WO2022255307A1 - リチウムイオン二次電池用電極シート - Google Patents

リチウムイオン二次電池用電極シート Download PDF

Info

Publication number
WO2022255307A1
WO2022255307A1 PCT/JP2022/021946 JP2022021946W WO2022255307A1 WO 2022255307 A1 WO2022255307 A1 WO 2022255307A1 JP 2022021946 W JP2022021946 W JP 2022021946W WO 2022255307 A1 WO2022255307 A1 WO 2022255307A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode sheet
fibrous carbon
less
lithium ion
ion secondary
Prior art date
Application number
PCT/JP2022/021946
Other languages
English (en)
French (fr)
Inventor
一輝 谷内
高弘 大道
Original Assignee
帝人株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 帝人株式会社 filed Critical 帝人株式会社
Priority to JP2023525823A priority Critical patent/JPWO2022255307A1/ja
Priority to KR1020237042453A priority patent/KR20240005924A/ko
Priority to CN202280038932.8A priority patent/CN117397053A/zh
Priority to US18/565,121 priority patent/US20240372101A1/en
Priority to EP22816054.5A priority patent/EP4354529A1/en
Publication of WO2022255307A1 publication Critical patent/WO2022255307A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • H01M4/623Binders being polymers fluorinated polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a lithium ion secondary battery electrode sheet containing at least a lithium ion battery active material, fibrous carbon, and a fluoropolymer.
  • a lithium-ion secondary battery is a secondary battery in which the lithium ions in the electrolyte are responsible for electrical conduction.
  • the positive electrode uses lithium metal oxide as an electrode active material
  • the negative electrode uses a carbon material such as graphite as an electrode active material.
  • Lithium-ion secondary batteries are characterized by having high energy density among secondary batteries, so their application range is expanding from small-sized devices such as mobile phones to large-sized devices such as electric vehicles.
  • An electrode sheet for a lithium ion secondary battery is generally prepared by preparing a slurry containing an active material for a lithium ion battery, a conductive agent, a binder and a solvent, applying the slurry as a thin film, and then removing the solvent. . Therefore, a slurry preparation step for uniformly dispersing the active material for a lithium ion battery, a conductive agent, a binder and a solvent, and a drying step for removing the solvent are required, which complicates the manufacturing process. In addition, since the electrode sheet tends to crack during the drying process when the solvent is removed, it is difficult to increase the film thickness of the electrode sheet.
  • fibrous carbon is sometimes used as a conductive aid for the purpose of improving conductivity, but fibrous carbon having a large aspect tends to be oriented in the application direction during the process of applying a thin film of slurry. As a result, anisotropy tends to occur in the mechanical strength of the electrode sheet.
  • Patent Document 1 a slurry is prepared using lithium cobaltate as a positive electrode active material, polyvinylidene fluoride as a binder, acetylene black as a conductive material, and N-methylpyrrolidone as a solvent, and this slurry is applied, dried, and roll-pressed. It is described that the positive electrode was produced by carrying out.
  • Patent Documents 2 and 3 disclose a dry film produced by fibrillating polytetrafluoroethylene using a rolling machine, but there is no description of using fibrous carbon.
  • the problem to be solved by the present invention is to provide an electrode sheet for a lithium ion secondary battery that can be produced without using a solvent, and a method for producing the electrode sheet.
  • the present inventors have found that the above problems can be solved by using a predetermined fibrous carbon in the electrode sheet and using a fluorine-based polymer as a binder. and completed the present invention. That is, the electrode sheet of the present invention is an electrode sheet supported by a fluoropolymer, and is characterized in that no solvent is used for film formation in the manufacturing process.
  • the present invention for solving the above problems is as described below.
  • An electrode sheet for a lithium ion secondary battery containing at least an active material for a lithium ion battery, fibrous carbon, and a fluoropolymer The electrode sheet for a lithium ion secondary battery has a film thickness of 50 to 2000 ( ⁇ m) and a tensile strength at break of 0.20 (N/mm 2 ) or more, The fibrous carbon has an average fiber diameter of 100 to 900 (nm), A lithium ion secondary battery electrode sheet, wherein the content of the fibrous carbon in the lithium ion secondary battery electrode sheet is 0.1 to 10 (% by mass).
  • the invention described in [1] above is an electrode sheet for a lithium ion secondary battery, the sheet form of which is maintained by a fluoropolymer.
  • This electrode sheet is an electrode sheet called a dry film that is manufactured without using slurry.
  • the invention described in [2] above further includes a carbon-based conductive aid other than fibrous carbon.
  • the carbon-based conductive additive as used herein does not mean fibrous carbon that differs only in the average fiber diameter defined in [1].
  • the electrode sheet for a lithium ion secondary battery of the present invention does not use a solvent for film formation in its manufacturing process, and thus is easy to manufacture.
  • FIG. 1 is a SEM photograph (5000 ⁇ ) showing the surface of the electrode sheet obtained in Example 1.
  • FIG. 2 is a SEM photograph (5000 ⁇ ) showing a cross section of the electrode sheet obtained in Example 1.
  • FIG. 3 is a SEM photograph (5000 ⁇ ) showing the surface of the electrode sheet obtained in Example 2.
  • FIG. 4 is a SEM photograph (5000 ⁇ ) showing a cross section of the electrode sheet obtained in Example 2.
  • FIG. 5 is a SEM photograph (5000 ⁇ ) showing the surface of the electrode sheet obtained in Comparative Example 1.
  • FIG. 6 is a SEM photograph (5000 ⁇ ) showing a cross section of the electrode sheet obtained in Comparative Example 1.
  • FIG. 7 is a SEM photograph (5000 ⁇ ) showing the surface of the electrode sheet obtained in Comparative Example 2.
  • FIG. 1 is a SEM photograph (5000 ⁇ ) showing the surface of the electrode sheet obtained in Example 1.
  • FIG. 2 is a SEM photograph (5000 ⁇ ) showing a cross section of the electrode sheet obtained in Example 1.
  • FIG. 3 is a
  • the lithium ion secondary battery electrode sheet of the present invention (hereinafter sometimes abbreviated as “electrode sheet”) comprises a lithium ion battery active material and fibrous carbon. , and a fluoropolymer.
  • the fluoropolymer including fibrous forms is dispersed in the electrode sheet.
  • the fluoropolymer is partially or wholly fibrillated, and the fibrillated fluoropolymer cooperates with the fibrous carbon to be dispersed so as to maintain the shape of the electrode sheet. preferable.
  • the electrode sheet is configured such that the fibrillated fluoropolymer and the fibrous carbon are entangled to support the fibrous carbon and the fibrous carbon forms voids.
  • the fibrous carbon having a predetermined fiber length maintains the morphological stability of the electrode sheet as a whole, while permitting volume fluctuations of the active material in the electrode sheet. be able to.
  • the film thickness of the electrode sheet is 50 to 2000 ⁇ m.
  • the film thickness of the electrode sheet is preferably 80 ⁇ m or more, preferably 100 ⁇ m or more, 120 ⁇ m or more, 150 ⁇ m or more, 180 ⁇ m or more, 200 ⁇ m or more, 250 ⁇ m or more, and 300 ⁇ m or more in this order. If it is less than 50 ⁇ m, it becomes difficult to maintain the sheet shape. Moreover, when trying to manufacture a high-capacity cell, a large amount of separators and current collectors are used, and as a result, the volume occupation ratio of the electrode sheet in the cell is lowered. This is unfavorable from an energy density point of view and considerably limits the application.
  • the film thickness of the electrode sheet is 2000 ⁇ m or less from the viewpoint of stable production of the electrode sheet.
  • the film thickness of the electrode sheet is preferably 1500 ⁇ m or less, preferably 1200 ⁇ m or less, 1000 ⁇ m or less, 800 ⁇ m or less, 600 ⁇ m or less, 500 ⁇ m or less, and 400 ⁇ m or less in this order.
  • the electrode sheet preferably has a tensile strength at break of 0.20 N/mm 2 or more. More preferably, the tensile strength at break is 0.25 N/mm 2 or more, 0.30 N/mm 2 or more, 0.40 N/mm 2 or more, 0.50 N/mm 2 or more, 0.60 N/mm 2 or more, 0.65 N/mm 2 or more is preferred in this order. If it is less than 0.20 N/mm 2 , the handleability of the battery tends to deteriorate. In addition, the battery performance is likely to deteriorate due to the change in volume of the active material that accompanies charging and discharging of the lithium ion secondary battery.
  • the upper limit of the tensile breaking strength of the electrode sheet is not particularly limited, it is generally 10.0 N/mm 2 or less, preferably 5.0 N/mm 2 or less, and 3.0 N/mm 2 or less. mm 2 or less, 2.0 N/mm 2 or less, 1.5 N/mm 2 or less, and 1.0 N/mm 2 or less in this order.
  • the product of tensile breaking strength (N/mm 2 ) and film thickness (mm) of the electrode sheet is preferably 0.04 (N/mm) or more, 0.05 (N/mm) or more, and 0.05 (N/mm) or more.
  • 06 (N/mm) or more, 0.08 (N/mm) or more, 0.1 (N/mm) or more, 0.15 (N/mm) or more, 0.2 (N/mm) or more are preferred in this order. If it is less than 0.04 (N/mm), it is difficult to maintain the sheet shape.
  • the upper limit of the product of the tensile breaking strength (N/mm 2 ) and the film thickness (mm) of the electrode sheet is not particularly limited, but is generally 5.0 (N/mm) or less, and 3.0 (N/mm) or less, 2.0 (N/mm) or less, 1.5 (N/mm) or less, 1.0 (N/mm) or less, 0.8 (N/mm) or less, 0.6 (N/mm) or less, 0.5 (N/mm) or less, and 0.4 (N/mm) or less in this order. If it exceeds 5.0 (N/mm), the blending ratio of the fluorine-based polymer used as the binder is increased, and the blending ratio of the active material is relatively lowered, so that the battery performance tends to deteriorate.
  • the electrical conductivity in the thickness direction of the electrode sheet is preferably 8.0 ⁇ 10 ⁇ 4 S/cm or more.
  • the electrical conductivity is preferably 1.0 ⁇ 10 ⁇ 3 S/cm or higher, 1.5 ⁇ 10 ⁇ 3 S/cm or higher, 3.0 ⁇ 10 ⁇ 3 S/cm or higher, 5.0 ⁇ 10 ⁇ 3 S/cm or higher. 10 ⁇ 3 S/cm or more, 7.0 ⁇ 10 ⁇ 3 S/cm or more, 9.0 ⁇ 10 ⁇ 3 S/cm or more, and 1.0 ⁇ 10 ⁇ 2 S/cm or more in this order. preferable.
  • Such electrical conductivity can be achieved by containing a predetermined fibrous carbon as a conductive aid.
  • ⁇ /Xc obtained by dividing the electrical conductivity ⁇ (S/cm) in the film thickness direction of the electrode sheet by the content Xc (% by mass) of the carbon-based conductive additive is 1.0 ⁇ 10 ⁇ 4 or more. is preferred. ⁇ /Xc is more preferably 1.5 ⁇ 10 ⁇ 4 or more, 2.0 ⁇ 10 ⁇ 4 or more, 3.0 ⁇ 10 ⁇ 4 or more, 4.0 ⁇ 10 ⁇ 4 or more, 5.0 ⁇ 10 ⁇ 4 or more is preferable in this order. If ⁇ /Xc is less than 1.0 ⁇ 10 ⁇ 4 , the content of the carbon-based conductive additive must be excessive, which is not preferable from the viewpoint of improving the energy density. Although the upper limit of ⁇ /Xc is not particularly limited, it is generally 1.0 ⁇ 10 ⁇ 2 or less.
  • the electrode sheet preferably has an apparent density of 1.0 to 3.0 g/cm 3 .
  • the apparent density is more preferably 1.2 g/cm 3 or more, more preferably 1.5 g/cm 3 or more, 1.8 g/cm 3 or more, and 2.0 g/cm 3 or more in this order.
  • the apparent density of the electrode sheet is more preferably 2.8 g/cm 3 or less, 2.5 g/cm 3 or less, and 2.2 g/cm 3 or less in this order.
  • the true density of the electrode sheet is preferably 2.0 to 4.0 g/cm 3 and more preferably 3.0 to 3.7 g/cm 3 .
  • the apparent density of the electrode sheet means the density calculated by the below-described formula (2).
  • the electrode sheet has voids.
  • the porosity is preferably 5.0% by volume or more and 60% by volume or less. When the porosity is within this range, cracks in the electrode sheet are particularly suppressed even if charge-discharge cycles involving changes in the volume of the active material are repeated. By using such an electrode sheet having voids, it is possible to construct a lithium-ion secondary battery with particularly high electronic conductivity and ion conductivity and high output.
  • the porosity is preferably 10% by volume or more, and particularly preferably 15% by volume or more, 20% by volume or more, 25% by volume or more, 30% by volume or more, and 35% by volume or more in this order.
  • the upper limit of the porosity is preferably 55% by volume or less, more preferably 50% by volume or less, and particularly preferably 45% by volume or less.
  • the porosity of the electrode sheet can be adjusted by controlling the materials, sizes, and contents of the fibrous carbon, fluoropolymer, and active material, as well as the molding conditions when producing the electrode sheet.
  • the method for calculating the porosity is not particularly limited, for example, a method of calculating based on the following formula (1) from the apparent density and true density of the electrode sheet, or a method of calculating from a three-dimensional image obtained by tomography such as X-ray CT. There are ways to do so.
  • Porosity (volume %) (true density - apparent density) / true density x 100 Formula (1)
  • a true density and an apparent density are each measured.
  • the method of measuring the true density is, for example, a method of calculating based on the true density and mass ratio of each material constituting the electrode sheet, or a gas phase replacement method (pycnometer method) or a liquid phase method (Archimedes method) after pulverizing the electrode sheet. ) is used for measurement.
  • the electrode sheet of the present invention contains at least a positive electrode active material or a negative electrode active material.
  • ⁇ Positive electrode active material> As the positive electrode active material contained in the electrode sheet of the present invention, one or more of lithium-containing metal oxides capable of intercalating and deintercalating lithium ions in the lithium ion secondary battery are selected as appropriate.
  • the lithium-containing metal oxide a composite oxide containing lithium and at least one element selected from the group consisting of Co, Mg, Mn, Ni, Fe, Al, Mo, V, W, Ti and the like is used. can be mentioned.
  • Preferred lithium-containing metal oxides include Li x CoO 2 , Li x NiO 2 , Li x MnO 2 , Li x Co a Ni 1-a O 2 , Li x Mn 2 O 4 , Li x Co b V 1-b At least one selected from the group consisting of O z (where x, a, b and z are the same as above) and LiFePO 4 can be mentioned. Note that the value of x is a value before charging/discharging is started, and increases or decreases due to charging/discharging.
  • the above positive electrode active materials may be used alone, or two or more of them may be used in combination.
  • the average particle size of the positive electrode active material is preferably 10 ⁇ m or less, more preferably 0.05 to 7 ⁇ m, even more preferably 1 to 7 ⁇ m. If the average particle size exceeds 10 ⁇ m, the efficiency of the charge-discharge reaction under a large current may decrease.
  • the content of the positive electrode active material in the electrode mixture layer of the present invention is preferably 60% by mass or more, more preferably 70 to 98.5% by mass, and 75 to 98.5% by mass. is more preferred. If it is less than 60% by mass, it may be difficult to apply it to power supply applications that require high energy density. If it exceeds 98.5% by mass, the fluorine-based polymer is too small, and cracks may occur in the electrode mixture layer, or the electrode mixture layer may separate from the current collector. Furthermore, the content of fibrous carbon or carbon-based conductive aid may be too small, resulting in insufficient conductivity of the electrode mixture layer.
  • ⁇ Negative electrode active material> As the negative electrode active material contained in the electrode sheet of the present invention, one or two or more of conventionally known materials known as negative electrode active materials in lithium ion secondary batteries are appropriately selected.
  • a carbon material As a material capable of intercalating and deintercalating lithium ions, a carbon material, one of Si and Sn, or an alloy or oxide containing at least one of these can be used.
  • carbon materials are preferable from the viewpoint of cost.
  • the carbon material include natural graphite, artificial graphite produced by heat-treating petroleum-based or coal-based coke, hard carbon obtained by carbonizing resin, mesophase pitch-based carbon material, and the like.
  • Natural graphite refers to a graphite material that is naturally produced as an ore. Natural graphite is classified into two types, flaky graphite with a high degree of crystallinity and earthy graphite with a low degree of crystallinity, according to its appearance and properties. Flaky graphite is further classified into flaky graphite having a leaf-like appearance and flaky graphite having a massive appearance. Natural graphite, which is a graphite material, is not particularly limited in its place of origin, properties, or type. Alternatively, natural graphite or particles produced using natural graphite as a raw material may be heat-treated before use.
  • Artificial graphite refers to graphite made by a wide range of artificial methods and graphite materials that are close to perfect crystals of graphite. Typical examples are those obtained by using tar and coke obtained from the residue of dry distillation of coal and distillation of crude oil as raw materials and going through a firing process at about 500 to 1000 ° C. and a graphitization process at 2000 ° C. or higher. mentioned. Kish graphite obtained by reprecipitating carbon from molten iron is also a kind of artificial graphite.
  • an alloy containing at least one of Si and Sn in addition to the carbon material as the negative electrode active material increases the electric capacity compared to using each of Si and Sn alone or using their oxides. This is effective in that it can be made smaller.
  • Si-based alloys are preferred.
  • the Si-based alloy includes at least one element selected from the group consisting of B, Mg, Ca, Ti, Fe, Co, Mo, Cr, V, W, Ni, Mn, Zn, Cu, and the like, Si, and alloys of Specifically, SiB4 , SiB6 , Mg2Si , Ni2Si, TiSi2 , MoSi2 , CoSi2 , NiSi2 , CaSi2 , CrSi2 , Cu5Si , FeSi2 , MnSi2 , VSi2 , At least one selected from the group consisting of WSi 2 , ZnSi 2 and the like can be mentioned.
  • the above materials may be used singly or in combination of two or more as the negative electrode active material.
  • the average particle size of the negative electrode active material is set to 10 ⁇ m or less. If the average particle size exceeds 10 ⁇ m, the efficiency of the charge-discharge reaction under a large current is lowered.
  • the average particle size is preferably 0.1-10 ⁇ m, more preferably 1-7 ⁇ m.
  • the content of the negative electrode active material in the electrode sheet is not particularly limited, but is preferably 30 to 99% by mass, more preferably 40 to 99% by mass, and 50 to 95% by mass. is more preferred. If it is less than 30% by mass, it may be difficult to apply it to power supply applications that require high energy density.
  • the fibrous carbon used in the present invention is preferably a carbon fiber, and more preferably a pitch-based carbon fiber using pitch as a starting material because of its excellent conductivity.
  • the average fiber diameter of fibrous carbon is 100-900 nm.
  • the lower limit of the average fiber diameter is preferably 200 nm or more, more preferably over 200 nm, even more preferably 220 nm or more, and even more preferably 250 nm or more.
  • the upper limit of the average fiber diameter is preferably 700 nm or less, more preferably 600 nm or less, more preferably 500 nm or less, more preferably 400 nm or less, and more preferably 350 nm or less. preferable. If the thickness is less than 100 nm, the fibers are likely to break, making it difficult to function as a conductive material.
  • fibrous carbon having an average fiber diameter of less than 100 nm has a large specific surface area and covers the surface of the active material in the electrode sheet. As a result, the contact points of the active material are reduced, leading to inhibition of the formation of ionic conduction paths. Fibrous carbon with an average fiber diameter of more than 900 nm tends to cause gaps between fibers in the electrode sheet, making it difficult to increase the density of the electrode sheet.
  • the fiber diameter distribution of the fibrous carbon having an average fiber diameter of 100 to 900 nm may have one peak or two or more peaks at 100 to 900 nm. It is preferable to have one peak.
  • the aspect ratio (average fiber length/average fiber diameter) of fibrous carbon is 30 or more, preferably 35 or more, and preferably 40 or more. If the aspect ratio is less than 30, the fibrous carbon tends to form insufficient conductive paths in the electrode sheet when the electrode sheet is produced, and the resistance value in the thickness direction of the electrode sheet is sufficiently reduced. may not. In addition, the mechanical strength of the electrode sheet tends to be insufficient.
  • the upper limit of the aspect ratio is not particularly limited, it is preferably 1000 or less, more preferably 500 or less, and even more preferably 300 or less. If the aspect ratio is too large, the fibrous carbon may become entangled with each other and may not be sufficiently dispersed in the electrode sheet, resulting in insufficient formation of conductive paths.
  • the average fiber length of the carbon fibers used in the present invention is preferably 10 ⁇ m or more, more preferably 11 ⁇ m or more, still more preferably 12 ⁇ m or more, even more preferably 13 ⁇ m or more, and 15 ⁇ m or more. is particularly preferred. Also, the average fiber length is preferably 100 ⁇ m or less, more preferably 80 ⁇ m or less, and particularly preferably 50 ⁇ m or less.
  • the fibrous carbon used in the present invention preferably has a structure that does not substantially have branches.
  • “having substantially no branches” means that the degree of branching is 0.01/ ⁇ m or less.
  • the fibrous carbon in the present invention preferably has a degree of branching of 0.
  • the term “branch” refers to a granular portion in which fibrous carbon is bonded to other fibrous carbon at a location other than the terminal portion, and the main axis of fibrous carbon is branched in the middle, and the main axis of fibrous carbon is It refers to having a branched secondary axis.
  • branched fibrous carbon examples include, for example, vapor-grown (vapor-phase) carbon fibers (for example, VGCF (registered trademark) manufactured by Showa Denko KK is known.
  • Fibrous carbon that has a linear structure that does not substantially have a branched structure has better dispersibility than fibrous carbon that has branches, and easily forms a long-distance conductive path.
  • the linear structure includes not only the case where the fibrous carbon has a completely linear structure, but also the case where one end or both ends are slightly bent, and the case where the portions other than both ends are slightly bent.
  • the degree of branching of fibrous carbon used in the present invention means a value measured from a photograph taken at a magnification of 5,000 by a field emission scanning electron microscope.
  • the fibrous carbon may have a fibrous shape as a whole. (For example, those in which spherical carbons are linked in a beaded shape, and those in which at least one or a plurality of very short fibers are connected by fusion or the like) are also included.
  • the fibrous carbon used in the present invention has high conductivity when the packing density is low. Fibrous carbon, which has high conductivity at low packing densities, can provide conductivity at lower loading concentrations.
  • the powder volume resistivity when filled at a packing density of 0.8 g/cm 3 is preferably 4.00 ⁇ 10 ⁇ 2 ⁇ cm or less, more preferably 3.00 ⁇ 10 ⁇ 2 ⁇ cm. cm or less is more preferable. If it exceeds 4.00 ⁇ 10 ⁇ 2 ⁇ cm, the added amount of fibrous carbon required to improve conductivity is increased, which is not preferable.
  • the lower limit is not particularly limited, it is generally about 0.0001 ⁇ cm.
  • the fibrous carbon used in the present invention preferably has a distance (d002) between adjacent graphite sheets of 0.3400 nm or more, more preferably more than 0.3400 nm, as measured by wide-angle X-ray measurement. 3410 nm or more is more preferable, and 0.3420 nm or more is even more preferable. Also, d002 is preferably 0.3450 nm or less, more preferably 0.3445 nm or less. When d002 is 0.3400 nm or more, fibrous carbon is less likely to become brittle. Therefore, during processing such as crushing, the fibers are less likely to break and the fiber length is maintained. As a result, it becomes easier to form long-distance conductive paths. In addition, the conductive path is likely to be maintained following changes in the volume of the active material that accompany charging and discharging of the lithium ion secondary battery.
  • the fibrous carbon used in the present invention preferably has a crystallite size (Lc002) measured by wide-angle X-ray measurement of 50 nm or less, more preferably 40 nm or less, 30 nm or less, and 25 nm or less in this order. .
  • the larger the crystallite size (Lc002) the higher the crystallinity and the better the electrical conductivity.
  • the crystallite size (Lc002) is large, the fibrous carbon is less likely to become brittle. Therefore, during processing such as crushing, the fibers are less likely to break and the fiber length is maintained. As a result, it becomes easier to form long-distance conductive paths.
  • the conductive paths are easily maintained following changes in the volume of the active material that accompany charging and discharging of the all-solid-state lithium secondary battery.
  • the lower limit of the crystallite size (Lc002) is not particularly limited, it is preferably 1 nm or more.
  • the crystallite size (Lc002) refers to a value measured according to Japanese Industrial Standards JIS R 7651 (2007 version) "Method for measuring lattice constant and crystallite size of carbon materials".
  • the specific surface area of fibrous carbon used in the present invention is preferably 1 m 2 /g or more and 50 m 2 /g or less. If the specific surface area of the fibrous carbon is less than 1 m 2 /g, it may be difficult to secure a contact between the active material and the fibrous carbon as a conductive aid, and an electron conduction path may not be sufficiently formed. On the other hand, if the specific surface area is too large, it may hinder the ion conduction path. That is, when the specific surface area of the fibrous carbon exceeds 50 m 2 /g, the fibrous carbon covers the surface of the active material, reducing the contact points between the solid electrolyte responsible for ion conduction and the active material, thereby inhibiting ion conduction.
  • the lower limit of the specific surface area is preferably 2 m 2 /g or more, more preferably 3 m 2 /g or more, still more preferably 5 m 2 /g or more, and 7 m 2 /g or more. Especially preferred.
  • the upper limit of the specific surface area is preferably 40 m 2 /g or less, more preferably 30 m 2 /g or less, still more preferably 25 m 2 /g or less, and 20 m 2 /g or less. Especially preferred.
  • the fibrous carbon used in the present invention preferably contains substantially no metal elements.
  • the total content of metal elements is preferably 50 ppm or less, more preferably 30 ppm or less, and even more preferably 20 ppm or less.
  • the content of metal elements means the total content of Li, Na, Ti, Mn, Fe, Ni and Co.
  • the Fe content is preferably 5 ppm or less, more preferably 3 ppm or less, and even more preferably 1 ppm or less. If the Fe content exceeds 5 ppm, it is not preferable because the battery is likely to deteriorate.
  • the fibrous carbon used in the present invention preferably contains 0.5% by mass or less of hydrogen, nitrogen, and ash, and more preferably 0.3% by mass or less.
  • hydrogen, nitrogen, and ash in the fibrous carbon are all 0.5% by mass or less, structural defects in the graphite layer are further suppressed, and side reactions in the battery can be suppressed, which is preferable.
  • the fibrous carbon used in the present invention has particularly excellent dispersibility in the electrode sheet. Although the reason is not clear, it has the above structure, natural graphite, artificial graphite produced by heat treatment of petroleum-based and coal-based coke, non-graphitizable carbon, graphitizable carbon, etc. are used as raw materials. and passing through resin composite fibers in the manufacturing process. In the electrode sheet, it has excellent dispersibility, so it is thought that a long-distance conductive path can be formed, and excellent battery performance can be exhibited with a small content.
  • the fibrous carbon used in the present invention may have a porous or hollow structure, but it is preferable to pass through a resin composite fiber obtained by melt blend spinning in the manufacturing process of the fibrous carbon. Therefore, it is preferable that the fibrous carbon of the present invention is substantially solid, has a basically smooth surface, and has a linear structure without branches as described above.
  • the fibrous carbon used in the present invention may be modified by chemically or physically modifying its surface.
  • Modifiers and modi?cation forms are not particularly limited, and suitable ones are appropriately selected according to the purpose of modification.
  • the modification of fibrous carbon is described below. Adhesiveness can be imparted to the fibrous carbon by modifying the surface of the fibrous carbon with a thermoplastic resin.
  • the modification method is not particularly limited, for example, a method of attaching and/or adhering a particulate thermoplastic resin to the surface of the fibrous carbon; and a thermoplastic resin; and a method of covering a portion of the surface of the fibrous carbon with a thermoplastic resin.
  • “particulate” means particles having an aspect ratio of 5 or less, preferably 2 or less, more preferably 1.5 or less.
  • Specific modification methods include a method of spray-drying fibrous carbon dispersed in a thermoplastic resin solution, a method of mixing a monomer solution and fibrous carbon and polymerizing the monomer, a method of Examples include a method of precipitating a thermoplastic resin in a solvent in which carbon is dispersed.
  • thermoplastic resin used for modification is not particularly limited, but polyvinyl alcohol, polyacrylic acid, carboxymethyl cellulose, polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), vinylidene fluoride-hexafluoropropylene copolymer (P-( 1 selected from the group consisting of VDF-HFP)), tetrafluoroethylene-hexafluoropropylene copolymer (FEP), styrene-butadiene rubber (SBR), fluoroolefin copolymer, polyimide, polyamideimide, aramid, phenolic resin, etc.
  • PTFE polytetrafluoroethylene
  • PVDF polyvinylidene fluoride
  • PVDF vinylidene fluoride-hexafluoropropylene copolymer
  • FEP tetrafluoroethylene-hexafluoropropylene copolymer
  • SBR sty
  • thermoplastic resins containing fluorine atoms such as polyvinylidene fluoride (PVDF) and vinylidene fluoride-hexafluoropropylene copolymer (P-(VDF-HFP)) are particularly preferred.
  • PVDF polyvinylidene fluoride
  • PVDF-HFP vinylidene fluoride-hexafluoropropylene copolymer
  • the melting point of the thermoplastic resin is preferably 50-250°C.
  • the lower limit of the melting point of the thermoplastic resin is more preferably 60° C. or higher, more preferably 70° C. or higher, more preferably 80° C. or higher, more preferably 90° C. or higher. °C or more is more preferable.
  • the upper limit of the melting point of the thermoplastic resin is more preferably 220° C. or less, more preferably 200° C. or less, more preferably 180° C. or less, more preferably 160° C. or less. °C or less is more preferable. If the melting point is less than 50° C., particles of the thermoplastic resin tend to agglomerate during the process of dispersing them in the electrode sheet.
  • the heat resistance of the battery is lowered. If the melting point exceeds 250° C., deterioration of the active material and solid electrolyte may be caused.
  • the glass transition point of the thermoplastic resin is not particularly limited, it is preferably 250° C. or lower.
  • the upper limit of the glass transition point is preferably 200° C. or lower, more preferably 150° C. or lower, more preferably 120° C. or lower, more preferably 100° C. or lower, and 80° C. or lower. It is more preferably 50° C. or less, more preferably 40° C. or less, more preferably 30° C. or less, more preferably 20° C. or less, and 10° C. or less. It is more preferable that the temperature is 0° C. or lower.
  • the content of fibrous carbon in the electrode sheet of the present invention is 0.1% by mass or more and 10% by mass or less.
  • the lower limit of the content of fibrous carbon is preferably 0.5% by mass or more, more preferably 1.0% by mass or more, further preferably 1.2% by mass or more. It is more preferably 5% by mass or more, and particularly preferably 1.8% by mass or more.
  • the upper limit of the fibrous carbon content is more preferably 6.0% by mass or less, even more preferably 5.0% by mass or less, and particularly preferably 3.0% by mass or less.
  • Carbon fibers used in the present invention can be produced, for example, by the method described in WO2009/125857.
  • An example is shown below.
  • a mesophase pitch composition comprising mesophase pitch dispersed in a thermoplastic polymer is prepared.
  • this mesophase pitch composition is formed into a thread or film in a molten state. Spinning is particularly preferred.
  • the mesophase pitch dispersed in the thermoplastic polymer is stretched inside the thermoplastic polymer, and the mesophase pitch composition is fibrillated to obtain a composite resin fiber.
  • This resin composite fiber has a sea-island structure in which a thermoplastic polymer is a sea component and a mesophase pitch is an island component.
  • the resulting resin composite fiber is brought into contact with an oxygen-containing gas to stabilize the mesophase pitch, thereby obtaining a resin composite stabilized fiber.
  • This resin composite stabilized fiber has a sea-island structure with a thermoplastic polymer as a sea component and a stabilized mesophase pitch as an island component.
  • the thermoplastic polymer which is the sea component of this resin composite stabilized fiber, is removed and separated to obtain a carbon fiber precursor.
  • this carbon fiber precursor is heated to a high temperature to obtain fibrous carbon (carbon fiber).
  • fluoropolymer As the fluoropolymer used in the electrode sheet of the present invention, any fluoropolymer having sufficient electrochemical stability can be used.
  • a resin that acts as a binder when forming the electrode sheet and easily forms fibrils by a shearing force when forming the sheet As the fluororesin used in the present invention, it is preferable to use a resin that acts as a binder when forming the electrode sheet and easily forms fibrils by a shearing force when forming the sheet.
  • acicular fibers (fibrils) of polytetrafluoroethylene resin can be obtained by applying shear stress to granular polytetrafluoroethylene resin. Conventionally, polytetrafluoroethylene resin is subjected to shear stress to form needle-like fibers, and the needle-like fiber formation is also called fibrillation.
  • the shear force can be adjusted by adjusting the press pressure and the speed difference between the rolls.
  • fluororesins include polytetrafluoroethylene (PTFE), polychlorotrifluoroethylene, polyvinylidene fluoride, ethylene-tetrafluoroethylene copolymer, vinylidene fluoride-hexafluoropropylene copolymer (P- (VDF-HFP)), tetrafluoroethylene-hexafluoropropylene copolymer (FEP), and the like. You may use these in combination of 2 or more types. Among these, PTFE is particularly preferred because it is easily fibrillated.
  • the content of the fluoropolymer in the electrode sheet of the present invention is preferably 0.5 to 25% by mass.
  • the content of the fluorine-based polymer is preferably 0.8% by mass or more, and is 1.0% by mass or more, 1.5% by mass or more, 2.0% by mass or more, and 3.0% by mass or more. are more preferred in that order.
  • the content of the fluoropolymer is preferably 15% by mass or less, more preferably 10% by mass or less, 8% by mass or less, 6% by mass or less, and 5% by mass or less in this order. If it is less than 0.5% by mass, it becomes difficult to maintain the shape of the electrode sheet. If it exceeds 25% by mass, the amount of active material in the electrode is reduced, and the energy density of the obtained battery tends to be lowered.
  • the average particle size of the fluoropolymer is preferably 50-1000 nm, more preferably 80-500 nm, and particularly preferably 100-400 nm. In particular, it is preferably in the range of 0.1 to 10 times the average fiber diameter of the fibrous carbon, and more preferably in the range of 0.5 to 5 times.
  • the fluorine-based polymer used in the electrode sheet of the present invention is not particularly limited, but it is preferred that at least a portion of it is fibrillated in the electrode sheet.
  • the fibril portion of the fluorine-based polymer forms a network structure, and the active material and the conductive agent are held in the network structure, thereby contributing to sheet formation and forming an electrode sheet with high tensile strength at break. can.
  • at least a portion of the fibrous carbon is in contact with the fibrils, and is assumed to form a conductive path in the thickness direction of the electrode sheet while being incorporated into the network structure or entangled with the fibrils. be. Therefore, it is considered that not only high tensile strength at break but also excellent electrical conductivity in the thickness direction is exhibited.
  • the electrode sheet of the present invention may contain a carbon-based conductive aid in addition to the fibrous carbon described above.
  • carbon-based conductive aids other than fibrous carbon include carbon black, acetylene black, scale-like carbon, graphene, graphite, and carbon nanotubes (CNT). These carbon-based conductive aids may be used alone, or two or more of them may be used in combination.
  • the shape of these carbon-based conductive aids is not particularly limited, but spherical particles such as carbon black and acetylene black are preferred.
  • the average particle size (primary particle size) of the carbon-based conductive aid is preferably 10 to 200 nm, more preferably 20 to 100 nm.
  • the aspect ratio of these carbon-based conductive aids is 10 or less, preferably 1-5, more preferably 1-3.
  • the content of the carbon-based conductive agent other than fibrous carbon in the electrode sheet of the present invention is preferably 0.1 to 4% by mass, more preferably 0.5 to 3% by mass. More preferably, it is 1 to 2% by mass.
  • the fibrous contains the above fibrous carbon and a carbon-based conductive aid other than the fibrous carbon, from the viewpoint of achieving both electronic conductivity and ionic conductivity, the fibrous It is preferable that the mass ratio of carbon is 20% by mass or more and 99% by mass or less, and the mass ratio of the carbon-based conductive aid other than the fibrous carbon is 1% by mass or more and 80% by mass or less. More preferably, the mass ratio of the fibrous carbon is 40% by mass or more and 99% by mass or less, and the mass ratio of the carbon-based conductive aid other than the fibrous carbon is 1% by mass or more and 60% by mass or less.
  • the mass ratio of the fibrous carbon is preferably 50% by mass or more, more preferably 60% by mass or more, more preferably 70% by mass or more, and more preferably 80% by mass or more. It is preferably 85% by mass or more, and particularly preferably 85% by mass or more.
  • the mass ratio of the carbon-based conductive agent other than the fibrous carbon is preferably 50% by mass or less, more preferably 40% by mass or less, more preferably 30% by mass or less, and 20% by mass. % or less, and particularly preferably 15 mass % or less.
  • a small amount of the carbon-based conductive additive other than fibrous carbon is thought to act as a cushion that buffers changes in volume of the active material due to repeated charge-discharge cycles.
  • the electrode sheet of the present invention When the electrode sheet of the present invention is used in an all-solid lithium ion secondary battery, it may contain a solid electrolyte.
  • a conventionally known material can be selected and used for the solid electrolyte. Examples thereof include sulfide-based solid electrolytes, oxide-based solid electrolytes, hydride-based solid electrolytes, and polymer electrolytes.
  • the sulfide-based solid electrolyte include a sulfide-based solid electrolyte (Li-A-S) composed of Li, A, and S.
  • Li-A-S sulfide-based solid electrolyte
  • a in the sulfide-based solid electrolyte Li-A-S is at least one selected from the group consisting of P, Ge, B, Si, Sb and I.
  • Li-A-S Specific examples of such a sulfide-based solid electrolyte Li-A-S include Li 7 P 3 S 11 , 70Li 2 S-30P 2 S 5 , LiGe 0.25 P 0.75 S 4 , 75Li 2 S -25P2S5 , 80Li2S - 20P2S5 , Li10GeP2S12 , Li9.54Si1.74P1.44S11.7Cl0.3 , Li2S - SiS2 , _ Li 6 PS 5 Cl and the like can be mentioned, and Li 7 P 3 S 11 is particularly preferable because of its high ionic conductivity.
  • hydride-based solid electrolytes include complex hydrides of lithium borohydride.
  • Complex hydrides include, for example, LiBH 4 —LiI based complex hydrides, LiBH 4 —LiNH 2 based complex hydrides, LiBH 4 —P 2 S 5 and LiBH 4 —P 2 I 4 .
  • the solid electrolytes may be used alone, or two or more of them may be used in combination, if necessary.
  • the electrode sheet of the present invention is produced by, for example, mixing the above active material, carbon-based conductive aid, and fluorine-based polymer in the form of powder to prepare a powder mixture.
  • the body mixture can be produced by pressing into a film in a rolling mill having a first roll and a second roll.
  • the fluoropolymer When used in a fibrillated state, it easily maintains its sheet shape and forms a self-supporting, ie self-supporting film.
  • the fluorine-based polymer may be fibrillated in advance, may be fibrillated during mixing of the powder mixture, or may be fibrillated during pressure molding into a film.
  • fibrillation is performed when the powder mixture is mixed, or when pressure molding is performed into a film. It is preferred to fibrillate.
  • a volatile solvent such as alcohol may be added when mixing the powder.
  • shear is applied to the particles of the fluoropolymer during powder mixing, or a speed difference is generated between the first roll and the second roll during pressure molding to form a fluoropolymer.
  • a method of imparting shear to polymer particles is exemplified.
  • the fiber diameter of the fibril portion generated from the fluoropolymer particles is preferably 200 nm or less, more preferably 100 nm or less, even more preferably 80 nm or less, and particularly preferably 60 nm or less. Moreover, it is preferably 1/2 or less, more preferably 1/3 or less, of the particle diameter of the fluoropolymer. Furthermore, it is preferably 1/2 or less, more preferably 1/3 or less, of the fiber diameter of the fibrous carbon to be mixed together.
  • the fiber length of the fibril portion generated from the fluoropolymer particles is preferably 1 ⁇ m or more, more preferably 2 ⁇ m or more. Furthermore, it is preferably 1/10 or more, more preferably 1/3 or more, of the average fiber length of the fibrous carbon to be mixed together.
  • the fibrous carbon used as a conductive aid is difficult to be oriented in one direction, and it is difficult to align in the film thickness direction. It is expected that the electrical conductivity is excellent and anisotropy in mechanical strength is unlikely to occur. Furthermore, since a binder dissolved in a solvent is not used, direct contact between the active material and the conductive aid is facilitated. In addition, since the active material and conductive agent are supported by the fluorine-based polymer fiber that functions as a binder, even if the volume of the active material changes due to charging and discharging, the ionic conductivity and electronic conductivity can be kept high. Therefore, it is expected that the battery electrode resistance can be reduced and a lithium ion secondary battery having excellent cycle characteristics can be provided.
  • the fiber length of fibrous carbon was obtained by using an image analysis particle size distribution meter (manufactured by Jusco International Co., Ltd., model IF-200nano) for a dilute dispersion of fibrous carbon (sample) dispersed in 1-methyl-2-pyrrolidone. measurements were taken.
  • the average fiber length of fibrous carbon is a number-based average value.
  • X-ray diffraction measurement of carbon fiber X-ray diffraction measurement was carried out using RINT-2100 manufactured by Rigaku Co., Ltd., in accordance with JIS R7651, and lattice spacing (d002) and crystallite size (Lc002) were measured.
  • the powder volume resistivity is measured using a powder resistance system (MCP-PD51) manufactured by Mitsubishi Chemical Analytech Co., Ltd. using a four-probe electrode unit under a load of 0.02 to 2.50 kN. measured by As for the volume resistivity, the powder volume resistivity of the sample was defined as the value of the volume resistivity when the packing density was 0.8 g/cm 3 from the relationship diagram of the volume resistivity accompanying the change of the packing density.
  • the electrode sheet was cut into a width of 1 cm, and the tensile strength at break was measured using a digital force gauge (Shimpo FGP-10).
  • Coal tar pitch with a softening point of 80° C. from which quinoline insoluble matter was removed was hydrogenated at a pressure of 13 MPa and a temperature of 340° C. in the presence of a Ni—Mo catalyst to obtain hydrogenated coal tar pitch. After heat-treating this hydrogenated coal tar pitch at 480° C. under normal pressure, the pressure was reduced to remove low boiling point components to obtain mesophase pitch. This mesophase pitch was filtered using a filter at a temperature of 340° C. to remove foreign substances in the pitch, thereby obtaining a refined mesophase pitch.
  • a composition was prepared.
  • this mesophase pitch composition was melt-spun at a spinneret temperature of 360° C. to form filaments having a fiber diameter of 90 ⁇ m.
  • the mesophase pitch-containing fiber bundle obtained by the above operation was held in the air at 215° C. for 3 hours to stabilize the mesophase pitch and obtain a stabilized mesophase pitch-containing fiber bundle.
  • the stabilized mesophase pitch-containing fiber bundle is subjected to nitrogen replacement in a vacuum gas replacement furnace, then reduced to 1 kPa, and held at 500 ° C. for 1 hour under the reduced pressure state to remove the thermoplastic resin. A stabilized fiber was obtained. Then, this stabilized fiber was carbonized by holding it at 1000° C.
  • the carbon fibers had a linear structure without branches.
  • Example 1 90 parts by mass of LiFePO 4 as the active material, 5 parts by mass of polytetrafluoroethylene (PTFE) having an average particle diameter of 200 nm as the fluorine-based polymer particles, and 5 parts by mass of the fibrous carbon produced above as the carbon-based conductive aid.
  • the parts were mixed, and further shear was applied using a mortar. This mixture was repeatedly pressed using a roll press to form a sheet.
  • the obtained electrode sheet had a thickness of 188 ⁇ m and a tensile strength at break of 0.32 N/mm 2 .
  • the electrical conductivity in the film thickness direction of this electrode sheet was 2.7 ⁇ 10 ⁇ 3 S/cm, and the porosity was 39% by volume.
  • the PTFE was at least partially fibrillated and had a fiber diameter of approximately 50 nm.
  • a SEM photograph of the surface of this electrode sheet is shown in FIG. 1, and a SEM photograph of the cross section of the electrode sheet is shown in FIG.
  • These SEM photographs confirm the presence of fibrillated PTFE in addition to fibrous carbon.
  • Example 2 87 parts by mass of LiFePO 4 as the active material, 10 parts by mass of polytetrafluoroethylene (PTFE) having an average particle diameter of 200 nm as the fluorine-based polymer particles, and 3 parts by mass of the fibrous carbon produced above as the carbon-based conductive aid.
  • An electrode sheet was obtained in the same manner as in Example 1, except that it was used as a part.
  • Various physical properties are shown in Table 1.
  • An SEM photograph of the surface of this electrode sheet is shown in FIG. 3, and an SEM photograph of the cross section of the electrode sheet is shown in FIG. According to these SEM photographs, more fibrillated PTFE was present than in Example 1, the fibrillated PTFE supported the active material particles and fibrous carbon, and the fibrillated PTFE and fibrous carbon It can also be confirmed that the
  • Fibrous carbon is acetylene black (hereinafter sometimes abbreviated as “AB”. “Denka Black” (registered trademark) manufactured by Denka Co., Ltd., 75% pressed product, average particle size: 0.036 ⁇ m, specific surface area: 65 m 2 /g), an electrode sheet was obtained in the same manner as in Example 1. Various physical properties are shown in Table 1. A SEM photograph of the surface of this electrode sheet is shown in FIG. 5, and a SEM photograph of the cross section of the electrode sheet is shown in FIG. These SEM photographs confirm that the fibrillated PTFE supports the particles.
  • AB acetylene black
  • Comparative example 2 90 parts by mass of LiFePO 4 as the active material, 5 parts by mass of polytetrafluoroethylene (PTFE) having an average particle diameter of 200 nm as the fluorine-based polymer particles, and 5 parts by mass of the fibrous carbon produced above as the carbon-based conductive aid. parts and 230 parts by mass of water as a solvent were mixed to prepare a slurry. An electrode sheet was produced by coating this slurry on a current collector and drying it. A SEM photograph of the surface of this electrode sheet is shown in FIG. According to this SEM photograph, fibrous substances other than fibrous carbon could not be observed. That is, it can be confirmed that no fibrillated PTFE exists. The obtained electrode sheet could not maintain its sheet shape, and various physical properties could not be measured.
  • PTFE polytetrafluoroethylene
  • Example 3 An electrode sheet was obtained in the same manner as in Example 1, except that the film thickness was 404 ⁇ m. Various physical properties are shown in Table 1. Even if the film thickness was increased, the electrical conductivity did not decrease.
  • Example 4 An electrode sheet was obtained in the same manner as in Example 1, except that 4 parts by mass of the fibrous carbon produced above and 1 part by mass of AB were used as the carbon-based conductive aid. Various physical properties are shown in Table 1. The electrical conductivity was further improved by using other carbon-based conductive aids in combination.
  • Example 5 An electrode sheet was obtained in the same manner as in Example 1, except that 92 parts by mass of LiFePO 4 as the active material and 3 parts by mass of the fibrous carbon produced above as the carbon-based conductive aid were used. Various physical properties are shown in Table 1.
  • Example 6 An electrode sheet was obtained in the same manner as in Example 1, except that 93 parts by mass of LiFePO 4 as the active material and 2 parts by mass of the fibrous carbon produced above as the carbon-based conductive aid were used. Various physical properties are shown in Table 1.
  • Example 7 An electrode sheet was obtained in the same manner as in Example 1, except that the resin-bonded fiber (i) produced by the surface modification (i) of the fibrous carbon was used as the carbon-based conductive aid. Various physical properties are shown in Table 1. Since the resin-bonded fiber (i) was used, the breaking strength was increased.
  • Example 8 An electrode sheet was obtained in the same manner as in Example 1, except that the resin-bonded fiber (ii) produced by the surface modification (ii) of the fibrous carbon was used as the carbon-based conductive aid. Various physical properties are shown in Table 1. Since the resin-bonded fiber (ii) was used, the breaking strength was increased.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本発明により、 リチウムイオン電池用活物質と、繊維状炭素と、フッ素系ポリマーと、を少なくとも含有するリチウムイオン二次電池用電極シートであって、 前記リチウムイオン二次電池用電極シートの膜厚が50~2000(μm)、引張破断強度が0.2(N/mm)以上であり、 前記繊維状炭素の平均繊維径が100~900(nm)であり、 前記繊維状炭素の電極シート中の含有量が0.1~10(質量%)、 であることを特徴とするリチウムイオン二次電池用電極シートが提供される。

Description

リチウムイオン二次電池用電極シート
 本発明は、リチウムイオン電池用活物質と、繊維状炭素と、フッ素系ポリマーとを少なくとも含むリチウムイオン二次電池用電極シートに関する。
 リチウムイオン二次電池は、電解質中のリチウムイオンが電気伝導を担う二次電池であり、正極にリチウム金属酸化物を電極活物質として用い、負極にグラファイトなどの炭素材を電極活物質として用いるものが主流となっている。リチウムイオン二次電池は、二次電池の中でもエネルギー密度が高い特徴を持つことから、携帯電話などの小型機器から、電気自動車などの大型機器まで、応用範囲が広がってきている。
 リチウムイオン二次電池用電極シートは、一般に、リチウムイオン電池用活物質、導電助剤、バインダー及び溶媒を含むスラリーを調製し、このスラリーを薄膜塗布した後、溶媒を除去することによって作製される。そのため、リチウムイオン電池用活物質、導電助剤、バインダー及び溶媒を均一に分散するスラリー調製工程や、溶媒除去時の乾燥工程が必要であり、製造工程が煩雑となる。また、溶媒除去時の乾燥過程で電極シートに割れが生じ易くなるため、電極シートの膜厚を大きくすることが困難である。さらに、導電性を向上させる目的で、導電助剤として繊維状炭素が用いられることがあるが、アスペクトが大きい繊維状炭素は、スラリーを薄膜塗布する過程で塗布方向に配向し易い。その結果、電極シートの機械的強度に異方性が生じ易い。
 特許文献1には、正極活物質としてコバルト酸リチウム、バインダーとしてポリフッ化ビニリデン、導電材としてアセチレンブラック、溶媒としてN-メチルピロリドンを用いてスラリーを作製し、このスラリーを塗布、乾燥、ロールプレスを行うことにより、正極を作製したことが記載されている。
 特許文献2及び3には、圧延装置を用いてポリテトラフルオロエチレンをフィブリル化させることによって作製されるドライフィルムが開示されているが、繊維状炭素を用いることに関する記載は無い。
 
国際公開2014/115852公報 特表2020-522090号公報 特表2021-504877号公報
 本発明の解決しようとする課題は、溶媒を用いずに作製できるリチウムイオン二次電池用電極シート及びその製造方法を提供することにある。
 
 本発明者らは、上記の従来技術に鑑みて鋭意検討を重ねた結果、電極シート内で所定の繊維状炭素を用いるとともにバインダーとしてフッ素系ポリマーを用いることにより、上記課題を解決することができることを見出し、本発明を完成するに至った。
 即ち、本発明の電極シートは、フッ素系ポリマーによって支持されて成る電極シートであり、その製造工程において、成膜するために溶媒を使用しないことを特徴とする。
 上記課題を解決する本発明は、以下に記載されるとおりである。
 〔1〕 リチウムイオン電池用活物質と、繊維状炭素と、フッ素系ポリマーと、を少なくとも含有するリチウムイオン二次電池用電極シートであって、
 前記リチウムイオン二次電池用電極シートの膜厚が50~2000(μm)、引張破断強度が0.20(N/mm)以上であり、
 前記繊維状炭素の平均繊維径が100~900(nm)であり、
 前記リチウムイオン二次電池用電極シート中における前記繊維状炭素の含有量が0.1~10(質量%)であることを特徴とするリチウムイオン二次電池用電極シート。
 上記〔1〕に記載の発明は、フッ素系ポリマーによってシート形態が維持されているリチウムイオン二次電池用電極シートである。この電極シートは、スラリーを経由せずに製造されたドライフィルムと呼ばれる電極シートである。
 〔2〕 前記繊維状炭素以外の炭素系導電助剤をさらに含む〔1〕に記載のリチウムイオン二次電池用電極シート。
 上記〔2〕に記載の発明は、繊維状炭素以外の炭素系導電助剤をさらに含む。ここでいう炭素系導電助剤は、〔1〕で規定された平均繊維径のみが相違している繊維状炭素を意味するものではない。
 〔3〕 前記繊維状炭素の平均繊維長が10~50(μm)である〔1〕に記載のリチウムイオン二次電池用電極シート。
 〔4〕 前記繊維状炭素の充填密度0.8(g/cm)で充填した際の粉体体積抵抗率が4.00×10-2(Ω・cm)以下である〔1〕に記載のリチウムイオン二次電池用電極シート。
 〔5〕 前記フッ素系ポリマーがポリテトラフルオロエチレンである〔1〕に記載のリチウムイオン二次電池用電極シート。
 〔6〕 前記リチウムイオン二次電池用電極シートの空隙率が5~60(体積%)である〔1〕に記載のリチウムイオン二次電池用電極シート。
 〔7〕 前記リチウムイオン二次電池用電極シートの引張破断強度(N/mm)と膜厚(mm)との積が0.04(N/mm)以上である〔1〕に記載のリチウムイオン二次電池用電極シート。
 〔8〕 前記リチウムイオン二次電池用電極シートの膜厚方向の電気伝導度が8.0×10-4(S/cm)以上である、〔1〕に記載のリチウムイオン二次電池用電極シート。
 
 本発明のリチウムイオン二次電池用電極シートは、その製造工程において、成膜するための溶媒を使用しないため、製造が簡便である。
 
図1は実施例1で得られた電極シートの表面を示したSEM写真(5000倍)である。 図2は実施例1で得られた電極シートの断面を示したSEM写真(5000倍)である。 図3は実施例2で得られた電極シートの表面を示したSEM写真(5000倍)である。 図4は実施例2で得られた電極シートの断面を示したSEM写真(5000倍)である。 図5は比較例1で得られた電極シートの表面を示したSEM写真(5000倍)である。 図6は比較例1で得られた電極シートの断面を示したSEM写真(5000倍)である。 図7は比較例2で得られた電極シートの表面を示したSEM写真(5000倍)である。
(1) リチウムイオン二次電池用電極シート
 本発明のリチウムイオン二次電池用電極シート(以下、「電極シート」と略記する場合がある)は、リチウムイオン電池用活物質と、繊維状炭素と、フッ素系ポリマーと、を少なくとも含有して成る。本発明の電極シートは、電極シート中でフッ素系ポリマーが繊維状の形態を含んで分散していることが好ましい。具体的には、フッ素系ポリマーが部分的乃至全体的にフィブリル化して、当該フィブリル化したフッ素系ポリマーが繊維状炭素と協働して電極シートの形態を維持するように分散していることが好ましい。特に、フィブリル化したフッ素系ポリマーと繊維状炭素とが交絡して繊維状炭素を支持し、且つ繊維状炭素によって空隙を形成するように電極シートが構成されていることがより好ましい。このように電極シートを構成することで、所定の繊維長を有する繊維状炭素によって電極シート全体としての形態安定性を維持しつつも、電極シート内の活物質の体積変動を許容できる構成とすることができる。
 電極シートの膜厚は、50~2000μmである。電極シートの膜厚は、80μm以上であることが好ましく、100μm以上、120μm以上、150μm以上、180μm以上、200μm以上、250μm以上、300μm以上であることがこの順で好ましい。50μm未満である場合、シート形状を維持し難くなる。また、高容量セルを製造しようとする場合、セパレータや集電体を多量に使用することになり、その結果、セル内における電極シートの体積占有率が低下する。これは、エネルギー密度の観点から好ましくなく、用途がかなり制限されてしまう。特に、エネルギー密度の要求の高い電源用途への適用は困難となってしまう。
 電極シートの膜厚は、電極シートの安定的製造の観点から、2000μm以下である。電極シートの膜厚は1500μm以下であることが好ましく、1200μm以下、1000μm以下、800μm以下、600μm以下、500μm以下、400μm以下であることがこの順で好ましい。
 電極シートの引張破断強度は、0.20N/mm以上であることが好ましい。引張破断強度は0.25N/mm以上であることがより好ましく、0.30N/mm以上、0.40N/mm以上、0.50N/mm以上、0.60N/mm以上、0.65N/mm以上であることがこの順で好ましい。0.20N/mm未満である場合、電池の取扱性が低下し易い。また、リチウムイオン二次電池の充放電に伴う活物質の体積変化によって、電池性能が低下し易い。
 電極シートの引張破断強度の上限値は特に限定されないが、一般的には10.0N/mm以下であり、引張破断強度は5.0N/mm以下であることが好ましく、3.0N/mm以下、2.0N/mm以下、1.5N/mm以下、1.0N/mm以下であることがこの順で好ましい。
 電極シートの引張破断強度(N/mm)と膜厚(mm)との積は、0.04(N/mm)以上であることが好ましく、0.05(N/mm)以上、0.06(N/mm)以上、0.08(N/mm)以上、0.1(N/mm)以上、0.15(N/mm)以上、0.2(N/mm)以上であることがこの順で好ましい。0.04(N/mm)未満である場合、シート形状を維持し難い。
 電極シートの引張破断強度(N/mm)と膜厚(mm)との積の上限値は、特に限定されないが、一般的には5.0(N/mm)以下であり、3.0(N/mm)以下、2.0(N/mm)以下、1.5(N/mm)以下、1.0(N/mm)以下、0.8(N/mm)以下、0.6(N/mm)以下、0.5(N/mm)以下、0.4(N/mm)以下であることがこの順で好ましい。5.0(N/mm)を超える場合、バインダーとして用いるフッ素系ポリマーの配合率が多くなり、活物質の配合率が相対的に低下するため、電池性能を低下させ易い。
 電極シートの膜厚方向の電気伝導度は、8.0×10-4S/cm以上であることが好ましい。電気伝導度は、1.0×10-3S/cm以上であることが好ましく、1.5×10-3S/cm以上、3.0×10-3S/cm以上、5.0×10-3S/cm以上、7.0×10-3S/cm以上、9.0×10-3S/cm以上、1.0×10-2S/cm以上であることがこの順で好ましい。このような電気伝導度は、導電助剤として所定の繊維状炭素を含有することにより、達成することができる。
 電極シートの膜厚方向の電気伝導度σ(S/cm)を、炭素系導電助剤の含有量Xc(質量%)で除したσ/Xcは、1.0×10-4以上であることが好ましい。
 σ/Xcは、1.5×10-4以上であることがより好ましく、2.0×10-4以上、3.0×10-4以上、4.0×10-4以上、5.0×10-4以上であることがこの順で好ましい。σ/Xcが1.0×10-4未満の場合、炭素系導電助剤の含有量を過剰にする必要があり、エネルギー密度向上の観点から好ましくない。σ/Xcの上限は特に限定されないが、一般的には1.0×10-2以下である。
 電極シートの見かけ密度は、1.0~3.0g/cmであることが好ましい。見かけ密度は、1.2g/cm以上であることがより好ましく、1.5g/cm以上、1.8g/cm以上、2.0g/cm以上であることがこの順でより好ましい。また、電極シートの見かけ密度は、2.8g/cm以下であることがより好ましく、2.5g/cm以下、2.2g/cm以下であることがこの順でより好ましい。電極シートの見かけ密度をこの範囲とすることにより、活物質の体積変化を伴う充放電サイクルを繰り返しても、電極シートにクラックを生じることが特に抑制される。また、電極シートの真密度は、2.0~4.0g/cmであることが好ましく、3.0~3.7g/cmであることがより好ましい。なお、電極シートの見かけ密度とは、後述の式(2)によって算出される密度を意味する。
 電極シートは空隙を有する。その空隙率は、5.0体積%以上60体積%以下であることが好ましい。空隙率がこの範囲であると、活物質の体積変化を伴う充放電サイクルを繰り返しても、電極シートにクラックを生じることが特に抑制される。このような空隙を有する電極シートを用いることにより、電子伝導性及びイオン伝導性が特に高く、高出力のリチウムイオン二次電池を構成することができる。空隙率は、10体積%以上であることが好ましく、15体積%以上、20体積%以上、25体積%以上、30体積%以上、35体積%以上であることがこの順で特に好ましい。空隙率の上限値は、55体積%以下であることが好ましく、50体積%以下であることがより好ましく、45体積%以下であることが特に好ましい。
 電極シートの空隙率は、繊維状炭素、フッ素系ポリマー、及び活物質の材質、大きさ、含有量、さらには電極シートを作製する際の成形条件等を制御することによって調整することができる。
 空隙率の算出方法は特に限定されないが、例えば電極シートの見かけ密度及び真密度から以下の式(1)に基づいて算出する方法や、X線CTなどのトモグラフィーにより得られた3次元画像から算出する方法などがある。
 空隙率(体積%) = (真密度 - 見かけ密度) / 真密度 ×100 ・・・式(1)
 式(1)に基づいて算出する場合には、真密度及び見かけ密度をそれぞれ測定する。真密度の測定方法は、例えば、電極シートを構成する各材料の真密度及び質量比率に基づいて算出する方法や、電極シートを粉砕後に気相置換法(ピクノメータ法)又は液相法(アルキメデス法)を用いて測定する方法がある。電極シートの見かけ密度は、例えば電極シートの質量と体積から、以下の式(2)により算出することができる。
 電極シートの見かけ密度 = 電極シートの質量 / (電極シートの膜厚 × 面積) ・・・式(2)
 
(1-2) 活物質
 本発明の電極シートは、少なくとも正極活物質又は負極活物質を含む。
 <正極活物質>
 本発明の電極シートに含まれる正極活物質としては、リチウムイオン二次電池において、リチウムイオンを吸蔵・放出可能なリチウム含有金属酸化物の中から、任意のものを1種又は2種以上適宜選択して用いることができる。このリチウム含有金属酸化物としては、リチウムと、Co、Mg、Mn、Ni、Fe、Al、Mo、V、W及びTiなどからなる群より選ばれる少なくとも1種の元素とを含む複合酸化物を挙げることができる。
 具体的には、LiCoO、LiNiO、LiMnO、LiCoNi1-a、LiCo1-b、LiCoFe1-b、LiMn、LiMnCo2-c、LiMnNi2-c、LiMn2-c、LiMnFe2-c(ここで、x=0.02~1.2、a=0.1~0.9、b=0.8~0.98、c=1.2~1.96、z=2.01~2.3である。)、LiFePOなどからなる群より選ばれる少なくとも1種が挙げられる。好ましいリチウム含有金属酸化物としては、LiCoO、LiNiO、LiMnO、LiCoNi1-a、LiMn、LiCo1-b(ここで、x、a、b及びzは上記と同じである。)、LiFePOからなる群より選ばれる少なくとも1種を挙げることができる。なお、xの値は充放電開始前の値であり、充放電により増減する。
 上記正極活物質は、単独で用いてもよく、2種以上を組み合わせて用いてもよい。また、当該正極活物質の平均粒子径は、10μm以下であることが好ましく、0.05~7μmであることがより好ましく、1~7μmであることがさらに好ましい。平均粒子径が10μmを超えると、大電流下での充放電反応の効率が低下してしまう場合がある。
 本発明の電極合剤層における正極活物質の含有率は、60質量%以上であることが好ましく、70~98.5質量%であることがより好ましく、75~98.5質量%であることがさらに好ましい。60質量%未満である場合、エネルギー密度の要求の高い電源用途への適用は困難となってしまう場合がある。98.5質量%を超える場合、フッ素系ポリマーが少な過ぎて電極合剤層にクラックが発生したり、電極合剤層が集電体から剥離する場合がある。さらに、繊維状炭素や炭素系導電助剤の含有量が少な過ぎて電極合剤層の導電性が不十分になる場合がある。
 <負極活物質>
 本発明の電極シートに含まれる負極活物質としては、リチウムイオン二次電池において、負極活物質として知られている従来公知の材料の中から、任意のものを1種又は2種以上適宜選択して用いることができる。例えば、リチウムイオンを吸蔵・放出可能な材料として、炭素材料、Si及びSnの何れか、又はこれらの少なくとも1種を含む合金や酸化物などを用いることができる。これらの中でもコストなどの観点からは炭素材料が好ましい。上記炭素材料としては、天然黒鉛、石油系又は石炭系コークスを熱処理することで製造される人造黒鉛、樹脂を炭素化したハードカーボン、メソフェーズピッチ系炭素材料などが挙げられる。
 天然黒鉛や人造黒鉛を用いる場合、電池容量の増大の観点から、粉末X線回折による黒鉛構造の(002)面の面間隔d(002)が0.335~0.337nmの範囲にあるものが好ましい。天然黒鉛とは、鉱石として天然に産出する黒鉛質材料のことをいう。天然黒鉛は、その外観と性状によって、結晶化度の高い鱗状黒鉛と結晶化度が低い土状黒鉛の2種類に分けられる。鱗状黒鉛はさらに外観が葉状の鱗片状黒鉛と、塊状である鱗状黒鉛とに分けられる。黒鉛質材料となる天然黒鉛は、産地や性状、種類は特に制限されない。また、天然黒鉛又は天然黒鉛を原料として製造した粒子に熱処理を施して用いてもよい。
 人造黒鉛とは、広く人工的な手法で作られた黒鉛及び黒鉛の完全結晶に近い黒鉛質材料をいう。代表的な例としては、石炭の乾留、原油の蒸留による残渣などから得られるタールやコークスを原料にして、500~1000℃程度の焼成工程、2000℃以上の黒鉛化工程を経て得たものが挙げられる。また、溶解鉄から炭素を再析出させることで得られるキッシュグラファイトも人造黒鉛の一種である。
 負極活物質として炭素材料の他に、Si及びSnの少なくとも1種を含む合金を使用することは、Si及びSnのそれぞれを単体で用いる場合やそれぞれの酸化物を用いる場合に比べ、電気容量を小さくすることができる点で有効である。これらの中でも、Si系合金が好ましい。Si系合金としては、B、Mg、Ca、Ti、Fe、Co、Mo、Cr、V、W、Ni、Mn、Zn及びCuなどからなる群より選ばれる少なくとも1種の元素と、Siと、の合金などが挙げられる。具体的には、SiB、SiB、MgSi、NiSi、TiSi、MoSi、CoSi、NiSi、CaSi、CrSi、CuSi、FeSi、MnSi、VSi、WSi、ZnSiなどからなる群より選ばれる少なくとも1種が挙げられる。
 本発明の電極シートにおいては、負極活物質として、既述の材料を1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。また、当該負極活物質の平均粒子径は10μm以下とする。平均粒子径が10μmを超えると、大電流下での充放電反応の効率が低下してしまう。平均粒子径は0.1~10μmとすることが好ましく、1~7μmとすることがより好ましい。
 電極シートにおける負極活物質の含有率は、特に制限されるものではないが、30~99質量%であることが好ましく、40~99質量%であることがより好ましく、50~95質量%であることがさらに好ましい。30質量%未満である場合、エネルギー密度の要求の高い電源用途への適用は困難となってしまう場合がある。
 
(1-3) 繊維状炭素
 本発明に用いる繊維状炭素は、炭素繊維であることが好ましく、特に導電性に優れる点でピッチを出発原料としたピッチ系炭素繊維であることがより好ましい。
 繊維状炭素の平均繊維径は、100~900nmである。平均繊維径の下限値は、200nm以上であることが好ましく、200nmを超えることがより好ましく、220nm以上であることがさらに好ましく、250nm以上であることがさらにより好ましい。平均繊維径の上限値は、700nm以下であることが好ましく、600nm以下であることがより好ましく、500nm以下であることがより好ましく、400nm以下であることがより好ましく、350nm以下であることがより好ましい。100nm未満である場合、繊維が折損し易く、導電材として機能し難い。また、平均繊維径が100nm未満である繊維状炭素はその比表面積が大きく、電極シート内において活物質の表面を被覆してしまう。その結果、活物質の接点が減少することとなり、イオン伝導パスの形成の阻害につながる。平均繊維径が900nmを超える繊維状炭素は、電極シート内において繊維間に隙間が生じ易くなり、電極シート密度を高くすることが困難となる場合がある。
 上記100~900nmの平均繊維径を示す繊維状炭素の繊維径の分布は、100~900nmにおいて1つのピークを有してよいし、2以上のピークを有していてもよいが、通常、1つのピークを有することが好ましい。
 繊維状炭素のアスペクト比(平均繊維長/平均繊維径)は、30以上であり、35以上であることが好ましく、40以上であることが好ましい。アスペクト比が30未満である場合、電極シートを製造した際に、該電極シート中において繊維状炭素による導電パスの形成が不十分になり易く、電極シートの膜厚方向の抵抗値が十分に低下しない場合がある。また、電極シートの機械的強度が不足し易い。アスペクト比の上限値は特に限定されないが、1000以下であることが好ましく、500以下であることがより好ましく、300以下であることがさらに好ましい。アスペクト比が大きすぎると、繊維状炭素同士が絡まり合い、電極シート中で十分に分散されないことがあり、導電パスの形成が不十分になることがある。
 本発明に用いられる炭素繊維の平均繊維長は10μm以上であることが好ましく、11μm以上であることがより好ましく、12μm以上であることがさらに好ましく、13μm以上であることがさらにより好ましく、15μm以上であることが特に好ましい。また、平均繊維長は、100μm以下であることが好ましく、80μm以下であることがより好ましく、50μm以下であることが特に好ましい。このような平均繊維長の繊維状炭素を電極シート内に存在させることで、繊維状炭素の周辺に空隙を形成し、活物質の体積変動を許容するとともに、活物質の体積の増大及び減少の何れにも追従して導電パスを維持することができ、さらには電極シートが強靱となるため、強度の低下や見かけ密度の低下を抑制することができる。平均繊維長が10μm未満の炭素繊維を用いて電極シートを製造した場合、該電極シート中において導電パスの形成が不十分になり易く、電極シートの膜厚方向の抵抗値が十分に低下しない場合がある。平均繊維長が100μmを超える繊維状炭素を用いて電極シートを製造した場合、繊維状炭素が電極シート中においてその面内方向に配向し易くなる。その結果、膜厚方向への導電パスを形成し難い場合がある。
 本発明に用いられる繊維状炭素は、実質的に分岐を有さない構造であることが好ましい。ここで、実質的に分岐を有さないとは、分岐度が0.01個/μm以下であることをいう。本発明における繊維状炭素は分岐度が0であることが好ましい。ここで分岐とは、繊維状炭素が末端部以外の場所で他の繊維状炭素と結合した粒状部をいい、繊維状炭素の主軸が中途で枝分かれしていること、及び繊維状炭素の主軸が枝状の副軸を有することをいう。分岐を有する繊維状炭素としては、例えば、触媒として鉄などの金属の存在下、高温雰囲気中でベンゼン等の炭化水素を気化させる気相法によって製造した気相成長(気相法)炭素繊維(例えば昭和電工社製VGCF(登録商標))が知られている。実質的に分岐構造を有さない直線的構造である繊維状炭素は、分岐を有する繊維状炭素に比べて分散性が良好であり、長距離の導電パスを形成しやすい。なお、直線的構造とは、繊維状炭素が完全な直線構造を有している場合のほか、片端や両端が多少曲がっている場合、両端以外の部分が多少曲がっている場合を含む。
 ここで、本発明に用いられる繊維状炭素の分岐度は、電界放射型走査電子顕微鏡によって倍率5,000倍にて撮影した写真図から測定された値を意味する。
 なお、この繊維状炭素は、全体として繊維状の形態を有していればよく、例えば、上記アスペクト比の好ましい範囲未満のものが接触したり結合したりして一体的に繊維形状を有しているもの(例えば、球状炭素が数珠状に連なっているもの、極めて短い少なくとも1本または複数本の繊維が融着等によりつながっているものなど)も含む。
 本発明に用いられる繊維状炭素は、充填密度が低い状態において高い導電性を有する。充填密度が低い状態において高い導電性を有する繊維状炭素は、より低い添加濃度で導電性を付与することができる。
 具体的には、充填密度0.8g/cmで充填した際の粉体体積抵抗率が4.00×10-2Ω・cm以下であることが好ましく、3.00×10-2Ω・cm以下であることがより好ましい。4.00×10-2Ω・cmを超える場合、導電性を向上させるのに要する繊維状炭素の添加量が多くなり好ましくない。下限値は特に限定されないが、一般的には0.0001Ω・cm程度である。
 本発明に用いられる繊維状炭素は、広角X線測定により測定した隣接するグラファイトシート間の距離(d002)が0.3400nm以上であることが好ましく、0.3400nmを超えることがより好ましく、0.3410nm以上がさらに好ましく、0.3420nm以上がさらにより好ましい。また、d002は0.3450nm以下が好ましく、0.3445nm以下であることがより好ましい。d002が0.3400nm以上の場合、繊維状炭素が脆くなり難い。そのため、解砕などの加工時に、繊維が折損し難く、繊維長が保持される。その結果、長い距離の導電パスを形成し易くなる。また、リチウムイオン二次電池の充放電に伴う活物質の体積変化に追従して導電パスが維持され易い。
 本発明に用いられる繊維状炭素は、広角X線測定により測定した結晶子大きさ(Lc002)が50nm以下であることが好ましく、40nm以下、30nm以下、25nm以下であることがこの順でより好ましい。結晶子大きさ(Lc002)は大きいほど結晶性が高く、導電性が優れる。しかし、結晶子大きさ(Lc002)が大きい場合、繊維状炭素が脆くなり難い。そのため、解砕などの加工時に、繊維が折損し難く、繊維長が保持される。その結果、長い距離の導電パスを形成し易くなる。また、全固体リチウム二次電池の充放電に伴う活物質の体積変化に追従して導電パスが維持され易い。結晶子大きさ(Lc002)の下限は特に制限はないが、1nm以上であることが好ましい。
 本発明において、結晶子大きさ(Lc002)とは、日本工業規格JIS R 7651(2007年度版)「炭素材料の格子定数及び結晶子の大きさ測定方法」により測定される値をいう。
 本発明に用いられる繊維状炭素の比表面積は1m/g以上50m/g以下であることが好ましい。繊維状炭素の比表面積が1m/g未満の場合、活物質と導電助剤としての繊維状炭素との接点が確保され難く、電子伝導パスが十分に形成されないことがある。
 一方、比表面積が大きすぎると、イオン伝導パスの阻害要因になることがある。すなわち、繊維状炭素の比表面積が50m/gを超える場合、繊維状炭素が活物質の表面を覆ってしまい、イオン伝導を担う固体電解質と活物質との接点が減少し、イオン伝導が阻害されてしまうことがある。比表面積の下限は、2m/g以上であることが好ましく、3m/g以上であることがより好ましく、5m/g以上であることがさらに好ましく、7m/g以上であることが特に好ましい。比表面積の上限は、40m/g以下であることが好ましく、30m/g以下であることがより好ましく、25m/g以下であることがさらに好ましく、20m/g以下であることが特に好ましい。
 本発明に用いられる繊維状炭素は、実質的に金属元素を含有しないことが好ましい。具体的には、金属元素の含有率が合計で50ppm以下であることが好ましく、30ppm以下であることがより好ましく、20ppm以下であることがさらに好ましい。金属元素の含有率が50ppmを超える場合、金属の触媒作用により電池を劣化させ易くなる。本発明において、金属元素の含有率とは、Li、Na、Ti、Mn、Fe、Ni及びCoの合計含有率を意味する。特に、Feの含有率は5ppm以下であることが好ましく、3ppm以下であることがより好ましく、1ppm以下であることがさらに好ましい。Feの含有率が5ppmを超える場合、特に電池を劣化させ易くなるため好ましくない。
 本発明に用いられる繊維状炭素は、繊維中の水素、窒素、灰分の何れもが0.5質量%以下であることが好ましく、0.3質量%以下であることがより好ましい。繊維状炭素中の水素、窒素、灰分の何れもが0.5質量%以下である場合、グラファイト層の構造欠陥が一段と抑制され、電池中での副反応抑制できるため好ましい。
 本発明に用いられる繊維状炭素は、電極シート中での分散性に特に優れている。その理由は明らかではないが、前記した構造を有すること、天然黒鉛、石油系及び石炭系コークスを熱処理することで製造される人造黒鉛や難黒鉛化性炭素、易黒鉛化性炭素などを原料とすること、製造工程で樹脂複合繊維を経由すること、等が考えられる。電極シート内において、分散性に優れるので、長距離の導電パスを形成でき、少量の含有量で優れた電池性能を発揮すると考えられる。
 本発明に用いられる繊維状炭素は、多孔質や中空構造であってもよいが、繊維状炭素の製造過程において、溶融ブレンド紡糸で得られる樹脂複合繊維を経ることが好ましい。そのため、本発明の繊維状炭素は実質的に中実であり、表面は基本的に平滑であり、前述のとおり分岐を有さない直線構造であることが好ましい。
 本発明に用いられる繊維状炭素は、その表面を化学的又は物理的に修飾し、改質してもよい。修飾物質、修飾の形式は特に限定されず、改質の目的に応じて適宜好適なものが選択される。
 以下に、繊維状炭素の修飾について説明する。
 繊維状炭素の表面を熱可塑性樹脂により修飾することにより、繊維状炭素に接着性を付与することができる。修飾方法は特に限定されないが、例えば、繊維状炭素の表面に粒子状の熱可塑性樹脂を付着及び/又は接着させる方法や; 繊維状炭素が粒子状の熱可塑性樹脂を貫くように、繊維状炭素と熱可塑性樹脂とを結合させる方法; 繊維状炭素の表面の一部を熱可塑性樹脂によって被覆する方法が挙げられる。特に、少なくとも一部の熱可塑性樹脂を粒子状に付着させることが好ましい。ここで、粒子状とは、アスペクト比が5以下、好ましくは2以下、より好ましくは1.5以下の形態の粒子を意味する。具体的な修飾方法としては、熱可塑性樹脂の溶液中に分散した繊維状炭素を噴霧乾燥する方法や、単量体溶液と繊維状炭素とを混合して単量体を重合する方法、繊維状炭素が分散する溶媒中で熱可塑性樹脂を析出させる方法等が挙げられる。
 修飾に用いる熱可塑性樹脂は特に限定されないが、ポリビニルアルコール、ポリアクリル酸、カルボキシメチルセルロース、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVDF)、フッ化ビニリデン‐ヘキサフルオロプロピレン共重体(P-(VDF-HFP))、テトラフルオロエチレン‐ヘキサフルオロプロピレン共重合体(FEP)、スチレンブタジエンゴム(SBR)、フルオロオレフィン共重合体、ポリイミド、ポリアミドイミド、アラミド、フェノール樹脂等よりなる群から選ばれる1種以上を用いることが好ましく、特にポリフッ化ビニリデン(PVDF)、フッ化ビニリデン‐ヘキサフルオロプロピレン共重体(P-(VDF-HFP))のようなフッ素原子を含む熱可塑性樹脂が好ましい。
 熱可塑性樹脂の融点は、50~250℃であることが好ましい。熱可塑性樹脂の融点の下限は、60℃以上であることがより好ましく、70℃以上であることがより好ましく、80℃以上であることがより好ましく、90℃以上であることがより好ましく、100℃以上であることがより好ましい。熱可塑性樹脂の融点の上限は、220℃以下であることがより好ましく、200℃以下であることがより好ましく、180℃以下であることがより好ましく、160℃以下であることがより好ましく、150℃以下であることがより好ましい。
 融点が50℃未満である場合、電極シート中に分散させる過程で熱可塑性樹脂の粒子が凝集し易い。また、電池の耐熱性が低くなる。融点が250℃を超える場合、活物質や固体電解質の劣化を招く恐れがある。
 熱可塑性樹脂のガラス転移点は特に限定されないが、250℃以下であることが好ましい。ガラス転移点の上限は、200℃以下であることが好ましく、150℃以下であることがより好ましく、120℃以下であることがより好ましく、100℃以下であることがより好ましく、80℃以下であることがより好ましく、50℃以下であることがより好ましく、40℃以下であることがより好ましく、30℃以下であることがより好ましく、20℃以下であることがより好ましく、10℃以下であることがより好ましく、0℃以下であることがより好ましい。
 本発明の電極シートにおける繊維状炭素の含有率は、0.1質量%以上10質量%以下である。繊維状炭素の含有率の下限は、0.5質量%以上であることが好ましく、1.0質量%以上であることがより好ましく、1.2質量%以上であることがさらに好ましく、1.5質量%以上であることがさらに好ましく、1.8質量%以上であることが特に好ましい。繊維状炭素の含有率の上限は、6.0質量%以下であることがより好ましく、5.0質量%以下であることがさらに好ましく、3.0質量%以下であることが特に好ましい。
 本発明に用いられる炭素繊維は、例えばWO2009/125857に記載の方法により製造できる。以下に一例を示す。
 先ず、熱可塑性ポリマー内にメソフェーズピッチが分散して成るメソフェーズピッチ組成物を調製する。次に、このメソフェーズピッチ組成物を溶融状態で糸状またはフィルム状に成形する。特に紡糸することが好ましい。紡糸により、熱可塑性ポリマー内に分散するメソフェーズピッチを熱可塑性ポリマー内部で引き延ばすとともに、メソフェーズピッチ組成物を繊維化して樹脂複合繊維を得る。この樹脂複合繊維は、熱可塑性ポリマーを海成分とし、メソフェーズピッチを島成分とする海島構造を有する。
 次に、得られた樹脂複合繊維に酸素を含む気体を接触させてメソフェーズピッチを安定化させて樹脂複合安定化繊維を得る。この樹脂複合安定化繊維は、熱可塑性ポリマーを海成分とし、安定化メソフェーズピッチを島成分とする海島構造を有する。
 続いて、この樹脂複合安定化繊維の海成分である熱可塑性ポリマーを除去、分離し、炭素繊維前駆体を得る。
 さらに、この炭素繊維前駆体を高温加熱して、繊維状炭素(炭素繊維)を得る。
 
(1-4) フッ素系ポリマー
 本発明の電極シートに用いられるフッ素系ポリマーとしては、十分な電気化学的安定性を有しているフッ素系ポリマーであれば用いることが可能である。また、本発明で用いるフッ素系樹脂としては、上記電極シートを形成する際に、バインダーとして作用するとともにシートを形成する際の剪断力によって容易にフィブリルを形成するものが好ましい。例えば、粒状のポリテトラフルオロエチレン樹脂にせん断応力をかけることによりポリテトラフルオロエチレン樹脂の針状繊維(フィブリル)が得られる。従来より、ポリテトラフルオロエチレン樹脂にせん断応力をかけ、ポリテトラフルオロエチレン樹脂を針状繊維化させることは行われており、該針状繊維化は、フィブリル化とも呼ばれている。
 本発明の電極シートは、例えば、ロールプレス成形によりシートを形成する場合には、プレス圧力およびロール間の速度差を調節することにより剪断力を調整できる。このようなフッ素樹脂としては、例えば、ポリテトラフルオロエチレン(PTFE)、ポリクロロトリフルオロエチレン、ポリビニリデンフルオライド、エチレン-テトラフルオロエチレン共重合体、フッ化ビニリデン‐ヘキサフルオロプロピレン共重体(P-(VDF-HFP))、テトラフルオロエチレン‐ヘキサフルオロプロピレン共重合体(FEP)等が挙げられる。これらは2種以上組み合わせて用いてもよい。この中でも、特にPTFEがフィブリル化させ易い点で好ましい。
 本発明の電極シートにおけるフッ素系ポリマーの含有率は、0.5~25質量%であることが好ましい。フッ素系ポリマーの含有率は、0.8質量%以上であることが好ましく、1.0質量%以上、1.5質量%以上、2.0質量%以上、3.0質量%以上であることがこの順でより好ましい。フッ素系ポリマーの含有率は、15質量%以下であることが好ましく、10質量%以下、8質量%以下、6質量%以下、5質量%以下であることがこの順でより好ましい。0.5質量%未満である場合、電極シートの形状を維持し難くなる。25質量%を超える場合、電極中の活物質量が少なくなり、得られる電池のエネルギー密度が低下し易い。
 フッ素系ポリマーの平均粒子径は、50~1000nmであることが好ましく、80~500nmであることがより好ましく、100~400nmであることが特に好ましい。特に、上記の繊維状炭素の平均繊維径の0.1~10倍の範囲であることが好ましく、0.5~5倍の範囲であることがより好ましい。
 本発明の電極シートに用いられるフッ素系ポリマーは、特に限定されないが、電極シート中において、少なくともその一部がフィブリル化されていることが好ましい。フッ素系ポリマーはそのフィブリル部により網目構造を形成し、活物質および導電助剤が該網目構造に保持されることで、シート形成に寄与するとともに、引張破断強度の高い電極シートを形成することができる。また、本発明の一実施形態として、前記繊維状炭素は、少なくともその一部がフィブリルと接し、網目構造に取り込まれたり、フィブリルとからみあいながら、電極シートの厚み方向に導電パスを形成すると推定される。したがって、高い引張破断強度のみならず、厚み方向に優れた電気伝導性を示すと考えられる。
 
(1-5) 繊維状炭素以外の炭素系導電助剤
 本発明の電極シートには、上記の繊維状炭素の他に炭素系導電助剤を含むこともできる。
 繊維状炭素以外の炭素系導電助剤としては、例えば、カーボンブラック、アセチレンブラック、鱗片状炭素、グラフェン、グラファイト、カーボンナノチューブ(CNT)を挙げることができる。これらの炭素系導電助剤は、単独で用いてもよいし、2種以上を併用しても良い。
 これらの炭素系導電助剤の形状は特に限定されないが、カーボンブラックやアセチレンブラックなどの球状粒子であることが好ましい。炭素系導電助剤の平均粒子径(一次粒子径)は10~200nmであることが好ましく、20~100nmであることがより好ましい。これらの炭素系導電助剤のアスペクト比は、10以下であり、1~5であることが好ましく、1~3であることがより好ましい。
 本発明の電極シートにおける繊維状炭素以外の炭素系導電助剤の含有率は、当該電極シートに対し0.1~4質量%であることが好ましく、0.5~3質量%であることがより好ましく、1~2質量%であることがさらに好ましい。
 前記導電助剤が、前述の繊維状炭素と上記繊維状炭素以外の炭素系導電助剤とを含む場合、電子伝導性およびイオン伝導性を両立するという観点から、前記導電助剤における前記繊維状炭素の質量割合が20質量%以上99質量%以下であり、前記繊維状炭素以外の炭素系導電助剤の質量割合が1質量%以上80質量%以下であることが好ましい。前記繊維状炭素の質量割合が40質量%以上99質量%以下であり、前記繊維状炭素以外の炭素系導電助剤の質量割合が1質量%以上60質量%以下であることがより好ましい。前記繊維状炭素の質量割合は、50質量%以上であることが好ましく、60質量%以上であることがより好ましく、70質量%以上であることがより好ましく、80質量%以上であることがより好ましく、85質量%以上であることが特に好ましい。前記繊維状炭素以外の炭素系導電助剤の質量割合は、50質量%以下であることが好ましく、40質量%以下であることがより好ましく、30質量%以下であることがより好ましく、20質量%以下であることがより好ましく、15質量%以下であることが特に好ましい。少量の繊維状炭素以外の炭素系導電助剤は、充放電サイクルの繰り返しによる活物質の体積変化を緩衝するクッションとしても作用すると考えられる。
 
(1-6) その他
 本発明の電極シートを全固体リチウムイオン二次電池に用いる場合は、固体電解質を含有しても良い。固体電解質は、従来公知の材料を選択して用いることができる。例えば、硫化物系固体電解質、酸化物系固体電解質、水素化物系固体電解質、ポリマー電解質を挙げることができる。本発明においては、リチウムイオンの伝導性が高いことから、硫化物系固体電解質を用いることが好ましい。
 硫化物系固体電解質としては、具体的にはLi、A、Sからなる硫化物系固体電解質(Li-A-S)を挙げることができる。上記硫化物系固体電解質Li-A-S中のAは、P、Ge、B、Si、SbおよびIからなる群より選ばれる少なくとも一種である。このような硫化物系固体電解質Li-A-Sとしては、具体的にはLi11、70LiS-30P、LiGe0.250.75、75LiS-25P、80LiS-20P、Li10GeP12、Li9.54Si1.741.4411.7Cl0.3、LiS-SiS、LiPSCl等を挙げることができ、イオン伝導度が高いことから、特にLi11が好ましい。
 水素化物系固体電解質としては、具体的には水素化ホウ素リチウムの錯体水素化物などが挙げられる。錯体水素化物としては、例えば、LiBH-LiI系錯体水素化物およびLiBH-LiNH系錯体水素化物、LiBH-P、LiBH-Pなどが挙げられる。
 前記固体電解質は、単独で用いてもよく、必要に応じて、二種以上を併用してもよい。
 
(2) 電極シートの製造方法
 本発明の電極シートは、例えば、上記の活物質、炭素系導電助剤、及びフッ素系ポリマーを粉体の状態で混合して粉体混合物を調製し、この粉体混合物を第1のロールおよび第2のロールを有する圧延装置によってフィルム状に加圧成形して製造することができる。フッ素系ポリマーは、フィブリル化させた状態で用いることにより、シート形状を維持しやすく、自己支持型、すなわち自立性のフィルムを形成する。フッ素系ポリマーは、予めフィブリル化させた物を用いても良いし、粉体混合物の混合の際にフィブリル化させても良いし、フィルム状に加圧成形する際にフィブリル化させても良い。フッ素系ポリマーの粒子から生じるフィブリル部が相互に交絡することにより、電極シートの強度が高くなるという観点から、粉体混合物の混合の際にフィブリル化させるか、フィルム状に加圧成形する際にフィブリル化させることが好ましい。なお、粉体の混合の際には、アルコール等の揮発性溶媒を添加してもよい。
 フッ素系ポリマーをフィブリル化させる方法としては、粉体混合時にフッ素系ポリマーの粒子に剪断を付与したり、加圧成形時に第1のロールと第2のロールとに速度差を生じさせてフッ素系ポリマーの粒子に剪断を付与したりする方法が例示される。
 フッ素系ポリマーの粒子から生じるフィブリル部の繊維径は、200nm以下であることが好ましく、100nm以下であることがより好ましく、80nm以下であることがさらにより好ましく、60nm以下であることが特に好ましい。また、フッ素系ポリマーの粒子径の1/2以下であることが好ましく、1/3以下であることがより好ましい。さらには、ともに配合する繊維状炭素の繊維径の1/2以下であることが好ましく、1/3以下であることがより好ましい。
 フッ素系ポリマーの粒子から生じるフィブリル部の繊維長は1μm以上であることが好ましく、2μm以上であることがより好ましい。さらには、ともに配合する繊維状炭素の平均繊維長の1/10以上であることが好ましく、1/3以上であることがより好ましい。
 本発明のリチウムイオン二次電池用電極シートは、その製造工程においてスラリーの塗布工程を有さないため、導電助剤として使用する繊維状炭素が一方向に配向し難くなり、膜厚方向への導電性が優れ、且つ機械的強度に異方性を生じ難くなると期待される。
 さらに、溶媒中に溶解させたバインダーを用いないため、活物質や導電助剤が直接接触し易くなる。また、結着材として機能するフッ素系ポリマーの繊維によって活物質や導電助剤が支持されているため、充放電に起因して活物質の体積変化が生じても、イオン伝導性や電子伝導性を高く維持できる。そのため、電池電極抵抗を低減させるとともに、優れたサイクル特性を有するリチウムイオン二次電池を提供することができると期待される。
 
 以下、実施例により本発明をさらに具体的に説明するが、本発明はこれらの実施例に限定されない。実施例中の各種測定や分析は、それぞれ以下の方法に従って行った。
(繊維状炭素の形状確認)
 繊維状炭素の繊維長は、繊維状炭素(試料)を1-メチル-2-ピロリドンに分散させた希薄分散液を、画像解析粒度分布計(ジャスコインターナショナル株式会社製、型式IF-200nano)を用いて測定を行った。繊維状炭素の平均繊維長は、個数基準による平均値である。
 繊維状炭素の繊維径は、走査型電子顕微鏡(株式会社日立製作所製S-2400)を用いて観察及び写真撮影を行い、得られた電子顕微鏡写真から無作為に300箇所を選択して繊維径を測定し、それらのすべての測定結果(n=300)の平均値を平均繊維径とした。
 また、平均繊維長と平均繊維径から平均アスペクト比を算出した。
(炭素繊維のX線回折測定)
 X線回折測定はリガク社製RINT-2100を用いてJIS R7651法に準拠し、格子面間隔(d002)及び結晶子大きさ(Lc002)を測定した。
(粉体体積抵抗率の測定方法)
 粉体体積抵抗率の測定は、株式会社三菱化学アナリテック社製の粉体抵抗システム(MCP-PD51)を用いて0.02~2.50kNの荷重下で四探針方式の電極ユニットを用いて測定した。体積抵抗率は充填密度の変化に伴う体積抵抗率の関係図から充填密度が0.8g/cm時の体積抵抗率の値をもって試料の粉体体積抵抗率とした。
(フッ素系ポリマーの粒径測定)
 フッ素系ポリマーの粒子径は、走査型電子顕微鏡(株式会社日立製作所製S-2400)を用いて観察及び写真撮影を行い、得られた電子顕微鏡写真から無作為に300箇所を選択して粒子径を測定し、それらのすべての測定結果(n=300)の平均値を平均粒子径とした。
(電極シートの引張破断強度、膜厚)
 電極シートを1cmの幅に切り出し、デジタルフォースゲージ(SHIMPO製 FGP-10)を用いて引張破断強度を測定した。
(電気伝導度)
 ポテンショスタット/ガルバノスタット(北斗電工株式会社製HA-151B)を用いて、作製した電極の膜厚方向の電極抵抗を測定した結果と、その抵抗値から算出される電気伝導度を表1に示す。
(メソフェーズピッチの製造方法)
 キノリン不溶分を除去した軟化点80℃のコールタールピッチを、Ni-Mo系触媒存在下、圧力13MPa、温度340℃で水添し、水素化コールタールピッチを得た。この水素化コールタールピッチを常圧下、480℃で熱処理した後、減圧して低沸点分を除き、メソフェーズピッチを得た。このメソフェーズピッチを、フィルターを用いて温度340℃でろ過を行い、ピッチ中の異物を取り除き、精製されたメソフェーズピッチを得た。
(繊維状炭素(CNF)の製造方法)
 熱可塑性樹脂として直鎖状低密度ポリエチレン(EXCEED(登録商標)1018HA、ExxonMobil社製、MFR=1g/10min)60質量部、及び上述のメソフェーズピッチの製造方法で得られたメソフェーズピッチ(メソフェーズ率90.9%、軟化点303.5℃)40質量部を同方向二軸押出機(東芝機械(株)製「TEM-26SS」、バレル温度300℃、窒素気流下)で溶融混練してメソフェーズピッチ組成物を調製した。
 次いで、このメソフェーズピッチ組成物を、口金温度を360℃として溶融紡糸することにより、繊維径90μmの長繊維に成形した。
 上記操作で得られたメソフェーズピッチ含有繊維束を、空気中において215℃で3時間保持することにより、メソフェーズピッチを安定化させ、安定化メソフェーズピッチ含有繊維束を得た。上記安定化メソフェーズピッチ含有繊維束を、真空ガス置換炉中で窒素置換を行った後に1kPaまで減圧し、該減圧状態下で、500℃で1時間保持することにより、熱可塑性樹脂を除去して安定化繊維を得た。
 ついで、この安定化繊維を窒素雰囲気下、1000℃で30分間保持して炭素化し、さらにアルゴンの雰囲気下、1500℃に加熱し30分間保持して黒鉛化した。
 ついで、この黒鉛化した炭素繊維集合体を粉砕し、粉体状の炭素繊維集合体を得た。炭素繊維は分岐のない直線構造であった。
 得られた炭素繊維は、SEM写真による分岐が確認できなかった(分岐度は0.00であった)。結晶子面間隔d002が0.3441nm、結晶子大きさLc002が5.4nm、平均繊維径が270nm、平均繊維長が15μm、平均アスペクト比が56、0.8g/cmにおける粉体体積抵抗率が0.0277Ω・cm、比表面積が10m/gであった。金属含有量は20ppm未満であった。
(繊維状炭素の表面修飾(i))
 アセトンに、P-(VDF-HFP)(アルケマ製Kynar2500-20)1質量部を溶解させ、3質量部の繊維状炭素を分散させ、分散液を作製した。スプレードライヤー(プリス製、SB39)を用いて前記分散液を噴霧乾燥させることで、繊維状炭素の表面をP-(VDF-HFP)で修飾した(以下、樹脂結合繊維(i)と略記する)。
(繊維状炭素の表面修飾(ii))
 分散させる繊維状炭素を9質量部とした他は、繊維状炭素の表面修飾(i)と同様にして、繊維状炭素の表面をVDF-HFP共重合体で修飾した(以下、樹脂結合繊維(ii)と略記する)。
(実施例1)
 活物質としてLiFePOを90質量部と、フッ素系ポリマー粒子として平均粒子径200nmのポリテトラフルオロエチレン(PTFE)を5質量部と、炭素系導電助剤として上記で製造した繊維状炭素を5質量部とを混合し、さらに乳鉢を用いて剪断を付与した。この混合物をロールプレスを用いて繰り返し加圧してシート状に成形した。得られた電極シートの膜厚は188μmであり、引張破断強度は0.32N/mmであった。また、この電極シートの膜厚方向への電気伝導度は2.7×10-3S/cmであり、空隙率は39体積%であった。PTFEは少なくとも一部はフィブリル化しており、その繊維径はおよそ50nmであった。この電極シートの表面におけるSEM写真を図1、電極シート断面におけるSEM写真を図2に示した。これらのSEM写真によれば、繊維状炭素の他にフィブリル化したPTFEが存在していることが確認できる。
(実施例2)
 活物質としてLiFePOを87質量部と、フッ素系ポリマー粒子として平均粒子径200nmのポリテトラフルオロエチレン(PTFE)を10質量部と、炭素系導電助剤として上記で製造した繊維状炭素を3質量部とした他は、実施例1と同様にして電極シートを得た。各種物性は表1に示した。この電極シートの表面におけるSEM写真を図3、電極シート断面におけるSEM写真を図4に示した。これらのSEM写真によれば、実施例1よりも多くのフィブリル化したPTFEが存在しており、フィブリル化したPTFEが活物質粒子及び繊維状炭素を支持し、フィブリル化したPTFEと繊維状炭素とが交絡していることも確認できる。
(比較例1)
 繊維状炭素をアセチレンブラック(以下、「AB」と略記する場合がある。「デンカブラック」(登録商標)デンカ株式会社製、75%プレス品、平均粒子径:0.036μm、比表面積:65m/g)に変更した他は、実施例1と同様にして電極シートを得た。各種物性は表1に示した。この電極シートの表面におけるSEM写真を図5、電極シート断面におけるSEM写真を図6に示した。これらのSEM写真によれば、フィブリル化したPTFEが粒子状物を支持していることが確認できる。
(比較例2)
 活物質としてLiFePOを90質量部と、フッ素系ポリマー粒子として平均粒子径200nmのポリテトラフルオロエチレン(PTFE)を5質量部と、炭素系導電助剤として上記で製造した繊維状炭素を5質量部と、溶媒として水を230質量部とを混合してスラリーを作製した。このスラリーを集電体上に塗布して乾燥することにより電極シートを作製した。この電極シートの表面におけるSEM写真を図7に示した。このSEM写真によれば、繊維状炭素以外の繊維状物は観察できなかった。即ち、フィブリル化したPTFEが存在していないことが確認できる。得られた電極シートは、シート形状が維持できず、各種物性の測定を行うことができなかった。
(実施例3)
 膜厚を404μmとした他は、実施例1と同様にして電極シートを得た。各種物性は表1に示した。膜厚を大きくしても電気伝導度が低下することはなかった。
(実施例4)
 炭素系導電助剤として、上記で製造した繊維状炭素を4質量部、ABを1質量部とした他は、実施例1と同様にして電極シートを得た。各種物性は表1に示した。他の炭素系導電助剤を併用することにより、電気伝導度がさらに向上した。
(実施例5)
 活物質としてLiFePOを92質量部と、炭素系導電助剤として上記で製造した繊維状炭素を3質量部とした他は、実施例1と同様にして電極シートを得た。各種物性は表1に示した。
(実施例6)
 活物質としてLiFePOを93質量部と、炭素系導電助剤として上記で製造した繊維状炭素を2質量部とした他は、実施例1と同様にして電極シートを得た。各種物性は表1に示した。
(実施例7)
 炭素系導電助剤として、上記繊維状炭素の表面修飾(i)で製造した樹脂結合繊維(i)を用いた他は、実施例1と同様にして電極シートを得た。各種物性は表1に示した。樹脂結合繊維(i)を用いているため、破断強度が高くなった。
(実施例8)
 炭素系導電助剤として、上記繊維状炭素の表面修飾(ii)で製造した樹脂結合繊維(ii)を用いた他は、実施例1と同様にして電極シートを得た。各種物性は表1に示した。樹脂結合繊維(ii)を用いているため、破断強度が高くなった。
Figure JPOXMLDOC01-appb-T000001

 

Claims (8)

  1.  リチウムイオン電池用活物質と、繊維状炭素と、フッ素系ポリマーと、を少なくとも含有するリチウムイオン二次電池用電極シートであって、
     前記リチウムイオン二次電池用電極シートの膜厚が50~2000(μm)、引張破断強度が0.20(N/mm)以上であり、
     前記繊維状炭素の平均繊維径が100~900(nm)であり、
     前記リチウムイオン二次電池用電極シート中における前記繊維状炭素の含有量が0.1~10(質量%)であることを特徴とするリチウムイオン二次電池用電極シート。
  2.  前記繊維状炭素以外の炭素系導電助剤をさらに含む請求項1に記載のリチウムイオン二次電池用電極シート。
  3.  前記繊維状炭素の平均繊維長が10~50(μm)である請求項1に記載のリチウムイオン二次電池用電極シート。
  4.  前記繊維状炭素の充填密度0.8(g/cm)で充填した際の粉体体積抵抗率が4.00×10-2(Ω・cm)以下である請求項1に記載のリチウムイオン二次電池用電極シート。
  5.  前記フッ素系ポリマーがポリテトラフルオロエチレンである請求項1に記載のリチウムイオン二次電池用電極シート。
  6.  前記リチウムイオン二次電池用電極シートの空隙率が5~60(体積%)である請求項1に記載のリチウムイオン二次電池用電極シート。
  7.  前記リチウムイオン二次電池用電極シートの引張破断強度(N/mm)と膜厚(mm)との積が0.04(N/mm)以上である請求項1に記載のリチウムイオン二次電池用電極シート。
  8.  前記リチウムイオン二次電池用電極シートの膜厚方向の電気伝導度が8.0×10-4(S/cm)以上である、請求項1に記載のリチウムイオン二次電池用電極シート。
PCT/JP2022/021946 2021-05-31 2022-05-30 リチウムイオン二次電池用電極シート WO2022255307A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2023525823A JPWO2022255307A1 (ja) 2021-05-31 2022-05-30
KR1020237042453A KR20240005924A (ko) 2021-05-31 2022-05-30 리튬 이온 이차 전지용 전극 시트
CN202280038932.8A CN117397053A (zh) 2021-05-31 2022-05-30 锂离子二次电池用电极片
US18/565,121 US20240372101A1 (en) 2021-05-31 2022-05-30 Electrode sheet for lithium ion secondary battery
EP22816054.5A EP4354529A1 (en) 2021-05-31 2022-05-30 Electrode sheet for lithium ion secondary battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021091978 2021-05-31
JP2021-091978 2021-05-31

Publications (1)

Publication Number Publication Date
WO2022255307A1 true WO2022255307A1 (ja) 2022-12-08

Family

ID=84323310

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/021946 WO2022255307A1 (ja) 2021-05-31 2022-05-30 リチウムイオン二次電池用電極シート

Country Status (7)

Country Link
US (1) US20240372101A1 (ja)
EP (1) EP4354529A1 (ja)
JP (1) JPWO2022255307A1 (ja)
KR (1) KR20240005924A (ja)
CN (1) CN117397053A (ja)
TW (1) TW202312539A (ja)
WO (1) WO2022255307A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023167299A1 (ja) * 2022-03-02 2023-09-07 ダイキン工業株式会社 二次電池用合剤、二次電池用合剤シート及びその製造方法並びに二次電池

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116111095A (zh) * 2023-04-07 2023-05-12 宁德新能源科技有限公司 一种正极极片、电化学装置和电子装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009125857A1 (ja) 2008-04-08 2009-10-15 帝人株式会社 炭素繊維及びその製造方法
WO2014115852A1 (ja) 2013-01-25 2014-07-31 帝人株式会社 非水電解質二次電池用の超極細繊維状炭素、超極細繊維状炭素集合体、複合体、及び電極活物質層
JP2017066546A (ja) * 2015-09-30 2017-04-06 帝人株式会社 ピッチ系極細炭素繊維、非水電解質二次電池用電極合剤層及び非水電解質二次電池用電極並びに非水電解質二次電池
JP2018049837A (ja) * 2014-03-28 2018-03-29 帝人株式会社 繊維状炭素を含む非水電解質二次電池用電極合剤層、それを含む非水電解質二次電池用電極及び非水電解質二次電池
JP2019512872A (ja) * 2016-03-01 2019-05-16 マックスウェル テクノロジーズ インコーポレイテッド エネルギー貯蔵装置用電極および乾燥したエネルギー貯蔵装置用電極フィルムの製造方法
WO2020045243A1 (ja) * 2018-08-27 2020-03-05 帝人株式会社 炭素繊維集合体及びその製造方法、並びに非水電解質二次電池用電極合剤層
JP2020522090A (ja) 2017-05-16 2020-07-27 フラウンホーファー−ゲゼルシャフト ツゥア フェアデルング デア アンゲヴァンドテン フォァシュング エー.ファウ. ドライフィルムの製造方法、圧延装置、ドライフィルム、およびドライフィルムで被覆された基材
JP2021504877A (ja) 2017-11-22 2021-02-15 マックスウェル テクノロジーズ インコーポレイテッド 改善された性能を有するエネルギー貯蔵装置についての組成および方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009125857A1 (ja) 2008-04-08 2009-10-15 帝人株式会社 炭素繊維及びその製造方法
WO2014115852A1 (ja) 2013-01-25 2014-07-31 帝人株式会社 非水電解質二次電池用の超極細繊維状炭素、超極細繊維状炭素集合体、複合体、及び電極活物質層
JP2018049837A (ja) * 2014-03-28 2018-03-29 帝人株式会社 繊維状炭素を含む非水電解質二次電池用電極合剤層、それを含む非水電解質二次電池用電極及び非水電解質二次電池
JP2017066546A (ja) * 2015-09-30 2017-04-06 帝人株式会社 ピッチ系極細炭素繊維、非水電解質二次電池用電極合剤層及び非水電解質二次電池用電極並びに非水電解質二次電池
JP2019512872A (ja) * 2016-03-01 2019-05-16 マックスウェル テクノロジーズ インコーポレイテッド エネルギー貯蔵装置用電極および乾燥したエネルギー貯蔵装置用電極フィルムの製造方法
JP2020522090A (ja) 2017-05-16 2020-07-27 フラウンホーファー−ゲゼルシャフト ツゥア フェアデルング デア アンゲヴァンドテン フォァシュング エー.ファウ. ドライフィルムの製造方法、圧延装置、ドライフィルム、およびドライフィルムで被覆された基材
JP2021504877A (ja) 2017-11-22 2021-02-15 マックスウェル テクノロジーズ インコーポレイテッド 改善された性能を有するエネルギー貯蔵装置についての組成および方法
WO2020045243A1 (ja) * 2018-08-27 2020-03-05 帝人株式会社 炭素繊維集合体及びその製造方法、並びに非水電解質二次電池用電極合剤層

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023167299A1 (ja) * 2022-03-02 2023-09-07 ダイキン工業株式会社 二次電池用合剤、二次電池用合剤シート及びその製造方法並びに二次電池
JP2023129369A (ja) * 2022-03-02 2023-09-14 ダイキン工業株式会社 二次電池用合剤、二次電池用合剤シート及びその製造方法並びに二次電池
JP7485998B2 (ja) 2022-03-02 2024-05-17 ダイキン工業株式会社 二次電池用合剤、二次電池用合剤シート及びその製造方法並びに二次電池

Also Published As

Publication number Publication date
KR20240005924A (ko) 2024-01-12
JPWO2022255307A1 (ja) 2022-12-08
CN117397053A (zh) 2024-01-12
TW202312539A (zh) 2023-03-16
US20240372101A1 (en) 2024-11-07
EP4354529A1 (en) 2024-04-17

Similar Documents

Publication Publication Date Title
EP2950375B1 (en) Ultra-fine fibrous carbon for non-aqueous electrolyte secondary battery, ultra-fine fibrous carbon aggregate, composite body, and electrode active material layer
JP7308007B2 (ja) 非水電解質二次電池用電極合剤層、非水電解質二次電池用電極及び非水電解質二次電池
JP6317811B2 (ja) 繊維状炭素を含む非水電解質二次電池用電極合剤層、それを含む非水電解質二次電池用電極及び非水電解質二次電池
CN114072936B (zh) 含有纤维状碳的全固体锂二次电池用活性物质层及全固体锂二次电池
JP6630368B2 (ja) 炭素繊維集合体及びその製造方法並びに非水電解質二次電池用電極合剤層並びに非水電解質二次電池用電極並びに非水電解質二次電池
JP7143425B2 (ja) 炭素繊維集合体及びその製造方法、並びに非水電解質二次電池用電極合剤層
WO2022255307A1 (ja) リチウムイオン二次電池用電極シート
JP2017066546A (ja) ピッチ系極細炭素繊維、非水電解質二次電池用電極合剤層及び非水電解質二次電池用電極並びに非水電解質二次電池
JP7240801B2 (ja) 非水電解質二次電池用正極合剤層、それを含む非水電解質二次電池用正極及び非水電解質二次電池
JP6666088B2 (ja) 非水電解質二次電池用として好適な複合体
EP4209632A1 (en) Resin-bonded fiber, and active material layer , electrode, and nonaqueous electrolyte secondary battery using same
TWI853963B (zh) 全固體鋰蓄電池用之活性物質層,及全固體鋰蓄電池
JP2017008473A (ja) 炭素繊維、非水電解質二次電池用電極合剤層及び非水電解質二次電池用電極並びに非水電解質二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22816054

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023525823

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 202280038932.8

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 20237042453

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020237042453

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2022816054

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022816054

Country of ref document: EP

Effective date: 20240102