 8 is a perspective view of a stopper of the electromagnetic suction valve mechanism according to the second embodiment of the invention
- FIG. 8 is a front view of a stopper of an electromagnetic intake valve mechanism according to a second embodiment of the invention
- FIG. 10 is a perspective view of a stopper of an electromagnetic suction valve mechanism according to a third embodiment of the invention
- FIG. 11 is a front view of a stopper of an electromagnetic intake valve mechanism according to a third embodiment of the invention
- FIG. 11 is a cross-sectional view showing an enlarged open state of an electromagnetic intake valve mechanism according to a fourth embodiment of the present invention
- FIG. 1 is an overall configuration diagram of a fuel supply system using a high-pressure fuel supply pump according to this embodiment.
- the fuel supply system includes a high-pressure fuel supply pump (fuel pump) 100, an ECU (Engine Control Unit) 101, a fuel tank 103, a common rail 106, and a plurality of injectors 107.
- fuel pump fuel pump
- ECU Engine Control Unit
- fuel tank 103 fuel tank
- common rail 106 common rail
- injectors 107 injectors 107.
- Components of the high-pressure fuel supply pump 100 are integrally incorporated in a pump body 1 (hereinafter referred to as "body 1").
- the fuel in the fuel tank 103 is pumped up by a feed pump 102 driven based on a signal from the ECU 101.
- the pumped fuel is pressurized to an appropriate pressure by a pressure regulator (not shown) and sent to the low-pressure fuel suction port 81 of the high-pressure fuel supply pump 100 through the low-pressure pipe 104 .
- the high-pressure fuel supply pump 100 pressurizes the fuel supplied from the fuel tank 103 and pumps it to the common rail 106 .
- a plurality of injectors 107 and a fuel pressure sensor 105 are attached to the common rail 106 .
- a plurality of injectors 107 are mounted according to the number of cylinders (combustion chambers), and inject fuel according to the drive current output from the ECU 101 .
- the fuel supply system of this embodiment is a so-called direct injection engine system in which the injector 107 directly injects fuel into the cylinder of the engine.
- the fuel pressure sensor 105 outputs the detected pressure data to the ECU 101.
- the ECU 101 determines an appropriate injection fuel amount (target injection fuel length) and an appropriate fuel pressure (target fuel pressure), etc.
- the ECU 101 also controls driving of the high-pressure fuel supply pump 100 and the plurality of injectors 107 based on calculation results such as the fuel pressure (target fuel pressure). That is, the ECU 101 has a pump control section that controls the high-pressure fuel supply pump 100 and an injector control section that controls the injector 107 .
- the high-pressure fuel supply pump 100 has a pressure pulsation reduction mechanism 9, an electromagnetic intake valve mechanism 3 that is a variable displacement mechanism, a discharge valve mechanism 5, and a relief valve mechanism 6 (see FIG. 2).
- the fuel flowing from the low-pressure fuel intake port 81 reaches the intake port 31b of the electromagnetic intake valve mechanism 3 via the pressure pulsation reducing mechanism 9 and the intake passage 10b.
- the fuel that has flowed into the electromagnetic intake valve mechanism 3 passes through the valve body 32, flows through the intake passage 1a formed in the body 1, and then flows into the pressurization chamber 11.
- a plunger 2 is reciprocally inserted into the pressurizing chamber 11 .
- the plunger 2 reciprocates when power is transmitted by a cam 91 (see FIG. 2) of the engine.
- the pressurization chamber 11 fuel is sucked from the electromagnetic intake valve mechanism 3 during the downward stroke of the plunger 2, and is pressurized during the upward stroke.
- the discharge valve mechanism 5 is opened, and high pressure fuel is pressure-fed to the common rail 106 through the fuel discharge port 12a.
- the discharge of fuel by the high-pressure fuel supply pump 100 is operated by opening and closing the electromagnetic intake valve mechanism 3 .
- the opening and closing of the electromagnetic intake valve mechanism 3 is controlled by the ECU 101 .
- FIG. 2 is a vertical cross-sectional view of the high-pressure fuel supply pump 100 seen in a cross section perpendicular to the horizontal direction.
- 3 is a cross-sectional view taken along line AA shown in FIG. 2.
- the body 1 of the high-pressure fuel supply pump 100 is provided with the above-described intake passage 1a and mounting flange 1b (see FIG. 3).
- the mounting flange 1b is in close contact with a fuel pump mounting portion 90 of an engine (internal combustion engine) and fixed with a plurality of bolts (screws) not shown. That is, the high-pressure fuel supply pump 100 is fixed to the fuel pump mounting portion 90 by the mounting flange 1b.
- an O-ring 93 which is a specific example of a seat member, is interposed between the fuel pump mounting portion 90 and the body 1.
- This O-ring 93 prevents engine oil from leaking outside the engine (internal combustion engine) through between the fuel pump mounting portion 90 and the body 1 .
- a cylinder 4 that guides the reciprocating motion of the plunger 2 is attached to the body 1 of the high-pressure fuel supply pump 100 .
- the cylinder 4 is formed in a cylindrical shape and is press-fitted into the body 1 at its outer peripheral side.
- the body 1 and the cylinder 4 form a pressure chamber 11 together with the electromagnetic suction valve mechanism 3, the plunger 2, and the discharge valve mechanism 5 (see FIG. 3).
- the body 1 is provided with a fixing portion 1c that engages with the central portion of the cylinder 4 in the axial direction.
- the fixed portion 1c of the body 1 is plastically deformed by applying a load from below (lower side in FIG. 2), and presses the cylinder 4 upward. Thereby, the cylinder 4 is press-fitted into the body 1 .
- the fuel pressurized in the pressurization chamber 11 can be prevented from leaking from between the cylinder 4 and the body 1 .
- a tappet 92 is provided at the lower end of the plunger 2 .
- the tappet 92 converts the rotational motion of the cam 91 attached to the camshaft of the engine into vertical motion and transmits it to the plunger 2 .
- the plunger 2 is urged toward the cam 91 by the spring 16 via the retainer 15 and pressed against the tappet 92 .
- the tappet 92 reciprocates as the cam 91 rotates.
- the plunger 2 reciprocates together with the tappet 92 to change the volume of the pressurization chamber 11 .
- a seal holder 17 is arranged between the cylinder 4 and the retainer 15 .
- the seal holder 17 is formed in a cylindrical shape into which the plunger 2 is inserted, and has an auxiliary chamber 17a at its upper end on the cylinder 4 side.
- the seal holder 17 holds a plunger seal 18 at the lower end on the retainer 15 side.
- the plunger seal 18 is in slidable contact with the outer circumference of the plunger 2 .
- the plunger seal 18 seals the fuel in the auxiliary chamber 17a when the plunger 2 reciprocates, preventing the fuel in the auxiliary chamber 17a from flowing into the engine.
- the plunger seal 18 also prevents lubricating oil (including engine oil) that lubricates the sliding parts in the engine from flowing into the body 1 .
- the plunger 2 reciprocates vertically. If the plunger 2 descend
- the plunger 2 has a large diameter portion 2a and a small diameter portion 2b.
- the large diameter portion 2a and the small diameter portion 2b are positioned in the auxiliary chamber 17a. Therefore, the volume of the auxiliary chamber 17a increases and decreases as the plunger 2 reciprocates.
- the sub-chamber 17a communicates with the low-pressure fuel chamber 10 through a fuel passage 10c (see FIG. 3).
- a fuel passage 10c see FIG. 3
- the plunger 2 moves downward, fuel flows from the auxiliary chamber 17a to the low-pressure fuel chamber 10.
- the plunger 2 moves upward, fuel flows from the low-pressure fuel chamber 10 to the auxiliary chamber 17a.
- the flow rate of fuel into and out of the high-pressure fuel supply pump 100 during the intake stroke or return stroke of the high-pressure fuel supply pump 100 can be reduced, and the pressure pulsation generated inside the high-pressure fuel supply pump 100 can be reduced.
- a suction joint 8 is attached to the side surface of the body 1.
- the suction joint 8 is connected to a low-pressure pipe 104 (see FIG. 1) through which fuel supplied from a fuel tank 103 passes.
- Fuel in the fuel tank 103 is supplied from the intake joint 8 to the inside of the high-pressure fuel supply pump 100 .
- the suction joint 8 has a low-pressure fuel suction port 81 connected to the low-pressure pipe 104 and a suction passage 82 communicating with the low-pressure fuel suction port 81 .
- Fuel passing through the intake passage 82 reaches the intake port 31b (see FIG. 2) of the electromagnetic intake valve mechanism 3 via the pressure pulsation reduction mechanism 9 and the intake passage 10b (see FIG. 2) provided in the low-pressure fuel chamber 10. do.
- a suction filter 83 is arranged in the fuel passage communicating with the suction passage 82 . The suction filter 83 removes foreign matter present in the fuel and prevents foreign matter from entering the high-pressure fuel supply pump 100 .
- the body 1 of the high-pressure fuel supply pump 100 is provided with a low-pressure fuel chamber (damper chamber) 10 .
- This low-pressure fuel chamber 10 is covered with a damper cover 14 .
- the damper cover 14 is formed, for example, in a tubular (cup-like) shape with one side closed.
- the low-pressure fuel chamber 10 has a low-pressure fuel flow path 10a and an intake passage 10b.
- the intake passage 10 b communicates with the intake port 31 b of the electromagnetic intake valve mechanism 3 .
- the fuel that has passed through the low-pressure fuel passage 10a reaches the intake port 31b of the electromagnetic intake valve mechanism 3 via the intake passage 10b.
- a pressure pulsation reduction mechanism 9 is provided in the low-pressure fuel flow path 10a.
- pressure pulsation occurs in the low-pressure fuel chamber 10.
- FIG. The pressure pulsation reducing mechanism 9 reduces pressure pulsation generated in the high-pressure fuel supply pump 100 from spreading to the low-pressure pipe 104 .
- the pressure pulsation reducing mechanism 9 is formed of a metal diaphragm damper in which two corrugated disk-shaped metal plates are pasted together at their outer periphery and an inert gas such as argon is injected inside.
- the metal diaphragm damper of the pressure pulsation reducing mechanism 9 absorbs or reduces pressure pulsation by expanding and contracting.
- the body 1 is provided with a discharge valve mechanism 5 that communicates with the pressurization chamber 11 .
- the discharge valve mechanism 5 includes a discharge valve seat 51, a valve body 52 that can be seated and separated from the discharge valve seat 51, a discharge valve spring 53 that biases the valve body 52 toward the discharge valve seat 51, and a discharge valve guide 54 that slides and guides the valve body 52 .
- the discharge valve seat 51, the valve body 52, the discharge valve spring 53, and the discharge valve guide 54 are housed in a discharge valve chamber 1d formed in the body 1.
- the discharge valve chamber 1d is a substantially cylindrical space extending in the horizontal direction.
- One end of the discharge valve chamber 1d communicates with the pressure chamber 11 via the fuel passage 1e.
- the other end of the discharge valve chamber 1 d is open to the side surface of the body 1 .
- a plug 55 seals the opening of the other end of the discharge valve chamber 1d.
- the plug 55 and the body 1 are joined by welding, for example.
- a discharge joint 12 is also welded to the body 1 .
- the discharge joint 12 has a fuel discharge port 12a.
- the fuel discharge port 12a communicates with the discharge valve chamber 1d via a discharge passage 1f extending horizontally inside the body 1.
- a fuel discharge port 12a of the discharge joint 12 is connected to a common rail 106 (see FIG. 1).
- the valve body 52 When there is no difference in fuel pressure between the pressure chamber 11 and the discharge valve chamber 1d, the valve body 52 is pressed against the discharge valve seat 51 by the biasing force of the discharge valve spring 53. As a result, the discharge valve mechanism 5 is closed. When the fuel pressure in the pressure chamber 11 becomes higher than the fuel pressure in the discharge valve chamber 1d, the valve element 52 moves against the biasing force of the discharge valve spring 53 and leaves the discharge valve seat 51. As a result, the discharge valve mechanism 5 is opened.
- the discharge valve mechanism 5 When the discharge valve mechanism 5 is opened, the high-pressure fuel in the pressure chamber 11 is discharged to the common rail 106 (see FIG. 1) through the discharge valve chamber 1d, the discharge passage 1f, and the fuel discharge port 12a.
- the discharge valve mechanism 5 When the discharge valve mechanism 5 is open, the valve body 52 contacts the discharge valve guide 54 and the stroke of the valve body 52 is restricted.
- the stroke of the valve body 52 is appropriately determined by the discharge valve guide 54. As a result, delay in closing of the discharge valve mechanism 5 due to the long stroke of the valve element 52 can be prevented. As a result, the fuel discharged into the discharge valve chamber 1d can be prevented from flowing back into the pressurizing chamber 11 again, and a decrease in the efficiency of the high-pressure fuel supply pump 100 can be suppressed. In this manner, the discharge valve mechanism 5 functions as a check valve that restricts the flow direction of fuel.
- the body 1 is provided with a relief valve mechanism 6 communicating with the pressurization chamber 11 .
- the relief valve mechanism 6 has a relief valve seat 61 , a relief valve 62 that contacts and separates from the relief valve seat 61 , and a relief valve holder 63 that holds the relief valve 62 .
- the relief valve mechanism 6 also has a relief spring 64 that biases the relief valve 62 toward the relief valve seat 61 and a relief valve housing 65 .
- the relief valve housing 65 is fitted into a relief valve chamber 1g formed in the body 1.
- the relief valve chamber 1g is a substantially cylindrical space extending in the horizontal direction.
- One end of the relief valve chamber 1g communicates with the pressure chamber 11 via the fuel passage 1h.
- the discharge joint 12 described above is joined to the other end of the relief valve chamber 1g.
- the relief valve housing 65 contains the relief spring 64, the relief valve holder 63, the relief valve 62, and the relief valve seat 61.
- the relief spring 64, the relief valve holder 63, and the relief valve 62 are inserted in this order. After that, the relief valve seat 61 is press-fitted and fixed to the relief valve housing 65 .
- the relief spring 64 has one end in contact with the relief valve housing 65 and the other end in contact with the relief valve holder 63 .
- the relief valve holder 63 is engaged with the relief valve 62 .
- the biasing force of the relief spring 64 acts on the relief valve 62 via the relief valve holder 63 .
- the relief valve 62 is pressed by the biasing force of the relief spring 64 and closes the fuel passage of the relief valve seat 61 .
- a fuel passage of the relief valve seat 61 communicates with the discharge passage 1f. The movement of fuel between the pressure chamber 11 (upstream side) and the relief valve seat 61 (downstream side) is blocked by the relief valve 62 contacting (adhering to) the relief valve seat 61 .
- the relief valve mechanism 6 of the present embodiment communicates with the pressurizing chamber 11, it is not limited to this, and communicates with, for example, a low-pressure passage (low-pressure fuel suction port 81, suction passage 10b, etc.). You may make it
- the electromagnetic suction valve mechanism 3 is inserted into a lateral hole 1i formed in the body 1.
- the electromagnetic suction valve mechanism 3 has a suction valve housing 31 press-fitted into the lateral hole 1i, a valve body 32, a rod 33, a rod biasing spring 34, an electromagnetic coil 35, and an anchor .
- the electromagnetic suction valve mechanism 3 is roughly divided into a suction valve mechanism portion including the valve body 32 and a solenoid mechanism portion including the electromagnetic coil 35 , the anchor 36 and the rod 33 .
- the intake valve housing 31 is formed in a cylindrical shape, and has a valve seat 31a on its inner periphery. Further, the intake valve housing 31 is formed with an intake port 31b reaching from the outer peripheral portion to the inner peripheral portion. The intake port 31b communicates with the intake passage 10b in the low-pressure fuel chamber 10 described above. The intake valve housing 31 also has a rod guide 31c through which the rod 33 passes.
- a stopper 37 facing the valve seat 31a of the intake valve housing 31 is arranged in the lateral hole 1i formed in the body 1.
- the valve body 32 is arranged between the stopper 37 and the valve seat 31a.
- a valve biasing spring 38 is interposed between the stopper 37 and the valve body 32 .
- a valve biasing spring 38 biases the valve body 32 toward the valve seat 31a.
- the valve body 32 closes the communicating portion between the suction port 31b and the pressurizing chamber 11 by abutting (seating) on the valve seat 31a.
- the electromagnetic suction valve mechanism 3 is closed.
- the valve body 32 opens the communicating portion between the intake port 31 b and the pressurizing chamber 11 by abutting against the stopper 37 .
- the electromagnetic suction valve mechanism 3 is opened.
- the rod 33 passes through the rod guide 31c of the intake valve housing 31 and the anchor 36.
- a rod collar portion 33a is formed on the rod 33 .
- One end of a rod biasing spring 34 is engaged with the rod collar portion 33a.
- the other end of the rod biasing spring 34 is engaged with a fixed core 39 arranged to surround the rod biasing spring 34 .
- the rod biasing spring 34 biases the valve body 32 in the valve opening direction, which is the stopper 37 side, via the rod 33 .
- the anchor 36 is formed in a substantially cylindrical shape. One end of an anchor biasing spring 40 abuts against one axial end of the anchor 36 . The other axial end of the anchor 36 faces the end face of the fixed core 39 . A flange contact portion is formed at the other axial end of the anchor 36 with which the rod collar portion 33a of the rod 33 contacts.
- the other end of the anchor biasing spring 40 is in contact with the rod guide 31c.
- the anchor biasing spring 40 biases the anchor 36 toward the rod collar portion 33 a of the rod 33 .
- the movable distance of the anchor 36 is set longer than the movable distance of the valve body 32 . As a result, the valve body 32 can be reliably brought into contact (seated) on the valve seat 31a, and the electromagnetic intake valve mechanism 3 can be reliably closed.
- the electromagnetic coil 35 is arranged so as to go around the fixed core 39 .
- a terminal member 30 (see FIG. 2) is electrically connected to the electromagnetic coil 35 .
- a current flows through the electromagnetic coil 35 via the terminal member 30 .
- the rod 33 In a non-energized state in which no current flows through the electromagnetic coil 35, the rod 33 is biased in the valve opening direction by the biasing force of the rod biasing spring 34, and presses the valve body 32 in the valve opening direction.
- the valve body 32 separates from the valve seat 31a and comes into contact with the stopper 37, and the electromagnetic suction valve mechanism 3 is opened. That is, the electromagnetic intake valve mechanism 3 is of a normally open type that opens when no power is supplied.
- the fuel in the intake port 31b passes between the valve body 32 and the valve seat 31a, through the plurality of communication grooves 377c (see FIG. 6) of the stopper 37, and the intake passage 1a. and flows into the pressurization chamber 11.
- the electromagnetic suction valve mechanism 3 is in the open state, the valve body 32 contacts the stopper 37, so the position of the valve body 32 in the valve opening direction is restricted.
- the gap between the valve body 32 and the valve seat 31a is the movable range of the valve body 32, which is the valve opening stroke.
- the electromagnetic coil 35, the anchor 36, and the fixed core 39 constitute the magnetic attraction force generator according to the present invention.
- the anchor 36 is attracted to the fixed core 39 when a magnetic attraction force is generated on the magnetic attraction surface. As a result, the anchor 36 moves against the biasing force of the rod biasing spring 34 and contacts the fixed core 39 .
- the electromagnetic intake valve mechanism 3 As described above, if the electromagnetic intake valve mechanism 3 is closed during the compression stroke, the fuel flowing into the pressurization chamber 11 during the intake stroke is pressurized and discharged to the common rail 106 side. On the other hand, if the electromagnetic intake valve mechanism 3 is open during the compression stroke, the fuel in the pressurization chamber 11 is pushed back toward the intake passage 1a and is not discharged to the common rail 106 side. Thus, the discharge of fuel by the high-pressure fuel supply pump 100 is controlled by opening and closing the electromagnetic intake valve mechanism 3 . The opening and closing of the electromagnetic intake valve mechanism 3 is controlled by the ECU 101 .
- the volume of the pressurization chamber 11 increases and the fuel pressure in the pressurization chamber 11 decreases.
- the fuel pressure in the pressure chamber 11 becomes lower than the pressure in the intake port 31b, and when the biasing force due to the pressure difference between the two exceeds the biasing force of the valve biasing spring 38, the valve body 32 moves toward the valve seat 31a. , and the electromagnetic suction valve mechanism 3 is opened.
- the fuel flows between the valve body 32 and the valve seat 31a and into the pressure chamber 11 through a plurality of communication grooves 377c (see FIG. 6) provided in the stopper 37. As shown in FIG.
- the plunger 2 After completing the intake stroke, the plunger 2 turns to upward movement and shifts to the compression stroke. At this time, the electromagnetic coil 35 remains in a non-energized state, and no magnetic attraction force acts between the anchor 36 and the fixed core 39 .
- the rod biasing spring 34 is set to have a necessary and sufficient biasing force to maintain the valve body 32 at the valve open position away from the valve seat 31a in the non-energized state.
- the pressure of the fuel in the pressure chamber 11 increases as the plunger 2 rises. It passes through and is discharged to common rail 106 (see FIG. 1).
- This stroke is called a discharge stroke. That is, the compression stroke from the bottom dead center to the top dead center of the plunger 2 consists of a return stroke and a discharge stroke.
- the timing of energizing the electromagnetic coil 35 If the timing of energizing the electromagnetic coil 35 is advanced, the proportion of the return stroke in the compression stroke becomes smaller and the proportion of the discharge stroke becomes larger. As a result, less fuel is returned to the intake passage 10b, and more fuel is discharged at high pressure. On the other hand, if the timing of energizing the electromagnetic coil 35 is delayed, the ratio of the return stroke in the compression stroke increases and the ratio of the discharge stroke decreases. As a result, more fuel is returned to the intake passage 10b, and less fuel is discharged at high pressure. By controlling the timing of energization of the electromagnetic coil 35 in this way, the amount of fuel discharged at high pressure can be controlled to the amount required by the engine (internal combustion engine).
- FIG. 4 is an enlarged cross-sectional view showing the open state of the electromagnetic intake valve mechanism 3.
- FIG. 5 is a cross-sectional view obtained by rotating the cross-sectional view shown in FIG. 4 by 45° about the central axis of the rod.
- FIG. 6 is a cross-sectional view showing an enlarged closed state of the electromagnetic suction valve mechanism 3.
- FIG. 7 is a cross-sectional view obtained by rotating the cross-sectional view shown in FIG. 6 by 45° about the central axis of the rod.
- 8 is a perspective view of the stopper 37.
- FIG. 9 is a front view of the stopper 37.
- the valve body 32 has a valve portion 321 and a fitting projection 322 projecting from the valve portion 321.
- the valve portion 321 is formed in a disc shape having an appropriate thickness.
- the valve portion 321 has a first surface 321 a facing the valve seat 31 a and a second surface 321 b facing the stopper 37 .
- the first surface 321a corresponds to the valve upstream end surface according to the present invention.
- the fitting protrusion 322 protrudes substantially perpendicularly from the second surface 321b of the valve portion 321 .
- the fitting protrusion 322 is formed in a cylindrical shape having a cylindrical hole 322a.
- the fitting protrusion 322 is slidably fitted into a guide hole 375 of the stopper 37, which will be described later.
- One end of the valve biasing spring 38 abuts on the bottom surface of the cylindrical hole 322 a of the fitting protrusion 322 .
- the fitting protrusion 322 is provided with a through hole 322b penetrating from the outer peripheral surface to the inner peripheral surface.
- the through hole 322b serves as a breather passage through which the fuel in the cylindrical hole 322a of the fitting protrusion 322 flows to the outside of the fitting protrusion 322.
- An end face 322c which is one axial end of the fitting protrusion 322, is chamfered.
- the valve seat 31 a of the intake valve housing 31 has a seat portion 311 against which the first surface 321 a of the valve body 32 abuts, and a seat outer peripheral portion 312 forming the periphery of the seat portion 311 .
- the seat portion 311 is formed as an annular projecting portion projecting toward the valve body 32 from the seat outer peripheral portion 312 . That is, the seat outer peripheral portion 312 has a shape recessed with respect to the seat portion 311 . Also, the seat portion 311 has an inclined surface 311 a that is continuous with the seat outer peripheral portion 312 .
- the stopper 37 is fixed to the intake valve housing 31. As shown in FIGS. 8 and 9, the stopper 37 is formed in a substantially cylindrical shape with a bottom. The stopper 37 has a plurality of inner peripheral surfaces with different diameters.
- the stopper 37 has a spring bearing surface 372 , a stopper surface 373 and a facing surface 374 .
- the spring seat surface 372 forms the bottom surface of a hole that forms the inner peripheral surface of the stopper 37 with the smallest diameter.
- the other end of the valve biasing spring 38 contacts the spring seat surface 372 .
- a stopper convex portion 37a is formed on the outer side of the spring seat surface 372 .
- the stopper surface 373 forms the bottom surface of a guide hole 375 having a diameter larger than that of the spring bearing surface 372 .
- the end face 322c of the valve body 32 in the valve open state contacts the stopper face 373 .
- the fitting protrusion 322 of the valve body 32 is slidably fitted to the inner peripheral surface of the guide hole 375 .
- An appropriate gap is provided between the inner peripheral surface of the guide hole 375 and the fitting protrusion 322 .
- the axial length of the inner peripheral surface of the guide hole 375 is set to an appropriate sliding length of the fitting protrusion 322 . As a result, eccentricity and inclination of the valve body 32 can be suppressed.
- the facing surface 374 forms the bottom surface of a hole forming an inner peripheral surface 377b of the stopper 37 having the largest diameter.
- a valve portion 321 of the valve body 32 is inserted into the hole forming the inner peripheral surface 377 b of the stopper 37 .
- An appropriate gap is formed between the inner peripheral surface 377b of the stopper 37 and the outer peripheral surface of the valve portion 321 (see FIGS. 4 to 7).
- the second surface 321 b of the valve portion 321 faces the facing surface 374 .
- the stopper 37 has a press-fit portion 377 .
- the press-fit portion 377 forms the outermost diameter portion of the stopper 37 .
- the press-fit portion 377 is formed in a tubular shape having an inner peripheral surface 377b.
- the press-fit portion 377 has an end surface 377a substantially parallel to the facing surface 374 . As shown in FIGS. 4 and 5, when the electromagnetic intake valve mechanism 3 is open, the end surface 377a of the press-fit portion 377 is located closer to the valve seat 31a than the first surface 321a of the valve body 32 is.
- the press-fit portion 377 is press-fit into the intake valve housing 31 .
- the stopper 37 is fixed to the intake valve housing 31 by press-fitting the press-fit portion 377 into the intake valve housing 31 .
- a plurality of communication grooves 377c are provided on the outer peripheral surface of the press-fit portion 377 . As shown in FIGS. 5 and 7, the communication groove 377c forms a communication path between the intake valve housing 31 and the stopper 37 through which fuel passes.
- the communication path serves as a flow path that connects the suction port 31 b and the pressurization chamber 11 .
- the plurality of communication grooves 377c are arranged at equal intervals in the circumferential direction of the press-fit portion 377. As shown in FIG. As a result, variations in pressure and turbulence in the flow of fuel that occur near the end face 377a of the press-fit portion 377 can be reduced. Furthermore, the stress generated by pressing the stopper 37 into the intake valve housing 31 can be dispersed.
- the communication groove 377c has a curved surface that forms a concentric circle with the inner peripheral surface 377b and a curved surface that forms two tangential circles that are continuous with this concentric circle. Such a communication groove 377c does not need to be formed with sharp corners, and thus can be easily processed. Also, the thickness between the communication groove 377c and the inner peripheral surface 377b can be made uniform. As a result, it is possible to suppress the formation of a low-rigidity portion by providing the communication groove 377c.
- the number of communicating grooves of the stopper according to the present invention may be five or more, or may be three or less.
- machining an axially symmetrical part in the vertical direction increases the number of machining steps, but it is possible to reduce the number of machining steps by reducing the number of grooves.
- by providing the communicating groove 377c it is possible to facilitate gripping the stopper 37 with a tool or the like during processing.
- An inner peripheral surface 377b of the press-fit portion 377 faces the outer peripheral surface of the valve portion 321 with a gap therebetween.
- the press-fitting portion 377 also serves as a shielding portion that shields the fuel flowing from the pressurizing chamber 11 side into the plurality of communication grooves 377 c from traveling toward the outer peripheral surface of the valve portion 321 .
- the shape of the stopper can be made simpler than when the shielding portion is provided separately from the press-fitting portion 377, and the number of man-hours for processing the stopper can be reduced.
- the size of the gap between the inner peripheral surface 377b and the outer peripheral surface of the valve portion 321 is uniform over the entire circumference. If the size of this gap is not constant over the entire circumference, the flow of backflow fuel that flows back from the pressure chamber 11 to the side of the electromagnetic intake valve mechanism 3 becomes uneven. As a result, the fuel pressure varies near the end surface 377 a of the press-fit portion 377 . On the other hand, in the present embodiment, variations in fuel pressure in the gap between the inner peripheral surface 377b and the outer peripheral surface of the valve portion 321 can be reduced. Thereby, the operation of the valve body 32 can be stabilized.
- the channel cross-sectional area of the gap generated between the press-fitting portion 377 and the valve portion 321 is set to be equal to or larger than the channel cross-sectional area of the through hole 322 b in the valve body 32 . This prevents the fuel returning from the intake passage 1a (see FIG. 2) from interfering with the operation of the valve body 32. As shown in FIG.
- FIG. 10 is a cross-sectional view showing a second example of the stopper.
- FIG. 11 is a cross-sectional view showing a third example of the stopper.
- a stopper 37A shown in FIG. 10 is a second example of the stopper.
- the stopper 37A has the same configuration as the stopper 37 shown in FIG.
- the difference between the stopper 37A and the stopper 37 is the facing surface 374A. Therefore, here, the facing surface 374A will be described, and the description of the configuration common to the stopper 37 will be omitted.
- the stopper 37A has a spring bearing surface 372, a stopper surface 373, and a facing surface 374A.
- the facing surface 374A intersects the inner peripheral surface 377b at an obtuse angle.
- the opposing surface 374 of the stopper 37 (see FIG. 4) intersects the inner peripheral surface 377b at right angles.
- the opposing surface may intersect the inner peripheral surface at an acute angle.
- a stopper 37B shown in FIG. 11 is a third example of the stopper.
- the stopper 37B has the same configuration as the stopper 37 shown in FIG.
- the stopper 37B differs from the stopper 37 in the stopper protrusion 37b. Therefore, here, the stopper convex portion 37b will be described, and the description of the configuration common to the stopper 37 will be omitted.
- the stopper 37B has a spring bearing surface 372, a stopper surface 373, and a facing surface 374.
- a stopper convex portion 37b is formed on the outer side of the spring seat surface 372 .
- the stopper convex portion 37b has an end face facing the suction passage 1a and an arc-shaped curved surface continuous with the end face.
- a stopper projection 37a of the stopper 37 (see FIG. 4) has an end surface facing the suction passage 1a and a tapered surface (inclined surface) continuous with the end surface.
- the fuel in the pressurization chamber 11 When the fuel in the pressurization chamber 11 is pressurized, the fuel flows backward from the pressurization chamber 11 to the side of the electromagnetic intake valve mechanism 3 through the intake passage 1a. This backflow fuel flows toward the stopper protrusions 37a and the stopper protrusions 37b. In this case, since the stopper protrusions 37a and 37b have tapered surfaces (inclined surfaces) and curved surfaces, the backflow fuel smoothly flows along the tapered surfaces (inclined surfaces) and curved surfaces. As a result, the pressure loss of the counterflow fuel can be reduced.
- FIG. 12 is an explanatory diagram showing the flow of fuel when the electromagnetic intake valve mechanism 3 is open.
- FIG. 12 shows the flow of fuel that flows backward during the return process when the electromagnetic intake valve mechanism 3 is in the open state.
- the seat outer peripheral portion 312 of the intake valve housing 31 is recessed from the seat portion 311 .
- a press-fit portion 377 of the stopper 37 faces the seat outer peripheral portion 312 .
- backflow fuel 300 the fuel 300 flowing back toward the electromagnetic intake valve mechanism 3 (hereinafter referred to as "backflow fuel 300") passes through the communicating groove 377c of the stopper 37. After that, the backflow fuel 300 passes through a curved flow path formed by the press-fit portion 377 of the stopper 37 and the seat outer peripheral portion 312 . At this time, the backflow fuel 300 passes through the end surface 377a of the press-fit portion 377 while increasing the flow velocity because the flow path is narrowed.
- the end surface 377a of the press-fitting portion 377 is located closer to the valve seat 31a than the first surface 321a of the valve body 32 is. Therefore, immediately after the backflow fuel 300 passes through the end surface 377 a , flow separation occurs in part of the backflow fuel 300 in the vicinity of the end surface 377 a of the press-fit portion 377 .
- the backflow fuel 300 continues to flow in an apparently narrow flow path, and the flow velocity remains increased.
- the fuel pressure between the inclined surface 311a of the valve seat 31a and the first surface 321a of the valve body 32 decreases.
- the fuel pressure between the inclined surface 311a and the first surface 321a of the valve body 32 and the fuel pressure in the gap between the outer peripheral surface of the valve portion 321 and the inner peripheral surface 377b It becomes the same as the pressure of the fuel that presses the second surface 321b. Therefore, the pressure of the fuel pressing the second surface 321b of the valve body 32 decreases.
- the end face 377a of the press-fit portion 377 is located closer to the valve seat 31a than the first face 321a of the valve body 32 is.
- the stopper 37 arranges the press-fit portion 377 and the communication groove 377c, which is the fuel passage, within the same ring. As a result, the shape of the stopper can be made simpler than when the press-fit portion 377 and the fuel passage are arranged separately. As a result, the processing method of the stopper 37 can be diversified.
- FIG. 13 is a perspective view of the stopper of the electromagnetic intake valve mechanism according to the second embodiment.
- FIG. 14 is a front view of the stopper of the electromagnetic intake valve mechanism according to the second embodiment.
- the high-pressure fuel supply pump according to the second embodiment has the same configuration as the high-pressure fuel supply pump 100 according to the first embodiment.
- the high-pressure fuel supply pump according to the second embodiment differs from the high-pressure fuel supply pump 100 according to the first embodiment in the stopper 137 . Therefore, here, the stopper 137 will be described, and the description of the configuration common to the high-pressure fuel supply pump 100 will be omitted.
- the stopper 137 according to the second embodiment has the same configuration as the stopper according to the first embodiment. That is, the stopper 137 is formed in a substantially cylindrical shape with a bottom.
- the stopper 137 has a spring seat surface 372 , a stopper surface 373 , a facing surface 374 and a guide hole 375 .
- the stopper 137 has a press-fitting portion 1377 that is press-fitted into the intake valve housing 31 .
- the press-fit portion 1377 forms the outermost diameter portion of the stopper 137 .
- the press-fit portion 1377 is formed in a tubular shape having an inner peripheral surface 1377b.
- the press-fit portion 1377 also has an end surface 1377 a substantially parallel to the facing surface 374 . When the electromagnetic intake valve mechanism 3 is open, the end surface 1377a of the press-fitting portion 1377 is located closer to the valve seat 31a than the first surface 321a (see FIG. 4) of the valve body 32 is.
- a plurality of communication grooves 1377c are provided on the outer peripheral surface of the press-fit portion 1377.
- the communication groove 1377c forms a communication path between the intake valve housing 31 (see FIG. 5) and the stopper 37 through which fuel passes.
- the communication path serves as a flow path that connects the suction port 31 b and the pressurization chamber 11 .
- the plurality of communication grooves 1377c are arranged at equal intervals in the circumferential direction of the press-fit portion 1377. As a result, it is possible to reduce variations in pressure and turbulence in the flow of fuel that occur in the vicinity of the end surface 1377a of the press-fit portion 1377. FIG. Furthermore, the stress generated by pressing the stopper 137 into the intake valve housing 31 can be dispersed.
- the communication groove 1377c is formed in an arc shape when viewed from the direction orthogonal to the end surface 1377a. Such a communication groove 1377c does not need to form a sharp corner, and can be easily processed.
- the arc shape of the communication groove according to the present invention may be a part of a circle or a part of an ellipse. Further, when the circular arc shape of the communicating groove is a part of an ellipse, the groove depth may be set to the long axis side of the ellipse, or the short axis side of the ellipse may be set to the groove depth.
- An inner peripheral surface 1377b of the press-fit portion 1377 faces the outer peripheral surface of the valve portion 321 (see FIG. 4) with a gap therebetween.
- the press-fit portion 1377 also serves as a shielding portion that shields the fuel flowing from the pressurizing chamber 11 side into the plurality of communication grooves 1377 c from traveling toward the outer peripheral surface of the valve portion 321 .
- the channel cross-sectional area of the gap generated between the press-fitting portion 1377 and the valve portion 321 is set to be equal to or larger than the channel cross-sectional area of the through hole 322 b in the valve body 32 .
- FIG. 15 is a perspective view of the stopper of the electromagnetic intake valve mechanism according to the third embodiment.
- FIG. 16 is a front view of the stopper of the electromagnetic intake valve mechanism according to the third embodiment.
- a stopper 237 according to the third embodiment has the same configuration as the stopper according to the first embodiment. That is, the stopper 237 is formed in a substantially cylindrical shape with a bottom.
- the stopper 237 has a spring seat surface 372 , a stopper surface 373 , a facing surface 374 and a guide hole 375 .
- the stopper 237 also has a press-fit portion 2377 that is press-fitted into the intake valve housing 31 .
- the press-fit portion 2377 forms the outermost diameter portion of the stopper 237 .
- the press-fit portion 2377 is formed in a tubular shape having an inner peripheral surface 2377b.
- the press-fit portion 2377 has an end surface 2377a substantially parallel to the facing surface 374 . When the electromagnetic suction valve mechanism 3 is open, the end surface 2377a of the press-fitting portion 2377 is located closer to the valve seat 31a than the first surface 321a (see FIG. 4) of the valve body 32 is.
- a plurality of communication grooves 2377c are provided on the outer peripheral surface of the press-fit portion 2377.
- the communication groove 2377c forms a communication path through which fuel flows between the intake valve housing 31 (see FIG. 5) and the stopper 237. As shown in FIG.
- the communication path serves as a flow path that connects the suction port 31 b and the pressurization chamber 11 .
- the plurality of communication grooves 2377c are arranged at equal intervals in the circumferential direction of the press-fit portion 2377. As a result, it is possible to reduce variations in pressure and turbulence in the flow of fuel that occur near the end surface 2377a of the press-fit portion 2377 . Furthermore, the stress generated by pressing the stopper 237 into the intake valve housing 31 can be dispersed.
- the communication groove 2377c is formed in a substantially rectangular shape with one side open when viewed from the direction perpendicular to the end surface 2377a.
- Four corners of the communication groove 2377c are formed in a substantially arcuate shape so as to be rounded.
- Such a communication groove 2377c can be easily processed because it is not necessary to form a sharp corner.
- the aspect ratio of the substantially rectangular shape of the communicating groove according to the present invention can be set as appropriate.
- An inner peripheral surface 2377b of the press-fit portion 2377 faces the outer peripheral surface of the valve portion 321 (see FIG. 4) with a gap therebetween.
- the press-fitting portion 2377 also serves as a shielding portion that shields fuel flowing from the pressurizing chamber 11 side into the plurality of communication grooves 2377c from traveling toward the outer peripheral surface of the valve portion 321 .
- the channel cross-sectional area of the gap generated between the press-fit portion 2377 and the valve portion 321 is set to be equal to or larger than the channel cross-sectional area of the through hole 322b in the valve body 32 .
- FIG. 17 is a cross-sectional view showing an enlarged open state of the electromagnetic suction valve mechanism according to the fourth embodiment.
- a high-pressure fuel supply pump according to the fourth embodiment has the same configuration as the high-pressure fuel supply pump 100 according to the first embodiment.
- the high-pressure fuel supply pump according to the fourth embodiment differs from the high-pressure fuel supply pump 100 according to the first embodiment in the stopper 337 of the electromagnetic intake valve mechanism 3A. Therefore, here, the stopper 337 of the electromagnetic intake valve mechanism 3A will be described, and the description of the configuration common to the high-pressure fuel supply pump 100 will be omitted.
- a stopper 337 according to the fourth embodiment has the same configuration as the stopper according to the first embodiment. That is, the stopper 337 is formed in a substantially cylindrical shape with a bottom.
- the stopper 337 has a spring bearing surface 372 , a stopper surface 373 , a facing surface 374 and a guide hole 375 .
- a stopper convex portion 37a is formed on the outer side of the spring seat surface 372 .
- the stopper 237 has a press-fitting portion 3377 that is press-fitted into the intake valve housing 31 .
- the press-fit portion 3377 forms the outermost diameter portion of the stopper 337 .
- the press-fit portion 3377 is formed in a tubular shape having an inner peripheral surface 3377b.
- the press-fitting portion 3377 is press-fitted into the intake valve housing 31 .
- the stopper 337 is fixed to the intake valve housing 31 by press-fitting the press-fit portion 3377 into the intake valve housing 31 .
- the press-fit portion 3377 has an end surface 3377a, an abutment surface 3378, and a plurality of communication grooves (not shown).
- the plurality of communicating grooves are the same as the plurality of communicating grooves 377c according to the first embodiment.
- the end surface 3377a of the press-fit portion 3377 is located closer to the valve seat 31a than the first surface 321a of the valve body 32 when the electromagnetic intake valve mechanism 3A is in the open state.
- An inner peripheral surface 3377b of the press-fit portion 3377 faces the outer peripheral surface of the valve portion 321 with a gap therebetween.
- the press-fitting portion 3377 also serves as a shielding portion that shields fuel flowing from the pressurizing chamber 11 side into the plurality of communication grooves (not shown) from traveling toward the outer peripheral surface of the valve portion 321 .
- the channel cross-sectional area of the gap generated between the press-fit portion 2377 and the valve portion 321 is set to be equal to or larger than the channel cross-sectional area of the through hole 322b in the valve body 32 .
- the abutment surface 3378 is the surface opposite to the end surface 3377a.
- the abutment surface 3378 intersects the outer peripheral surface of the press-fit portion 3377 at right angles.
- the abutting surface 3378 abuts against a stepped portion of the lateral hole 1 i formed in the body 1 .
- the abutment surface 3378 forms the same plane as the opening end surface of the intake valve housing 31 . Therefore, when the stopper 337 is press-fitted into the intake valve housing 31 , the abutment surface 3378 is set at the same height as the opening end surface of the intake valve housing 31 . This makes it possible to easily position the stopper 337 and the intake valve housing 31 relative to each other.
- a concave portion 3371 is provided on the inner diameter side (stopper convex portion 37a side) of the abutment surface 3378 . This makes it possible to clarify the place where the abutment surface 3378 is provided in the region between the stopper protrusion 37a and the outer peripheral surface of the press-fitting portion 3377 . As a result, the range of the abutment surface 3378 required to be machined with high precision is geometrically determined, so that machining and measurement of dimensions can be made easier than in the case where the recess 3371 is not provided. Therefore, variation in the stroke of the valve body 32 can be reduced while reducing manufacturing costs.
- the stopper projection 37 a has a side peripheral surface 3379 .
- the side peripheral surface 3379 is parallel to the outer peripheral surface of the press-fit portion 3377 and has a smaller diameter than the outer peripheral surface of the press-fit portion 3377 . Since the press-fitting portion 3377 has the side peripheral surface 3379, the side peripheral surface 3379 can be gripped with a tool or the like when assembling the stopper 337, so that the ease of assembly can be improved.
- the electromagnetic intake valve mechanism 3 includes the valve body 32, the valve seat 31a on which the valve body 32 is seated, and the movement of the valve body 32 in the valve opening direction.
- a stopper 37 is provided.
- the valve body 32 has a first surface 321a (seating surface) that contacts the valve seat 31a, and an outer peripheral surface substantially orthogonal to the first surface 321a.
- the stopper 37 is formed in a cylindrical shape, and has an inner peripheral surface 377b facing the outer peripheral surface of the valve body 32 and an outer peripheral surface opposite to the inner peripheral surface 377b. It has a plurality of communication grooves 377c that are formed in the outer peripheral surface and serve as fuel passages.
- a portion of the press-fitting portion 377 (on the side of the end surface 377a) is closer to the valve seat 31a than the first surface 321a of the valve body 32 when the valve body 32 is in the valve-open state where movement in the valve-opening direction is restricted by the stopper 37. To position.
- the backflow fuel 300 passing through the communication groove 377c and heading between the outer peripheral surface of the valve body 32 and the inner peripheral surface 377b of the press-fit portion 377 is shielded by the press-fit portion 377. Therefore, the backflow fuel 300 that has passed through the communication groove 377c passes between the press-fit portion 377 and the valve seat 31a. Then, flow separation occurs in part of the backflow fuel 300 that has passed between the press-fit portion 377 and the valve seat 31a. As a result, the fuel pressure between the valve seat 31a and the first surface 321a of the valve body 32 decreases.
- the fuel pressure between the valve seat 31a and the first surface 321a of the valve body 32 and the fuel pressure in the gap between the outer peripheral surface of the valve body 32 and the inner peripheral surface 377b of the press-fit portion 377 are It becomes the same as the pressure of the fuel that presses the body 32 toward the valve seat 31a. Therefore, the fuel pressure that presses the valve body 32 toward the valve seat 31a decreases. As a result, the valve body 32 can be prevented from moving toward the valve seat 31a (in the valve closing direction), and the discharge flow rate can be reduced to 0 during fuel cut, in which no fuel is discharged.
- the size of the gap between the outer peripheral surface of the valve body 32 and the inner peripheral surface 377b of the press-fit portion 377 according to the first embodiment is uniform over the entire circumference. As a result, variations in fuel pressure in the gap between the outer peripheral surface of the valve body 32 and the inner peripheral surface 377b of the press-fit portion 377 can be reduced. As a result, the operation of the valve body 32 can be stabilized.
- the plurality of communication grooves 377c according to the first embodiment described above are arranged at equal intervals in the circumferential direction on the outer peripheral surface of the press-fitting portion 377 .
- the stress generated by press-fitting the press-fitting portion 377 of the stopper 37 into the component (intake valve housing 31) into which the press-fitting portion is press-fitted can be dispersed.
- the plurality of communication grooves 377c according to the first embodiment described above have a circular shape concentric with the inner peripheral surface 377b of the press-fit portion 377 .
- the thickness portion between the communication groove 377c and the inner peripheral surface 377b of the press-fit portion 377 can be made uniform.
- the stopper 337 according to the fourth embodiment described above has an abutment surface 3378 on the opposite side of the press-fit portion 3377 from the valve seat 31a side.
- the abutment surface 3378 forms the same plane as the opening end surface of the component (intake valve housing 31) into which the press-fitting portion 3377 is press-fitted. This makes it possible to easily position the parts into which the stopper 337 and the press-fit portion 3377 are press-fit.
- the stopper 337 according to the fourth embodiment described above has a side peripheral surface 3379 having a smaller diameter than the outer peripheral surface of the press-fit portion 3377 .
- the side peripheral surface 3379 can be gripped with a tool or the like, so that the ease of assembly can be improved.
- valve body 32 has a cylindrical fitting protrusion 322 that is slidably fitted to the stopper 37 .
- the fitting protrusion 322 has a through hole 322 b that communicates the gap between the outer peripheral surface of the valve body 32 and the inner peripheral surface 377 b of the press-fitting portion 377 with the inside of the fitting protrusion 322 .
- the through hole 322b serves as a breather channel, and the fuel inside the fitting protrusion 322 (inside the cylindrical hole 322a) can flow to the outside of the fitting protrusion 322.
- the channel cross-sectional area of the gap between the outer peripheral surface of the valve body 32 and the inner peripheral surface 377b of the press-fit portion 377 according to the first embodiment is equal to or larger than the channel cross-sectional area of the through hole 322b.
- the high-pressure fuel supply pump 100 (fuel pump) according to the first embodiment described above is supported by the body 1 having the pressurizing chamber 11 and the body 1 so as to be able to reciprocate. It has a plunger 2 for increasing or decreasing the capacity, and the electromagnetic intake valve mechanism 3 for discharging fuel into the pressurizing chamber 11 .
- the fuel pressure between the valve seat 31a and the first surface 321a of the valve body 32 and the fuel pressure in the gap between the outer peripheral surface of the valve body 32 and the inner peripheral surface 377b of the press-fit portion 377 are This is the same as the fuel pressure that presses the valve body 32 toward the valve seat 31a. Therefore, the fuel pressure that presses the valve body 32 toward the valve seat 31a decreases.
- the valve body 32 can be prevented from moving toward the valve seat 31a (valve closing direction), and the discharge flow rate can be reduced to 0 during fuel cut, in which fuel is not discharged.
- Injector 300 Backflow fuel 311... Seat part 311a... Inclined surface 312...seat outer peripheral portion 321...valve portion 321a...first surface 321b...second surface 322...fitting protrusion 322a...cylindrical hole 322b...through hole 322c...end face 372...seat surface 373... Stopper surface 374, 374A... Opposite surface 375... Guide hole 377, 1377, 2377, 3377... Press fitting part 377a, 1377a, 2377a, 3377a... End surface 377b, 1377b, 2377b, 3377b... Inner peripheral surface, 377c, 1377c, 2377c...Communicating groove, 3371...Recessed part, 3378...Abutment surface, 3379...Side peripheral surface
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Fuel-Injection Apparatus (AREA)
Abstract
本発明は、燃料が弁体を閉弁方向に押す力を低減することが可能な電磁吸入弁機構及び燃料ポンプを提供する。電磁吸入弁機構は、弁体と、弁体が着座する弁座と、弁体の開弁方向への移動を制限するストッパとを備える。弁体は、弁座に接触する第1面(着座面)と、第1面に略直交する外周面とを有する。ストッパは、筒状に形成され、弁体の外周面に対向する内周面と、内周面と反対側の外周面とを有する固定用の圧入部と、圧入部の外周面に形成された複数の連通溝とを有する。圧入部の一部(端面側)は、開弁状態において、弁体の第1面よりも弁座側に位置する。
Description
本発明は、電磁吸入弁機構、及び電磁吸入弁機構を備える燃料ポンプに関する。
近年、内燃機関の高出力・低排気化とともに、グローバル展開が進められている。直噴エンジンに燃料を供給する燃料ポンプ(高圧燃料供給ポンプ)においては、簡易な構成で、低コストに製造することが重要な課題である。現在、市場で広く普及している燃料ポンプには、電磁吸入弁を備えたピストン式ポンプがある。電磁吸入弁の構成は、流体の動きに対して受動的に開閉する吸入弁と、吸入弁に係合して吸入弁の動作を規制する電磁アクチュエータからなるものがある。
例えば、特許文献1に記載されたポンプは、電磁吸入弁が開弁しているとき、ばねが弁体を開弁側に押している。その際、弁体は、燃料通路上流側より流れ込んでくる燃料の流体力によっても開弁側に押されている。一方、電磁吸入弁が閉弁する場合は、磁気回路によって発生した磁気吸引力によって可動子が弁体を閉弁方向に移動させる。また、電磁吸入弁は、弁体を閉弁方向に押すばねを備えている。電磁吸入弁が閉弁する際、弁体は、加圧室側から逆流した燃料の流体力によっても閉弁方向に押されている。
しかしながら、特許文献1に記載されたポンプのように、加圧室側から逆流した燃料による流体力によって弁体が磁気回路による制御無しで閉弁方向に移動してしまうと、燃料を吐出しない燃料カット時に、吐出流量を0にできない。
本発明の目的は、上記の問題点を考慮し、燃料が弁体を閉弁方向に押す力を低減することが可能な電磁吸入弁機構及び燃料ポンプを提供することにある。
上記課題を解決し、本発明の目的を達成するため、本発明の電磁吸入弁機構は、弁体と、弁体が着座する弁座と、弁体の開弁方向への移動を制限するストッパとを備える。弁体は、弁座に接触する着座面と、着座面に略直交する外周面とを有する。ストッパは、筒状に形成され、弁体の外周面に対向する内周面と、内周面と反対側の外周面とを有する固定用の圧入部と、圧入部の外周面に形成されて燃料通路となる複数の連通溝とを有する。圧入部の一部は、弁体がストッパに開弁方向への移動を制限された開弁状態において、弁体の着座面よりも弁座側に位置する。
また、本発明の燃料ポンプは、加圧室を備えたボディと、ボディに往復運動可能に支持され、往復運動により加圧室の容量を増減させるプランジャと、加圧室へ燃料を吐出する上記吸入弁機構とを備える。
上記構成の吸入弁機構によれば、燃料が弁体を閉弁方向に押す力を低減することができる。
なお、上述した以外の課題、構成および効果は、以下の実施形態の説明により明らかにされる。
なお、上述した以外の課題、構成および効果は、以下の実施形態の説明により明らかにされる。
1.第1実施形態
以下、本発明の第1実施形態に係る電磁弁機構及び高圧燃料供給ポンプについて説明する。なお、各図において共通の部材には、同一の符号を付している。
以下、本発明の第1実施形態に係る電磁弁機構及び高圧燃料供給ポンプについて説明する。なお、各図において共通の部材には、同一の符号を付している。
[燃料供給システム]
まず、本実施形態に係る高圧燃料供給ポンプ(燃料ポンプ)を用いた燃料供給システムについて、図1を用いて説明する。
図1は、本実施形態に係る高圧燃料供給ポンプを用いた燃料供給システムの全体構成図である。
まず、本実施形態に係る高圧燃料供給ポンプ(燃料ポンプ)を用いた燃料供給システムについて、図1を用いて説明する。
図1は、本実施形態に係る高圧燃料供給ポンプを用いた燃料供給システムの全体構成図である。
図1に示すように、燃料供給システムは、高圧燃料供給ポンプ(燃料ポンプ)100と、ECU(Engine Control Unit)101と、燃料タンク103と、コモンレール106と、複数のインジェクタ107とを備えている。高圧燃料供給ポンプ100の部品は、ポンプボディ1(以下、「ボディ1」とする。)に一体に組み込まれている。
燃料タンク103の燃料は、ECU101からの信号に基づいて駆動するフィードポンプ102によって汲み上げられる。汲み上げられた燃料は、不図示のプレッシャレギュレータにより適切な圧力に加圧され、低圧配管104を通して高圧燃料供給ポンプ100の低圧燃料吸入口81に送られる。
高圧燃料供給ポンプ100は、燃料タンク103から供給された燃料を加圧して、コモンレール106に圧送する。コモンレール106には、複数のインジェクタ107と、燃料圧力センサ105が装着されている。複数のインジェクタ107は、気筒(燃焼室)数にあわせて装着されており、ECU101から出力される駆動電流に従って燃料を噴射する。本実施形態の燃料供給システムは、インジェクタ107がエンジンのシリンダ筒内に直接、燃料を噴射する、いわゆる直噴エンジンシステムである。
燃料圧力センサ105は、検出した圧力データをECU101に出力する。ECU101は、各種センサから得られるエンジン状態量(例えばクランク回転角、スロットル開度、エンジン回転数、燃料圧力等)に基づいて適切な噴射燃料量(目標噴射燃料長)や適切な燃料圧力(目標燃料圧力)等を演算する。
また、ECU101は、燃料圧力(目標燃料圧力)等の演算結果に基づいて、高圧燃料供給ポンプ100や複数のインジェクタ107の駆動を制御する。すなわち、ECU101は、高圧燃料供給ポンプ100を制御するポンプ制御部と、インジェクタ107を制御するインジェクタ制御部を有する。
高圧燃料供給ポンプ100は、圧力脈動低減機構9と、容量可変機構である電磁吸入弁機構3と、吐出弁機構5と、リリーフ弁機構6(図2参照)とを有している。低圧燃料吸入口81から流入した燃料は、圧力脈動低減機構9、吸入通路10bを介して電磁吸入弁機構3の吸入ポート31bに到達する。
電磁吸入弁機構3に流入した燃料は、弁体32を通過し、ボディ1に形成された吸入通路1aを流れた後に加圧室11に流入する。加圧室11には、プランジャ2が往復動可能に挿入されている。プランジャ2は、エンジンのカム91(図2参照)により動力が伝えられて往復動する。
加圧室11では、プランジャ2の下降行程において電磁吸入弁機構3から燃料が吸入され、上昇行程において燃料が加圧される。加圧室11の燃料圧力が所定値を超えると、吐出弁機構5が開弁し、高圧燃料が燃料吐出口12aを経てコモンレール106へ圧送される。高圧燃料供給ポンプ100による燃料の吐出は、電磁吸入弁機構3の開閉によって操作される。そして、電磁吸入弁機構3の開閉は、ECU101によって制御される。
[高圧燃料供給ポンプ]
次に、高圧燃料供給ポンプ100の構成について、図2及び図3を用いて説明する。 図2は、高圧燃料供給ポンプ100の水平方向に直交する断面で見た縦断面図である。図3は、図2に示すA-A線に沿った断面図である。
次に、高圧燃料供給ポンプ100の構成について、図2及び図3を用いて説明する。 図2は、高圧燃料供給ポンプ100の水平方向に直交する断面で見た縦断面図である。図3は、図2に示すA-A線に沿った断面図である。
図2及び図3に示すように、高圧燃料供給ポンプ100のボディ1には、上述した吸入通路1aと、取付けフランジ1b(図3参照)が設けられている。取付けフランジ1bは、エンジン(内燃機関)の燃料ポンプ取付け部90に密着し、図示しない複数のボルト(ねじ)で固定されている。すなわち、高圧燃料供給ポンプ100は、取付けフランジ1bによって燃料ポンプ取付け部90に固定されている。
図2に示すように、燃料ポンプ取付け部90とボディ1との間には、シート部材の一具体例を示すOリング93が介在されている。このOリング93は、エンジンオイルが燃料ポンプ取付け部90とボディ1との間を通ってエンジン(内燃機関)の外部に漏れることを防止している。
また、高圧燃料供給ポンプ100のボディ1には、プランジャ2の往復運動をガイドするシリンダ4が取り付けられている。シリンダ4は、筒状に形成されており、その外周側においてボディ1に圧入されている。ボディ1及びシリンダ4は、電磁吸入弁機構3、プランジャ2、吐出弁機構5(図3参照)と共に加圧室11を形成している。
ボディ1には、シリンダ4の軸方向の中央部に係合する固定部1cが設けられている。ボディ1の固定部1cは、下方(図2中の下方)から荷重を加えられることで塑性変形し、シリンダ4を上方へ押圧する。これにより、シリンダ4がボディ1に圧入される。その結果、加圧室11にて加圧された燃料が、シリンダ4とボディ1との間から漏れないようにすることができる。
プランジャ2の下端には、タペット92が設けられている。タペット92は、エンジンのカムシャフトに取り付けられたカム91の回転運動を上下運動に変換し、プランジャ2に伝達する。プランジャ2は、リテーナ15を介してばね16によりカム91側に付勢されており、タペット92に圧着されている。タペット92は、カム91の回転に伴って往復動する。プランジャ2は、タペット92と一緒に往復動し、加圧室11の容積を変化させる。
また、シリンダ4とリテーナ15との間には、シールホルダ17が配置されている。シールホルダ17は、プランジャ2が挿入される筒状に形成されており、シリンダ4側である上端部に副室17aを有している。また、シールホルダ17は、リテーナ15側である下端部にプランジャシール18を保持している。
プランジャシール18は、プランジャ2の外周に摺動可能に接触している。プランジャシール18は、プランジャ2が往復動したとき、副室17aの燃料をシールし、副室17aの燃料がエンジン内部へ流入しないようにしている。また、プランジャシール18は、エンジン内の摺動部を潤滑する潤滑油(エンジンオイルも含む)がボディ1の内部に流入することを防止している。
図2において、プランジャ2は、上下方向に往復動する。プランジャ2が下降すると、加圧室11の容積が拡大し、プランジャ2が上昇すると、加圧室11の容積が減少する。すなわち、プランジャ2は、加圧室11の容積を拡大及び縮小させる方向に往復動するように配置されている。
プランジャ2は、大径部2aと小径部2bを有している。プランジャ2が往復動すると、大径部2a及び小径部2bは、副室17aに位置する。したがって、副室17aの体積は、プランジャ2の往復動によって増減する。
副室17aは、燃料通路10c(図3参照)により低圧燃料室10と連通している。プランジャ2の下降時は、副室17aから低圧燃料室10へ燃料の流れが発生し、プランジャ2の上昇時は、低圧燃料室10から副室17aへ燃料の流れが発生する。これにより、高圧燃料供給ポンプ100の吸入行程もしくは、戻し行程におけるポンプ内外への燃料流量を低減することができ、高圧燃料供給ポンプ100内部で発生する圧力脈動を低減することができる。
図3に示すように、ボディ1の側面部には、吸入ジョイント8が取り付けられている。吸入ジョイント8は、燃料タンク103から供給された燃料を通す低圧配管104(図1参照)に接続されている。燃料タンク103の燃料は、吸入ジョイント8から高圧燃料供給ポンプ100の内部に供給される。
吸入ジョイント8は、低圧配管104に接続された低圧燃料吸入口81と、低圧燃料吸入口81に連通する吸入流路82とを有している。吸入流路82を通過した燃料は、低圧燃料室10に設けた圧力脈動低減機構9及び吸入通路10b(図2参照)を介して電磁吸入弁機構3の吸入ポート31b(図2参照)に到達する。吸入流路82に連通する燃料通路内には、吸入フィルタ83が配置されている。吸入フィルタ83は、燃料に存在する異物を除去し、高圧燃料供給ポンプ100内に異物が進入することを防ぐ。
図2に示すように、高圧燃料供給ポンプ100のボディ1には、低圧燃料室(ダンパ室)10が設けられている。この低圧燃料室10は、ダンパーカバー14によって覆われている。ダンパーカバー14は、例えば、一方側が閉塞された筒状(カップ状)に形成されている。
低圧燃料室10は、低圧燃料流路10aと、吸入通路10bを有している。吸入通路10bは、電磁吸入弁機構3の吸入ポート31bに連通している。低圧燃料流路10aを通った燃料は、吸入通路10bを介して電磁吸入弁機構3の吸入ポート31bに到達する。
低圧燃料流路10aには、圧力脈動低減機構9が設けられている。加圧室11に流入した燃料が再び開弁状態の電磁吸入弁機構3を通って吸入通路10bへと戻されると、低圧燃料室10に圧力脈動が発生する。圧力脈動低減機構9は、高圧燃料供給ポンプ100内で発生した圧力脈動が低圧配管104へ波及することを低減する。
圧力脈動低減機構9は、波板状の円盤型金属板2枚をその外周で張り合わせ、内部にアルゴンのような不活性ガスを注入した金属ダイアフラムダンパで形成されている。圧力脈動低減機構9の金属ダイアフラムダンパは、膨張・収縮することで圧力脈動を吸収或いは低減する。
図3に示すように、ボディ1には、加圧室11に連通する吐出弁機構5が設けられている。吐出弁機構5は、吐出弁シート51と、吐出弁シート51に対して着座及び離座が可能な弁体52と、弁体52を吐出弁シート51側に付勢する吐出弁ばね53と、弁体52を摺動ガイドする吐出弁ガイド54とを有する。
吐出弁シート51、弁体52、吐出弁ばね53、及び吐出弁ガイド54は、ボディ1に形成された吐出弁室1dに収納されている。吐出弁室1dは、水平方向に延びる略円柱状の空間である。吐出弁室1dの一端は、燃料通路1eを介して加圧室11に連通している。吐出弁室1dの他端は、ボディ1の側面に開口している。吐出弁室1dの他端の開口は、プラグ55によって封止されている。プラグ55とボディ1は、例えば、溶接により接合されている。
また、ボディ1には、吐出ジョイント12が溶接により接合されている。吐出ジョイント12は、燃料吐出口12aを有している。燃料吐出口12aは、ボディ1の内部において水平方向に延びる吐出通路1fを介して吐出弁室1dに連通している。また、吐出ジョイント12の燃料吐出口12aは、コモンレール106(図1参照)に接続されている。
加圧室11と吐出弁室1dとの間に燃料圧力の差が無い状態では、弁体52が吐出弁ばね53の付勢力により吐出弁シート51に圧着されている。これにより、吐出弁機構5は、閉弁状態となっている。加圧室11の燃料圧力が、吐出弁室1dの燃料圧力よりも大きくなると、弁体52は、吐出弁ばね53の付勢力に抗して移動し、吐出弁シート51から離れる。これにより、吐出弁機構5は、開弁状態となる。
吐出弁機構5が開弁状態になると、加圧室11内の高圧の燃料は、吐出弁室1d、吐出通路1f、燃料吐出口12aを経てコモンレール106(図1参照)に吐出される。吐出弁機構5の開弁状態において、弁体52は吐出弁ガイド54と接触し、弁体52のストロークが制限される。
弁体52のストロークは、吐出弁ガイド54によって適切に決定される。これにより、弁体52のストロークが長いことにより生じる吐出弁機構5の閉じ遅れを防ぐことができる。その結果、吐出弁室1dに吐出された燃料が、再び加圧室11内に逆流してしまうことを防止でき、高圧燃料供給ポンプ100の効率低下を抑制することができる。このように、吐出弁機構5は、燃料の流通方向を制限する逆止弁となる。
また、ボディ1には、加圧室11に連通するリリーフ弁機構6が設けられている。リリーフ弁機構6は、リリーフ弁シート61と、リリーフ弁シート61に接離するリリーフ弁62と、リリーフ弁62を保持するリリーフ弁ホルダ63とを有する。また、リリーフ弁機構6は、リリーフ弁62をリリーフ弁シート61側へ付勢するリリーフばね64と、リリーフ弁ハウジング65とを有する。
リリーフ弁ハウジング65は、ボディ1に形成されたリリーフ弁室1gに嵌合している。リリーフ弁室1gは、水平方向に延びる略円柱状の空間である。リリーフ弁室1gの一端は、燃料通路1hを介して加圧室11に連通している。リリーフ弁室1gの他端には、上述の吐出ジョイント12が接合されている。
リリーフ弁ハウジング65は、リリーフばね64、リリーフ弁ホルダ63、リリーフ弁62、及びリリーフ弁シート61を内包する。リリーフ弁ハウジング65内には、リリーフばね64、リリーフ弁ホルダ63、リリーフ弁62がこの順に挿入される。その後、リリーフ弁シート61がリリーフ弁ハウジング65に圧入固定されている。
リリーフばね64は、一端部がリリーフ弁ハウジング65に当接し、他端部がリリーフ弁ホルダ63に当接している。リリーフ弁ホルダ63は、リリーフ弁62に係合している。リリーフ弁62には、リリーフばね64の付勢力がリリーフ弁ホルダ63を介して作用する。
リリーフ弁62は、リリーフばね64の付勢力により押圧され、リリーフ弁シート61の燃料通路を塞いでいる。リリーフ弁シート61の燃料通路は、吐出通路1fに連通している。加圧室11(上流側)とリリーフ弁シート61(下流側)との間における燃料の移動は、リリーフ弁62がリリーフ弁シート61に接触(密着)することにより遮断されている。
コモンレール106やその先の部材内の圧力が高くなると、燃料吐出口12a側の燃料がリリーフ弁62を押圧して、リリーフばね64の付勢力に抗してリリーフ弁62を移動させる。その結果、リリーフ弁62が開弁し、吐出通路1f内の燃料が、リリーフ弁シート61の燃料通路を通って加圧室11に戻る。したがって、リリーフ弁62を開弁させる圧力は、リリーフばね64の付勢力によって決定される。
なお、本実施形態のリリーフ弁機構6は、加圧室11に連通しているが、これに限定されるものではなく、例えば、低圧通路(低圧燃料吸入口81や吸入通路10b等)に連通するようにしてもよい。
[電磁吸入弁機構]
図2及び図3に示すように、電磁吸入弁機構3は、ボディ1に形成された横穴1iに挿入されている。電磁吸入弁機構3は、横穴1iに圧入された吸入弁ハウジング31と、弁体32と、ロッド33と、ロッド付勢ばね34と、電磁コイル35と、アンカー36とを有している。電磁吸入弁機構3は、弁体32を含む吸入弁機構部と、電磁コイル35やアンカー36、ロッド33を含むソレノイド機構部とに大別される。
図2及び図3に示すように、電磁吸入弁機構3は、ボディ1に形成された横穴1iに挿入されている。電磁吸入弁機構3は、横穴1iに圧入された吸入弁ハウジング31と、弁体32と、ロッド33と、ロッド付勢ばね34と、電磁コイル35と、アンカー36とを有している。電磁吸入弁機構3は、弁体32を含む吸入弁機構部と、電磁コイル35やアンカー36、ロッド33を含むソレノイド機構部とに大別される。
吸入弁ハウジング31は、筒状に形成されており、内周部に弁座31aが設けられている。また、吸入弁ハウジング31には、外周部から内周部に到達する吸入ポート31bが形成されている。この吸入ポート31bは、上述した低圧燃料室10における吸入通路10bに連通している。また、吸入弁ハウジング31は、ロッド33が貫通するロッドガイド31cを有している。
ボディ1に形成された横穴1iには、吸入弁ハウジング31の弁座31aに対向するストッパ37が配置されている。弁体32は、ストッパ37と弁座31aとの間に配置されている。また、ストッパ37と弁体32との間には、弁付勢ばね38が介在されている。弁付勢ばね38は、弁体32を弁座31a側に付勢する。
弁体32は、弁座31aに当接(着座)することにより、吸入ポート31bと加圧室11との連通部を閉鎖する。弁体32が吸入ポート31bと加圧室11との連通部を閉鎖すると、電磁吸入弁機構3が閉弁状態になる。弁体32は、ストッパ37に当接することにより、吸入ポート31bと加圧室11との連通部を開放する。弁体32が吸入ポート31bと加圧室11との連通部を開放すると、電磁吸入弁機構3が開弁状態になる。
ロッド33は、吸入弁ハウジング31のロッドガイド31cとアンカー36を貫通している。ロッド33には、ロッド鍔部33aが形成されている。ロッド鍔部33aには、ロッド付勢ばね34の一端に係合している。ロッド付勢ばね34の他端は、ロッド付勢ばね34を囲うように配置された固定コア39に係合している。ロッド付勢ばね34は、ロッド33を介して弁体32をストッパ37側である開弁方向に付勢する。
アンカー36は、略円筒状に形成されている。アンカー36の軸方向の一端には、アンカー付勢ばね40の一端が当接する。アンカー36の軸方向の他端は、固定コア39の端面に対向している。アンカー36の軸方向の他端には、ロッド33のロッド鍔部33aが当接するフランジ当接部が形成されている。
アンカー付勢ばね40の他端は、ロッドガイド31cに当接している。アンカー付勢ばね40は、アンカー36をロッド33のロッド鍔部33a側に付勢している。アンカー36の移動可能距離は、弁体32の移動可能距離よりも長く設定される。これにより、弁体32を弁座31aに確実に当接(着座)させることができ、電磁吸入弁機構3を確実に閉弁状態にすることができる。
電磁コイル35は、固定コア39の周りを一周するように配置されている。電磁コイル35には、端子部材30(図2参照)が電気的に接続されている。電磁コイル35には、端子部材30を介して電流が流れる。電磁コイル35に電流が流れていない無通電状態において、ロッド33は、ロッド付勢ばね34による付勢力によって開弁方向に付勢され、弁体32を開弁方向に押圧している。その結果、弁体32が弁座31aから離れてストッパ37に当接し、電磁吸入弁機構3が開弁状態になっている。すなわち、電磁吸入弁機構3は、無通電状態において開弁するノーマルオープン式となっている。
電磁吸入弁機構3の開弁状態において、吸入ポート31bの燃料は、弁体32と弁座31aとの間を通り、ストッパ37の複数の連通溝377c(図6参照)及び吸入通路1aを通って加圧室11に流入する。電磁吸入弁機構3の開弁状態において、弁体32は、ストッパ37と接触するため、弁体32の開弁方向の位置が規制される。電磁吸入弁機構3の開弁状態において、弁体32と弁座31aとの間に存在する隙間は、弁体32の可動範囲であり、これが開弁ストロークとなる。
電磁コイル35に電流が流れると、アンカー36と固定コア39のそれぞれの磁気吸引面(対向面)において磁気吸引力が発生する。電磁コイル35と、アンカー36と、固定コア39は、本発明に係る磁気吸引力発生部を構成する。磁気吸引面において磁気吸引力が発生すると、アンカー36は、固定コア39に吸引される。その結果、アンカー36は、ロッド付勢ばね34の付勢力に抗して移動し、固定コア39に接触する。
アンカー36が固定コア39側である閉弁方向へ移動すると、アンカー36が係合するロッド33がアンカー36と共に移動する。その結果、弁体32は、開弁方向への付勢力から解放され、弁付勢ばね38による付勢力により閉弁方向に移動する。そして、弁体32が、吸入弁ハウジング31の弁座31aに接触すると、電磁吸入弁機構3が閉弁状態になる。
[高圧燃料供給ポンプの動作]
次に、本実施形態に係る高圧燃料供給ポンプの動作について説明する。
図2に示すカム91が回転してプランジャ2が下降した場合に、電磁吸入弁機構3が開弁していると、吸入通路1aから加圧室11に燃料が流入する。以下、プランジャ2が下降する行程を吸入行程と称する。一方、プランジャ2が上昇した場合に、電磁吸入弁機構3が閉弁していると、加圧室11内の燃料は昇圧され、吐出弁機構5(図3参照)を通過してコモンレール106(図1参照)へ圧送される。以下、プランジャ2が上昇する工程を圧縮行程と称する。
次に、本実施形態に係る高圧燃料供給ポンプの動作について説明する。
図2に示すカム91が回転してプランジャ2が下降した場合に、電磁吸入弁機構3が開弁していると、吸入通路1aから加圧室11に燃料が流入する。以下、プランジャ2が下降する行程を吸入行程と称する。一方、プランジャ2が上昇した場合に、電磁吸入弁機構3が閉弁していると、加圧室11内の燃料は昇圧され、吐出弁機構5(図3参照)を通過してコモンレール106(図1参照)へ圧送される。以下、プランジャ2が上昇する工程を圧縮行程と称する。
上述したように、圧縮行程中に電磁吸入弁機構3が閉弁していれば、吸入行程中に加圧室11に流入した燃料が加圧され、コモンレール106側へ吐出される。一方、圧縮行程中に電磁吸入弁機構3が開弁していれば、加圧室11内の燃料は吸入通路1a側へ押し戻され、コモンレール106側へ吐出されない。このように、高圧燃料供給ポンプ100による燃料の吐出は、電磁吸入弁機構3の開閉によって操作される。そして、電磁吸入弁機構3の開閉は、ECU101によって制御される。
吸入行程では、加圧室11の容積が増加し、加圧室11内の燃料圧力が低下する。この吸入行程において、加圧室11の燃料圧力が吸入ポート31bの圧力よりも低くなり、両者の差圧による付勢力が弁付勢ばね38による付勢力を超えると、弁体32は弁座31aから離れ、電磁吸入弁機構3が開弁状態になる。その結果、燃料は、弁体32と弁座31aとの間を通り、ストッパ37に設けられた複数の連通溝377c(図6参照)を通って加圧室11に流入する。
吸入行程を終了した後は、プランジャ2が上昇運動に転じて、圧縮行程に移る。このとき、電磁コイル35は、無通電状態を維持したままであり、アンカー36と固定コア39との間に磁気吸引力は作用していない。ロッド付勢ばね34は、無通電状態において弁体32を弁座31aから離れた開弁位置で維持するのに必要十分な付勢力を有するよう設定されている。
この状態において、プランジャ2が上昇運動をしても、ロッド33が開弁位置に留まるため、ロッド33により付勢された弁体32も同様に開弁位置に留まる。したがって、加圧室11の容積は、プランジャ2の上昇運動に伴い減少するが、この状態では、一度、加圧室11に流入した燃料が、再び開弁状態の電磁吸入弁機構3を通して吸入通路10bへ戻されることになり、加圧室11内の圧力が上昇することは無い。この行程を戻し行程と称する。
戻し工程において、ECU101(図1参照)からの制御信号が電磁吸入弁機構3に印加されると、電磁コイル35には、端子部材30を介して電流が流れる。電磁コイル35に電流が流れると、固定コア39とアンカー36の磁気吸引面において磁気吸引力が作用し、アンカー36が固定コア39に引き寄せられる。そして、磁気吸引力がロッド付勢ばね34の付勢力よりも大きくなると、アンカー36は、ロッド付勢ばね34の付勢力に抗して固定コア39側へ移動し、アンカー36と係合するロッド33が弁体32から離れる方向に移動する。その結果、弁付勢ばね38による付勢力と燃料が吸入通路10bに流れ込むことによる流体力により弁体32が弁座31aに着座し、電磁吸入弁機構3が閉弁状態になる。
電磁吸入弁機構3が閉弁状態になった後、加圧室11の燃料は、プランジャ2の上昇と共に昇圧され、燃料吐出口12a(図3参照)の圧力以上になると、吐出弁機構5を通過してコモンレール106(図1参照)へ吐出される。この行程を吐出行程と称する。すなわち、プランジャ2の下死点から上死点までの間の圧縮行程は、戻し行程と吐出行程からなる。そして、電磁吸入弁機構3の電磁コイル35への通電タイミングを制御することで、吐出される燃料の量を制御することができる。
電磁コイル35へ通電するタイミングを早くすれば、圧縮行程中における戻し行程の割合が小さくなり、吐出行程の割合が大きくなる。その結果、吸入通路10bに戻される燃料が少なくなり、高圧吐出される燃料は多くなる。一方、電磁コイル35へ通電するタイミングを遅くすれば、圧縮行程中における戻し行程の割合が大きくなり、吐出行程の割合が小さくなる。その結果、吸入通路10bに戻される燃料が多くなり、高圧吐出される燃料は少なくなる。このように、電磁コイル35への通電タイミングを制御することで、高圧吐出される燃料の量をエンジン(内燃機関)が必要とする量に制御することができる。
[弁体、弁座及びストッパの構成]
次に、弁体32、弁座31a及びストッパ37の構成について、図4~図9を参照して説明する。
図4は、電磁吸入弁機構3の開弁状態を拡大した状態で示す断面図である。図5は、図4に示す断面図をロッドの中心軸を中心に45°回転させた断面図である。図6は、電磁吸入弁機構3の閉弁状態を拡大した状態で示す断面図である。図7は、図6に示す断面図をロッドの中心軸を中心に45°回転させた断面図である。図8は、ストッパ37の斜視図である。図9は、ストッパ37の正面図である。
次に、弁体32、弁座31a及びストッパ37の構成について、図4~図9を参照して説明する。
図4は、電磁吸入弁機構3の開弁状態を拡大した状態で示す断面図である。図5は、図4に示す断面図をロッドの中心軸を中心に45°回転させた断面図である。図6は、電磁吸入弁機構3の閉弁状態を拡大した状態で示す断面図である。図7は、図6に示す断面図をロッドの中心軸を中心に45°回転させた断面図である。図8は、ストッパ37の斜視図である。図9は、ストッパ37の正面図である。
図4~図7に示すように、弁体32は、弁部321と、弁部321から突出する嵌合突部322とを有する。弁部321は、適当な厚みを有する円板状に形成されている。弁部321は、弁座31aに対向する第1面321aと、ストッパ37に対向する第2面321bを有する。第1面321aは、本発明に係る弁上流側端面に対応する。
嵌合突部322は、弁部321の第2面321bから略垂直に突出している。嵌合突部322は、筒孔322aを有する円筒状に形成されている。嵌合突部322は、ストッパ37の後述するガイド孔375に摺動可能に嵌合する。嵌合突部322の筒孔322aにおける底面には、弁付勢ばね38の一端が当接する。
嵌合突部322には、外周面から内周面まで貫通する貫通孔322bが設けられている。この貫通孔322bは、嵌合突部322の筒孔322a内の燃料が嵌合突部322の外側に流れるようにした息抜き流路となる。また、嵌合突部322の軸方向の一端である端面322cには、面取り加工が施されている。
吸入弁ハウジング31の弁座31aは、弁体32の第1面321aが当接するシート部311と、シート部311の周囲を形成するシート外周部312とを有する。シート部311は、シート外周部312よりも弁体32側に突出する円環状の突出部に形成されている。つまり、シート外周部312は、シート部311に対して窪んだ形状となっている。また、シート部311は、シート外周部312に連続する傾斜面311aを有している。
ストッパ37は、吸入弁ハウジング31に固定されている。図8及び図9に示すように、ストッパ37は、有底の略円筒状に形成されている。ストッパ37は、径の異なる複数の内周面を有している。
ストッパ37は、ばね座面372と、ストッパ面373と、対向面374とを有している。ばね座面372は、ストッパ37の最も径が小さい内周面を形成する孔の底面を形成している。ばね座面372には、弁付勢ばね38の他端が当接する。ばね座面372の外側は、ストッパ凸部37aが形成されている。
ストッパ面373は、ばね座面372よりも径が大きいガイド孔375の底面を形成する。ストッパ面373には、開弁状態における弁体32の端面322cが当接する。ガイド孔375の内周面には、弁体32の嵌合突部322が摺動可能に嵌合する。ガイド孔375の内周面は、嵌合突部322との間に適切な隙間を設けている。また、ガイド孔375の内周面の軸方向の長さは、嵌合突部322の適切な摺動長に設定されている。これにより、弁体32の偏心や傾きを抑制することができる。
対向面374は、ストッパ37の最も径が大きい内周面377bを形成する孔の底面を形成している。ストッパ37の内周面377bを形成する孔には、弁体32の弁部321が挿入されている。ストッパ37の内周面377bと弁部321の外周面との間には、適当な距離の間隙が形成されている(図4~図7参照)。対向面374には、弁部321の第2面321bが対向する。
また、ストッパ37は、圧入部377を有している。圧入部377は、ストッパ37の最外径部を形成している。圧入部377は、内周面377bを有する筒状に形成されている。また、圧入部377は、対向面374と略平行な端面377aを有している。図4及び図5に示すように、電磁吸入弁機構3の開弁状態において、圧入部377の端面377aは、弁体32の第1面321aよりも弁座31a側に位置している。
圧入部377は、吸入弁ハウジング31に圧入される。吸入弁ハウジング31に圧入部377を圧入することにより、ストッパ37が吸入弁ハウジング31に固定されている。圧入部377の外周面には、複数の連通溝377cが設けられている。図5及び図7に示すように、連通溝377cは、吸入弁ハウジング31とストッパ37との間に、燃料が通る連通路を形成する。連通路は、吸入ポート31bと加圧室11を繋ぐ流路となる。
図8及び図9に示すように、複数の連通溝377cは、圧入部377の周方向に等間隔に配置されている。これにより、圧入部377の端面377aの近傍で生じる、圧力のばらつきや、燃料の流れが乱れることを低減できる。さらに、吸入弁ハウジング31にストッパ37を圧入することで生じる応力を分散することができる。
連通溝377cは、内周面377bと同心円を形成する曲面と、この同心円に連続する2つの正接の円を形成する曲面とを有している。このような連通溝377cでは、鋭角な隅部を形成する必要が無いため、加工を容易にすることができる。また、連通溝377cと内周面377bとの間の厚み部分を均一にすることができる。その結果、連通溝377cを設けることで剛性の低い部分が形成されることを抑制することができる。
本実施形態では、連通溝377cを4つ設けている。しかし、本発明に係るストッパの連通溝としては、5つ以上であってもよく、また3つ以下であってもよい。一般的に軸対称の部品に縦方向の加工を行うと、加工工数が増えるが、溝の数を減らすことにより加工工数を減らすことが可能である。また、連通溝377cを設けることにより、加工時に工具等でストッパ37を把持し易くすることができる。
圧入部377の内周面377bは、弁部321の外周面と間隙を介して対向している。これにより、圧入部377は、加圧室11側から複数の連通溝377cに流入する燃料が弁部321の外周面へ向かうことを遮蔽する遮蔽部を兼ねる。これにより、圧入部377とは別に遮蔽部を設ける場合よりも、ストッパの形状を簡素にすることができ、ストッパの加工工数の削減を図ることができる。
内周面377bと弁部321の外周面との間の間隙の大きさは、全周で均一である。この間隙の大きさが全周で一定でない場合は、加圧室11から電磁吸入弁機構3側へ逆流する逆流燃料の流れが不均一になる。その結果、圧入部377における端面377aの近傍で燃料の圧力にばらつきが生じる。一方、本実施形態では、内周面377bと弁部321の外周面との間の間隙にある燃料の圧力のばらつきを低減できる。これにより、弁体32の動作を安定させることができる。
また、圧入部377と弁部321との間に生じる間隙の流路断面積は、弁体32における貫通孔322bの流路断面積以上に設定されている。これにより、吸入通路1a(図2参照)から戻ってくる燃料が、弁体32の動作を阻害しないようにすることができる。
[ストッパの他の例]
次に、ストッパの他の例について、図10及び図11を参照して説明する。
図10は、ストッパの第2の例を示す断面図である。図11は、ストッパの第3の例を示す断面図である。
次に、ストッパの他の例について、図10及び図11を参照して説明する。
図10は、ストッパの第2の例を示す断面図である。図11は、ストッパの第3の例を示す断面図である。
図10に示すストッパ37Aは、ストッパの第2の例を示す。ストッパ37Aは、図4に示すストッパ37と同様の構成を有している。ストッパ37Aがストッパ37と異なる点は、対向面374Aである。そのため、ここでは、対向面374Aについて説明し、ストッパ37と共通する構成の説明を省略する。
ストッパ37Aは、ばね座面372と、ストッパ面373と、対向面374Aとを有している。対向面374Aは、内周面377bに対して鈍角に交わる。なお、ストッパ37(図4参照)における対向面374は、内周面377bに対して直角に交わる。本発明に係るストッパとしては、対向面が内周面に対して鋭角に交わるようにしてもよい。
図11に示すストッパ37Bは、ストッパの第3の例を示す。ストッパ37Bは、図4に示すストッパ37と同様の構成を有している。ストッパ37Bがストッパ37と異なる点は、ストッパ凸部37bである。そのため、ここでは、ストッパ凸部37bについて説明し、ストッパ37と共通する構成の説明を省略する。
ストッパ37Bは、ばね座面372と、ストッパ面373と、対向面374とを有している。ばね座面372の外側は、ストッパ凸部37bが形成されている。ストッパ凸部37bは、吸入通路1aに対向する端面と、端面に連続する円弧状の曲面とを有している。なお、ストッパ37(図4参照)におけるストッパ凸部37aは、吸入通路1aに対向する端面と、端面に連続するテーパ面(傾斜面)とを有している。
加圧室11内の燃料を加圧時、加圧室11から吸入通路1aを経て電磁吸入弁機構3側へ燃料が逆流する。この逆流燃料は、ストッパ凸部37aやストッパ凸部37bに向けて流れる。この場合に、ストッパ凸部37aやストッパ凸部37bにテーパ面(傾斜面)や曲面を有するため、逆流燃料がテーパ面(傾斜面)や曲面に沿って滑らかに流れる。その結果、逆流燃料の圧力損失を低減することができる。
[開弁状態における燃料の流れ]
次に、電磁吸入弁機構3の開弁状態における燃料の流れについて、図12を参照して説明する。
図12は、電磁吸入弁機構3の開弁状態における燃料の流れを示す説明図である。
次に、電磁吸入弁機構3の開弁状態における燃料の流れについて、図12を参照して説明する。
図12は、電磁吸入弁機構3の開弁状態における燃料の流れを示す説明図である。
図12は、電磁吸入弁機構3の開弁状態における戻し工程時に逆流した燃料の流れを示している。図12に示すように、吸入弁ハウジング31のシート外周部312は、シート部311に対して窪んだ形状となっている。そして、ストッパ37の圧入部377は、シート外周部312に対向している。
戻し工程において、電磁吸入弁機構3側へ逆流する燃料300(以下、「逆流燃料300」とする)が、ストッパ37の連通溝377cを通過する。その後、逆流燃料300は、ストッパ37の圧入部377とシート外周部312により形成された湾曲した流路を通過する。その際、逆流燃料300は、流路が絞られるため、流速を上昇しながら圧入部377の端面377aを通過する。
このとき、圧入部377の端面377aは、弁体32の第1面321aよりも弁座31a側に位置している。そのため、逆流燃料300が端面377aを通過直後は、圧入部377の端面377aの近傍で、逆流燃料300の一部に流れの剥離が発生する。
逆流燃料300の一部に流れの剥離が発生すると、逆流燃料300は、見かけ上狭い流路を流れ続けて、流速が上昇したままになる。その結果、弁座31aの傾斜面311aと弁体32の第1面321a間の燃料の圧力は低下する。そして、傾斜面311aと弁体32の第1面321a間にある燃料の圧力と、弁部321の外周面と内周面377bとの間の間隙にある燃料の圧力は、弁体32の第2面321bを押圧する燃料の圧力と同じになる。したがって、弁体32の第2面321bを押圧する燃料の圧力が低下する。
弁体32の第2面321bを押圧する燃料の圧力が低下すると、燃料が弁体32を閉弁方向へ押圧する力が小さくなる。その結果、磁気回路(電磁コイル35やアンカー36等)による制御をしない場合に弁体32が閉弁方向に移動しないようにすることができ、燃料を吐出しない燃料カット時に、吐出流量を0にすることができる。
また、弁体32を閉弁方向へ押圧する力が小さくなることにより、アンカー36やロッド付勢ばね34の小型化を図ったり、ロッド付勢ばね34のばね力を小さくしたりすることができる。その結果、アンカー36と固定コア39の衝突音や、弁体32と弁座31aの衝突音の低減を図ることができる。
電磁吸入弁機構3の開弁状態において、圧入部377の端面377aは、弁体32の第1面321aよりも、弁座31a側に位置する。そして、ストッパ37は、圧入部377と燃料通路である連通溝377cを同一円環内に配置している。これにより、圧入部377と燃料通路を別々に配置する場合よりも、ストッパを単純な形状にすることができる。その結果、ストッパ37の加工方法を多様化することができる。
2.第2実施形態
次に、本発明の第2実施形態に係る電磁吸入弁機構のストッパについて、図13及び図14を参照して説明する。
図13は、第2実施形態に係る電磁吸入弁機構のストッパの斜視図である。図14は、第2実施形態に係る電磁吸入弁機構のストッパの正面図である。
次に、本発明の第2実施形態に係る電磁吸入弁機構のストッパについて、図13及び図14を参照して説明する。
図13は、第2実施形態に係る電磁吸入弁機構のストッパの斜視図である。図14は、第2実施形態に係る電磁吸入弁機構のストッパの正面図である。
第2実施形態に係る高圧燃料供給ポンプは、第1実施形態に係る高圧燃料供給ポンプ100と同様の構成を備えている。第2実施形態に係る高圧燃料供給ポンプが、第1実施形態に係る高圧燃料供給ポンプ100と異なる点は、ストッパ137である。そのため、ここでは、ストッパ137について説明し、高圧燃料供給ポンプ100と共通の構成についての説明を省略する。
[ストッパの構成]
図13及び図14に示すように、第2実施形態に係るストッパ137は、第1実施形態に係るストッパと同様な構成を有している。すなわち、ストッパ137は、有底の略円筒状に形成されている。そして、ストッパ137は、ばね座面372と、ストッパ面373と、対向面374と、ガイド孔375とを有している。
図13及び図14に示すように、第2実施形態に係るストッパ137は、第1実施形態に係るストッパと同様な構成を有している。すなわち、ストッパ137は、有底の略円筒状に形成されている。そして、ストッパ137は、ばね座面372と、ストッパ面373と、対向面374と、ガイド孔375とを有している。
また、ストッパ137は、吸入弁ハウジング31に圧入される圧入部1377を有している。圧入部1377は、ストッパ137の最外径部を形成している。圧入部1377は、内周面1377bを有する筒状に形成されている。また、圧入部1377は、対向面374と略平行な端面1377aを有している。電磁吸入弁機構3の開弁状態において、圧入部1377の端面1377aは、弁体32の第1面321a(図4参照)よりも弁座31a側に位置する。
圧入部1377の外周面には、複数の連通溝1377cが設けられている。連通溝1377cは、吸入弁ハウジング31(図5参照)とストッパ37との間に、燃料が通る連通路を形成する。連通路は、吸入ポート31bと加圧室11を繋ぐ流路となる。
複数の連通溝1377cは、圧入部1377の周方向に等間隔に配置されている。これにより、圧入部1377の端面1377aの近傍で生じる、圧力のばらつきや、燃料の流れが乱れることを低減できる。さらに、吸入弁ハウジング31にストッパ137を圧入することで生じる応力を分散することができる。
連通溝1377cは、端面1377aに直交する方向から見て円弧状に形成されている。このような連通溝1377cは、鋭角な隅部を形成する必要が無いため、加工を容易にすることができる。なお、本発明に係る連通溝の円弧状は、円の一部であってもよく、楕円の一部であってもよい。また、連通溝の円弧状を楕円の一部とする場合は、楕円の長軸側を溝の深さとしてもよく、また、楕円の短軸側を溝の深さにしてもよい。
圧入部1377の内周面1377bは、弁部321(図4参照)の外周面と間隙を介して対向する。これにより、圧入部1377は、加圧室11側から複数の連通溝1377cに流入する燃料が弁部321の外周面へ向かうことを遮蔽する遮蔽部を兼ねる。また、圧入部1377と弁部321との間に生じる間隙の流路断面積は、弁体32における貫通孔322bの流路断面積以上に設定されている。
3.第3実施形態
次に、本発明の第3実施形態に係る電磁吸入弁機構のストッパについて、図15及び図16を参照して説明する。
図15は、第3実施形態に係る電磁吸入弁機構のストッパの斜視図である。図16は、第3実施形態に係る電磁吸入弁機構のストッパの正面図である。
次に、本発明の第3実施形態に係る電磁吸入弁機構のストッパについて、図15及び図16を参照して説明する。
図15は、第3実施形態に係る電磁吸入弁機構のストッパの斜視図である。図16は、第3実施形態に係る電磁吸入弁機構のストッパの正面図である。
[ストッパの構成]
図15及び図16に示すように、第3実施形態に係るストッパ237は、第1実施形態に係るストッパと同様な構成を有している。すなわち、ストッパ237は、有底の略円筒状に形成されている。そして、ストッパ237は、ばね座面372と、ストッパ面373と、対向面374と、ガイド孔375とを有している。
図15及び図16に示すように、第3実施形態に係るストッパ237は、第1実施形態に係るストッパと同様な構成を有している。すなわち、ストッパ237は、有底の略円筒状に形成されている。そして、ストッパ237は、ばね座面372と、ストッパ面373と、対向面374と、ガイド孔375とを有している。
また、ストッパ237は、吸入弁ハウジング31に圧入される圧入部2377を有している。圧入部2377は、ストッパ237の最外径部を形成している。圧入部2377は、内周面2377bを有する筒状に形成されている。また、圧入部2377は、対向面374と略平行な端面2377aを有している。電磁吸入弁機構3の開弁状態において、圧入部2377の端面2377aは、弁体32の第1面321a(図4参照)よりも弁座31a側に位置する。
圧入部2377の外周面には、複数の連通溝2377cが設けられている。連通溝2377cは、吸入弁ハウジング31(図5参照)とストッパ237との間に、燃料が通る連通路を形成する。連通路は、吸入ポート31bと加圧室11を繋ぐ流路となる。
複数の連通溝2377cは、圧入部2377の周方向に等間隔に配置されている。これにより、圧入部2377の端面2377aの近傍で生じる、圧力のばらつきや、燃料の流れが乱れることを低減できる。さらに、吸入弁ハウジング31にストッパ237を圧入することで生じる応力を分散することができる。
連通溝2377cは、端面2377aに直交する方向から見て一辺が開口された略四角形に形成されている。また、連通溝2377cの4つの角部は、丸みを帯びるように略円弧状に形成されている。このような連通溝2377cは、鋭角な隅部を形成する必要が無いため、加工を容易にすることができる。なお、本発明に係る連通溝の略四角形は、縦横比は適宜設定する設定することができる。
圧入部2377の内周面2377bは、弁部321(図4参照)の外周面と間隙を介して対向する。これにより、圧入部2377は、加圧室11側から複数の連通溝2377cに流入する燃料が弁部321の外周面へ向かうことを遮蔽する遮蔽部を兼ねる。また、圧入部2377と弁部321との間に生じる間隙の流路断面積は、弁体32における貫通孔322bの流路断面積以上に設定されている。
4.第4実施形態
次に、本発明の第4実施形態に係る電磁吸入弁機構について、図17を参照して説明する。
図17は、第4実施形態に係る電磁吸入弁機構の開弁状態を拡大した状態で示す断面図である。
次に、本発明の第4実施形態に係る電磁吸入弁機構について、図17を参照して説明する。
図17は、第4実施形態に係る電磁吸入弁機構の開弁状態を拡大した状態で示す断面図である。
第4実施形態に係る高圧燃料供給ポンプは、第1実施形態に係る高圧燃料供給ポンプ100と同様の構成を備えている。第4実施形態に係る高圧燃料供給ポンプが、第1実施形態に係る高圧燃料供給ポンプ100と異なる点は、電磁吸入弁機構3Aのストッパ337である。そのため、ここでは、電磁吸入弁機構3Aのストッパ337について説明し、高圧燃料供給ポンプ100と共通の構成についての説明を省略する。
[ストッパの構成]
図17に示すように、第4実施形態に係るストッパ337は、第1実施形態に係るストッパと同様な構成を有している。すなわち、ストッパ337は、有底の略円筒状に形成されている。そして、ストッパ337は、ばね座面372と、ストッパ面373と、対向面374と、ガイド孔375とを有している。ばね座面372の外側は、ストッパ凸部37aが形成されている。
図17に示すように、第4実施形態に係るストッパ337は、第1実施形態に係るストッパと同様な構成を有している。すなわち、ストッパ337は、有底の略円筒状に形成されている。そして、ストッパ337は、ばね座面372と、ストッパ面373と、対向面374と、ガイド孔375とを有している。ばね座面372の外側は、ストッパ凸部37aが形成されている。
また、ストッパ237は、吸入弁ハウジング31に圧入される圧入部3377を有している。圧入部3377は、ストッパ337の最外径部を形成している。圧入部3377は、内周面3377bを有する筒状に形成されている。圧入部3377は、吸入弁ハウジング31に圧入される。吸入弁ハウジング31に圧入部3377を圧入することにより、ストッパ337が吸入弁ハウジング31に固定されている。
圧入部3377は、端面3377aと、突き当て面3378と、複数の連通溝(不図示)とを有する。複数の連通溝は、第1実施形態に係る複数の連通溝377cと同じである。電磁吸入弁機構3Aの開弁状態において、圧入部3377の端面3377aは、弁体32の第1面321aよりも弁座31a側に位置する。
圧入部3377の内周面3377bは、弁部321の外周面と間隙を介して対向する。これにより、圧入部3377は、加圧室11側から複数の連通溝(不図示)に流入する燃料が弁部321の外周面へ向かうことを遮蔽する遮蔽部を兼ねる。また、圧入部2377と弁部321との間に生じる間隙の流路断面積は、弁体32における貫通孔322bの流路断面積以上に設定されている。
突き当て面3378は、端面3377aと反対側の面である。突き当て面3378は、圧入部3377の外周面に対して直角に交わる。突き当て面3378は、ボディ1に形成された横穴1iの段部に突き当てられる。
突き当て面3378は、吸入弁ハウジング31の開口端面と同一平面を形成する。したがって、ストッパ337を吸入弁ハウジング31に圧入する際に、突き当て面3378を吸入弁ハウジング31の開口端面と同じ高さにする。これにより、ストッパ337と吸入弁ハウジング31の相互の位置決めを簡単に行うことができる。
その結果、弁体32のストロークのばらつきを低減することができる。そして、弁体32のストロークのばらつきを低減できれば、加圧室11から電磁吸入弁機構3A側へ逆流した燃料による流体力のばらつきも低減できる。さらに、弁体32の移動時間のばらつきを低減できる。したがって、ポンプ性能としては、吐出流量のばらつきを低減することができる。
突き当て面3378よりも内径側(ストッパ凸部37a側)には、凹部3371が設けられている。これにより、ストッパ凸部37aと圧入部3377の外周面との間の領域において、突き当て面3378を設ける場所を明確にすることができる。その結果、精度良い加工を求められる突き当て面3378の範囲が幾何的に定まるため、凹部3371を設けない場合よりも加工や寸法の測定を容易にすることができる。したがって、製造コストを低減しつつ、弁体32のストロークのばらつきを低減することができる。
ストッパ凸部37aは、側周面3379を有する。側周面3379は、圧入部3377の外周面と平行であり、圧入部3377の外周面より径が小さい。圧入部3377が側周面3379を有することにより、ストッパ337を組み立てる際に、側周面3379を工具等で把持することができるため、組立性を向上させることができる。
5.まとめ
以上説明したように、上述した第1実施形態に係る電磁吸入弁機構3は、弁体32と、弁体32が着座する弁座31aと、弁体32の開弁方向への移動を制限するストッパ37とを備える。弁体32は、弁座31aに接触する第1面321a(着座面)と、第1面321aに略直交する外周面とを有する。ストッパ37は、筒状に形成され、弁体32の外周面に対向する内周面377bと、内周面377bと反対側の外周面とを有する固定用の圧入部377と、圧入部377の外周面に形成されて燃料通路となる複数の連通溝377cとを有する。圧入部377の一部(端面377a側)は、弁体32がストッパ37に開弁方向への移動を制限された開弁状態において、弁体32の第1面321aよりも弁座31a側に位置する。
以上説明したように、上述した第1実施形態に係る電磁吸入弁機構3は、弁体32と、弁体32が着座する弁座31aと、弁体32の開弁方向への移動を制限するストッパ37とを備える。弁体32は、弁座31aに接触する第1面321a(着座面)と、第1面321aに略直交する外周面とを有する。ストッパ37は、筒状に形成され、弁体32の外周面に対向する内周面377bと、内周面377bと反対側の外周面とを有する固定用の圧入部377と、圧入部377の外周面に形成されて燃料通路となる複数の連通溝377cとを有する。圧入部377の一部(端面377a側)は、弁体32がストッパ37に開弁方向への移動を制限された開弁状態において、弁体32の第1面321aよりも弁座31a側に位置する。
これにより、連通溝377cを通過して弁体32の外周面と圧入部377の内周面377bとの間へ向かう逆流燃料300は、圧入部377に遮蔽される。そのため、連通溝377cを通過した逆流燃料300は、圧入部377と弁座31aとの間を通過する。そして、圧入部377と弁座31aとの間を通過した逆流燃料300の一部に流れの剥離が発生する。その結果、弁座31aと弁体32の第1面321a間の燃料の圧力は低下する。そして、弁座31aと弁体32の第1面321a間にある燃料の圧力と、弁体32の外周面と圧入部377の内周面377bとの間の間隙にある燃料の圧力は、弁体32を弁座31a側へ押圧する燃料の圧力と同じになる。したがって、弁体32を弁座31a側へ押圧する燃料の圧力が低下する。これにより、弁体32が弁座31a側(閉弁方向)に移動しないようにすることができ、燃料を吐出しない燃料カット時に、吐出流量を0にすることができる。
また、上述した第1実施形態に係る弁体32の外周面と圧入部377の内周面377bとの間の間隙の大きさは、全周で均一である。これにより、弁体32の外周面と圧入部377の内周面377bとの間の間隙にある燃料の圧力のばらつきを低減することができる。その結果、弁体32の動作を安定させることができる。
また、上述した第1実施形態に係る複数の連通溝377cは、圧入部377の外周面において、周方向に等間隔に配置されている。これにより、圧入部377の弁座31a側の近傍で生じる、圧力のばらつきや、燃料の流れが乱れることを低減できる。さらに、圧入部が圧入される部品(吸入弁ハウジング31)にストッパ37の圧入部377を圧入することで生じる応力を分散することができる。
また、上述した第1実施形態に係る複数の連通溝377cは、圧入部377の内周面377bと同心円形状を有する。これにより、連通溝377cと圧入部377の内周面377bとの間の厚み部分を均一にすることができる。その結果、連通溝377cを設けることで剛性の低い部分が形成されることを抑制することができる。また、連通溝377cによって形成される燃料が通る連通路の大型化を図ることができる。
また、上述した第4実施形態に係るストッパ337は、圧入部3377の弁座31a側と反対側に突き当て面3378を有する。突き当て面3378は、圧入部3377が圧入される部品(吸入弁ハウジング31)の開口端面と同一平面を形成する。これにより、ストッパ337と圧入部3377が圧入される部品の相互の位置決めを簡単に行うことができる。
また、上述した第4実施形態に係るストッパ337は、圧入部3377の外周面よりも径が小さい側周面3379を有する。これにより、ストッパ337を組み立てる際に、側周面3379を工具等で把持することができるため、組立性を向上させることができる。
また、上述した第1実施形態に係る弁体32は、ストッパ37に摺動可能に嵌合する筒状の嵌合突部322を有する。嵌合突部322は、弁体32の外周面と圧入部377の内周面377bとの間の間隙と嵌合突部322の内側とを連通する貫通孔322bを有する。これにより、貫通孔322bが息抜き流路となり、嵌合突部322の内側(筒孔322a内)の燃料が嵌合突部322の外側に流れるようにすることができる。
また、上述した第1実施形態に係る弁体32の外周面と圧入部377の内周面377bとの間の間隙の流路断面積は、貫通孔322bの流路断面積以上である。これにより、加圧室11側から複数の連通溝377cに流入する燃料(逆流燃料300)が、弁体32の動作を阻害しないようにすることができる。
また、上述した第1実施形態に係る高圧燃料供給ポンプ100(燃料ポンプ)は、加圧室11を備えたボディ1と、ボディ1に往復運動可能に支持され、往復運動により加圧室11の容量を増減させるプランジャ2と、加圧室11へ燃料を吐出する上記電磁吸入弁機構3とを備える。これにより、弁座31aと弁体32の第1面321a間にある燃料の圧力と、弁体32の外周面と圧入部377の内周面377bとの間の間隙にある燃料の圧力は、弁体32を弁座31a側へ押圧する燃料の圧力と同じになる。したがって、弁体32を弁座31a側へ押圧する燃料の圧力が低下する。これにより、弁体32が弁座31a側(閉弁方向)に移動しないようにすることができ、燃料を吐出しない燃料カット時に、吐出流量を0にすることができる。
以上、本発明の電磁吸入弁機構及び燃料ポンプの実施形態について、その作用効果も含めて説明した。しかしながら、本発明の電磁吸入弁機構及び燃料ポンプは、上述の実施形態に限定されるものではなく、請求の範囲に記載した発明の要旨を逸脱しない範囲内で種々の変形実施が可能である。
また、上述した実施形態は、本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施形態の構成の一部を他の実施形態の構成に置き換えることが可能であり、また、ある実施形態の構成に他の実施形態の構成を加えることも可能である。また、各実施形態の構成の一部について、他の構成の追加・削除・置換をすることが可能である。
1…ポンプボディ、 2…プランジャ、 3,3A…電磁吸入弁機構、 4…シリンダ、 5…吐出弁機構、 6…リリーフ弁機構、 8…吸入ジョイント、 9…圧力脈動低減機構、 10…低圧燃料室、 11…加圧室、 12…吐出ジョイント、 12a…燃料吐出口、 30…端子部材、 31…吸入弁ハウジング、 31a…弁座、 31b…吸入ポート、 31c…ロッドガイド、 32…弁体、 33…ロッド、 33a…ロッド鍔部、 35…電磁コイル、 36…アンカー、 37,37A,37B,137,237,337…ストッパ、 37a,37b…ストッパ凸部、 39…固定コア、 100…高圧燃料供給ポンプ、 101…ECU、 102…フィードポンプ、 103…燃料タンク、 104…低圧配管、 105…燃料圧力センサ、 106…コモンレール、 107…インジェクタ、 300…逆流燃料、 311…シート部、 311a…傾斜面、 312…シート外周部、 321…弁部、 321a…第1面、 321b…第2面、 322…嵌合突部、 322a…筒孔、 322b…貫通孔、 322c…端面、 372…座面、 373…ストッパ面、 374,374A…対向面、 375…ガイド孔、 377,1377,2377,3377…圧入部、 377a,1377a,2377a,3377a…端面、 377b,1377b,2377b,3377b…内周面、 377c,1377c,2377c…連通溝、 3371…凹部、 3378…突き当て面、 3379…側周面
Claims (9)
- 弁体と、
前記弁体が着座する弁座と、
前記弁体の開弁方向への移動を制限するストッパと、を備え、
前記弁体は、前記弁座に接触する着座面と、前記着座面に略直交する外周面と、を有し、
前記ストッパは、筒状に形成され、前記弁体の外周面に対向する内周面と、前記内周面と反対側の外周面とを有する固定用の圧入部と、前記圧入部の外周面に形成されて燃料通路となる複数の連通溝と、を有し、
前記圧入部の一部は、前記弁体が前記ストッパに開弁方向への移動を制限された開弁状態において、前記弁体の前記着座面よりも前記弁座側に位置する
電磁吸入弁機構。 - 前記弁体の外周面と前記圧入部の内周面との間の間隙の大きさは、全周で均一である
請求項1に記載の電磁吸入弁機構。 - 前記複数の連通溝は、前記圧入部の外周面において、周方向に等間隔に配置されている
請求項1に記載の電磁吸入弁機構。 - 前記複数の連通溝は、前記圧入部の内周面と同心円形状を有する
請求項1に記載の電磁吸入弁機構。 - 前記ストッパは、前記圧入部の前記弁座側と反対側に突き当て面を有し、
前記突き当て面は、前記圧入部が圧入される部品の開口端面と同一平面を形成する
請求項1に記載の電磁吸入弁機構。 - 前記ストッパは、前記圧入部の外周面よりも径が小さい側周面を有する
請求項1に記載の電磁吸入弁機構。 - 前記弁体は、前記ストッパに摺動可能に嵌合する筒状の嵌合突部を有し、
前記嵌合突部は、前記弁体の外周面と前記圧入部の内周面との間の間隙と前記嵌合突部の内側とを連通する貫通孔を有する
請求項1に記載の電磁吸入弁機構。 - 前記弁体の外周面と前記圧入部の内周面との間の間隙の流路断面積は、前記貫通孔の流路断面積以上である
請求項7に記載の電磁吸入弁機構。 - 加圧室を備えたボディと、
前記ボディに往復運動可能に支持され、往復運動により前記加圧室の容量を増減させるプランジャと、
前記加圧室へ燃料を吐出する電磁吸入弁機構と、を備え、
前記電磁吸入弁機構は、
弁体と、
前記弁体が着座する弁座と、
前記弁体の開弁方向への移動を制限するストッパと、を備え、
前記弁体は、前記弁座に接触する着座面と、前記着座面に略直交する外周面と、を有し、
前記ストッパは、筒状に形成され、前記弁体の外周面に対向する内周面と、前記内周面と反対側の外周面とを有する固定用の圧入部と、前記圧入部の外周面に形成されて燃料通路となる複数の連通溝と、を有し、
前記圧入部の一部は、前記弁体が前記ストッパに開弁方向への移動を制限された開弁状態において、前記弁体の前記着座面よりも前記弁座側に位置する
燃料ポンプ。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021165363 | 2021-10-07 | ||
JP2021-165363 | 2021-10-07 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023058287A1 true WO2023058287A1 (ja) | 2023-04-13 |
Family
ID=85804117
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/027353 WO2023058287A1 (ja) | 2021-10-07 | 2022-07-12 | 電磁吸入弁機構及び燃料ポンプ |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2023058287A1 (ja) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014114722A (ja) * | 2012-12-07 | 2014-06-26 | Denso Corp | 高圧ポンプ |
JP2016205400A (ja) * | 2016-08-09 | 2016-12-08 | 日立オートモティブシステムズ株式会社 | 電磁駆動型の吸入弁を備えた高圧燃料供給ポンプ |
JP2020172901A (ja) * | 2019-04-11 | 2020-10-22 | 日立オートモティブシステムズ株式会社 | 高圧燃料供給ポンプ及び吸入弁機構 |
-
2022
- 2022-07-12 WO PCT/JP2022/027353 patent/WO2023058287A1/ja active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014114722A (ja) * | 2012-12-07 | 2014-06-26 | Denso Corp | 高圧ポンプ |
JP2016205400A (ja) * | 2016-08-09 | 2016-12-08 | 日立オートモティブシステムズ株式会社 | 電磁駆動型の吸入弁を備えた高圧燃料供給ポンプ |
JP2020172901A (ja) * | 2019-04-11 | 2020-10-22 | 日立オートモティブシステムズ株式会社 | 高圧燃料供給ポンプ及び吸入弁機構 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107709749B (zh) | 流量控制阀和高压燃料供给泵 | |
US11542903B2 (en) | High-pressure fuel supply pump provided with electromagnetic intake valve | |
WO2021054006A1 (ja) | 電磁吸入弁及び高圧燃料供給ポンプ | |
WO2021095556A1 (ja) | 燃料供給ポンプ | |
WO2023058287A1 (ja) | 電磁吸入弁機構及び燃料ポンプ | |
JP7178504B2 (ja) | 燃料ポンプ | |
WO2022014150A1 (ja) | 燃料ポンプ | |
JP7284348B2 (ja) | 高圧燃料供給ポンプ | |
WO2022269977A1 (ja) | 電磁吸入弁機構及び燃料ポンプ | |
US12140113B2 (en) | Electromagnetic valve mechanism and fuel pump | |
JP7482313B2 (ja) | 燃料ポンプ | |
WO2023062684A1 (ja) | 電磁吸入弁及び燃料供給ポンプ | |
US20240159208A1 (en) | Electromagnetic Valve Mechanism and Fuel Pump | |
WO2024201699A1 (ja) | バルブ機構及び燃料ポンプ | |
JP7024071B2 (ja) | 燃料供給ポンプ | |
JP7518980B2 (ja) | 燃料ポンプ | |
WO2021229862A1 (ja) | 弁機構及びそれを備えた高圧燃料供給ポンプ | |
JP7385750B2 (ja) | 燃料ポンプ | |
CN112243474B (zh) | 电磁阀和高压燃料供给泵 | |
WO2024089843A1 (ja) | 燃料ポンプ | |
JP7077212B2 (ja) | 高圧燃料ポンプ | |
WO2023203761A1 (ja) | 電磁弁機構及び燃料供給ポンプ | |
WO2024084567A1 (ja) | 燃料ポンプ | |
WO2022130698A1 (ja) | 燃料ポンプ | |
JP6938101B2 (ja) | 高圧燃料供給ポンプ及び高圧燃料供給ポンプの製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22878159 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 22878159 Country of ref document: EP Kind code of ref document: A1 |