WO2022181771A1 - 粒子状吸水剤、該吸水剤を含む吸収体及び該吸収体を用いた吸収性物品 - Google Patents

粒子状吸水剤、該吸水剤を含む吸収体及び該吸収体を用いた吸収性物品 Download PDF

Info

Publication number
WO2022181771A1
WO2022181771A1 PCT/JP2022/007925 JP2022007925W WO2022181771A1 WO 2022181771 A1 WO2022181771 A1 WO 2022181771A1 JP 2022007925 W JP2022007925 W JP 2022007925W WO 2022181771 A1 WO2022181771 A1 WO 2022181771A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
gel
absorbing agent
particulate
absorbent
Prior art date
Application number
PCT/JP2022/007925
Other languages
English (en)
French (fr)
Inventor
佳佑 藤田
芳史 足立
剛 従野
舞 佐藤
亮太 若林
敦裕 野田
洵也 上田
淳平 金子
裕子 植田
まり子 玉置
ゆいか 野田
貴洋 北野
一司 鳥井
博之 池内
Original Assignee
株式会社日本触媒
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日本触媒 filed Critical 株式会社日本触媒
Priority to EP22759805.9A priority Critical patent/EP4299651A1/en
Priority to JP2023502543A priority patent/JPWO2022181771A1/ja
Priority to CN202280017405.9A priority patent/CN116887915A/zh
Priority to KR1020237028612A priority patent/KR20230138488A/ko
Priority to US18/547,815 priority patent/US20240299907A1/en
Publication of WO2022181771A1 publication Critical patent/WO2022181771A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/30Mixing; Kneading continuous, with mechanical mixing or kneading devices
    • B29B7/34Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices
    • B29B7/38Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary
    • B29B7/40Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with single shaft
    • B29B7/42Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with single shaft with screw or helix
    • B29B7/428Parts or accessories, e.g. casings, feeding or discharging means
    • B29B7/429Screws
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • B01J20/261Synthetic macromolecular compounds obtained by reactions only involving carbon to carbon unsaturated bonds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • B01J20/265Synthetic macromolecular compounds modified or post-treated polymers
    • B01J20/267Cross-linked polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28002Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
    • B01J20/28004Sorbent size or size distribution, e.g. particle size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28002Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
    • B01J20/28011Other properties, e.g. density, crush strength
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28016Particle form
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28016Particle form
    • B01J20/28021Hollow particles, e.g. hollow spheres, microspheres or cenospheres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/2805Sorbents inside a permeable or porous casing, e.g. inside a container, bag or membrane
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28095Shape or type of pores, voids, channels, ducts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/30Mixing; Kneading continuous, with mechanical mixing or kneading devices
    • B29B7/34Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices
    • B29B7/38Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary
    • B29B7/40Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with single shaft
    • B29B7/42Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with single shaft with screw or helix
    • B29B7/422Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with single shaft with screw or helix with screw sections co-operating, e.g. intermeshing, with elements on the wall of the surrounding casing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/30Mixing; Kneading continuous, with mechanical mixing or kneading devices
    • B29B7/58Component parts, details or accessories; Auxiliary operations
    • B29B7/582Component parts, details or accessories; Auxiliary operations for discharging, e.g. doors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/30Mixing; Kneading continuous, with mechanical mixing or kneading devices
    • B29B7/58Component parts, details or accessories; Auxiliary operations
    • B29B7/72Measuring, controlling or regulating
    • B29B7/726Measuring properties of mixture, e.g. temperature or density
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/80Component parts, details or accessories; Auxiliary operations
    • B29B7/82Heating or cooling
    • B29B7/826Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/02Making granules by dividing preformed material
    • B29B9/06Making granules by dividing preformed material in the form of filamentary material, e.g. combined with extrusion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/12Making granules characterised by structure or composition
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/03Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media
    • C08J3/075Macromolecular gels
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/24Crosslinking, e.g. vulcanising, of macromolecules
    • C08J3/245Differential crosslinking of one polymer with one crosslinking type, e.g. surface crosslinking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/50Aspects relating to the use of sorbent or filter aid materials
    • B01J2220/68Superabsorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/30Mixing; Kneading continuous, with mechanical mixing or kneading devices
    • B29B7/34Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices
    • B29B7/38Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary
    • B29B7/46Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with more than one shaft
    • B29B7/48Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with more than one shaft with intermeshing devices, e.g. screws
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2333/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2333/02Homopolymers or copolymers of acids; Metal or ammonium salts thereof

Definitions

  • the present invention relates to a particulate water-absorbing agent containing poly(meth)acrylic acid (salt)-based water-absorbing resin particles as a main component, an absorbent body containing the water-absorbing agent, and an absorbent article using the absorbent body.
  • a water-absorbing resin (SAP/Super Absorbent Polymer) is a water-swellable, water-insoluble polymeric gelling agent.
  • Particulate water-absorbing agents mainly composed of water-absorbing resins are used in a variety of applications, including sanitary goods such as disposable diapers, sanitary napkins, and incontinence products for adults, soil water-retaining agents for agriculture and horticulture, and water-blocking agents for industrial use. used in absorbent articles. Many monomers and hydrophilic polymers have been proposed as raw materials for such water-absorbing resins. Poly(meth)acrylic acid (salt)-based water absorbent resins are most commonly used.
  • particulate water-absorbing agents As the performance of paper diapers, which is the main application of particulate water-absorbing agents, many functions (physical properties) are required for particulate water-absorbing agents.
  • specific examples of the physical properties of the particulate water-absorbing agent include water absorption rate, water absorption capacity, water absorption capacity under pressure, liquid permeability, return amount (backflow), gel strength, water-soluble content, particle size distribution, urine resistance, Antibacterial properties, impact resistance (damage resistance), powder fluidity, deodorant properties, color resistance (whiteness), low dust, and the like.
  • particulate water-absorbing agents water-absorbing resins
  • urine leakage and skin rashes occur when urine is difficult to be taken into the paper diaper, or when urine is taken slowly by the particulate water-absorbing agent. From this, improving the absorption speed of the particulate water-absorbing agent while improving the absorption property of the particulate water-absorbing agent reduces the return amount and absorption time of the paper diaper, which in turn reduces urine leakage and skin rash. is thought to lead to
  • Patent Document 1 discloses that a water-absorbing resin having open cells, which are spaces communicating with the outside, and closed cells, which are closed spaces not communicating with the outside, which is obtained by foaming polymerization, is excellent in liquid permeability and water absorption speed. ing.
  • the absorbent body produced using the absorbent resin obtained by the technique described in Patent Document 1 exhibits the effect of reducing the return amount, it does not absorb high-concentration liquid (eg, menstrual blood) or uses pulp. There is a problem that the absorber which does not have a sufficient effect is not always sufficient in terms of the liquid uptake rate and the amount of liquid returned.
  • high-concentration liquid eg, menstrual blood
  • an object of the present invention is to provide a particulate water-absorbing agent which is excellent in liquid uptake speed and which can be used to produce an absorbent body with a reduced return amount.
  • Another object of the present invention is to provide an absorbent body that is superior in liquid absorption speed and has a reduced amount of returned liquid compared to conventional ones.
  • a particulate water-absorbing agent mainly composed of poly(meth)acrylic acid (salt)-based water-absorbing resin particles, wherein the particulate water-absorbing agent has communication holes, which are spaces communicating with the outside, and
  • the above problem is solved by including closed cells that are closed spaces that are not closed, wherein the total volume ratio of the communicating holes is 10% by volume or more, and the total volume ratio of the closed cells is 0.5% by volume or less.
  • the inventors have found that it can be done, and have completed the present invention.
  • a particulate water-absorbing agent capable of producing an absorbent body with excellent liquid uptake rate and reduced return amount. That is, according to the present invention, there is provided a particulate water-absorbing agent that imparts an excellent liquid uptake rate and return amount to an absorbent body.
  • FIG. 1 is a schematic front view illustrating cavities (communication holes and closed cells) formed in a particulate water absorbing agent according to one embodiment of the present invention
  • FIG. 1 is a partially cutaway side view showing an example of a gel pulverizer (meat chopper/screw extruder) used in a production method according to an embodiment of the present invention
  • FIG. 2B is a diagram schematically showing a support attached to an extrusion port in the gel pulverizer of FIG. 2A.
  • 1 is a partially cutaway side view showing an example of a gel pulverizer (double-screw kneader) used in the manufacturing method according to the embodiment of the present invention
  • FIG. FIG. 4 is an enlarged view of the gel pulverizing device of FIG.
  • FIG. 3 (a view of the central portion of the main body viewed from above);
  • FIG. 3 is a diagram schematically showing classification of gel sizing devices having an extrusion action part and a perforated plate. It is a figure which shows typically the extrusion part in a gel sizing apparatus.
  • Fig. 1 is a schematic diagram schematically showing the configuration of a gel granulating device (screw-type pre-extrusion type device having a spherical (dome-shaped) die) according to one embodiment.
  • 1 is a partially cutaway side view showing an example of a drying device (rotary heating device with a heating tube) used in a manufacturing method according to an embodiment of the present invention;
  • FIG. 2 is a schematic diagram showing a cross section of the absorbent body cut along the lateral direction in the absorbent body according to the first embodiment of the present invention.
  • FIG. 10 is a schematic diagram showing a cross-sectional view along line AA of FIG. 9;
  • FIG. 6 is a schematic diagram of another embodiment of the gap in the absorbent body according to the first embodiment of the present invention.
  • FIG. 10 is a schematic diagram showing a cross-sectional view taken along line AA in FIG. 9, and is a schematic diagram showing another embodiment of the gap.
  • FIG. 10 is a schematic diagram showing a cross-sectional view taken along line AA in FIG. 9, and is a schematic diagram showing another embodiment of the gap.
  • FIG. 10 is a schematic diagram showing a cross-sectional view taken along line AA in FIG.
  • FIG. 6 is a schematic diagram showing a cross section of the absorbent body cut along the lateral direction in the absorbent body according to the second embodiment of the present invention.
  • FIG. 10 is a diagram showing another embodiment of the absorbent body according to the second embodiment of the present invention, and is a schematic diagram showing a cross section of the absorbent body cut along the lateral direction. It is a mimetic diagram showing a section of an absorber concerning one embodiment of the present invention. It is an evaluation device for measuring uptake time and return amount of liquid.
  • 4 is a graph showing the correlation between continuous pores and closed cells of water absorbent resin particles produced in Examples and Comparative Examples.
  • FIG. 4A is a plan view and a front view of a liquid injection cylinder used for evaluation of a return amount
  • FIG. 4 is a schematic diagram showing how a liquid injection cylinder is placed on the absorbent body used in the example of the present application in the return amount evaluation, and is a schematic diagram viewed from the longitudinal direction of the absorbent body, and a schematic diagram viewed from the lateral direction of the absorbent body. It is a schematic diagram of what I saw.
  • FIG. 10 is a front view showing a state in which a funnel is used to inject a sodium chloride aqueous solution from a liquid injection cylinder into an absorber in return amount evaluation.
  • FIG. 10 is a schematic diagram showing a state in which a liquid injection tube is placed on the absorber used in the examples of the present application in the return amount evaluation.
  • Water absorbent resin refers to a water-swellable water-insoluble polymer gelling agent, which satisfies the following physical properties. That is, in this specification, “water absorbent resin” means NWSP 241.0. CRC (centrifuge retention capacity) (water swellability) defined by R2 (15) is 5 g/g or more, and NWSP 270.0. It refers to a polymeric gelling agent having an Ext (water-soluble component) defined by R2(15) of 50% by mass or less. "NWSP" will be described later.
  • the water-absorbing resin can be designed according to its use and purpose, and is not particularly limited, but is preferably a hydrophilic cross-linked polymer obtained by cross-linking an unsaturated monomer having a carboxyl group.
  • the composition is not limited to a form in which the entire amount is a crosslinked polymer, and may be a composition containing additives and the like as long as the above physical properties (CRC, Ext) satisfy the above numerical ranges.
  • water absorbent resin in the present invention may be surface-crosslinked (also known as post-crosslinking, secondary cross-linking) or non-surface-crosslinked. Preferably, it is surface-crosslinked.
  • water absorbent resin particles (sometimes referred to as “water absorbent resin powder”) refers to powdered water absorbent resin, preferably a predetermined solid content (moisture content) and a water-absorbing resin adjusted to a particle size (particle diameter).
  • the water absorbent resin particles that have undergone a predetermined surface cross-linking treatment may be separately referred to as “surface cross-linked (post-crosslinked) water absorbent resin particles” or “particulate water absorbent (water absorbent)”.
  • Poly(meth)acrylic acid (salt)-based water absorbent resin refers to poly(meth)acrylic acid and/or its salt, and "poly(meth)acrylic acid (salt)-based water absorbent resin” is mainly A structure derived from (meth)acrylic acid and/or its salt (hereinafter also referred to as "(meth)acrylic acid (salt)”) is included as a repeating unit as a component, and a structure derived from an internal cross-linking agent is included as an optional component. means a crosslinked polymer.
  • Poly(meth)acrylic acid (salt)-based water absorbent resin contains a structure derived from (meth)acrylic acid (salt) as a repeating unit, and is a crosslinked polymer of poly(meth)acrylic acid (salt) having an internal crosslinked structure. and is preferably surface-crosslinked.
  • main component means that the amount (content) of (meth)acrylic acid (salt) used is preferably 50% relative to the total monomers (total monomers excluding the cross-linking agent) used for polymerization.
  • mol % to 100 mol % more preferably 70 mol % to 100 mol %, still more preferably 90 mol % to 100 mol %, particularly preferably substantially 100 mol %.
  • poly(meth)acrylic acid (salt) may be unneutralized, but is preferably partially or completely neutralized poly(meth)acrylic acid (salt), more preferably one more preferably alkali metal salts or ammonium salts, even more particularly preferably alkali metal salts, particularly preferably sodium salts.
  • the poly(meth)acrylic acid (salt)-based water absorbent resin is particulate (also known as powder) in the particulate water absorbent.
  • the particulate poly(meth)acrylic acid (salt)-based water absorbent resin is referred to as "poly(meth)acrylic acid (salt)-based water absorbent resin particles", but simply "poly(meth)acrylic acid (Salt)-based water-absorbing resin” may also be referred to.
  • the water-absorbing agent contains poly(meth)acrylic acid (salt)-based water-absorbing resin particles as a main component.
  • the particulate water absorbing agent means a particulate (also known as powder) water absorbing agent. It is called a water-absorbing agent.
  • the term "particulate” means having the form of particles, and the term “particles” refers to a solid or liquid granular small object (JIS Industrial Glossary 4th edition, page 2002) having a measurable size.
  • the particulate water-absorbing agent may be simply referred to as a water-absorbing agent.
  • the aqueous liquid is not limited to water, and may be urine, blood, sweat, feces, waste liquid, humidity, steam, ice, a mixture of water and an organic solvent and/or an inorganic solvent, rainwater, groundwater, etc. There are no particular restrictions as long as water is included. Preferred examples include urine, menstrual blood, sweat, and other body fluids.
  • the particulate water absorbing agent according to the present invention is suitable for use as sanitary materials for absorbing aqueous liquids.
  • the particulate water-absorbing agent of the present invention contains poly(meth)acrylic acid (salt)-based water-absorbing resin particles as a main component. That is, the poly(meth)acrylic acid (salt)-based water absorbent resin particles in the particulate water absorbing agent are preferably contained in 60 to 100% by mass, 70 to 100% by mass, 80 to 100% by mass, and 90 to 100% by mass.
  • the particulate water-absorbing agent optionally contains additives such as other water-absorbing resin particles, water, and/or water-insoluble inorganic particles.
  • a suitable moisture content of the particulate water absorbing agent is 0.2 to 30% by mass.
  • a water absorbent resin composition in which these components are integrated is also within the category of the particulate water absorbent.
  • the particulate water absorbing agent used in the present invention preferably has excellent handleability under high humidity (specifically, the moisture absorption fluidity (moisture absorption blocking rate) described in WO2017/170605 is preferably 30 % or less, more preferably 20% or less, still more preferably 10% or less, and most preferably 5% or less.).
  • the upper limit of the poly(meth)acrylic acid (salt)-based water-absorbing resin particles in the water-absorbing agent is 99% by mass, further 97% by mass, particularly about 95% by mass, preferably water and additives described later ( water-insoluble inorganic particles).
  • poly(meth)acrylic acid (salt)-based water absorbing resin particles are the main component, but the particulate water absorbing agent may contain other water absorbing resins. good.
  • Other water-absorbent resins include polysulfonic acid (salt)-based water-absorbent resin, maleic anhydride (salt)-based water-absorbent resin, polyacrylamide-based water-absorbent resin, polyvinyl alcohol-based water-absorbent resin, polyethylene oxide-based water-absorbent resin, Examples include polyaspartic acid (salt)-based water absorbent resins, polyglutamic acid (salt)-based water absorbent resins, polyalginic acid (salt)-based water absorbent resins, starch-based water absorbent resins, cellulose-based resins, and the like.
  • the “absorbent body” in the present invention includes a first base material having a liquid absorbing surface that directly absorbs liquid on the front side, and a water absorbing layer disposed on the back side of the first base material.
  • the water-absorbing layer has one or more base materials and / or fibers (preferably hydrophilic fibers) with a particulate water-absorbing agent (water-absorbing resin) supported and / or sandwiched.
  • the water absorbing layer may contain a fibrous material such as a hydrophilic fiber in addition to the particulate water absorbing agent.
  • the structure of the absorbent body may be a uniform mixture of the particulate water-absorbing agent and the hydrophilic fiber and/or a layered structure.
  • a configuration including a particulate water-absorbing agent sandwiched between formed hydrophilic fibers is exemplified.
  • the structure of the absorbent body may be integrated by further sandwiching the water absorbing layer containing the particulate water absorbing agent and the hydrophilic fiber with non-woven fabric, tissue paper, etc., and is limited to the structure of these examples. is not.
  • a water-absorbing layer i.e., a particulate water-absorbing agent and a sheet-like A water-absorbing layer comprising a substrate
  • NWSP Non-Woven Standard Procedures-Edition 2015
  • EDANA European Disposables And Nonwovens Association
  • INDA Association of the Nonwovens Association of North America.
  • the Nonwoven Fabrics Industry Association of Japan has jointly published evaluation methods for nonwoven fabrics and their products in the United States and Europe, and indicates standard measurement methods for water absorbent resins. Unless otherwise specified, in the present invention, the physical properties of the water absorbent resin are measured according to "Non-Woven Standard Procedures-Edition 2015”. Evaluation methods not described in NWSP are measured by the method and conditions described in Examples.
  • CRC Centrifuge Retention Capacity
  • water absorption capacity means the water absorption capacity of a particulate water-absorbing agent (water-absorbing resin) under no pressure (sometimes referred to as "water absorption capacity").
  • PSD is an abbreviation for Particle Size Distribution, and means the particle size distribution of the particulate water absorbing agent (water absorbing resin) measured by sieve classification.
  • the mass average particle size (D50) and the logarithmic standard deviation of the particle size distribution ( ⁇ ) refer to (3) Mass average particle size (D50) and the logarithmic standard deviation of the particle size distribution in columns 27-28 of US Pat. No. 7,638,570. It is measured with a vibration classifier (60 Hz power supply) in a manner similar to that described.
  • AAP is an abbreviation for Absorption Against Pressure, and means the water absorption capacity of a particulate water absorbing agent (water absorbing resin) under pressure.
  • AAP 0.3 psi (2.06 kPa) is 1 hour
  • 2.06 kPa (21 g /cm 2 , 0.3 psi) refers to the water absorption capacity (unit: g/g) after swelling under load.
  • the load condition is changed to 4.83 kPa (49 g/cm 2 , 0.7 psi) for measurement. In this case, it is described as AAP (4.83 kPa).
  • the water absorption capacity (unit: g/g) is AAP 0.3 psi (2.06 kPa) measured under the conditions described in Examples.
  • “Moisture Content” (NWSP 230.0.R2 (15)) "Moisture Content” means the moisture content defined by the drying loss of the particulate water absorbing agent (water absorbing resin). Specifically, it is a value (unit: % by mass) calculated from the loss on drying when 4.0 g of the particulate water-absorbing agent (water-absorbing resin) is dried at 105° C. for 3 hours.
  • the particulate water-absorbing agent (water-absorbing resin) after drying is defined by the drying loss of 1.0 g of the particulate water-absorbing agent (water-absorbing resin) at 180 ° C. for 3 hours, and the water content before drying The gel is defined by the loss on drying of 2.0 g of hydrous gel at 180° C. for 24 hours.
  • X to Y indicating a range means “X or more and Y or less”.
  • unit of mass means “metric ton”
  • ppm means “mass ppm” or “weight ppm”.
  • masses and “weight”, “parts by mass” and “parts by weight”, and “% by mass” and “% by weight” are treated as synonyms.
  • acid (salt) means “acid and/or its salt”
  • (meth)acryl means “acryl and/or methacryl”.
  • liter may be referred to as “l” or “L”, and “% by weight” as “wt%” for convenience.
  • D Non Detected
  • the particulate water absorbing agent of the present invention is a particulate water absorbing agent containing poly(meth)acrylic acid (salt)-based water absorbing resin particles as a main component. contains communicating pores and closed cells, the total volume ratio of communicating pores is 10% by volume or more, and the total volume percentage of closed cells is 0.5% by volume or less.
  • the poly(meth)acrylic acid (salt)-based water absorbent resin particles are as described in [1-2].
  • the poly(meth)acrylic acid (salt)-based water-absorbing resin particles contained in the particulate water-absorbing agent may be simply referred to as "water-absorbing resin particles".
  • the "communication hole” (also referred to as “cavity”) means, among the cavities formed in the particulate water absorbing agent 1, as shown as the communication hole 1a in FIG. , indicates a cavity connected to the outside of the particulate water absorbing agent 1 (exposed on the surface of the particulate water absorbing agent 1). That is, the “communication hole” is a space (cavity) existing in the particulate water absorbing agent and communicating with the outside.
  • the cavities include depressions, grooves, and the like formed on the surface of the particulate water-absorbing agent 1 .
  • the communication hole is obtained by acquiring three-dimensional image data under the following conditions using a microfocus X-ray CT system (inspeXio SMX-100CT/manufactured by Shimadzu Corporation) as described later, and performing high-speed three-dimensional analysis.
  • a microfocus X-ray CT system inspeXio SMX-100CT/manufactured by Shimadzu Corporation
  • the three-dimensional image data is analyzed using software (TRI/3D-VOL-FCS64/manufactured by Ratoc System Engineering Co., Ltd.) under the conditions described in Examples, the presence of the particulate water absorbing agent 1 on the surface is confirmed.
  • This refers to holes, through holes, depressions, grooves, etc.
  • independent cells refer to voids formed in the particulate water-absorbing agent 1, as shown as independent cells 1b in FIG. It refers to cavities such as air bubbles that are not connected to the outside of the water absorbing agent 1 (existing inside the particulate water absorbing agent 1). That is, the “closed cells” are closed spaces (cavities) present in the particulate water absorbing agent that do not communicate with the outside. Specifically, closed cells are obtained by obtaining three-dimensional image data under the following conditions using a microfocus X-ray CT system (inspeXio SMX-100CT/manufactured by Shimadzu Corporation) as described later, and performing high-speed three-dimensional analysis.
  • a microfocus X-ray CT system inspeXio SMX-100CT/manufactured by Shimadzu Corporation
  • the three-dimensional image data is analyzed using software (TRI/3D-VOL-FCS64/manufactured by Ratoc System Engineering Co., Ltd.) under the conditions described in Examples, the presence inside the particulate water absorbing agent 1 is confirmed. It refers to cavities such as air bubbles that can be formed.
  • the particles containing continuous pores and closed cells are mainly water absorbent resin particles, but other particles contained in the particulate water absorbing agent further contain continuous pores and closed cells. You can stay.
  • the effect of the present invention is exhibited when the communicating pores and closed cells occupy a predetermined range of volume as a whole.
  • the particulate water-absorbing agent is used to measure the total volume ratio of communicating pores and the total volume ratio of closed cells. In the method of measuring the volume ratio, whether only the water-absorbing resin particles or the particulate water-absorbing agent is measured, the values of the total volume ratio of communicating pores and the total volume ratio of closed cells are almost the same.
  • additives DTPA or EDTMP as a chelating agent, tricalcium phosphate as an inorganic fine particle, hydrotalcite or silica particles, sodium sulfite as an inorganic reducing agent
  • DTPA or EDTMP as a chelating agent
  • tricalcium phosphate as an inorganic fine particle
  • hydrotalcite or silica particles sodium sulfite as an inorganic reducing agent
  • sodium sulfite as an inorganic reducing agent
  • the resolution of X-ray CT measurement is 10 ⁇ m (it is shown that the resolution is 10 ⁇ m because the voxel size is 0.01 (mm/voxel)), and the size of the inorganic fine particles is less than that. Since the chelating agent and inorganic reducing agent are usually added as an aqueous solution, the chelating agent and inorganic reducing agent and the water absorbent resin particles are integrated; Therefore, it is considered that the total volume ratio of communicating pores and the total volume ratio of closed cells do not change regardless of the presence or absence of additives.
  • communicating pores and closed cells the communicating pores and closed cells of the particulate water-absorbing agent are explained, but they can also be understood in the same way as the water-absorbing resin particles.
  • total volume ratio of communicating pores means the ratio of the total volume of communicating pores to the total volume of the particulate water-absorbing agent, and is specifically calculated by the method described in Examples below.
  • total volume ratio of closed cells means the ratio of the total volume of closed cells to the total volume of the particulate water absorbing agent, and is specifically calculated by the method described in Examples below.
  • the particulate water-absorbing agent of the present embodiment has a total volume ratio of communicating pores of 10% by volume or more and a total volume ratio of closed cells of 0.5% by volume or less.
  • the amount of return is reduced. That is, the particulate water-absorbing agent of the present embodiment can quickly absorb liquid, and the amount of liquid returned after absorption is small.
  • the total volume ratio of the communicating pores in the particulate water absorbing agent is less than 10% by volume, the high viscosity liquid absorption rate of the particulate water absorbing agent decreases, and the return amount (backflow amount) remarkably increases (Comparative Example 1-7. ).
  • the total volume ratio of closed cells in the particulate water absorbing agent exceeds 0.5% by volume, the liquid uptake rate and return amount (return amount) of the particulate water absorbing agent remarkably increase (Comparative Examples 1-1 to 1-1 -9).
  • a particulate water-absorbing agent (water-absorbing resin particles) with a large total volume ratio of communicating pores tends to have a large specific surface area.
  • the total volume ratio of the communicating pores cannot be sufficiently evaluated only by measuring the specific surface area, the volume of the concave portion on the particle surface is evaluated.
  • the total volume ratio of the communicating pores is 10% by volume or more, the speed at which the water-absorbing resin particles themselves absorb liquid increases due to capillary action, and the gaps between the gel particles when the water-absorbing resin particles swell also increase. As a result, the volume of the communicating pores of the gel particles and the amount of liquid retained in the gaps between the gel particles increase.
  • the absorbability of the particulate water-absorbing agent is improved, and the liquid uptake speed is improved.
  • the particulate water-absorbing agent according to the present invention is used in an absorbent body having a small ratio of fiber materials such as pulp and absorbent articles such as thin paper diapers containing the absorbent body, It has excellent uptake speed.
  • the particulate water-absorbing agent (water-absorbing resin particles) having a total volume ratio of closed cells of 0.5% by volume or less absorbs liquid by the closed-cells when liquid is absorbed by the particulate water-absorbing agent (water-absorbing resin particles).
  • the absorption of the particulate water absorbing agent (water absorbing resin particles) is improved, and the liquid uptake speed is improved.
  • the absorbed liquid is less likely to enter the closed cells, and the liquid is easily absorbed by the water-absorbing resin itself, thereby reducing the return of the once-absorbed liquid and reducing the return amount. Therefore, by setting the existence ratio of the continuous pores and closed cells in the particulate water-absorbing agent (water-absorbing resin particles) to a predetermined range, the liquid can be absorbed quickly, and the amount returned after absorption is small. It is thought that this was demonstrated.
  • the total volume ratio of the continuous pores of the particulate water absorbing agent (water absorbing resin particles) is preferably more than 10% by volume, more preferably 11% by volume or more, still more preferably 12% by volume or more, and particularly preferably is at least 13% by volume, most preferably at least 14% by volume.
  • the upper limit of the total volume ratio of the communicating pores in the particulate water absorbing agent (water absorbing resin particles) is as follows. Since the mechanical strength of the resin particles) themselves and the swelling gel is significantly reduced, it is preferably 40% by volume or less, more preferably 35% by volume or less, even more preferably 30% by volume or less, and particularly preferably 25% by volume or less. is.
  • the total volume ratio of closed cells in the particulate water-absorbing agent is preferably 0.5% by volume or less, more preferably 0.4% by volume or less, and even more preferably 0.3% by volume. % or less.
  • the lower limit of the total volume ratio of closed cells in the particulate water-absorbing agent (water-absorbing resin particles) is not particularly limited, but is preferably 0.01% by volume or more.
  • the term "capable of quickly absorbing liquid and having a small amount of liquid returned after absorption” refers to an absorbent body (a nonwoven fabric or the like) in which an absorbent layer containing a particulate water-absorbing agent, pulp, or the like is laminated. Absorbent sheet), not the particulate water absorbing agent itself.
  • the return amount evaluation does not necessarily mean that the particulate water-absorbing agent (water-absorbing resin particles) contained in the absorbent body is in a saturated state.
  • the "liquid uptake rate” and “return amount” are usually used to evaluate the physical properties of the particulate water-absorbing agent (water-absorbing resin particles) "liquid uptake rate” (or “absorption time or “absorption speed”) and “return amount” (sometimes referred to as “reversion” or “Re-Wet”) have different evaluation methods.
  • an absorbent body made using a particulate water-absorbing agent water-absorbing resin particles
  • the speed at which liquid is absorbed by the absorbent body placed on the plane i.e., "absorption rate ” and measure the amount of return.
  • the liquid absorption time (liquid take-up speed) and return amount are measured with respect to the absorbers arranged in a U-shape. In other words, it is an evaluation in a state simulating the actual usage when used as sanitary products such as diapers and sanitary products.
  • the liquid uptake speed is represented by the liquid uptake time [sec].
  • the liquid used for measuring the take-up speed and return amount of the liquid of the present invention is a high-viscosity solution (for example, a solution with a viscosity of 5 mPa ⁇ s at 23° C.).
  • the liquid uptake speed and return amount calculated by U-shaped evaluation (evaluation by absorbents arranged in a U-shape) using a high-viscosity solution are referred to as "spot absorbency”.
  • Excellent spot absorbency means high liquid uptake rate and low return amount.
  • the absorption time of the liquid measured using a 0.9% mass sodium chloride aqueous solution at 23 ° C. for the absorbent placed on a flat table is referred to as "absorption rate”
  • the liquid absorption time measured using a high-viscosity solution is referred to as the "liquid uptake rate" for the absorbers arranged in a U-shape.
  • the "liquid uptake rate” may be simply referred to as the "absorption rate” as a general evaluation of the physical properties of the absorbent.
  • a high-viscosity solution is used in the evaluation of the present invention.
  • an aqueous solution of about 0.5% by mass is used as physiological saline or artificial urine to evaluate the absorption performance of a water-absorbing agent, and its viscosity is about 1 mPa ⁇ s at 23°C.
  • the diffusion rate due to its own weight is low.
  • the liquid introduced into the absorber is less likely to diffuse in the lateral direction/plane direction of the absorber compared to physiological saline or artificial urine, and the liquid stays locally at the position where the liquid is introduced. becomes. For this reason, it is considered that the absorbent evaluation of the present invention can more significantly evaluate the absorption performance of the water absorbing agent.
  • the CRC of the particulate water absorbing agent of the present invention is preferably 25 g/g or more, more preferably 30 g/g or more, still more preferably 32 g/g or more, and 33 g/g or more. is even more preferred.
  • the CRC is 25 g/g or more, the absorption amount becomes appropriate, and performance as an absorber for sanitary articles such as paper diapers is ensured.
  • the CRC of the particulate water absorbing agent of the present invention is preferably 70 g/g or less, more preferably 60 g/g or less, even more preferably 50 g/g or less, and 40 g/g or less. is particularly preferred.
  • the CRC When the CRC is 70 g/g or less, the rate of absorbing body fluids such as urine and blood is maintained, so that it is also suitable for use in high water absorption rate type disposable diapers and the like.
  • CRC can be controlled by the type and amount of the internal cross-linking agent.
  • the CRC In the water-absorbing resin particles contained in the particulate water-absorbing agent of the present invention, the CRC is preferably in the same numerical range as that of the particulate water-absorbing agent.
  • AAP of 0.3 psi (2.06 kPa) of the particulate water absorbing agent of the present invention is preferably 20 g/g or more, more preferably 24 g/g or more, still more preferably 26 g/g or more, still more preferably 28 g/g or more, Especially preferably 29 g/g or more, most preferably 30 g/g or more.
  • the upper limit is not particularly limited, it is preferably 40 g/g or less.
  • a paper diaper manufactured using a particulate water-absorbing agent having an AAP of 0.3 psi (2.06 kPa) in the above range has excellent ability to absorb urine from the pulp, can reduce the amount of urine returned, and can suppress skin rash and urine leakage. become.
  • AAP can be controlled by adjusting the particle size, changing the surface cross-linking agent, or the like.
  • AAP of 0.3 psi (2.06 kPa) is preferably in the same numerical range as that of the particulate water-absorbing agent.
  • the water content of the particulate water absorbing agent of the present invention is preferably 1% by mass or more, more preferably 5% by mass or more, still more preferably 6% by mass or more, and particularly preferably 7% by mass. It is at least 8% by mass, most preferably at least 8% by mass.
  • the upper limit of the water content of the particulate water absorbing agent is preferably 15% by mass or less, more preferably 14% by mass or less, still more preferably 13% by mass or less, and particularly preferably 12% by mass or less.
  • the solid content of the particulate water absorbing agent of the present invention is preferably 85% by mass to 99% by mass, more preferably 86% by mass to 95% by mass, still more preferably 87% by mass to 94% by mass, and particularly preferably 88% to 93% by weight, most preferably 88% to 92% by weight.
  • the water-absorbing resin particles contained in the particulate water-absorbing agent of the present invention the water content and solid content are preferably in the same numerical ranges as those of the particulate water-absorbing agent.
  • the mass average particle size (D50) of the particulate water absorbing agent of the present invention is preferably 200 ⁇ m or more, more preferably 200 ⁇ m to 600 ⁇ m, still more preferably 230 ⁇ m to 550 ⁇ m, and particularly preferably 250 ⁇ m to 500 ⁇ m.
  • the proportion of particles having a particle diameter of less than 106 ⁇ m in the particulate water absorbing agent is preferably 10% by mass or less, more preferably 8% by mass or less, and even more preferably 6% by mass or less.
  • the proportion of particles having a particle size of more than 850 ⁇ m in the particulate water absorbing agent is preferably 5% by mass or less, more preferably 3% by mass or less, and even more preferably 1% by mass or less.
  • This particulate water-absorbing agent contains particles having a particle diameter of 106 ⁇ m to 850 ⁇ m, preferably at least 90% by mass, more preferably at least 95% by mass, even more preferably at least 97% by mass, particularly preferably at least 99% by mass.
  • the particulate water-absorbing agent contains 100% by mass of particles with a particle size of 106 ⁇ m to 850 ⁇ m.
  • the particulate water-absorbing agent according to the present invention contains particles having a particle diameter of 250 ⁇ m to 425 ⁇ m, preferably 30% by mass or more, more preferably 35% by mass or more, still more preferably 36% by mass or more, and particularly preferably 37% by mass or more. .
  • the upper limit of the ratio of particles having a particle diameter of 250 ⁇ m to 425 ⁇ m in the particulate water absorbing agent is not particularly limited, but practically, as one embodiment, 90% by mass or less, 85% by mass or less, 80% by mass or less, 75% by mass or less. , 70% by mass or less, and 65% by mass or less.
  • the effects of the present invention can be further exhibited when the ratio of particles having a particle size of 250 ⁇ m to 425 ⁇ m is within the above range.
  • the logarithmic standard deviation ( ⁇ ) of the particle size distribution is preferably 0.20 to 0.50, more preferably 0.25 to 0.40, still more preferably 0.27 to 0.35.
  • the particle size of the water-absorbing resin particles contained in the particulate water-absorbing agent of the present invention is preferably in the same numerical range as that of the particulate water-absorbing agent.
  • the absorption time of high-viscosity liquid is the absorption time of the water-absorbent resin using a high-viscosity liquid instead of physiological saline. Measurement of high viscosity liquid absorption time is based on the criteria described in JISK 7224-1996 "Water absorption rate test method for super absorbent polymer commentary", physiological saline to be used is prepared by the method shown in the example. Change to a higher viscosity test liquid.
  • the high-viscosity liquid absorption time of the particulate water-absorbing agent of the present invention is preferably 140 seconds or less, more preferably 135 seconds or less, even more preferably 130 seconds or less, still more preferably 120 seconds or less, and particularly preferably 110 seconds or less. Most preferably it is 100 seconds or less. Although the lower limit is not particularly limited, it is preferably 5 seconds or more, more preferably 10 seconds or more.
  • a predetermined amount of liquid can be absorbed in a short time due to the high-viscosity liquid absorption time being within the above range.
  • the high-viscosity liquid absorption time is preferably in the same numerical range as that of the particulate water-absorbing agent.
  • the particulate water-absorbing agent of the present invention preferably further contains water-insoluble inorganic particles.
  • water-insoluble inorganic particles in the particulate water-absorbing agent, it is possible to improve the moisture absorption fluidity of the particulate water-absorbing agent. Further, by adding water-insoluble inorganic particles, it is possible to improve the absorption capacity of the absorbent article. Furthermore, the water-absorbent resin particles (composition) may lose fluidity during the production of absorbent articles due to storage after production. By mixing water-insoluble inorganic particles with such water-absorbent resin particles (composition) that have lost fluidity and preferably forming an absorbent body, water-absorbent resin particles (composition) can be obtained while maintaining performance. The fluidity of the composition) is restored, so the productivity is improved.
  • the hygroscopic fluidity refers to the fluidity of the particulate water-absorbing agent when stored under high humidity conditions, and the fluidity of the particulate water-absorbing agent containing a water-absorbing resin generally decreases due to moisture absorption. .
  • water-insoluble inorganic particles include polymetallic compounds such as hydrotalcite, silicon dioxide (silica), aluminum hydroxide, titanium dioxide, aluminum oxide, magnesium oxide, zinc oxide, talc, metal phosphates (e.g., triphosphate calcium phosphate such as calcium, barium phosphate, aluminum phosphate), metal borates (e.g., titanium borate, aluminum borate, iron borate, magnesium borate, manganese borate, calcium borate), silicic acid or salts thereof, Clay, diatomaceous earth, zeolite, bentonite, kaolin, activated clay and the like.
  • polymetallic compounds such as hydrotalcite, silicon dioxide (silica), aluminum hydroxide, titanium dioxide, aluminum oxide, magnesium oxide, zinc oxide, talc, metal phosphates (e.g., triphosphate calcium phosphate such as calcium, barium phosphate, aluminum phosphate), metal borates (e.g., titanium borate, aluminum borate, iron borate, magnesium borate, manganese
  • the water-insoluble inorganic particles preferably contain at least one selected from multimetallic compounds, silicon dioxide, aluminum hydroxide, talc, and tricalcium phosphate, since the effects of the present invention can be remarkably obtained. More preferably, it contains at least one selected from talcite, silicon dioxide, aluminum hydroxide and tricalcium phosphate.
  • the method for producing a particulate water absorbing agent according to the present invention has a polymerization step, a drying step and a surface cross-linking step.
  • this production method further includes a gel pulverization step simultaneously with the polymerization step or a gel pulverization step after the polymerization step, a gel granulation step before the drying step, a cooling step before the surface cross-linking step, and pulverization of the dried product. It has a process and a classification process, and includes an additive addition process after the surface cross-linking process.
  • a step of adjusting the aqueous monomer solution may be included.
  • a separation step may be included.
  • a step of adding various additives may be included.
  • a step of removing fine powder may be included.
  • various known steps can be included depending on the purpose.
  • the production steps [3-1] to [3-11] of the particulate water absorbing agent according to the present invention are shown below.
  • aqueous monomer solution containing a monomer (for example, (meth)acrylic acid (salt)) as a main component is prepared. It is a process to do.
  • a monomer slurry liquid may be used as long as the water absorption performance of the water absorbent resin to be obtained is not lowered.
  • main component means that the amount (content) of (meth)acrylic acid (salt) used is the total amount of monomers (excluding the internal cross-linking agent) subjected to the polymerization reaction of the water absorbent resin. is usually 50 mol % or more, preferably 70 mol % or more, more preferably 90 mol % or more (the upper limit is 100 mol %).
  • (meth)acrylic acid In the present invention, (meth)acrylic acid and/or its salt (hereinafter referred to as "(meth)acrylic acid (salt)”) is used as a monomer from the viewpoint of the physical properties and productivity of the resulting particulate water absorbing agent. .
  • (meth)acrylic acid may be a known (meth)acrylic acid, preferably methoxyphenols, more preferably p-methoxyphenol as a polymerization inhibitor, the polymerizability of acrylic acid and the particulate water absorbing agent. From the viewpoint of color tone, the content is preferably 200 ppm or less, more preferably 10 to 160 ppm, and even more preferably 20 to 100 ppm.
  • impurities in (meth)acrylic acid the compounds described in US Patent Application Publication No. 2008/0161512 are also applied to the present invention.
  • the above “(meth)acrylic acid salt” is obtained by neutralizing the above (meth)acrylic acid with the following basic composition.
  • a neutralized salt in which some or all of the carboxyl groups contained in (meth)acrylic acid are neutralized can be used as a monomer.
  • the (meth)acrylate is preferably a salt with a monovalent cation, more preferably at least one selected from alkali metal salts, ammonium salts and amine salts, and is an alkali metal salt. is more preferred, at least one selected from sodium salts, lithium salts and potassium salts is even more preferred, and sodium salts are particularly preferred.
  • the (meth)acrylate may be a commercially available (meth)acrylate (for example, sodium (meth)acrylate) or one obtained by neutralization in a particulate water absorbing agent manufacturing plant.
  • the “basic composition” refers to a composition containing a basic compound, such as a commercially available sodium hydroxide aqueous solution.
  • the basic compound examples include alkali metal carbonates and hydrogen carbonates, alkali metal hydroxides, ammonia, and organic amines.
  • strong basicity is desired from the viewpoint of the physical properties of the obtained particulate water absorbing agent. That is, alkali metal hydroxides such as sodium hydroxide, potassium hydroxide and lithium hydroxide are preferred, and sodium hydroxide is more preferred.
  • Neutralization in the present invention includes neutralization of (meth)acrylic acid (before polymerization) or neutralization of a water-containing gel-like crosslinked polymer obtained by crosslink-polymerizing (meth)acrylic acid (after polymerization) (hereinafter referred to as “after (referred to as “neutralization”) can be selected or used in combination.
  • the neutralization may be of a continuous type or a batch type, and is not particularly limited, but from the viewpoint of production efficiency and the like, a continuous type is preferred.
  • the neutralization rate in the present invention is preferably 10 to 90 mol%, more preferably 40 to 85 mol%, still more preferably 50 to 80 mol%, particularly preferably 60 to 75%, relative to the acid groups of the monomer. in mol %. If the neutralization rate is less than 10 mol %, the water absorption capacity may be remarkably lowered. On the other hand, when the neutralization rate exceeds 90 mol %, a water absorbent resin having a high water absorbency against pressure may not be obtained.
  • the above neutralization rate is the same for post-neutralization.
  • the above neutralization rate is also applied to the neutralization rate of the particulate water absorbing agent as the final product.
  • the neutralization rate of 75 mol% means a mixture of 25 mol% (meth)acrylic acid and 75 mol% (meth)acrylic acid salt. Moreover, this mixture may be called a (meth)acrylic acid partially neutralized product.
  • “other monomers” refers to a monomer other than the (meth)acrylic acid (salt), and the other monomer is used in combination with acrylic acid (salt) to form a particulate water absorbing agent. can be manufactured.
  • the above-mentioned other monomers include water-soluble or hydrophobic unsaturated monomers.
  • the compounds described in US Patent Application Publication No. 2005/0215734 (excluding (meth)acrylic acid) are also applicable to the present invention.
  • Internal cross-linking agent As the internal cross-linking agent used in the present invention, the compounds described in US Pat. No. 6,241,928 are also applicable to the present invention. One or two or more compounds are selected from among these in consideration of reactivity. In the present invention, it is preferable to surface-treat the crosslinked product using an internal crosslinker in consideration of water absorption performance.
  • a compound having two or more polymerizable unsaturated groups more preferably a compound having thermal decomposition at the following drying temperature, and still more preferably (poly)alkylene
  • a compound having two or more polymerizable unsaturated groups having a glycol structural unit is used as an internal cross-linking agent.
  • the polymerizable unsaturated group preferably includes an allyl group, a (meth)acrylate group, and more preferably a (meth)acrylate group.
  • the (poly)alkylene glycol structural unit is preferably polyethylene glycol, and the n number is preferably 1-100, more preferably 6-50.
  • the amount of the internal cross-linking agent used is preferably 0.0001 to 10 mol%, more preferably 0.001 to 1 mol%, relative to the total monomer.
  • a desired water absorbent resin can be obtained by adjusting the amount to be used within the above range. If the amount used is too small, the strength of the hydrous gel-like crosslinked polymer to be obtained may be insufficient and workability may become a problem. If the amount used is too large, the water absorption capacity tends to decrease. .
  • a method is preferably applied in which a predetermined amount of internal cross-linking agent is added in advance to the aqueous monomer solution, and the cross-linking reaction is carried out simultaneously with polymerization.
  • a method of post-crosslinking by adding an internal cross-linking agent during or after polymerization a method of radical cross-linking using a radical polymerization initiator, and radiation using active energy rays such as electron beams and ultraviolet rays.
  • a cross-linking method or the like can also be employed. Moreover, these methods can also be used together.
  • a hydrophilic polymer such as starch, starch derivatives, cellulose, cellulose derivatives, polyvinyl alcohol, polyacrylic acid (salt), polyacrylic acid (salt) crosslinked product, etc.
  • a hydrophilic polymer such as starch, starch derivatives, cellulose, cellulose derivatives, polyvinyl alcohol, polyacrylic acid (salt), polyacrylic acid (salt) crosslinked product, etc.
  • an aqueous monomer solution preferably 50%. % by weight or less, more preferably 20% by weight or less, still more preferably 10% by weight or less, particularly preferably 5% by weight or less (lower limit is 0% by weight), or foaming agents such as carbonates, azo compounds, and air bubbles.
  • chelating agents such as diethylenetriaminepentaacetic acid (salt) and ethylenediaminetetramethylene phosphonic acid (salt), hydroxycarboxylic acid compounds such as lactic acid (salt), chain transfer agents, etc.
  • aqueous monomer solution preferably It can be added in an amount of 5% by weight or less, more preferably 1% by weight or less, and even more preferably 0.5% by weight or less (the lower limit is 0% by weight).
  • the above substance may be added not only to the aqueous monomer solution, but also during polymerization, or these forms may be used in combination.
  • a graft polymer or water-absorbent resin composition eg, starch-acrylic acid polymer, PVA-acrylic acid polymer, etc.
  • these polymers and water absorbent resin compositions are also within the scope of the present invention.
  • concentration of monomer component In this step, each of the above substances is added when preparing the aqueous monomer solution.
  • concentration of the monomer component in the aqueous monomer solution is not particularly limited, it is preferably 10 to 80% by weight, more preferably 20 to 75% by weight, still more preferably 30% by weight, from the viewpoint of the physical properties of the water absorbent resin. ⁇ 70% by weight.
  • a solvent other than water can be used in combination as necessary.
  • the type of solvent is not particularly limited.
  • the polymerization initiator used in the present invention is appropriately selected depending on the form of polymerization and the like, and is not particularly limited. and a redox polymerization initiator in combination with a reducing agent that promotes. Specifically, one or more of the polymerization initiators disclosed in US Pat. No. 7,265,190 are used. From the viewpoint of the handling property of the polymerization initiator and the physical properties of the particulate water absorbing agent or water absorbing resin, preferably peroxides or azo compounds, more preferably peroxides, and even more preferably persulfates are used.
  • the amount of the polymerization initiator used is preferably 0.001 to 1 mol%, more preferably 0.001 to 0.5 mol%, relative to the monomer. Also, the amount of the reducing agent used is preferably 0.0001 to 0.02 mol % relative to the monomer.
  • the polymerization reaction may be carried out by irradiating active energy rays such as radiation, electron beams, and ultraviolet rays, or these active energy rays and the polymerization initiator may be used in combination.
  • active energy rays such as radiation, electron beams, and ultraviolet rays
  • polymerization form The form of polymerization to be applied to the present invention is not particularly limited, but from the viewpoint of water absorption properties, ease of polymerization control, etc., spray droplet polymerization, aqueous solution polymerization, reversed-phase suspension polymerization, and more preferably aqueous solution polymerization are preferred. , reversed-phase suspension polymerization, and more preferably aqueous solution polymerization. Among them, continuous aqueous solution polymerization is particularly preferred, and both continuous belt polymerization and continuous kneader polymerization are applicable.
  • high-temperature initiation polymerization and “high-concentration polymerization” can be cited as preferred forms of the continuous aqueous solution polymerization.
  • “High-temperature initiation polymerization” means that the temperature of the aqueous monomer solution is preferably 30°C or higher, more preferably 35°C or higher, still more preferably 40°C or higher, and particularly preferably 50°C or higher (the upper limit is the boiling point).
  • “High-concentration polymerization” means that the monomer concentration is preferably 30% by weight or more, more preferably 35% by weight or more, still more preferably 40% by weight or more, and particularly preferably 45% by weight or more. (The upper limit is the saturated concentration).
  • polymerization can be carried out in an air atmosphere, but from the viewpoint of the color tone of the resulting water-absorbing resin, polymerization may be carried out in an inert gas atmosphere such as nitrogen or argon.
  • an inert gas atmosphere such as nitrogen or argon.
  • the present invention can be implemented by a stationary polymerization method in which a monomer aqueous solution is polymerized in a stationary state, a stirring polymerization method in which polymerization is performed in a stirring device, and the like.
  • a stationary polymerization method it is preferable to use an endless belt.
  • the belt is preferably made of resin or rubber, which makes it difficult for the heat of polymerization to escape from the contact surface.
  • Reversed-phase suspension polymerization can also be adopted as a polymerization form applied to the present invention, and is disclosed in International Publication Nos. 2009/025235, 2013/018571, 2016/182082, 2020/067310, etc. there is Batch reversed-phase suspension polymerization or continuous reversed-phase suspension polymerization may be used. Reverse phase suspension polymerization is preferred, more preferably liquid phase droplet continuation polymerization.
  • the chopping step is an optional step of cutting or roughly crushing the hydrous gel-like crosslinked polymer into a size that can be put into a gel crusher after the polymerization step and before the gel crushing step. .
  • the polymerization step is belt polymerization and a sheet-like or block-like hydrous gel is obtained, it is preferable to perform this shredding step. Therefore, in one embodiment of the present invention, the water-containing gel-like crosslinked polymer obtained after the polymerization step is in the form of a sheet, and the shredding step of shredding the sheet-like water-containing gel-like crosslinked polymer is performed before the gel pulverization step. Including further.
  • the means for cutting or crushing the hydrous gel in the shredding step is not particularly limited, and rotary cutters, roller cutters, guillotine cutters and the like are used.
  • the size to be shredded is not particularly limited as long as it is within a range that can be put into the gel pulverizing device described later, but the size of the hydrous gel after shredding is preferably 1 mm to 3 m, more preferably 5 mm to 2.5 m. and particularly preferably 1 cm to 2 m.
  • the shredding process may not be performed. For example, in the case of reversed-phase suspension polymerization, a particulate water-containing gel-like crosslinked polymer is obtained, so this step is unnecessary.
  • Gel pulverization step In this step, after the polymerization, the water-containing gel-like cross-linked polymer obtained in this polymerization step is pulverized and finely granulated to obtain a particulate water-containing gel-like cross-linked polymer (hereinafter , “particulate hydrous gel”).
  • the particle size of the particulate hydrous gel is adjusted within the preferred range described below so that (surface-crosslinked) water-absorbing resin particles having the desired shape and performance can be obtained at a high yield.
  • this step may be performed twice or more.
  • pulverization process when gas-phase polymerization or reversed-phase suspension polymerization is performed, a particulate water-containing gel-like crosslinked polymer is obtained, so this step is unnecessary.
  • the type of gel crusher is not particularly limited as long as the water absorption performance (liquid uptake speed and return amount) is not impaired.
  • Gel pulverizers include, for example, batch-type or continuous double-arm kneaders, gel pulverizers equipped with a plurality of rotating stirring blades, single-screw extruders, twin-screw extruders, screw extruders such as meat choppers, A multi-screw kneader (kneader) with two or more screws, a gel pulverizer such as a cutter mill, and the like can be used.
  • the said polymerization process is kneader polymerization, a polymerization process and a gel crushing process are implemented simultaneously.
  • a meat chopper or a multi-screw kneader with two or more screws is preferably used in the gel pulverization step.
  • fine particles can be formed by using a meat chopper or a multi-screw kneader with two or more screws in the gel pulverization step.
  • water-absorbing resin particles are obtained, a large number of communicating pores can be formed as aggregates of fine particles, and closed cells can be reduced. Therefore, it is easy to control the existence ratio of the continuous pores and closed cells formed in the water absorbent resin particles, and the effect of the present invention can be further exhibited.
  • a gel crushing step using a meat chopper or a gel crushing step using a multi-screw kneader with two or more screws is carried out.
  • the contents disclosed in International Publication No. 2011/126079 are preferably applied to the present invention.
  • a gel fluidizing agent may be added before and/or during the gel pulverization step. Thereby, a particulate hydrous gel containing a gel fluidizing agent is obtained.
  • a gel fluidizing agent By adding a gel fluidizing agent, adhesion or adhesion between hydrous gel particles is suppressed in the drying step described later, the formation of communicating pores is promoted, and the formation of closed cells is suppressed, thereby resulting in a water absorbent resin. The effect of improving the water absorption performance of is obtained.
  • the load in the pulverization step after drying, which will be described later, is reduced, and the effect of reducing the amount of fine powder generated is also obtained.
  • the particle size of the obtained particulate dry polymer approaches the particle size of the product, so that the above effect becomes remarkable.
  • Addition during the gel pulverization step is preferable from the viewpoint that each particle of the resulting particulate hydrous gel uniformly contains the gel fluidizing agent.
  • the amount of gel fluidizing agent to be added is appropriately set according to the water content of the hydrogel or particulate hydrogel and the type of gel fluidizing agent.
  • the amount added is preferably 0.001% by mass to 0.5% by mass, more preferably 0.01% by mass to 0.3% by mass, and still more preferably 0.02% by mass, relative to the solid content of the hydrous gel. % to 0.2% by mass.
  • this gel fluidizing agent examples include anionic, cationic, nonionic, and amphoteric surfactants, as well as these low-molecular-weight or high-molecular-weight surfactants, polymeric lubricants, and the like.
  • surfactants used in gel fluidizers include (1) sucrose fatty acid esters, polyglycerin fatty acid esters, sorbitan fatty acid esters, polyoxyethylene sorbitan fatty acid esters, polyoxyethylene glycerin fatty acid esters, and sorbitol fatty acid esters.
  • polymer lubricant In this embodiment, polymer lubricants exemplified below can be added to the aqueous monomer solution or hydrous gel as long as the object of the present invention is achieved.
  • polymer lubricant examples include maleic anhydride-modified polyethylene, maleic anhydride-modified polypropylene, maleic anhydride-modified ethylene/propylene copolymer, and maleic anhydride-modified ethylene/propylene/diene terpolymer (EPDM).
  • maleic anhydride-modified polybutadiene maleic anhydride/ethylene copolymer, maleic anhydride/propylene copolymer, maleic anhydride/ethylene/propylene copolymer, maleic anhydride/butadiene copolymer, polyethylene, polypropylene, Polyalkylene oxides such as ethylene/propylene copolymer, oxidized polyethylene, oxidized polypropylene, oxidized ethylene/propylene copolymer, ethylene/acrylic acid copolymer, ethyl cellulose, ethylhydroxyethyl cellulose, polyethylene glycol, and the like. . These molecular weights (weight average molecular weights) are appropriately selected in the range of preferably 2 million to 2 million, more preferably 4 million to 1 million. You may use 2 or more types together among these.
  • these polymer lubricants and the above surfactants may be used in combination as gel fluidizers.
  • a surfactant and a polymer lubricant are used in combination, the total amount added is appropriately set according to the polymerization form, the composition of the aqueous monomer solution, and the water content of the hydrous gel.
  • the aqueous monomer solution When added to the aqueous monomer solution, it is set as the concentration with respect to the monomer component.
  • When added to the hydrous gel it is set as the solid content ratio.
  • These gel fluidizing agents may overlap with the dispersing aids used when performing reversed-phase suspension polymerization.
  • the total amount of surfactant and polymeric lubricant added is preferably 1.0% by mass or less, more preferably 0.5% by mass or less, preferably 0.05% by mass or more, and particularly preferably 0.1% by mass. % by mass or more.
  • hydrogen peroxide may be added in a step before the drying step.
  • the hydrogen peroxide cuts the crosslinked structure in the water absorbent resin when heat is applied after the drying process. It is possible to efficiently increase the absorption capacity (CRC) without affecting the formation of continuous pores and closed cells in the gel pulverization and gel sizing steps.
  • hydrogen peroxide is preferably added to the aqueous monomer solution before the polymerization step and/or added to the hydrous gel during the gel crushing step.
  • the amount of hydrogen peroxide added to the aqueous monomer solution and/or hydrous gel is appropriately set in consideration of the polymerization conditions to be selected and the amount of hydrogen peroxide remaining before drying (ppm).
  • the total amount is preferably 50 ppm (0.005 %) or more, more preferably 50 ppm (0.005% by mass) to 10000 ppm (1.0% by mass), more preferably 100 ppm (0.01% by mass) to 5000 ppm (0.5% by mass) .
  • the method of adding hydrogen peroxide is not particularly limited, but since it is easy to add, it is preferable to add an aqueous solution in which hydrogen peroxide is dissolved, and the concentration is not particularly limited. is usually about 1 to 40% by mass. Further, the aqueous hydrogen peroxide solution may contain a small amount of hydrophilic solvent such as methyl alcohol, ethyl alcohol, n-propyl alcohol and isopropyl alcohol.
  • the temperature at which the hydrogen peroxide or the hydrogen peroxide solution is added is not particularly limited, and may be, for example, a range of -10 to 100°C, more preferably 0 to 30°C.
  • the water-containing gel-like crosslinked polymer and/or the dried polymer are heated so that their maximum temperature exceeds 160°C after the drying step. Such heating cuts the crosslinked structure in the water-absorbing resin by hydrogen peroxide, and a particulate water-absorbing agent having a high absorption capacity (CRC) can be obtained.
  • CRC absorption capacity
  • the type and amount of the gel fluidizing agent to be added are appropriately adjusted in consideration of the fluidity of the particulate hydrous gel in the gel pulverization process and the drying process.
  • the type and amount of the gel fluidizing agent that does not excessively lower the surface tension of the water-absorbent resin in the final product is preferable, considering the amount of returned water-absorbent resin in actual use in absorbent articles (diapers).
  • the surface tension of the water absorbent resin surface tension of the water absorbent resin (surface tension of the water absorbent resin dispersion in physiological saline) is preferably 55 mN/m or more, more preferably 60 mN/m or more, and still more preferably 65 mN/m or more.
  • the type and amount of gel fluidizing agent is selected. This surface tension is measured by the method described in WO2015/129917.
  • the solid content of the hydrous gel to be subjected to the gel pulverization step (hereinafter referred to as gel solid content) is preferably 25% by mass or more. From the viewpoints of suppressing aggregation of water-containing gel particles after gel pulverization, energy required for pulverization, drying efficiency and absorption performance, the gel solid content is more preferably 25% to 75% by mass, and 30% to 70% by mass. More preferably, 35% by mass to 65% by mass is even more preferable, and 40% by mass to 60% by mass is particularly preferable.
  • the water content of the particulate hydrous gel (hereinafter referred to as gel water content) is determined by the measuring method described in the examples below. From the viewpoint of the fluidity of the particulate hydrous gel in the drying step described later, the gel water content is preferably 25% by mass or more, more preferably 30% by mass or more, still more preferably 35% by mass or more, and particularly preferably 40% by mass or more. , 43% by mass or more is highly preferred. Excessive high-concentration polymerization may reduce the physical properties of the water-absorbent resin, and from the viewpoint of drying efficiency and absorption performance, the gel water content is preferably 75% by mass or less, more preferably 60% by mass or less, and 55% by mass. The following are particularly preferred.
  • the mass average particle size of the particulate hydrous gel (pre-drying particulate hydrous gel) obtained through the gel pulverization step is In terms of solid content, it is preferably 10 ⁇ m to 1000 ⁇ m, more preferably 20 ⁇ m to 800 ⁇ m, still more preferably 40 ⁇ m to 500 ⁇ m, particularly preferably 50 ⁇ m to 300 ⁇ m, and most preferably 60 ⁇ m to 200 ⁇ m.
  • the average particle size of the particulate hydrous gel in terms of solid content is described in WO2016/204302 "Weight average particle size ( ⁇ m) converted to dry matter of hydrous gel particles”. can be measured by the method of
  • the gel crushing step is preferably gel crushing using a meat chopper 100 (screw extruder) shown in FIG. 2A (see WO2013/0023187 for details of FIG. 2A).
  • the extrusion port 16 is equipped with a die (also referred to as a “die plate” or “perforated plate”), but the meat chopper 100 is used in the gel crushing process of the present invention. If so, it is preferable to perform gel pulverization without using such a die.
  • the extrusion port 16 of the meat chopper 100 is provided with a support 17 instead of a die.
  • FIG. 2B An embodiment of the support 17 is shown in FIG. 2B.
  • the support 17 is a member that supports the screw 13 at the extrusion port 16 .
  • the region 17a is a portion through which the pulverized particulate hydrous gel passes
  • the region 17b is a portion that supports the shaft of the screw 13. Therefore, the region 17b is a portion through which the shaft of the screw 13 penetrates, and the particulate hydrous gel does not pass therethrough.
  • the shape of the support 17 is not particularly limited as long as it has the minimum strength required to support the shaft of the screw 13, but the support 17 shown in FIG. is as small as possible and the size of one hole is as large as possible, which is preferable.
  • the definition of the aperture ratio is a value calculated by using the area of the region 17a (the portion through which the crushed particulate hydrous gel passes) as the numerator and the circular area of the outer diameter D of the support 17 as the parameter.
  • a support having an aperture ratio of 56% is used.
  • the meat chopper it is preferable to pass the meat chopper through the meat chopper two or more times, more preferably three or more times.
  • the upper limit of the gel grinding energy (GGE) for gel grinding the hydrous gel is preferably 60 [J/g] or less, more preferably 50 [J/g] or less, and 40 [J/g] or less is more preferable.
  • GGE gel grinding energy
  • the lower limit 18 [J/g] or more is preferable, 20 [J/g] or more is more preferable, and 25 [J/g] or more is still more preferable.
  • the gel crushing energy (GGE (1)) for gel crushing the hydrous gel is 18 to 60 [J / g], preferably 20 to 50 [J / g], and more It is preferably 25 to 40 [J/g].
  • the gel crushing energy (GGE (2)) for gel crushing the hydrous gel is 18 to 60 [J/g], preferably 20 to 50 [J/g], more preferably 25 to 40 [J/g].
  • the gel crushing energy (GGE (1)) is defined including the energy during idle operation of the gel crusher, and the gel crushing energy (GGE (2)) includes the energy during idle operation of the gel crusher. It is specified by deducting. If multiple gel crushings are performed, the gel crushing energy contributed by each crush is summed.
  • Gel pulverization energy is described in International Publication No. 2011/126079 (US Patent Application Publication No. 2013/026412, corresponding to US Patent Application Publication No. 2016/332141), and a water-containing gel-like crosslinked polymer Means the mechanical energy per unit weight (unit weight of the water-containing gel-like crosslinked polymer) required by the gel crusher when gel crushing the gel crusher, and when the gel crusher is driven by three-phase AC power, the following ( It is calculated by the formula a-1).
  • Gel crushing energy GGE (1) [J/g] ⁇ 3 1/2 ⁇ voltage ⁇ current ⁇ power factor ⁇ motor efficiency ⁇ / ⁇ weight of hydrous gel fed into the gel pulverizer per second ⁇ (Formula a-1).
  • the power factor and the motor efficiency are device-specific values that vary depending on the operating conditions of the gel pulverizer, and take values from 0 to 1.
  • the gel crusher is driven by single-phase AC power, it is calculated by changing 3 1/2 in the above formula to 1.
  • the unit of voltage is [V]
  • the unit of current is [A]
  • the unit of mass of the hydrous gel is [g].
  • the gel pulverization energy GGE(2) defined by subtracting the energy during idle operation of the gel pulverizer is calculated by the following (formula a-2).
  • Gel crushing energy GGE (2) [J/g] ⁇ 3 ⁇ voltage ⁇ (current during gel pulverization - current during idle operation) ⁇ power factor ⁇ motor efficiency ⁇ / ⁇ weight of hydrous gel put into the gel pulverizer for 1 second ⁇ (formula a -2).
  • the power factor and the motor efficiency are, like (formula a-1), device-specific values that vary depending on the operating conditions of the gel crusher, and values from 0 to 1.
  • the unit of voltage is [V]
  • the unit of current is [A]
  • the unit of the mass of the hydrous gel is [g].
  • gel pulverization by double shaft type kneader with two or more shafts gel pulverization by double shaft type kneader with two or more shafts.
  • gel pulverization using a double-screw kneader shown in FIGS. 3 and 4 is preferred.
  • a gel pulverizer having an inlet, a main body containing a plurality of rotating shafts, and an outlet is used in the gel pulverization step. Each rotating shaft has comminution means.
  • the hydrous gel crosslinked polymer continuously introduced into the main body from the inlet is pulverized at 50° C.
  • the main body means a body portion (reference numeral 208 in FIG. 3) in which a plurality of rotating shafts and crushing means are installed, and is also called a barrel, a trough, a casing, or the like.
  • the double shaft kneader may be vertical (the direction of movement of the hydrous gel is vertical), horizontal or horizontal (the direction of movement of the hydrous gel is the left-right direction or horizontal direction).
  • vertical and horizontal gel pulverizers may have an inclination of 0° to 90° with respect to the horizontal direction.
  • an appropriate inclination is provided as necessary. It may be downward or upward.
  • the angle of inclination is usually between 0° and 10°, preferably between 0° and 1°, particularly preferably 0°.
  • the hydrous gel fed from the inlet is pulverized to the target particle size without applying excessive pressure to the hydrous gel until it is discharged from the outlet. Therefore, in this double-screw kneader, unlike a conventional extruder (meat chopper), it is not necessary to extrude from a die, and particulate hydrous gel adjusted to the desired particle size is taken out from the outlet. .
  • the double shaft kneader the pressure applied to the gel during pulverization is relaxed, and excessive adhesion between the pulverized gel particles is suppressed, so that the communication holes in the water absorbent resin are sufficiently formed. can hold.
  • the double shaft kneader preferably has heating means and/or heat retaining means.
  • the heating means and / or heat retaining means are not particularly limited, but from the viewpoint of preventing adhesion and aggregation of the hydrous gel and particulate hydrous gel, direct heat transfer by convection heat transfer and / or gel crusher heated by heat medium Heating means based on indirect heat transfer by heat conduction from a heating surface (contact surface with hydrous gel, heat source portion) is preferable.
  • a more preferable heating means is a ventilation heating type for direct heat transfer, and an outer wall heating type for indirect heat transfer.
  • the outer surface of the main body is preferably provided with heating means and/or heat retaining means, more preferably heating means.
  • this heat retaining means for example, there is a method of covering part or the entire outer surface of the main body (preferably 50% or more of the outer surface of the main body, more preferably 80% or more, particularly preferably the entire outer surface) with a heat insulating material. be done.
  • the heating means include an electric stress, a steam stress, a jacket heated by a heat medium, and the like.
  • the influence of the change in adhesion and fluidity of the hydrous gel particles due to temperature change is greater than assumed in the range of the prior art. rice field.
  • the study in the present invention revealed that the energy required for pulverizing the hydrous gel and the adhesion between the pulverized gel particles greatly fluctuate depending on the temperature.
  • the type of crushing means possessed by each rotating shaft is not particularly limited.
  • discs of various shapes can be cited as those having a shearing action on the hydrous gel.
  • a disc may be referred to as a tip, paddle, element, kneading, rotor, or the like.
  • the shape of the disc is not particularly limited, and is appropriately selected from a disk shape, an elliptical shape, a substantially triangular shape, and the like. It is also possible to use discs of different shapes in combination, and the arrangement is appropriately adjusted from the viewpoint of the particle size of the target particulate hydrous gel and the energy required for pulverization. Arms, vanes, blades, cut discs (CDs), etc. may also be used as crushing means.
  • the maximum diameter D of this disk (Diameter; when using a plurality of disks with different diameters, the diameter of the maximum disk)
  • the ratio of internal effective lengths L is defined as L/D.
  • This L/D is preferably 5 to 40, more preferably 6 to 30, even more preferably 6.5 to 20.
  • the effective length L means the axial length (total length) of the body (barrel) portion including the inlet to the outlet.
  • the distance (clearance) between the disc and the body (barrel) may vary depending on the location.
  • the minimum clearance C is the distance between the outer circumference of the disk and the inner wall of the body (barrel)
  • the minimum clearance C is preferably 20% or less, more preferably 15% or less, of the maximum diameter D of the disk.
  • 10% or less is even more preferable, and 5% or less is particularly preferable. If it is equal to or less than the above upper limit, the shearing force between the barrel and the disk during gel pulverization will be strong, and the gel pulverization efficiency will be good.
  • the minimum clearance C is preferably 0.2% or more, more preferably 0.5% or more, and even more preferably 1% or more of the maximum diameter D of the disk.
  • the minimum clearance C is 0.2-20% of the maximum diameter D of the disk.
  • the rotation speed of the plurality of rotating shafts of the double shaft kneader may be constant or non-uniform, and is appropriately set depending on the device, preferably 1 rpm to 1000 rpm, more preferably 3 rpm to 500 rpm, and further It is preferably in the range of 5 rpm to 300 rpm. Further, when the rotation speed of each rotation shaft is different, the ratio of the rotation speed of one rotation shaft to the rotation speed of the other rotation shaft is usually in the range of 1-10, preferably in the range of 1-2.
  • the peripheral speed (V) of the discs defined by the following (formula b) may be uniform or non-uniform, and may be appropriately set depending on the device. 0.05 m / s to 5 m / s, more preferably 0.1 m / s to 5 m / s, still more preferably 0.15 m / s to 3 m / s, and 0.2 m / s ⁇ 2 m/s is particularly preferred. If the above range is exceeded, the shearing force applied to the hydrogel becomes excessive, which is not preferable because the physical properties of the pulverized hydrogel particles deteriorate and excessive compaction occurs.
  • the processing amount per unit time in the gel pulverization step decreases, which is not preferable.
  • the ratio of the peripheral speed of the other rotating shaft to the peripheral speed of one rotating shaft is usually in the range of 1 to 10, preferably in the range of 1 to 2. is.
  • V is the peripheral speed of the disc (unit: m/s)
  • D is the maximum diameter of the disc (unit: m)
  • n is the number of revolutions of the disc per unit time (unit: rpm).
  • the rotation directions of the plurality of rotating shafts may be the same direction type in which the respective rotating shafts rotate in the same direction, or may be the different direction type in which the respective rotating shafts rotate in opposite directions.
  • a co-directional device can be expected to have self-cleaning properties, while a counter-directional device can be expected to have a strong shearing force.
  • the direction of rotation of each rotating shaft is appropriately selected in combination with the arrangement (disk pattern) of the crushing means described above.
  • the double shaft kneader preferably has a function of supplying water and/or steam inside the main body.
  • water and/or steam preferably water and steam
  • water and/or steam are supplied to the interior of the body during the gel crushing process.
  • the gel pulverizer may be provided with a plurality of inlets. The installation position of this water and/or steam inlet is not critical, but it is preferably installed on the side of the hydrous gel inlet. Also, water and steam may be supplied from different inlets.
  • a gas such as air, dry air, or nitrogen may be mixed with steam and added as a mixed gas.
  • the pressure of water vapor to be added is not particularly limited, but is preferably 0.2 to 0.8 MPa.
  • the temperature of water and/or steam (including mixed gas) is not particularly limited, but is preferably 50°C or higher, more preferably 60°C or higher, still more preferably 70°C or higher, and particularly preferably 80°C or higher. From the viewpoint of suppressing excessive temperature rise and drying of the hydrous gel, the temperature is preferably 200°C or lower, more preferably 170°C or lower, even more preferably 150°C or lower, even more preferably 120°C or lower, and particularly preferably 100°C or lower.
  • the temperature of water and/or steam supplied to the interior of the main body is 50-120°C. It is also possible to adjust the temperature of the water-containing gel and the particulate water-containing gel in the double-screw kneader by adjusting the temperature and input amount of the water and/or steam (including mixed gas) used.
  • the water vapor and/or mixed gas acts as a heat medium for direct heat transfer, and the hydrogel and particulate hydrogel inside the main body are heated or kept at a predetermined temperature.
  • Additives such as a gel fluidizing agent, a cross-linking agent, an oxidizing agent, a reducing agent, and a polymerization initiator, which will be described later, may be added to the water and/or water vapor (including the mixed gas) to be added.
  • the amount of water and/or steam supplied is preferably 0.1% by mass to 50% by mass, more preferably 0.5% by mass to 40% by mass, relative to the mass of the hydrous gel in terms of solid content. , more preferably 1% by mass to 30% by mass.
  • the double-screw kneader preferably has heating means and/or heat retaining means on the outer surface of the main body.
  • a heated gas hot air
  • These heat carriers act as heat carriers for indirect heat transfer.
  • the temperature of the heat medium is preferably 50° C. or higher, more preferably 60° C. or higher, still more preferably 70° C. or higher, and particularly preferably 80° C. or higher.
  • the temperature of the heat medium is preferably 200° C. or lower, more preferably 170° C. or lower, still more preferably 150° C.
  • a particularly preferred heat medium is hot water or steam.
  • the temperature of the heat medium may be a constant temperature, or may be changed as appropriate during the gel pulverization.
  • the temperature inside the main body is set to 50°C or higher, more preferably 60°C or higher, still more preferably 70°C or higher, before the hydrous gel is introduced into the double-screw kneader. More preferably, it is heated to 80° C. or higher. This reduces adhesion of hydrous gel to the inner surface of the main body. In addition, as a result, the obtained water-absorbing resin particles sufficiently contain communicating pores, and the water-absorbing performance is further improved.
  • the inner surface of the main body is heated to the above-mentioned temperature or higher before the hydrous gel is charged and when the gel pulverization is started. More preferably, the inner surface of the main body, the plurality of rotating shafts, and the outer surface of the pulverizing means possessed by each rotating shaft are heated to the above temperature or higher.
  • the heating temperature of the inside of the main body is preferably 200 ° C. or less, and 170 ° C. or less before the hydrogel is put into the gel crusher. is more preferable, 150° C.
  • the temperature inside the main body (inner surface) can be adjusted within a desired range. From the viewpoint of maintaining the temperature in the gel pulverization process at 50° C. or higher, it is preferable that the temperature inside the main body (inner surface) is maintained within the above range in the gel pulverization process.
  • continuous pulverizing the hydrous gel-like crosslinked polymer at 50 ° C. or higher means that in the section shown in (A) of FIG. It means to continuously pulverize the water-containing gel-like cross-linked polymer while maintaining the temperature of the water-containing gel-like cross-linked polymer at 50°C or higher.
  • the temperature T1 of the water-containing gel-like crosslinked polymer introduced into the inlet of the double-screw kneader is set to 50°C or higher, and the heat medium temperature of the jacket installed outside the main body of the apparatus is set to 50°C or higher.
  • the temperature of the hydrogel crosslinked polymer can be maintained at 50° C.
  • the hydrogel crosslinked polymer can be continuously pulverized at 50° C. or higher.
  • the temperature T1 of the water-containing gel-like crosslinked polymer introduced into the inlet of the double-screw kneader is 50 ° C. or less, high-temperature water and / or steam is supplied at the inlet.
  • the temperature of the water-containing gel-like crosslinked polymer is rapidly raised by, for example, setting the temperature of the jacket heating medium of the main body of the apparatus to a high temperature, and the case of continuously pulverizing at 50° C. or higher in the part (A) is also included.
  • the temperature at which the hydrous gel-like crosslinked polymer is continuously pulverized is preferably 50°C or higher, more preferably 60°C or higher, still more preferably 70°C or higher, and even more preferably 80°C or higher.
  • the upper limit of the temperature for continuously pulverizing the water-containing gel-like crosslinked polymer is not particularly limited, but from the viewpoint of suppressing excessive temperature rise and drying of the water-containing gel, it is preferably 200 ° C. or less, and 170 ° C. or less. is more preferable, 150° C. or less is still more preferable, 130° C. or less is even more preferable, and 110° C. or less is particularly preferable.
  • FIG. 3 and 4 show an example of a double-screw kneader (gel pulverizer) 200 suitable for use in the present invention.
  • FIG. 3 is a partially cutaway side view of the gel crusher 200
  • FIG. 4 is an enlarged view of the gel crusher 200 (a top view of the central portion of the main body).
  • the basic configuration and usage of the gel pulverizer 200 will be described below with reference to FIGS. 3 and 4.
  • this gel pulverization device 200 includes an inlet 204, a main body 208, two rotating shafts 206, an outlet 210, a driving device 214 and a gas inlet 216.
  • the body 208 is also referred to as a barrel.
  • two rotating shafts 206 are provided along the direction perpendicular to the plane of the paper. Axis of rotation 206 extends along the length of body 208 .
  • One end of the rotary shaft 206 penetrates the main body 208 and is connected to the driving device 214 .
  • the other end of the rotating shaft 206 is rotatably supported by a bearing installed behind it. That is, the rotary shaft 206 is held at both ends.
  • the gel pulverization device in the manufacturing method according to the present invention is not limited to such a double-shafted form, and as long as the object of the present invention is achieved, a bearing can be provided behind the discharge port 210.
  • a so-called one-shaft holding structure may also be used.
  • the inlet 204 , the gas inlet 216 , the gel fluidizer inlet 217 and the outlet 210 are each fixed to the main body 208 and communicate with the inside of the main body 208 .
  • the horizontal direction in FIG. 3 is the length direction of the main body 208 and the axial direction of the rotating shaft 206 .
  • the body 208 has a jacket structure.
  • FIG. 4 shows part of the main body 208 of the gel crusher 200.
  • this gel crusher 200 two rotating shafts 206 are built in a main body 208 .
  • Crushing means 212 are provided on the outer circumferences of the two rotating shafts 206, respectively. That is, the crushing means 212 and the rotating shaft 206 are configured as separate bodies.
  • the rotating shaft 206 has a plurality of discs as comminution means 212 .
  • the vertical direction in FIG. 4 is the width direction of the main body 208 .
  • the horizontal direction in FIG. 4 is the length direction of the main body 208 and the axial direction of the rotating shaft 206 .
  • a heating medium is circulated through a jacket (not shown) to heat the main body 208.
  • each rotary shaft 206 is rotated by a driving device 214 (for example, a motor). As the rotating shaft 206 rotates, the screw 206 and the plurality of discs, which are the crushing means 212, rotate.
  • the hydrous gel is continuously introduced into the inlet 204 .
  • water or steam may be introduced into the inlet 204 at the same time.
  • steam or water may be introduced into the gas inlet 216 .
  • the water and steam heat the hydrous gel and the main body 208 and keep them at a predetermined temperature.
  • the hydrous gel put into the main body 208 moves toward the outlet 210.
  • the hydrous gel contacts the crushing means 212 (that is, multiple discs) within the main body 208 .
  • the hydrous gel is comminuted by the shearing action of rotating discs.
  • the water-containing gel moves toward the discharge port 210 while being pulverized by the shearing action of the pulverizing means 212 .
  • particulate hydrous gel adjusted to a predetermined particle size is taken out.
  • the rotating shaft of the gel crusher has multiple discs.
  • the shapes of the plurality of discs may be the same or different, but are preferably different.
  • the combination of discs can be appropriately changed according to the physical properties of the hydrous gel, the size of the pulverized gel to be obtained, etc., with reference to, for example, Patent Document (Japanese Patent Application Laid-Open No. 2005-35212).
  • a gel pulverizer double-screw kneader having such a basic configuration
  • a double-screw kneader kneader
  • kneader double-screw kneader
  • a continuous type gel pulverizer is preferably used from the viewpoint of production efficiency.
  • a gel crusher a CKH type continuous kneader (Honda Iron Works Co., Ltd.), a twin-screw extruder TEX (Japan Steel Works, Ltd.), a twin-screw extruder TEX ⁇ III (Japan Steel Works, Ltd.) ), continuous kneader (CONTINUOUS KNEADER, Dalton Co., Ltd.), KRC hybrid reactor (KRC HYBRID REACTER, Kurimoto Co., Ltd.), KRC kneader (KURIMOTO-READCO CONTINUOUS KNEADER, Kurimoto Co., Ltd.) , KEX EXTRUDER (Kurimoto, Ltd.), KEXD extruder (KEXD EXTRUDER, Kurimoto, Ltd.), Double-arm kneader-ruder (KNEADER-RUDER, Moriyama Co., Ltd.), 2 Shaft kneading extruder TE
  • the gel pulverization energy (GGE) for pulverizing the hydrous gel is preferably 150 [J/g] or less, and preferably 130 [J/g] or less. It is more preferably 120 [J/g] or less. Moreover, as a lower limit, 20 [J/g] or more is preferable, 40 [J/g] or more is more preferable, and 50 [J/g] or more is still more preferable.
  • the gel crushing energy (GGE (1)) for gel crushing the hydrous gel is 20 to 150 [J / g], preferably 40 to 130 [J / g], and more It is preferably 50 to 120 [J/g].
  • GGE(2) is 20 to 150 [J/g], preferably 40 to 130 [J/g], more preferably 50 to 120 [J/g].
  • the temperature T1 of (hereinafter also referred to as “gel temperature T1 at the inlet” or simply “gel temperature T1”) is preferably 50° C. or higher. This gel temperature T1 is preferably measured by a thermometer installed at the inlet.
  • the gel temperature T1 is preferably 60° C. or higher from the viewpoint of preventing the gel pulverized hydrous gel from adhering to the device, and more preferably 70° C.
  • the gel temperature T1 is preferably 130° C. or lower, more preferably 110° C. or lower, still more preferably 100° C. or lower, and particularly preferably 90° C. or lower.
  • the gel temperature during pulverization is preferably 130° C. or less.
  • the gel temperature T1 is used to keep the water-containing gel-like crosslinked polymer whose temperature has been raised by the heat of polymerization, or to heat the obtained water-containing gel-like crosslinked polymer. It can be adjusted within a desired range by heating.
  • the temperature T2 of the particulate hydrogel crosslinked polymer discharged from the gel pulverizer (hereinafter, "gel temperature T2 at the outlet” or simply “gel temperature T2" is preferably 60°C to 140°C, more preferably 70°C to 130°C, even more preferably 80°C to 120°C, particularly preferably 80°C to 115°C, most preferably 100°C to 115°C.
  • it is set so that the temperature T2 falls within the temperature range concerned and the temperature T1 falls within the above-described temperature range.
  • This gel temperature T2 is preferably measured by a thermometer installed at the outlet.
  • the gel temperature T2 can be set within a desired range by appropriately adjusting the set temperature of the heating means and/or heat retaining means of the gel crushing device and the residence time of the hydrogel crosslinked polymer inside the gel crushing device. can be adjusted within
  • the gel fluidizing agent may be added at once, or divided into two or more times and added a plurality of times, and may be added at any position in the kneader. When the gel fluidizing agent is added in multiple portions, it is preferably added at different positions. In one embodiment, in pulverization by a double-screw kneader, near the gel inlet of the double-screw kneader (for example, in FIG. The gel fluidizing agent is dividedly added to the middle and the gel fluidizing agent input port 217).
  • the reversed-phase suspension polymerization is performed in the polymerization step, the obtained hydrous gel-like crosslinked polymer and the hydrophobic organic solvent are separated in the separation step.
  • the type and structure of the device used in the separation step is not particularly limited as long as it does not impair the water absorption performance (liquid uptake speed and return amount). can be used.
  • the mixture may be separated from the hydrophobic organic solvent by azeotropic dehydration by heating under normal pressure or reduced pressure using a stirrer having stirring blades used in the polymerization step. Azeotropic dehydration under normal pressure or reduced pressure is preferably carried out in the batch-type reversed-phase suspension polymerization.
  • the hydrous gel formed in the polymerization process is continuously discharged from the reactor together with the hydrophobic organic solvent forming the continuous phase.
  • the hydrophobic organic solvent and hydrous gel can be separated by known methods such as filtration, sedimentation, centrifugation, and pressing.
  • a circulation type process is preferred in which the hydrophobic organic solvent separated in this step is recovered and circulated through a pipe to a dispersing device.
  • Gel sizing device As used herein, the term “gel sizing” refers to the operation of producing grains having a substantially uniform shape and size by extruding a wet mass composed of particulate hydrous gel from the small holes of a perforated plate in a columnar shape. .
  • the hydrous gel in the form of coarse aggregates that have excessively aggregated in the previous solvent separation step is crushed, and the small-diameter single-particle hydrous gel is moderately aggregated. state. Therefore, by this step, it is possible to obtain aggregates that are granulated hydrogels (regular granule gels) with relatively uniform particle diameters and sufficiently contain communicating pores.
  • the granulated gel may contain monoparticulate hydrous gel.
  • the "gel sizing apparatus having an extrusion action part and a perforated plate” used in the gel sizing step includes an extrusion action part and a perforated plate (die or screen), and the extrusion action part is usually a perforated plate.
  • the device has an extrusion member that extrudes and supplies the contents toward the perforated plate, and can produce grains of a certain size by extruding the material from the perforated plate.
  • Fig. 5 is a diagram schematically showing the classification of gel sizing devices having an extrusion action part and a perforated plate.
  • a gel sizing apparatus having an extruder and a perforated plate is roughly classified into a screw type, a rotating perforated die type, and a rotating blade type according to the structure of the extruding portion.
  • a screw-type gel granulating device 310 has a rotationally driven screw 311 (corresponding to an extrusion working part) and a die 313 (corresponding to a perforated plate) in which small holes 312 are formed.
  • the charged material (see arrow 314) is extruded toward the die 313 by the rotationally driven screw 311 and extruded from the small hole 312 of the die 313 (see arrow 315).
  • the screw-type gel sizing device 310 has a lateral extrusion method and a forward extrusion method, depending on the direction in which the material is extruded.
  • the die 313 is arranged in a direction parallel to the direction in which the rotation axis of the screw 311 extends, and the material is extruded in a direction intersecting the rotation axis of the screw 311, as shown in the figure.
  • the die 313 is arranged in a direction orthogonal to the rotation axis of the screw 311, and the material is extruded in the direction in which the rotation axis of the screw 311 extends.
  • a screw-type pre-extrusion sizing machine As the screw-type gel sizing apparatus, a screw-type pre-extrusion sizing machine, a screw-type horizontal extrusion-type sizing machine, a screw-type pretreatment and extrusion-type sizing machine, etc. can be used.
  • the screw-type horizontal extrusion granulator include a single-screw extrusion granulator with a kneader manufactured by Akira Kiko Co., Ltd.
  • Examples of the screw-type pre-extrusion granule regulating machine include Twin Dome Gran Series manufactured by Dalton Co., Ltd.
  • Examples of the screw-type pretreatment and extrusion-type sizing machine include MULTIGRAN manufactured by Dalton Co., Ltd.
  • a rotary perforated die type gel granulating device 320 has a roll 321 (corresponding to an extrusion action part) and a rotating die 323 (corresponding to a perforated plate) in which small holes 322 are formed and which is driven to rotate.
  • the roll 321 is placed inside a rotating die 323 .
  • a material introduced between the rotary die 323 and the roll 321 (see arrow 324) is extruded by the roll 321 through the small holes 322 of the rotary die 323 (see arrow 325).
  • a roll type ring die type extrusion granule regulating machine can be used as a rotary perforated die type gel granulating device.
  • a disk pelleter manufactured by Dalton Co., Ltd. can be used as a roll type ring die type extrusion granule regulating machine.
  • a rotating blade type gel granulating device 330 has a rotationally driven paddle 331 (corresponding to an extrusion action part) and a cylindrical die 333 (corresponding to a perforated plate) in which small holes 332 are formed.
  • a paddle 331 is placed inside a cylindrical die 333 .
  • a pushing blade 336 that is rotationally driven is arranged above the paddle 331.
  • the input material (see arrow 334) is pushed toward the cylindrical die 333 by the rotationally driven pushing blades 336 and paddle 331, and is extruded through the small hole 332 of the cylindrical die 333 (see arrow 335).
  • a blade type basket type extrusion sizing machine As the rotary blade type gel sizing apparatus, a blade type basket type extrusion sizing machine, a blade type oscillating type extrusion sizing machine, etc. can be used.
  • the blade-type oscillating extrusion granulator include a cylindrical granulator manufactured by Freund Turbo Co., Ltd.
  • the "gel sizing apparatus having an extrusion action part and a perforated plate" used in the gel sizing step is preferably a screw-type pre-extrusion sizing machine or a screw-type horizontal extrusion sizing machine, more preferably It is a screw-type pre-extrusion sizing machine.
  • the "perforated plate” is a member having a large number of holes for making particles of a certain size, and corresponds to a die or a screen.
  • the shape of the perforated plate is not particularly limited, and may be flat, curved, spherical (dome-shaped), or the like.
  • a dome-shaped die is arranged at the tip of the screw.
  • a curved screen is arranged on the outer peripheral portion of the screw.
  • the pushing blade at this time also has a spherical shape (that is, a shape in which the contour of the edge forms a part of a spherical surface).
  • a spherical shape that is, a shape in which the contour of the edge forms a part of a spherical surface.
  • This "sphere” includes a locus plane formed by rotating a circle such as a perfect circle or an ellipse, a locus plane obtained by rotating a combination of multiple circles, a hemisphere, a curved surface, a hyperboloid, and a paraboloid.
  • Non-flat surfaces such as planes are widely included.
  • the shape of the holes of this perforated plate is not particularly limited, and may be arbitrarily selected from a shape suitable for use, such as a perfect circle, an ellipse, a polygon such as a hexagon, a triangle, and the like. It is possible, but from the viewpoint of sizing strength, a perfect circle or an ellipse is preferable.
  • the pore diameter is not particularly limited, it is preferably 1.5 mm or less, more preferably 1.0 mm or less, and even more preferably 0.8 mm or less.
  • the size of the granulated gel When it is equal to or less than such an upper limit, it is possible to prevent the size of the granulated gel to be obtained from increasing more than necessary, and to obtain water-absorbing resin particles having a suitable particle size and a suitable total volume ratio of communicating pores.
  • the pore size is preferably 0.3-1.5 mm, more preferably 0.3-0.8 mm. If the hole diameter of the perforated plate is 0.3 mm or more, the extrusion can be performed efficiently.
  • the said hole diameter is defined as follows. First, when the hole is not a perfect circle, the geometric mean value of the short diameter and long diameter of the hole is adopted as the hole diameter.
  • the pore diameters of the pores of the perforated plate are different, the pore diameters of all the pores are calculated, and the arithmetic mean value thereof is adopted as the pore diameter of the perforated plate. Furthermore, when the pore diameter of the perforated plate changes from the extrusion acting portion side of the perforated plate to the opposite side (the pore diameter changes in the thickness direction of the perforated plate), the value with the smallest pore diameter is adopted. .
  • the thickness of the perforated plate (die or screen) is also not particularly limited, but due to the characteristics of the gel sizing device, if the pore size is small, extrusion sizing may be difficult unless the thickness of the perforated plate is reduced. Therefore, the thickness of the perforated plate (die or screen) is preferably about 0.1 to 5 times the pore diameter of the perforated plate, more preferably 0.2 to 3 times the pore diameter, still more preferably 0.2 to 3 times the pore diameter. 0.5 to 2 times. If the thickness of the perforated plate (die or screen) is 5 times or less the pore diameter, an increase in resistance at the pore portions is prevented, and extrusion sizing can be carried out smoothly. On the other hand, if the thickness of the perforated plate is 0.1 times or more the pore size, the decrease in the sizing strength can be prevented.
  • FIG. 6 is a diagram schematically showing the extruding part in the gel sizing device.
  • the symbol “CL” in the figure indicates the gap between the perforated plate 343 (die or screen) and the extrusion action part 341 in the gel sizing device 340 .
  • the pushing action part 341 is configured by a screw.
  • the clearance CL is the distance from the edge of the pushing blades to the rear surface of the perforated plate 343 of the gel granulating device 340 .
  • the symbol “d” in the drawing indicates the hole diameter of the small holes 342 of the perforated plate 343 .
  • a blank arrow 344 in the figure indicates the direction of gel extrusion.
  • the gap CL between the perforated plate 343 (die or screen) and the extrusion action part 341 in the gel particle size adjustment device 340 (when the extrusion action part 341 has an extrusion blade, the hole of the gel particle size adjustment device 340 from the edge of the extrusion blade The distance to the back surface of the plate 343) is preferably 0.1 to 10.0 mm.
  • the gap CL between 343 (die or screen) and the extrusion action part 341 (when the extrusion action part 341 has extrusion blades, the distance from the edge of the extrusion blades to the rear surface of the perforated plate 343 of the gel sizing device 340) is , preferably 0.1 mm to 10.0 mm.
  • the gap is 0.1 mm or more, it is possible to prevent the perforated plate 343 from being damaged due to the perforated plate 343 coming too close to the screw 341 and shortening the life of the perforated plate 343 .
  • the gap is 10.0 mm or less, the pressure when performing the extrusion operation increases, and the primary particles of the hydrous gel are excessively adhered to each other, and the communicating pores in the aggregate are crushed, and the communicating pores It is possible to prevent the total volume ratio of
  • a straight screw as an extrusion action part
  • the space between this straight screw and the die is called a pressure equalizing part
  • the thickness of this pressure equalizing part corresponds to "the gap (clearance) between the perforated plate (die or screen) and the extrusion action part".
  • the die is arranged around the straight screw, and the distance between the die and the straight screw corresponds to the clearance.
  • the length (distance) of the gap is the shortest length (distance) of the gap between the perforated plate and the pushing portion.
  • the distance from the edge of the rotating blade to the back surface of the perforated plate is between the perforated plate and the extrusion action part. and is preferably in the same numerical range as that of the extrusion granule regulating machine.
  • the gap is substantially zero, so this is not the case.
  • Fig. 7 is a schematic diagram schematically showing the configuration of a screw-type pre-extrusion type grain sizer having a spherical (dome-shaped) die as described above.
  • a feed screw 420 as an extrusion action part is connected to a driving part (not shown) via a gear mechanism in a gear box 410, and inside a screw case 430 are housed.
  • a loading hopper 440 for loading raw materials is provided at the top of the screw case 430 , and a spherical die 450 is attached to the front of the screw case 430 .
  • the tip of the feed screw 420 is spherical, and one or more spherical extrusion blades 460 are provided on the spherical tip 420a.
  • the outline of the edge 460a of the spherical extrusion blade 460 is shaped to follow the spherical back surface 450a of the spherical die 450, and is spirally formed on the surface of the spherical tip portion 420a. For this reason, an equal interval (clearance) is formed over the entire surface between the rotational trajectory of the edge 460a of the spherical pushing blade 460 and the spherical back surface 450a.
  • the lower limit of the temperature of the hydrous gel entering the sizing device is not particularly limited, it is preferably 60°C or higher, more preferably 70°C, and still more preferably 80°C or higher from the viewpoint of sizing efficiency and suppressing damage to the hydrous gel. is. Although there is no particular upper limit for the temperature of the hydrous gel when it is put into the sizing device, it is generally 100° C. or less.
  • the gel fluidizing agent and the like described above can also be added.
  • the gel fluidizing agent can be added in the gel sizing step as described above.
  • an alternative addition method is to add the hydrous fluid separated from the hydrophobic organic solvent in the separation step. It may be added to the gel, added to the granulated gel before the drying step, or added to the aqueous monomer solution in the step of preparing the aqueous monomer solution. Moreover, it may overlap with surfactants and polymer additives used as dispersing aids in the dispersing step.
  • the total amount of surfactants and polymer lubricants, which are exemplified as gel fluidizing agents, is preferably 1.0% by mass or less, more preferably 0.5% by mass, based on the solid content of the gel to be put into the gel sizing machine. % or less, preferably 0.01 mass % or more, and particularly preferably 0.05 mass % or more.
  • Drying step In this step, the particulate hydrous gel obtained in the polymerization step and/or the gel crushing step and the sized gel obtained in the gel sizing step are dried to the desired resin solid content. It is a process to obtain a dry polymer.
  • the resin solid content is determined from the loss on drying (weight change when 1 g of the water-absorbing resin is heated at 180° C. for 3 hours), preferably 80% by weight or more, more preferably 85 to 99% by weight, and still more preferably 90% by weight. to 98% by weight, particularly preferably 92 to 97% by weight.
  • the drying method of the particulate hydrogel is not particularly limited, but for example, heat drying, hot air drying, reduced pressure drying, fluid bed drying, infrared drying, microwave drying, drum dryer drying, azeotropic with a hydrophobic organic solvent
  • Examples include drying by dehydration and high-humidity drying using high-temperature steam.
  • hot-air drying is preferable, and band drying (aeration band type dryer) in which hot-air drying is performed on a ventilation belt is more preferable.
  • the drying temperature (hot air temperature) in the hot air drying is preferably 120 to 250°C, more preferably 150 to 200°C, from the viewpoint of the color tone and drying efficiency of the water absorbent resin.
  • the drying conditions other than the drying temperature such as the speed of hot air and the drying time, may be appropriately set according to the moisture content and total weight of the particulate hydrous gel to be dried and the desired resin solid content.
  • the conditions described in International Publication Nos. WO 2006/100300, WO 2011/025012, WO 2011/025013, WO 2011/111657, etc. are appropriately applied.
  • band drying it is possible to obtain a particulate water-absorbing agent having an appropriate proportion of communicating pores and closed cells in the water-absorbent resin after drying.
  • a heating device is used as the drying device in the drying process.
  • This heating device comprises a rotating container that accommodates particulate hydrous gel therein and rotates, and a plurality of heating elements that are located inside the rotating container, extend in its axial direction, and rotate together with the rotating container. with tube.
  • a heating device having this configuration may be referred to as a "rotary heating device” or a “rotary heating device with a heating tube”. More preferably, this heating device further comprises another heating means on the outer peripheral surface of the rotating vessel.
  • the particulate hydrogel contained in the rotating container is agitated by the rotation of the container and heated by contact with a plurality of heating tubes or heat conduction from the heating tubes.
  • the inner surface of the rotating container is also heated by the radiant heat of a plurality of heating tubes, etc., and if necessary, the particulate hydrous gel is further heated by heating means located on the outer peripheral surface of the rotating container.
  • heating means located on the outer peripheral surface of the rotating container.
  • other stirring means such as stirring blades are also used. Since the hydrous gel flows within the container, there is little mechanical and thermal damage to the particulate hydrous gel that is the material to be dried. This suppresses generation of fine powder and deterioration of physical properties in the drying process.
  • this heating device since drying is performed by indirect heat transfer from the heating pipe, there is no scattering of the dried material unlike drying with hot air (ventilation band type dryer or ventilation heating rotary kiln), and a large amount of waste gas can be treated. has the advantage of not requiring In addition, in this heating device, since the material to be dried flows mainly due to the rotation of the rotating container, a large amount of energy is required to stir the sticky particulate hydrous gel like a continuous stirring dryer that stirs with a stirring blade or the like. It also has the advantage of avoiding deterioration in physical properties of the water-absorbing resin after drying (eg, deterioration in water-absorbing performance, increase in soluble components), generation of fine powder, aggregation during drying, and the like.
  • the water-absorbent resin particles according to the present invention are subjected to gel pulverization multiple times in a meat chopper that does not use a die in the gel pulverization step, and a rotary heating device is used in the drying step.
  • a rotary heating device is used in the drying step.
  • the water-absorbent resin particles according to the present invention use a double-screw kneader in the gel pulverization process, and a rotary heating device in the drying process.
  • a large number of communicating pores can be formed in the water-absorbing resin particles as aggregates of fine particles, and closed cells can be reduced, so that the effect of the present invention can be further improved. That is, in a preferred embodiment, after aqueous solution polymerization, a gel pulverization step using a multi-screw kneader with two or more shafts, followed by a drying step using a rotary heating device are performed.
  • a heating device used in this embodiment includes, for example, a rotary dryer with a steam pipe.
  • Specific examples include steam tube dryers (manufactured by Kurimoto, Ltd.), steam tube dryers (manufactured by Ube Machinery Co., Ltd.), steam tube dryers (manufactured by Tsukishima Kikai Co., Ltd.), and steam tube dryers (manufactured by Mitsui Engineering & Shipbuilding Co., Ltd.). ) and the like.
  • FIG. 8 shows an example of a rotary heating device 502 with a heating tube.
  • the basic configuration of this heating device 502 will be described below with reference to FIG.
  • the conditions described in WO2018/092863 also apply to the present invention with respect to the method of using the rotary heating device with the heating tube, and the drying process and the surface treatment process using the rotary heating device with the heating tube.
  • this heating device 502 has a main section 504 , an input section and extraction section 506 , and a steam input/output section 508 .
  • the main section 504 has a rotary container 510 , multiple heating tubes 512 , a first gear 514 and a second gear 516 .
  • Rotating vessel 510 is generally cylindrical.
  • the horizontal direction in FIG. 8 is the axial direction of the rotating container 510 .
  • a large number of heating tubes 512 are accommodated in this rotating container 510 .
  • Each heating tube 512 extends in the axial direction of the rotating vessel 510 and penetrates both ends of the rotating vessel 510 .
  • none of the many heating tubes 512 are in contact with the inner peripheral surface of the rotating container 510 in the axial direction.
  • the first gear 514 is fixed to the outer peripheral surface of the rotating container 510 .
  • Second gear 516 meshes with first gear 514 .
  • An object to be dried or heated is put in and the object to be processed is taken out from the inlet/outlet opening 506 .
  • the surface cross-linking agent solution is added to the particulate hydrous gel during drying, it may be added by spraying or the like from the loading/unloading opening 506 .
  • the steam inlet/outlet part 508 has a steam inlet 544 and a drain 546 .
  • Steam inlet 544 communicates with a number of heating tubes 512 .
  • a drain 546 also communicates with a number of heating tubes 512 .
  • steam is introduced from the steam inlet 544 toward the heating pipe 512 .
  • This steam increases the temperature inside the rotating container 510 .
  • a portion of the steam is cooled by heat exchange.
  • the cooled steam becomes water and is discharged from drain 546 .
  • the temperature inside the rotating vessel 510 is controlled by continuously introducing steam from the steam inlet 544 so as to compensate for the steam that has been discharged as water.
  • a gas is introduced into the rotating container 510 .
  • the gas fills the rotating vessel 510 .
  • Excess gas is vented from rotating vessel 510 .
  • the second gear 516 is rotated by a driving means (eg, motor) not shown.
  • the rotation of the second gear 516 causes the first gear 514 to rotate, which in turn causes the rotary container 510 to rotate.
  • a number of heating tubes 512 also rotate with the rotating vessel 510 .
  • the edge between the rotating container 510 and the steam inlet/outlet portion 508 is cut off by packing, so the steam inlet/outlet portion 508 does not rotate even if the rotary container 510 rotates.
  • Pulverization step classification step
  • the dried polymer obtained in the drying step is pulverized (pulverization step), adjusted to a particle size within a predetermined range (classification step), and the water absorbent resin (surface
  • This is a step of obtaining a powdery water-absorbent resin, which is referred to as a "water-absorbent resin" for the sake of convenience, prior to cross-linking.
  • Examples of equipment used in the pulverization step of the present invention include high-speed rotary pulverizers such as roll mills, hammer mills, screw mills and pin mills, vibration mills, knuckle-type pulverizers, cylindrical mixers, and the like. Used together.
  • the method for adjusting the particle size in the classification step of the present invention is not particularly limited, but examples thereof include sieve classification using a JIS standard sieve (JIS Z8801-1 (2000)) and airflow classification.
  • the particle size adjustment of the water absorbent resin is not limited to the above pulverization process and classification process, but the polymerization process (especially reverse phase suspension polymerization and spray droplet polymerization), other processes (e.g., granulation process, fine powder recovery process ) can be implemented as appropriate.
  • the water absorbent resin obtained in the above step preferably has a weight average particle diameter (D50) of 200 to 600 ⁇ m, more preferably 200 to 550 ⁇ m, and even more preferably 250 ⁇ m. ⁇ 500 ⁇ m.
  • D50 weight average particle diameter
  • the proportion of particles with a particle diameter of less than 106 ⁇ m is preferably 10% by weight or less, more preferably 5% by weight or less, and even more preferably 1% by weight or less
  • the proportion of particles with a particle diameter of 850 ⁇ m or more is preferably 5% by weight. % by weight or less, more preferably 3% by weight or less, and even more preferably 1% by weight or less.
  • the lower limit of the ratio of these particles is preferably as low as possible in any case, and 0% by weight is desired, but about 0.1% by weight is also acceptable.
  • the logarithmic standard deviation ( ⁇ ) of the particle size distribution is preferably 0.20 to 0.50, more preferably 0.25 to 0.40, still more preferably 0.27 to 0.35.
  • the particle size described above applies not only to the water-absorbing resin after surface cross-linking (hereinafter sometimes referred to as “water-absorbing resin particles” or “water-absorbing resin powder” for convenience), but also to the particulate water-absorbing agent as the final product. be done. Therefore, the water-absorbent resin particles are preferably subjected to a surface cross-linking treatment (surface cross-linking step) so as to maintain the particle size within the above range, and more preferably a particle size adjustment step is provided after the surface cross-linking step to adjust the particle size. preferable.
  • a surface cross-linking treatment surface cross-linking step
  • This step is a step of providing a portion having a higher cross-linking density in the surface layer of the water-absorbing resin particles obtained through the above-described steps (a portion several tens of ⁇ m from the surface of the water-absorbing resin particles). and consists of a mixing step, a heat treatment step and a cooling step (optional).
  • a surface-crosslinked water-absorbing resin (water-absorbing resin particles) is obtained through radical cross-linking or surface polymerization on the surface of the water-absorbing resin particles, cross-linking reaction with a surface cross-linking agent, or the like.
  • Surface cross-linking agents used in the present invention include, but are not limited to, organic or inorganic surface cross-linking agents. Among them, an organic surface cross-linking agent that reacts with a carboxyl group is preferable from the viewpoint of the physical properties of the water absorbent resin and the handleability of the surface cross-linking agent. Examples include one or more surface cross-linking agents disclosed in US Pat. No. 7,183,456.
  • polyhydric alcohol compounds epoxy compounds, haloepoxy compounds, polyvalent amine compounds or their condensates with haloepoxy compounds, oxazoline compounds, oxazolidinone compounds, polyvalent metal salts, alkylene carbonate compounds (e.g., ethylene carbonate), A cyclic urea compound and the like can be mentioned.
  • organic surface cross-linking agents include (di, tri, tetra, poly)ethylene glycol, (di, poly)propylene glycol, 1,3-propanediol, 2,2,4-trimethyl-1,3-pentanediol, (Poly)glycerin, 2-butene-1,4-diol, 1,4-butanediol, 1,3-butanediol, 1,5-pentanediol, 1,6-hexanediol, trimethylolpropane, di- or triethanol Amine, pentaerythritol, polyalcohol compounds such as sorbitol; ethylene glycol diglycidyl ether, (poly) ethylene glycol diglycidyl ether, (di, poly) glycerol polyglycidyl ether, epoxy compounds such as glycidol; 2-oxazolidone, N-hydroxy Oxazoline compounds such as ethyl;
  • polyhydric alcohol a polyhydric alcohol having 2 to 8 carbon atoms is preferable, a polyhydric alcohol having 3 to 6 carbon atoms is more preferable, and a polyhydric alcohol having 3 to 4 carbon atoms is even more preferable.
  • diols are preferred, exemplified by ethylene glycol, propylene glycol, 1,3-propanediol, 1,4-butanediol, propylene glycol (1,2-propanediol), 1,3-propanediol, 1,4-propanediol.
  • Polyhydric alcohols selected from butanediol are preferred.
  • epoxy compound a polyglycidyl compound is preferable, and ethylene glycol diglycidyl ether is preferably used.
  • a polyvalent cationic polymer such as a polyamine polymer may be used in combination as an ionic bonding surface cross-linking agent from the viewpoint of more effective surface cross-linking.
  • the amount of the surface cross-linking agent used is preferably 0.01 to 10 parts by mass, more preferably 0.01 to 5 parts by mass, relative to 100 parts by mass of the water-absorbing resin particles.
  • the surface cross-linking agent is preferably added as an aqueous solution.
  • the amount of water used is preferably 0.1 to 20 parts by mass, more preferably 0.1 to 20 parts by mass, with respect to 100 parts by mass of the water-absorbing resin particles. 5 to 10 parts by mass.
  • the amount used is preferably 10 parts by mass or less, more preferably 5 parts by mass or less, relative to 100 parts by mass of the water-absorbent resin particles.
  • This step is a step of mixing the water absorbent resin particles and the surface cross-linking agent.
  • the method for mixing the surface cross-linking agent is not particularly limited, but a surface cross-linking agent solution is prepared in advance, and the solution is preferably sprayed or dropped onto the water-absorbing resin mass part, more preferably sprayed. and mixing.
  • the apparatus for performing the mixing is not particularly limited, but preferably includes a high-speed stirring mixer, more preferably a high-speed continuous mixer.
  • a surface cross-linking agent may be added when the organic solvent is distilled off or azeotropic dehydration is performed in the separation step, and surface cross-linking may be performed simultaneously with solvent separation.
  • This step is a step of applying heat to the mixture discharged from the mixing step to cause a cross-linking reaction on the surfaces of the water absorbent resin particles.
  • the device for carrying out the cross-linking reaction is not particularly limited, but preferably includes a paddle dryer.
  • the reaction temperature in the cross-linking reaction is appropriately set according to the type of the surface cross-linking agent used, but is preferably 50 to 300°C, more preferably 100 to 200°C.
  • This step is an optional step that is installed as necessary after the heat treatment step.
  • the device for cooling is not particularly limited, but is preferably a device having the same specifications as the device used in the heat treatment step, more preferably a paddle dryer. This is because it can be used as a cooling device by changing the heat medium to a refrigerant.
  • the water absorbent resin particles obtained in the heat treatment step are forcedly cooled to preferably 40 to 80° C., more preferably 50 to 70° C. in the cooling step, if necessary.
  • Additive addition step In this step, a polyvalent metal salt, a cationic polymer, a chelating agent, an inorganic reducing agent, a hydroxycarboxylic acid compound, a water-insoluble
  • additives such as inorganic particles, surfactants, and non-polymeric water-soluble compounds.
  • the additive can be mixed with the water absorbent resin particles at the same time as the surface cross-linking agent (aqueous solution).
  • a polyvalent metal salt and/or a cationic polymer may be added from the viewpoint of improving the liquid permeability, hygroscopic fluidity, etc. of the resulting water absorbent resin.
  • polyvalent metal salt and/or cationic polymer specifically, the compound disclosed in "[7] Polyvalent metal salt and/or cationic polymer" of International Publication No. 2011/040530 and its usage amount applies to the present invention.
  • a chelating agent may be added from the viewpoint of color tone (prevention of coloring) and deterioration prevention of the resulting water absorbent resin.
  • the chelating agent specifically, the compound disclosed in "[2] Chelating agent" of International Publication No. 2011/040530 and its usage amount are applied to the present invention.
  • An inorganic reducing agent may be added from the viewpoint of color tone (prevention of coloring), deterioration prevention, reduction of residual monomers, and the like of the resulting water absorbent resin.
  • the inorganic reducing agent specifically, the compound disclosed in "[3] Inorganic reducing agent" of International Publication No. 2011/040530 and the amount of use thereof are applied to the present invention.
  • ⁇ -hydroxycarboxylic acid compound ⁇ -Hydroxycarboxylic acid may be added from the viewpoint of the color tone (prevention of coloring) of the resulting water absorbent resin.
  • ⁇ -hydroxycarboxylic acid compound means a carboxylic acid having a hydroxyl group in the molecule or a salt thereof, and is a hydroxycarboxylic acid having a hydroxyl group at the ⁇ -position.
  • ⁇ -hydroxycarboxylic acid compound specifically, the compound disclosed in "[6] ⁇ -hydroxycarboxylic acid compound" of International Publication No. 2011/040530 and the usage amount thereof are applied to the present invention. .
  • Water-insoluble inorganic particles may be added from the viewpoint of improving the fluidity of the water-absorbing resin particles. Specific examples include the water-insoluble inorganic particles described in the above section [2-7].
  • a surfactant may be added from the viewpoint of improving physical properties (for example, water absorption rate) of the resulting water absorbent resin.
  • surfactant specifically, surfactants disclosed in WO 97/017397 and US Pat. No. 6,107,358, namely nonionic surfactants, anionic surfactants, cationic surfactants agents, amphoteric surfactants, and the like.
  • Non-polymer water-soluble compound A non-polymeric water-soluble compound may be added from the viewpoint of reducing dust of the water absorbent resin.
  • the compounds and their usage amounts disclosed in WO 2014/034667 "Non-polymer water-soluble compounds" are applicable to the present invention.
  • additives other than the additives described above can be added in order to add various functions to the water absorbent resin.
  • specific examples of the additive include compounds having a phosphorus atom, oxidizing agents, organic reducing agents, organic powders such as metal soaps, deodorants, antibacterial agents, pulp and thermoplastic fibers.
  • the amount of the additive to be used is appropriately determined according to its application, and is not particularly limited. Part by weight or less. Also, the additive can be added in a process different from the above process.
  • a granulation step, a granulation step, a fine powder removal step, a fine powder recycling step, and the like can be provided as necessary.
  • one or more steps such as a transportation step, a storage step, a packing step, and a storage step may be further included.
  • the "granule regulating step” includes a step of removing fine powder after the surface cross-linking step, and a step of classifying and pulverizing when the water-absorbing resin aggregates and exceeds a desired size.
  • the "reuse step of fine powder” includes a step of adding fine powder as it is as in the present invention, as well as a step of making a large hydrous gel and adding it to any step of the manufacturing process of the water absorbent resin.
  • the particulate water absorbing agent of the present invention is used for the purpose of absorbing water, and is widely used as an absorber. Moreover, it is used as an absorbent article including the absorbent body. In particular, since the granular water-absorbing agent of the present invention reduces backflow under pressure, it is suitable for sanitary articles for absorbing body fluids such as urine and blood, which are used by humans or animals, among absorbent articles. It is suitably used as an absorber (that is, a "wearable absorber" to be described later).
  • an absorbent suitable for sanitary articles for absorbing body fluids such as human or animal urine and blood used by placing it on a certain object for example, floor, bed sheet, etc.
  • wearing-type absorbent bodies include disposable diapers, incontinence pads, and sanitary napkins.
  • other absorbent articles include cat litter, drip absorbents, freshness-keeping materials, anti-condensation sheets, and the like.
  • water-absorbent resin examples include soil water retention agents, sheets for raising seedlings, seed coating materials, disposable body warmers, cooling bandanas, refrigerants, medical waste liquid solidification agents, soil solidification materials, water damage prevention waste liquid gelling agents, Water-absorbing sandbags, poultices, thickeners for cosmetics, water-stopping materials for electrical and electronic materials and communication cables, gasket packing, sustained-release agents for fertilizers, various sustained-release agents (space disinfectants, air fresheners, etc.), wound protection Dressing materials, anti-condensation construction materials, and water-in-oil removers.
  • soil water retention agents sheets for raising seedlings, seed coating materials, disposable body warmers, cooling bandanas, refrigerants, medical waste liquid solidification agents, soil solidification materials, water damage prevention waste liquid gelling agents, Water-absorbing sandbags, poultices, thickeners for cosmetics, water-stopping materials for electrical and electronic materials and communication cables, gasket packing, sustained-release agents for fertiliz
  • the particulate water-absorbing agent of the present invention can be used as a paint, an adhesive, an anti-blocking agent, a light diffusing agent, a matting agent, an additive for decorative boards, an additive for artificial marble, an additive for toner, etc., to absorb water and swell. It can also be used in applications where it is mixed with resins or base materials.
  • a preferred embodiment of the present invention is an absorbent body containing the particulate water absorbing agent of the above form.
  • Another preferred embodiment of the present invention is a sanitary article containing the absorbent body of the above form.
  • absorbents examples include absorbents molded from particulate water absorbing agents and fiber base materials (for example, hydrophilic fibers) as main components.
  • the content (core concentration) of the particulate water absorbing agent with respect to the total weight of the particulate water absorbing agent and hydrophilic fibers in the absorbent body is 20 to 100% by weight, more preferably 25 to 90% by weight, particularly preferably 30%. ⁇ 80 wt%, most preferably 40-80 wt% is more preferred.
  • the higher the concentration of cores in the absorbent body the greater the influence of the water absorption performance of the particulate water-absorbing agent during the production of absorbent bodies, absorbent articles, and the like.
  • Such an absorbent body is formed by, for example, blending or sandwiching a fibrous base material such as a hydrophilic fiber and a particulate water absorbing agent.
  • a fibrous base material such as a hydrophilic fiber and a particulate water absorbing agent.
  • the fiber base material to be used include hydrophilic fibers such as pulverized wood pulp, cotton linters, crosslinked cellulose fibers, rayon, cotton, wool, acetate, vinylon, and the like. These fiber base materials are preferably air-laid.
  • the absorbent body may be a (pulpless) absorbent sheet in which a water absorbent resin is fixed between two sheets (for example, nonwoven fabric).
  • the absorbent article includes the absorbent body, a liquid-permeable surface sheet, and a liquid-impermeable back sheet.
  • the absorbent article is produced by manufacturing an absorbent body (absorbent core) and sandwiching the absorbent core between a liquid-permeable surface sheet and a liquid-impermeable back sheet. After that, an absorbent article such as an adult paper diaper or a sanitary napkin is obtained by equipping an elastic member, a diffusion layer, an adhesive tape, etc., as necessary. At this time, the absorbent core is compression-molded to have a density of 0.06 to 0.50 [g/cm 3 ] and a basis weight of 0.01 to 0.20 [g/cm 2 ], for example.
  • the absorbent containing the particulate water absorbing agent of the present invention is used as an absorbent constituting an absorbent article worn by humans or animals.
  • the absorbent body includes a first base material having a liquid absorbing surface formed on the front side for directly absorbing liquid, a water absorbing layer disposed on the back side of the first base material, wherein the water-absorbing layer contains a particulate water-absorbing agent containing poly(meth)acrylic acid (salt)-based water-absorbing resin particles as a main component, and the particulate water-absorbing agent is a space communicating with the outside and closed cells that are closed spaces that do not communicate with the outside, the total volume ratio of the communication holes is 10% by volume or more, and the total volume ratio of the closed cells is 0.5 volume % or less and satisfying at least one of the following (a) and (b): (a) a region containing the particulate water absorbing agent in the water absorbing layer substantially contains the particulate
  • the absorbent body of the present embodiment is first characterized in that it uses a specific particulate water absorbing agent, that is, the particulate water absorbing agent of the form described above. Therefore, in the absorbent body according to the present embodiment, the particulate water-absorbing agent is a particulate water-absorbing agent containing polyacrylic acid (salt)-based water-absorbing resin particles as a main component, and has a shape including communicating pores and closed cells. The total volume ratio of communicating pores is 10% by volume or more, and the total volume ratio of closed cells is 0.5% by volume or less.
  • polyacrylic acid (salt)-based water-absorbing resin particles are the main component, and have a shape including communicating pores and closed cells, the total volume ratio of the communicating pores is 10% by volume or more, and the total number of closed cells
  • a particulate water absorbing agent having a volume ratio of 0.5% by volume or less may be referred to as a "specific particulate water absorbing agent".
  • the configuration of the specific particulate water absorbing agent is as described above. By using a specific particulate water-absorbing agent in the water-absorbing layer, it is possible to obtain an absorbent body with a high liquid uptake rate and a reduced return amount. In the present embodiment, a configuration has been found that can exhibit even better absorption performance by using the specific particulate water-absorbing agent having this excellent absorption performance.
  • the liquid absorption speed indicates the time for a predetermined amount of liquid to be absorbed in the absorber, and the shorter the time, the better.
  • the amount of return also referred to as the amount of reversion or Re-wet refers to the amount of liquid absorbed by the absorber that is released when pressure is applied to the absorber, and the amount of return is small. is considered good.
  • the absorbent body of the present embodiment in addition to the water absorbing layer containing a specific particulate water absorbing agent, it is preferable that at least one of the following (a) and (b) is satisfied: (a) in the water absorbing layer, the (b) the first region containing the particulate water-absorbing agent is arranged with a gap substantially free of the particulate water-absorbing agent, and the gap extends in the longitudinal direction of the absorber; is a liquid-permeable sheet having a porosity of 95% or more.
  • the surface of the first base material forms a liquid absorbing surface that directly absorbs liquid.
  • directly means that the liquid contacts or permeates the substrate before contacting the water-absorbent layer.
  • the cause of the movement is assumed to be, for example, the vibration caused by the transport or transportation of the absorber as the final product.
  • a case where the particulate water-absorbing agent is intentionally scattered or arranged on the first base material is not within the scope of the present embodiment.
  • the absorbent body according to the present embodiment includes a first substrate having a liquid absorbing surface that directly absorbs liquid on the surface side, and a water absorbing layer arranged on the back surface side of the first substrate.
  • the particulate water-absorbing agent includes communicating pores, which are spaces communicating with the outside, and closed cells, which are closed spaces not communicating with the outside, and the total volume ratio of the communicating pores is , 10% by volume or more, the total volume ratio of the closed cells is 0.5% by volume or less, and an absorbent body that satisfies at least one of the following (a) and (b): (a) the water absorbing layer (b) the region containing the particulate water absorbing agent is arranged with a gap that does not substantially contain the particulate water absorbing agent, and the gap extends in the longitudinal direction of the absorber;
  • the first base material is a liquid-permeable sheet with a porosity of 95% or more.
  • the inventors of the present invention found that the return amount was significantly large in the measurement of the return amount in the examples of the present application in the conventional absorbent body. In other words, if the liquid is intermittently introduced several times (especially three times or more), with a normal configuration, the liquid amount will exceed the set absorption amount and excessive "return” will occur. . On the other hand, in the present embodiment, by satisfying at least one configuration of (a) and (b), the liquid introduced from the liquid absorbing surface does not stay on the liquid absorbing surface (and can be introduced The liquid can be efficiently sent to the lower water-absorbing layer that performs the water-absorbing function without causing the liquid to stagnate locally.
  • the regions containing the particulate water absorbing agent in the water absorbing layer are arranged with a gap that does not substantially contain the particulate water absorbing agent, and the gap extends in the longitudinal direction of the absorbent body. formed.
  • the gaps existing between the regions containing the particulate water-absorbing agent function as liquid passages when the liquid is introduced from the first base material to the water-absorbing layer when the liquid is introduced. can do. That is, due to the presence of the liquid passage, the liquid introduced from the liquid absorption surface does not stay on the liquid absorption surface (furthermore, the introduced liquid does not stay locally), and the liquid does not flow into the water absorption layer. can be delivered efficiently.
  • the liquid (for example, urine) that has passed through the first substrate is introduced into the entire surface and gaps of the water absorbing layer.
  • the liquid introduced into the gap easily diffuses into the region containing the particulate water absorbing agent without the particulate water absorbing agent interfering with the passage of the liquid.
  • the amount of liquid absorbed by the particulate water-absorbing agent is large in the part where the liquid is introduced, and the amount of liquid absorption by the particulate water-absorbing agent in the part away from the liquid introduction part is small.
  • the gap has a shape extending in the longitudinal direction of the absorbent body, even if the liquid is locally introduced into the absorbent surface, the liquid that has reached the absorbent layer can easily diffuse in the surface direction.
  • the absorber of the present embodiment uses a specific particulate water-absorbing agent having excellent absorption performance in the water-absorbing layer. By providing a gap extending in the longitudinal direction of the absorbent in the water absorbing layer containing the specific particulate water absorbing agent, the diffusion of the liquid locally introduced to the liquid absorbing surface can be efficiently exhibited.
  • the specific particulate water absorbing agent since the specific particulate water absorbing agent has excellent absorption performance (liquid uptake rate), it can immediately absorb locally introduced liquid, but the particulate water absorbing agent around it
  • the absorption performance of the particulate water absorbing agent in the vicinity thereof can also be fully utilized. Therefore, with this configuration, the absorption performance of the specific particulate water absorbing agent can be further improved.
  • the particulate water absorbing agent absorbs liquid and swells
  • the volume of the region containing the particulate water absorbing agent increases, so that the swollen particulate water absorbing agent penetrates into the region that was defined as a gap.
  • the gap may decrease.
  • the liquid absorption capacity will gradually decrease as the gap decreases.
  • the gaps decrease, it becomes difficult for the liquid to pass through the gaps, and the particulate water absorbing agent tends to partially swell to saturation.
  • the amount of liquid returning to the liquid surface gradually increases. As a result, the reverted liquid rises up to the skin (in contact with the skin) and causes discomfort.
  • the specific particulate water absorbing agent is used in the water absorbing layer, and furthermore, by providing gaps extending in the longitudinal direction of the absorbent body in the water absorbing layer, the particulate The present inventors have found that such reversion can be significantly reduced because the absorption performance of the water-absorbing agent can be utilized to the maximum. That is, according to the present embodiment, it has been found that the specific particulate water-absorbing agent and the configuration (a) provide an excellent absorber.
  • the first base material is a liquid-permeable sheet with a porosity of 95% or more.
  • porosity of the base material means the porosity of the "fiber matrix constituting the base material” and is represented by the following (Equation 1).
  • Porosity (%) [1-(M / (A ⁇ T ⁇ D))] ⁇ 100 (Formula 1)
  • M Mass (g) of base material (fiber substrate)
  • D Density (g/cm 3 ) of the fibers forming the substrate (fiber matrix).
  • the liquid when the absorbed liquid reaches the water-absorbing layer, the liquid is diffused in the plane direction. Therefore, even if a large amount of liquid is introduced into the water-absorbing layer, the water-absorbing layer spreads in the plane direction rather than locally. It will absorb liquid. Therefore, the liquid can be sufficiently absorbed and retained in the water absorbing layer.
  • the excellent absorption performance of the specific particulate water absorbing agent causes the liquid absorbed by the water absorbing layer to return to the liquid absorbing surface of the first base material. can be significantly reduced, thereby suppressing the regurgitated liquid from rising up to the skin (contacting the skin).
  • the absorber according to the present embodiment is suitable as an absorbent article (for example, a diaper) that is used during a period of time during which an infant who is just beginning to learn to run and whose bladder is still small has to move around actively, such as during the daytime.
  • an absorbent article for example, a diaper
  • the usage pattern is of course not limited to this.
  • the mechanisms and the like described in this specification do not limit the technical scope of the claims of the present application.
  • the absorbent body according to the first embodiment of the present invention includes a first base material having a liquid absorbing surface formed on the front side that directly absorbs liquid, and a back side of the first base material. and a water-absorbing layer, wherein the water-absorbing layer contains a specific particulate water-absorbing agent, and (a) a region of the water-absorbing layer containing the particulate water-absorbing agent substantially comprises the particles are arranged with a gap that does not contain a water-absorbing agent, and the gap is formed extending in the longitudinal direction of the absorbent.
  • the absorbent body according to the first embodiment comprises a first substrate, a second substrate, and a water absorbent positioned between the first substrate and the second substrate. and a layer. That is, in one embodiment, the absorbent body further comprises a second substrate, and the absorbent layer is located between the first substrate and the second substrate.
  • FIG. 9 is a schematic diagram showing a cross section of the absorbent body cut along the lateral direction in the absorbent body according to the first embodiment.
  • FIG. 10 is a schematic diagram showing a cross-sectional view from above along line AA of FIG.
  • FIG. 11 is a schematic diagram showing another form of the gap in the absorbent body according to the first embodiment.
  • 12 to 14 are schematic diagrams showing cross-sectional views from above along the line AA in FIG. 9, which are schematic diagrams showing other embodiments of the gap.
  • the arrows indicate the direction in which the liquid to be absorbed is introduced.
  • the absorber 50 includes a first base material 51, a water absorbing layer 52, and a second base material 53.
  • the water absorption layer 52 has a structure sandwiched between the first base material 51 and the second base material 53 .
  • the first base material 51 is located on the side where the liquid to be absorbed (the liquid to be absorbed) is introduced into the water absorbing layer 52 . That is, the first base material 51 is arranged on the liquid discharge side (for example, on the skin side in the case of paper diapers).
  • a water absorbing layer 52 is arranged between the first substrate 51 and the second substrate 53 .
  • the water absorbing layer 52 contains a particulate water absorbing agent 54 .
  • the water absorbing layer 52 shows a state in which the particulate water absorbing agent 54 exists between the first base material 51 and the second base material 53 .
  • a part of the particulate water absorbing agent 54 may be detached from each base material 51 , 53 .
  • the particulate water absorbing agent 54 (region containing the particulate water absorbing agent 54 ) is arranged with a gap 55 substantially free of the particulate water absorbing agent 54 .
  • a gap 55 is formed between the first base material 51 and the second base material 53 .
  • the water-absorbing "layer” refers not only to a continuous body such as a sheet, but to a layer existing between the first base material 51 and the second base material 53 with a certain thickness and length. It may be in any form.
  • the water absorption layer 52 may intermittently exist between the first base material 51 and the second base material 53 with constant thickness and length.
  • the water absorbing layer 52 includes particulate water absorbent 54 in contact with (or adheres to) the first base material 51 and particles in contact with (or adhere to) the second base material 53.
  • a water absorbing agent 54 is included. Part of the particulate water absorbing agent 54 may not be in contact with the base materials 51 and 53 (or may not be adhered, and may be detached from the base materials 51 and 53).
  • an adhesive may be used.
  • a particulate water absorbing agent 54 may be present in the first base material 51 .
  • the particulate water absorbing agent 54 in the first base material 51 for example, the particulate water absorbing agent 54 in contact with (or adhered to) the first base material 51, or the particulate water absorbing agent 54 in contact with the second base material 53
  • the (or fixed) particulate water absorbing agent 54 may be detached and captured in the first base material 51 .
  • the first base material 51 and the particulate water absorbing agent 54 in the water absorbing layer 52 are preferably in contact directly or via an adhesive, and/or the second base material 53 and the water absorbing The particulate water absorbing agent 54 in the layer 52 is preferably in contact directly or via an adhesive.
  • the gap 55 may be formed in a part of the water-absorbing layer, and in the part of the water-absorbing layer, the region containing the particulate water-absorbing agent is arranged with a gap that does not substantially contain the particulate water-absorbing agent. It is good if it is.
  • the gap 55 is formed extending in the longitudinal direction of the absorber 50. As shown in FIG. In FIG. 10, the gap 55 is arranged in the center of the absorbent body 50 in the longitudinal direction and the lateral direction. For example, if the absorbent body 50 has a size of 160 mm long by 80 mm wide, the gap 55 has a size of 60 mm long by 10 mm wide.
  • the particulate water absorbing agent 54 is not dispersed or arranged in the area of the gap 55 , so the area of the gap 55 does not substantially contain the particulate water absorbing agent 54 .
  • An additive or the like other than the particulate water absorbing agent 54 may be contained in the area of the gap 55 .
  • the gap 55 may be formed by contacting the first base material 51 and the second base material 53 directly or via an adhesive.
  • the gap 55 may have a shape in which the first base material 51 follows the particulate water absorbing agent 54 (region containing the particulate water absorbing agent 54). In this case, as shown in FIG.
  • the first base material 51 has a shape that covers the area containing the particulate water absorbing agent 54 above the area containing the particulate water absorbing agent 54, and above the gap 55, After running along the upper surface of the region containing the particulate water absorbing agent 54 , it has a shape that sinks toward the second base material 53 .
  • the second base material 53 may have a shape following the particulate water absorbing agent 54 (region containing the particulate water absorbing agent 54).
  • the second base material 53 has a shape that covers the area containing the particulate water absorbing agent 54 under the area containing the particulate water absorbing agent 54, and the particulate water absorbing agent 54 is contained under the gap 55. After following the lower side surface of the area where the substrate 1 is drawn, the shape is lifted toward the first base material 51 (not shown).
  • the first base material 51 and/or the second base material 53 follow the shape of the particulate water-absorbing agent 54, the first base material 51 and the second base material 53 are in contact with each other to absorb the particulate water. Regions containing agent 54 are spaced apart. In this embodiment, even in such a case, the first base material 51 and the second base material 53 are in contact with each other. Since the water absorbing layer 52 is separated by entering the water absorbing layer 52 with the first base material 51 (the first base material 51 and the second base material 53 in some cases), the water absorbing layer 52 is intermittent in this form. exists in In addition, by overlapping the end of the first base material 51 and the end of the second base material 53, the end of the absorber 50 is formed by the first base material 51 and the second base material 53.
  • the first base material 51 (in some cases, the first base material 51 and the second base material 53) enters the end of the water absorbing layer 52, so that the end of the water absorbing layer 52 is water-absorbent. Layer 52 is now absent.
  • a gap 55 is formed by providing a region where the particulate water absorbing agent 54 is not present on a part of the second base material 53 .
  • the gaps 55 (that is, areas where the particulate water absorbing agent 54 does not exist) are provided extending along the longitudinal direction of the absorbent body 50 .
  • the shape in which the gap 55 is provided along the longitudinal direction may be linear, curved, or wavy, for example.
  • the position where the gap 55 is provided is not limited as long as it has a continuous shape.
  • the length of the gap 55 (the length in the longitudinal direction) is not limited as long as the effect of the present embodiment can be exhibited.
  • the width of the gap 55 (the length in the lateral direction) is not limited as long as the effect of the present embodiment can be exhibited. ), preferably 1/50 to 1/1, more preferably 1/20 to 1/1, and still more preferably 1/10 to 1/1.
  • the number of gaps 55 may be one or plural. An example of the form of the gap 55 is shown in FIGS. 7-9.
  • the gap 55 only needs to have a part that extends in the longitudinal direction.
  • a gap 55 may be formed from one longitudinal end of the absorber 50 to the other longitudinal end.
  • one or more gaps 55 may be provided that intersect the gaps 55 extending in the longitudinal direction perpendicularly or at an angle.
  • FIGS. 13A to 13C a plurality of gaps 55 extending in the longitudinal direction may be provided, or the gaps 55 may be intermittently provided.
  • the gap 55 may be corrugated, V-shaped, O-shaped, and combinations thereof.
  • the absorbent body according to the second embodiment of the present embodiment includes a first base material having a liquid absorbing surface that directly absorbs liquid on the front side, and a back side of the first base material.
  • a water-absorbing layer containing a specific particulate water-absorbing agent is a sheet; is a filling absorbent.
  • the absorbent body according to the second embodiment comprises a first substrate, a second substrate, and a water absorbent positioned between the first substrate and the second substrate. and a layer. That is, in one embodiment, the absorbent body further comprises a second substrate, and the absorbent layer is located between the first substrate and the second substrate.
  • FIG. 15 is a schematic diagram showing a cross section of the absorbent body 50 cut along the lateral direction in the absorbent body 50 according to the second embodiment.
  • FIG. 16 is a diagram showing another embodiment of the absorbent body according to the second embodiment, and is a schematic diagram showing a cross section of the absorbent body cut along the lateral direction.
  • the gap 55 is not provided in the water absorbing layer 52
  • the porosity of the first base material is within a specific range
  • the second base material has a laminated structure. 1 embodiment.
  • configurations similar to those of the first embodiment are omitted. 15 and 16, the explanations (reference numerals) of FIGS. 9 to 14 can be similarly applied.
  • the absorber 50 includes a first base material 51, a water absorbing layer 52, and a second base material 53.
  • the water absorption layer 52 has a structure sandwiched between the first base material 51 and the second base material 53 .
  • the first base material 51 is located on the side where the liquid to be absorbed (the liquid to be absorbed) is introduced into the water absorbing layer 52 . That is, the first base material 51 is arranged on the liquid introduction side (for example, on the skin side in the case of paper diapers).
  • a water absorbing layer 52 is arranged between the first substrate 51 and the second substrate 53 .
  • the water absorbing layer 52 contains a particulate water absorbing agent 54 .
  • the water absorbing layer 52 shows a state in which the particulate water absorbing agent 54 exists between the first base material 51 and the second base material 53 .
  • the first base material 51 is a liquid-permeable sheet having a porosity of 95% or more, and the first base material 51 preferably has a porosity of 95.5% or more, or more.
  • the liquid-permeable sheet preferably has a liquid permeability of 96% or more, more preferably 96.5% or more, particularly preferably 97.5% or more, and most preferably 98% or more.
  • the porosity of the first base material the value calculated according to the method described above is adopted.
  • the porosity of the first base material can be controlled by bulk density, basis weight, material, network structure, manufacturing process conditions, and the like.
  • the second base material 53 may be formed by stacking the third base material 53a.
  • the second base material 53 is formed by laminating a plurality of (eg, three layers) of third base materials 53a.
  • the third base material 53a is preferably laminated in two or more layers, more preferably in three or more layers.
  • the upper limit of the third base material 53a to be laminated is practically 10 layers or less.
  • the first substrate is a liquid-permeable substrate located on the side into which the absorbed liquid is introduced.
  • the liquid to be absorbed is not limited to water, but may be urine, blood, sweat, feces, waste liquid, humidity, steam, ice, mixtures of water and organic solvents and/or inorganic solvents, rainwater, groundwater, and the like. It is not particularly limited as long as it contains water. Preferred examples include urine, menstrual blood, sweat, and other body fluids.
  • the liquid-permeable base material as the first base material is not particularly limited as long as it is a material, has a structure and a shape that allows liquid to pass through.
  • it may be a liquid-permeable sheet (for example, non-woven fabric) obtained by mixing hydrophilic fibers with a heat-fusible resin or adhesive, and processed into a sheet, without using a heat-fusible resin or adhesive.
  • a layered molding for example, a pulp pad in which hydrophilic fibers are simply compressed may also be used.
  • the term "liquid-permeable base material" is not particularly limited in terms of material, configuration, and shape, as long as the base material is permeable to liquid.
  • liquid-permeable sheet is limited in that it is a mixture of hydrophilic fibers, a heat-fusible resin, an adhesive, and the like, and processed into a sheet. Therefore, the term “liquid-permeable sheet” refers to a limited liquid-permeable substrate that is not formed only of hydrophilic fibers and has a sheet-like shape.
  • the liquid-permeable substrate as the first substrate has shape retention in addition to liquid permeability from the viewpoint of liquid diffusion and return amount. is preferably high. Therefore, the first base material in the second embodiment is a liquid-permeable sheet (for example, non-woven fabric) formed by mixing hydrophilic fibers with a heat-fusible resin, an adhesive, or the like and processed into a sheet. preferable.
  • a liquid-permeable sheet for example, non-woven fabric
  • the first base material is a liquid-permeable base material and is positioned on the liquid-absorbing side, the performance of the absorber (return amount, surface direction leakage, etc.), which is the effect of this embodiment, can be fully demonstrated.
  • the water permeability of the liquid-permeable substrate is preferably such that the water permeability coefficient (JIS A1218:2009) is 1 ⁇ 10 ⁇ 5 cm/sec or more.
  • the hydraulic conductivity is more preferably 1 ⁇ 10 ⁇ 4 cm/sec or more, still more preferably 1 ⁇ 10 ⁇ 3 cm/sec or more, particularly preferably 1 ⁇ 10 ⁇ 2 cm/sec or more, and most preferably 1 ⁇ 10 ⁇ 4 cm/sec or more. 10 ⁇ 1 cm/sec or more.
  • the first substrate preferably has a basis weight of 3 to 100 g/m 2 , more preferably 5 to 90 g/m 2 and more preferably 10 to 80 g/m 2 . is more preferred.
  • the first base material 51 preferably has a basis weight of 3 to 100 g/m 2 , more preferably 5 to 90 g/m 2 and more preferably 10 to 80 g/m 2 is more preferred.
  • the thickness of the first base material is preferably 0.01 mm or more and 10 mm or less, more preferably 0.03 mm or more, at, for example, 40% RH to 50% RH. It is 9 mm or less, more preferably 0.05 mm or more and 8 mm or less, particularly preferably 0.07 mm or more and 7 mm or less, and most preferably 0.09 mm or more and 6 mm or less.
  • the thicknesses of the first base material, the second base material, and the absorber in this application were measured using vernier calipers. Five different points were measured on the sheet to be measured, and each point was measured twice, and the measured value was the average of the five points in total. At the time of thickness measurement, the thickness was measured while applying as little pressure as possible to the sheet to be measured.
  • the thickness and basis weight of the first base material can be controlled by the material constituting the first base material, the manufacturing method of the first base material, etc., and the thickness and basis weight of the first base material can be controlled by balancing these factors. amount is determined.
  • Materials constituting the first base material include, for example, paper (sanitary paper such as tissue paper, toilet paper and towel paper), mechanical pulp obtained from wood, chemical pulp, semi-chemical pulp, cellulose fiber such as dissolving pulp. , hydrophilic fibers such as artificial cellulose fibers such as rayon and acetate, nets, nonwoven fabrics, woven fabrics, films, and the like.
  • hydrophilic fibers such as pulp or non-woven fabric are preferably used as the first base material from the viewpoint of water permeability.
  • nonwoven fabric is preferably used as the first base material from the viewpoint of water permeability and shape retention.
  • the hydrophilic fiber or non-woven fabric used is not particularly limited, but from the viewpoint of liquid permeability, flexibility and strength when used as an absorbent, polyolefin fibers such as polyethylene (PE) and polypropylene (PP), polyethylene terephthalate ( PET), polytrimethylene terephthalate (PTT), polyethylene naphthalate (PEN) and other polyester fibers, nylon and other polyamide fibers, rayon fibers, other synthetic fibers, cotton, silk, hemp, pulp (cellulose fibers), etc. mentioned.
  • polyolefin fibers such as polyethylene (PE) and polypropylene (PP), polyethylene terephthalate ( PET), polytrimethylene terephthalate (PTT), polyethylene naphthalate (PEN) and other polyester fibers, nylon and other polyamide fibers, rayon fibers, other synthetic fibers, cotton, silk, hemp, pulp (cellulose fibers), etc. mentioned.
  • Rayon fibers, polyolefin fibers, polyester fibers, pulp fibers, and mixed fibers of these fibers are preferable as the material of the nonwoven fabric that can be used as the first base material, and polyolefin fibers are more preferable. These fibers may be subjected to hydrophilization treatment.
  • the nonwoven fabric that can be used as the first base material is not particularly limited, and may be obtained by any method such as an air through method; an airlaid method; a spunbond method; a spunlace method. .
  • the airlaid method is a method of making a nonwoven fabric by uniformly dispersing it in an air flow and absorbing it on a wire mesh. Since air is used to disperse the pulp fibers, the bulk is increased and the density is lowered. can do. Since the first base material is an air-through nonwoven fabric, the liquid to be absorbed is likely to be quickly introduced into the first base material after coming into contact with the liquid-absorbing surface of the first base material. That is, by using an air-through nonwoven fabric as the first base material, the first base material can have low water absorption and high liquid permeability, and the amount of backflow in the absorbent body can be significantly reduced.
  • the first substrate may be a substrate formed only of hydrophilic fibers such as pulp, or a nonwoven fabric obtained by an air-through method or an air-laid method (air-laid nonwoven fabric or air-through nonwoven fabric). Air-through nonwoven fabrics are preferred, and air-through nonwoven fabrics are more preferred.
  • the first substrate comprises at least one selected from the group consisting of air-laid nonwoven fabric and pulp.
  • the first base material is preferably an air-through nonwoven fabric.
  • the second base material is a liquid-permeable base material, and is located on the side opposite to the liquid-absorbing side, so that the effect of the present embodiment is the absorbent body.
  • the performance (backflow amount, surface direction leakage, etc.) can be fully exhibited.
  • the liquid-permeable base material as the second base material has a material, configuration, and shape that allow liquid to pass through.
  • it may be a liquid-permeable sheet (for example, non-woven fabric) obtained by mixing hydrophilic fibers with a heat-fusible resin or adhesive, and processed into a sheet, without using a heat-fusible resin or adhesive.
  • a layered molding (for example, a pulp pad) in which hydrophilic fibers are simply compressed may also be used.
  • the water permeability of the liquid-permeable substrate is preferably such that the water permeability coefficient (JIS A1218:2009) is 1 ⁇ 10 ⁇ 5 cm/sec or more.
  • the hydraulic conductivity is more preferably 1 ⁇ 10 ⁇ 4 cm/sec or more, still more preferably 1 ⁇ 10 ⁇ 3 cm/sec or more, particularly preferably 1 ⁇ 10 ⁇ 2 cm/sec or more, and most preferably 1 ⁇ 10 ⁇ 4 cm/sec or more. 10 ⁇ 1 cm/sec or more.
  • the thickness of the second base is preferably 0.01 mm or more and 50 mm or less, more preferably 0.05 mm or more, at, for example, 40% RH to 50% RH. It is 45 mm or less, more preferably 0.1 mm or more and 40 mm or less, particularly preferably 0.15 mm or more and 35 mm or less, and most preferably 0.2 mm or more and 30 mm or less.
  • the thickness of the second base is the sum of the thickness of the plurality of third bases. means the thickness of
  • the second base material preferably has a basis weight of 5 to 500 g/m 2 , more preferably 10 to 400 g/m 2 and more preferably 15 to 350 g/m 2 . is more preferred.
  • the basis weight of the second base material preferably has a basis weight of 5 to 750 g/m 2 , more preferably 10 to 650 g/m 2 and more preferably 15 to 550 g/m 2 . is more preferred.
  • the weight per unit area of the second base material is in such a range, the liquid can be efficiently diffused in the first base material, and as a result, the absorption speed of the absorbent can be further increased and the return amount can be further reduced.
  • the thickness and basis weight of the second base material can be controlled by the material constituting the second base material, the manufacturing method of the second base material, and the like, and the thickness and bulk of the second base material can be controlled by balancing these factors. Density is determined.
  • the same materials as used for the first base material can be applied to the material constituting the second base material.
  • hydrophilic fibers such as pulp and non-woven fabric are preferably used as the second base material from the viewpoint of water permeability.
  • the same material as that of the first base material can be applied. is more preferred.
  • the nonwoven fabric that can be used as the second base material is not particularly limited, and may be obtained by any method such as an air-through method; an airlaid method; a spunbond method; a spunlace method.
  • the spunlace method is a method in which fibers are entangled with a high-pressure water jet and does not use an adhesive.
  • the air-laid method is a method in which pulverized pulp is dispersed with air, received by suction cage rolls or screen mesh belts, formed into a web, and hot-pressed using an adhesive or heat-fusible fiber on the surface.
  • the second base material is a base material formed only of hydrophilic fibers such as pulp, obtained by an airlaid method (airlaid nonwoven fabric), or obtained by a spunlace method (spunlace nonwoven fabric). More preferably, the substrate or air-laid nonwoven fabric is formed only from hydrophilic fibers such as pulp, and more preferably air-laid nonwoven fabric. In one embodiment, the second substrate comprises at least one selected from the group consisting of air-laid nonwovens and pulp.
  • the second base material is a base material formed only of hydrophilic fibers such as pulp, an air-laid nonwoven fabric, or a spunlace nonwoven fabric, the absorption rate in the absorbent body can be improved and the return amount can be significantly reduced. .
  • the second substrate when the second substrate is formed by stacking a third substrate, the second substrate is formed by stacking the third substrate. is preferred. In this case, it is possible to improve the absorption speed in the absorbent body and significantly reduce the return amount.
  • the water-absorbing layer in the absorbent body contains a specific particulate water-absorbing agent.
  • the content of the particulate water absorbing agent (preferably the specific particulate water absorbing agent) contained in the absorbent is preferably 50 to 400 g/m 2 , More preferably 75 to 380 g/m 2 , still more preferably 100 to 350 g/m 2 .
  • the absorber according to the present embodiment includes, in the water-absorbing layer, other particulate water-absorbing agents, pulp, deodorants, antibacterial agents, fragrances, various inorganic powders, pigments, dyes, It may contain absorbent fibers, an oxidizing agent, a reducing agent, and the like.
  • the absorbent layer may be a mixture of particulate water absorbing agent and hydrophilic fibers such as pulp.
  • the particulate water absorbing agent and pulverized hydrophilic fibers are dry-mixed using a mixer such as a mixer, and the resulting mixture is formed into a web by, for example, air papermaking.
  • the water absorbing layer can be produced by a method of compression molding and manufacturing by. An example of such a water absorption layer is shown in FIG.
  • FIG. 17 is a schematic diagram showing a cross section of the absorbent body 50 cut along the lateral direction in the absorbent body 50 according to the second embodiment of the present embodiment. 17 is the same as that of FIGS. 15 and 16 except that the form of the water absorbing layer is different and the second base material is not essential due to the different form of the water absorbing layer.
  • the absorbent layer 52 of the absorbent body 50 contains a particulate absorbent 54 and hydrophilic fibers 56 .
  • the form of the said water absorption layer is similarly applied also in 1st Embodiment. Therefore, in the first embodiment as well, the absorbent body 50 having a water absorbing layer containing the particulate water absorbing agent 54 and the hydrophilic fibers 56 may not have the second base material 53 .
  • the regions containing the particulate water absorbing agent in the water absorbing layer are arranged with a gap substantially free of the particulate water absorbing agent, The gap may be formed extending in the longitudinal direction of the absorbent body. Therefore, in the second embodiment, the forms of FIGS. 9 to 14 are similarly applicable.
  • the regions containing the particulate water absorbing agent in the water absorbing layer are arranged with a gap that does not substantially contain the particulate water absorbing agent, and the gap extends in the longitudinal direction of the absorbent body. Formed by extension, a second substrate is formed by overlapping a third substrate. In this case, it is possible to improve the absorption speed in the absorbent body and significantly reduce the return amount.
  • the water absorbing layer contains a specific particulate water absorbing agent.
  • the water absorbing agent is a mixture of a plurality of types of particulate water absorbing agents
  • the following description relates to the physical properties of the mixture. That is, the physical properties of the particulate water absorbing agent are physical properties when all the particulate water absorbing agents contained in the water absorbing layer are mixed. Further, the physical properties of the particulate water absorbing agent may be measured by taking out only the particulate water absorbing agent from the absorber so as not to mix cotton pulp or the like.
  • the absorber according to the present embodiment has a water absorption layer that is mainly composed of polyacrylic acid (salt)-based water absorbent resin particles, has a shape that includes communicating pores and closed cells, and has a total volume fraction of communicating pores of 10. It contains a specific particulate water-absorbing agent with a volume % or more and a total closed-cell volume percentage of 0.5 volume % or less. Such specific particulate water absorbing agent is as described above.
  • the absorbent body containing the particulate water absorbing agent of the present invention is used as an absorbent article that is used by being placed on a certain object (eg, bed, floor, etc.).
  • a certain object eg, bed, floor, etc.
  • the absorbent body of the present embodiment is also characterized by using a specific particulate water absorbing agent, that is, the particulate water absorbing agent of the above-described form, similarly to the wearable type absorbent body.
  • the arrangement type absorbent body has a water-absorbing layer
  • the water-absorbing layer contains a particulate water-absorbing agent containing poly(meth)acrylic acid (salt)-based water-absorbing resin particles as a main component
  • the particulate water-absorbing agent contains communicating pores, which are spaces communicating with the outside, and closed cells, which are closed spaces not communicating with the outside, the total volume ratio of the communicating pores is 10% by volume or more, and the total volume of the closed cells The ratio is 0.5% by volume or less.
  • a water absorbent layer containing a specific particulate water absorbing agent may be used as it is.
  • the absorber (water absorbing layer) a specific particulate water absorbing agent is wrapped in paper, tissue or non-woven fabric, or a mixture of pulp, cotton, etc.
  • the absorber (water-absorbing layer) is arranged near the center of the liquid-permeable sheet and the liquid-impermeable sheet, and absorbs excrement such as urine excreted by humans or animals.
  • grooves may be formed in the absorber (water absorption layer).
  • the grooves can be formed by pressing the absorbent (water-absorbing layer) with a roll, or by reducing the thickness of the components (particulate water-absorbing agent, pulp, cotton, etc.) constituting the absorbent.
  • the grooves may be continuous or intermittent.
  • the entire surface of the absorbent body (water absorbing layer) may be embossed.
  • a plurality of concave portions are formed on the absorber (water-absorbing layer) on the entire surface or part of the absorber (water-absorbing layer).
  • the recesses can be formed by a so-called embossing process in which the absorbent (water-absorbing layer) is pressed with rolls.
  • the shape of the recess is not particularly limited, and may be square, triangular, other polygonal, round, elliptical, or the like.
  • the width and depth of the grooves and recesses are not particularly limited and are adjusted as appropriate.
  • the arrangement type absorbent body may be an absorbent body having a first base material and a water absorbing layer arranged on the back side of the first base material. That is, in one embodiment, the arrangement type absorbent body includes a first base material having a liquid absorbing surface formed on the front side for directly absorbing liquid, and a back side of the first base material.
  • the water absorbing layer contains a particulate water absorbing agent containing poly(meth)acrylic acid (salt)-based water absorbing resin particles as a main component, and the particulate water absorbing agent is , a communication hole that is a space communicating with the outside, and closed cells that are a closed space that does not communicate with the outside, wherein the total volume ratio of the communication holes is 10% by volume or more, and the total volume ratio of the closed cells is , 0.5% by volume or less, and satisfying at least one of the following (a) and (b): (a) the region containing the particulate water absorbing agent in the water absorbing layer is substantially the (b) the first substrate has a porosity of 95% or more and is liquid permeable; It is a sex sheet.
  • the absorber preferably satisfies the above (b).
  • the absorbent body comprises a first base material, a second base material, and a water absorbing layer positioned between the first base material and the second base material. and have That is, in one embodiment, the absorbent body further comprises a second substrate, and the absorbent layer is located between the first substrate and the second substrate.
  • the first base material, the second base material, and the water absorbing layer are the same as those of the above-mentioned wearing type absorbent body except for the basis weight of the particulate water absorbing agent in the water absorbing layer described below.
  • can As an arrangement type absorber, it is used in a relatively large area (for example, 20 cm ⁇ 20 cm or more).
  • the basis weight of the particulate water absorbing agent is preferably 5 to 100 g/m 2 .
  • An absorbent article according to one embodiment of the present invention comprises an absorbent body described in [4-1] and [4-2], a liquid-permeable sheet and a liquid-impermeable sheet. It has a structure sandwiched by sheets. Here, the liquid permeable sheet is positioned on the first substrate side and the liquid impermeable sheet is positioned on the second substrate side. That is, an absorbent article according to one embodiment of the present invention is formed by sandwiching the absorbent body of the present invention between a liquid-permeable sheet and a liquid-impermeable sheet, and the liquid-permeable sheet serves as a first substrate. A material side, liquid impermeable sheet is located on the second substrate side.
  • liquid-permeable sheet in the absorbent article is prepared separately from the liquid-permeable sheet used in the above-described first base material.
  • absorbent articles include disposable diapers, incontinence pads, sanitary napkins, pet sheets, waterproof sheets for nursing care, emergency toilets, drip sheets for food, and waterproofing agents for power cables.
  • liquid-permeable sheet and the liquid-impermeable sheet those known in the technical field of absorbent articles can be used without particular limitation.
  • an absorbent article can be manufactured by a well-known method.
  • Example 1-1 (Preparation step of monomer aqueous solution) 300 parts by mass of acrylic acid, 100 parts by mass of 48% by mass sodium hydroxide aqueous solution, 0.65 parts by mass of polyethylene glycol diacrylate (average n number 9), 16.4 parts by mass of 0.1% by mass ethylenediaminetetramethylene phosphonate pentasodium aqueous solution and 273.2 parts by weight of deionized water.
  • the water-containing gel (1-1b) was supplied with 1% by mass of hot water at 80°C, 1% by mass of water vapor, and 0.05% by mass of betaine lauryldimethylaminoacetate as an active ingredient. . Subsequently, the pulverized gel obtained by the first gel pulverization was further gel pulverized (second gel pulverization) while supplying hot water, steam and an aqueous solution of betaine lauryldimethylaminoacetate in the same manner.
  • the pulverized gel obtained in the second gel pulverization was further gel pulverized (third gel pulverization) while supplying hot water, steam and an aqueous solution of betaine lauryldimethylaminoacetate in the same manner.
  • the pulverized gel obtained in the third gel pulverization was further gel pulverized (fourth gel pulverization) while supplying warm water, steam and an aqueous solution of betaine lauryldimethylaminoacetate in the same manner.
  • the first gel pulverization, the second gel pulverization, the third gel pulverization, and the fourth gel pulverization were all performed at a screw shaft rotation speed of 65 rpm.
  • GGE (2) was 35 J/g in total for the first gel pulverization, the second gel pulverization, the third gel pulverization, and the fourth gel pulverization.
  • the resulting particulate hydrous gel (1-1c) had a solid content of 49% by mass (water content of 51% by mass) and an average gel particle diameter in terms of solid content of 135 ⁇ m.
  • the resulting particulate hydrous gel (1-1c) was dried using a hot air dryer.
  • This dryer is equipped with a basket (bottom size: 30 cm x 20 cm) made of wire mesh with an opening of 1.2 mm.
  • 500 g of particulate hydrous gel (1-1c) was spread on the bottom surface of the basket so as to be substantially uniform, and hot air at 190 ° C. was blown from below for 30 minutes to obtain a dried product (1-1A'). .
  • the cooled dried material (1-1A') was supplied to a roll mill, pulverized, and classified using JIS standard sieves with mesh sizes of 850 ⁇ m and 150 ⁇ m.
  • a water-absorbent resin (1-1A) was obtained by collecting components that passed through an 850 ⁇ m sieve and did not pass through a 150 ⁇ m sieve.
  • additive addition step To 100 parts by weight of the surface-crosslinked water-absorbent resin particles (1-1B), 10 parts by weight of a 0.1% by weight pentasodium ethylenediaminetetramethylenephosphonate aqueous solution was added as a chelating agent with stirring, and the mixture was stirred for 1 minute. Mixed.
  • Example 1-2 (Preparation step of monomer aqueous solution) An aqueous monomer solution was prepared in the same manner as in Example 1-1, except that pentasodium ethylenediaminetetramethylenephosphonate was changed to trisodium diethylenetriaminepentaacetate.
  • a water-absorbent resin (1-2A) was obtained in the same manner as in Example 1-1 (pulverization and classification step of dried product).
  • the resulting humidified product (1-2B') was heat-treated using a drying device (rotary heating device with a heating tube) having the basic configuration shown in FIG.
  • This dryer has a cylindrical rotating vessel (volume 35 L) having 10 heating tubes extending in the direction of the rotation axis.
  • Example 1-3 Preparation step of monomer aqueous solution
  • An aqueous monomer solution was prepared in the same manner as in Example 1-2 (step of preparing aqueous monomer solution).
  • the resulting particulate hydrous gel (1-3c) was dried using a drying device (rotary heating device with a heating tube) having the basic configuration shown in FIG.
  • This drying apparatus has a cylindrical rotating vessel (volume 35 L) having 10 heating tubes extending in the direction of the rotation axis.
  • steam of 2.7 MPa temperature 228.1 ° C.
  • the inside of the rotating container defined by a contact thermometer
  • the outer wall of the rotating container is also stressed. sufficiently heated.
  • the dried material (1-3A') discharged from the outlet of the heating device is forcibly cooled to 80 ° C. or less by cold air, and then the cooled material is supplied to a one-stage roll mill (pulverizer). and pulverized, and components that passed through a sieve of 850 ⁇ m and did not pass through a sieve of 150 ⁇ m were collected to obtain a water absorbent resin (1-3A).
  • Example 1-1 additive addition step
  • pentasodium ethylenediaminetetramethylenephosphonate was changed to trisodium diethylenetriaminepentaacetate, and hydrophobic silica (AEROSIL A particulate water-absorbing agent (EX-1-3) was obtained in the same manner as in Example 1-1, except that 0.3 parts by mass of R-972 (manufactured by Nippon Aerosil Co., Ltd.) was mixed.
  • AEROSIL A particulate water-absorbing agent EX-1-3
  • Example 1-4 (Preparation step of monomer aqueous solution) An aqueous monomer solution was prepared in the same manner as in Example 1-1 (step of preparing aqueous monomer solution).
  • the obtained particulate water-absorbing agent (EX'-1-4) was supplied to a one-stage roll mill (pulverizer), pulverized, and classified using JIS standard sieves with openings of 850 ⁇ m and 150 ⁇ m.
  • a particulate water absorbing agent (EX-1-4) was obtained by collecting components that passed through a 850 ⁇ m sieve and did not pass through a 150 ⁇ m sieve.
  • Example 1-5 (Preparation step of monomer aqueous solution) Polyethylene glycol diacrylate (average n number 9) was changed to 1.19 parts by mass, pentasodium ethylenediaminetetramethylenephosphonate was changed to trisodium diethylenetriamine pentaacetate, and 3.1 mass of an aqueous sodium lactate solution with a concentration of 60% by mass was added. A monomer aqueous solution was prepared in the same manner as in Example 1-1 except that 1 part was added.
  • the obtained strip-shaped hydrous gel (1-5b) was put into a screw extruder and the gel was pulverized.
  • the meat chopper 100 shown in FIG. 2A which has a screw shaft with an outer diameter of 86 mm and a support (see FIG. 2B) with a diameter of 100 mm and a thickness of 10 mm at the tip (extrusion port), is used.
  • the pulverized gel obtained by the first gel pulverization was further gel pulverized (second gel pulverization) while supplying hot water, steam, an aqueous solution of betaine lauryldimethylaminoacetate and an aqueous solution of hydrogen peroxide in the same manner.
  • the pulverized gel obtained by the second gel pulverization was further pulverized (third gel pulverization) while supplying hot water, steam, an aqueous solution of betaine lauryldimethylaminoacetate and an aqueous solution of hydrogen peroxide in the same manner.
  • the pulverized gel obtained in the third gel pulverization was further gel pulverized (fourth gel pulverization) while supplying hot water, steam, an aqueous solution of betaine lauryldimethylaminoacetate and an aqueous solution of hydrogen peroxide in the same manner.
  • the first gel pulverization, the second gel pulverization, the third gel pulverization, and the fourth gel pulverization were all performed at a screw shaft rotation speed of 65 rpm.
  • GGE (2) was 32 J/g in total for the first gel pulverization, the second gel pulverization, the third gel pulverization, and the fourth gel pulverization.
  • the resulting particulate hydrous gel (1-5c) had a solid content of 48.0% by mass (water content of 52.0% by mass) and an average gel particle diameter of 149 ⁇ m in terms of solid content.
  • aqueous solution obtained by mixing 10 parts by weight of a 0.1% by weight trisodium diethylenetriamine pentaacetate aqueous solution and 0.1 parts by weight of sodium sulfite with respect to 100 parts by weight of the surface-crosslinked water-absorbing resin particles (1-5B) was stirred. was added over a period of time and mixed for 1 minute.
  • the obtained particulate water-absorbing agent (EX'-5) was supplied to a one-stage roll mill (crusher), pulverized, and classified using JIS standard sieves with openings of 850 ⁇ m and 106 ⁇ m.
  • a particulate water absorbing agent (EX-1-5) was obtained by collecting components that passed through a 850 ⁇ m sieve and did not pass through a 106 ⁇ m sieve.
  • Example 1-6 (Preparation step of monomer aqueous solution) 300 parts by mass of acrylic acid, 100 parts by mass of 48% by mass sodium hydroxide aqueous solution, 0.65 parts by mass of polyethylene glycol diacrylate (average n number 9), 16.4 parts by mass of 0.1% by mass diethylenetriamine pentaacetic acid trisodium aqueous solution, A monomer aqueous solution was prepared from 273.2 parts by mass of deionized water.
  • a twin-screw kneader equipped with a main body (barrel) containing two rotating shafts rotating in the same direction was used to pulverize the strip-shaped hydrous gel (1-6b).
  • Each rotating shaft is provided with a disk-like disk which is mainly a crushing means.
  • the barrel had a jacket structure, and had a gas inlet through which steam was introduced into the main body. In addition, it had a solution inlet penetrating through the jacket at a position close to the discharge port of the pulverized particulate hydrous gel (1-6c) for charging the gel fluidizing agent inside the main body.
  • a heat medium of 105°C was circulated inside the jacket to keep the temperature inside the main body (barrel) at 105°C.
  • the rotation speed was set to 50 rpm, and the strip-shaped hydrous gel (1-6b) heated to 80 ° C. was transferred at a rate of 0.25 kg / min (every 2.5 seconds strip-shaped hydrous gel (1-6b) 1 It was put into the inlet of the twin-screw kneader at a pace of one sheet).
  • the amount of betaine lauryldimethylaminoacetate added as an active ingredient was 0.08% by mass with respect to the solid content of the strip-shaped hydrous gel (1-6b).
  • the input amount of hydrogen peroxide as an active ingredient was 0.01% by mass with respect to the solid content of the strip-shaped hydrous gel (1-6b).
  • an aqueous solution of lauryldimethylaminoacetic acid betaine with a concentration of 10% by mass was supplied near the outlet.
  • the amount of betaine lauryldimethylaminoacetate added as an active ingredient was 0.08% by mass with respect to the solid content of the strip-shaped hydrous gel (1-6b).
  • the disc diameter D used for gel grinding was 50 mm and the minimum clearance between barrel and disc was 1 mm (2% of disc diameter D).
  • the GGE(2) at the time of gel pulverization was 89 J/g.
  • the resulting particulate hydrous gel (1-6c) had a solid content of 45% by mass (water content of 55% by mass) and an average gel particle diameter in terms of solid content of 132 ⁇ m.
  • the resulting particulate hydrous gel (1-6c) was dried using a hot air dryer.
  • This dryer is equipped with a basket (bottom size: 30 cm x 20 cm) made of wire mesh with an opening of 1.2 mm.
  • 500 g of particulate hydrous gel (1-6c) was spread on the bottom surface of the basket so as to be substantially uniform, and hot air at 190 ° C. was blown from below for 30 minutes to obtain a dried product (1-6A'). .
  • the cooled dried product (1-6A') was supplied to a roll mill, pulverized, and classified using JIS standard sieves with mesh sizes of 850 ⁇ m and 150 ⁇ m.
  • a water-absorbing resin (1-6A) was obtained by collecting components that passed through an 850 ⁇ m sieve and did not pass through a 150 ⁇ m sieve.
  • additive addition step 10 parts by weight of a 0.1% by weight DTPA (trisodium diethylenetriamine pentaacetate) aqueous solution was added as a chelating agent to 100 parts by weight of the surface-crosslinked water-absorbent resin particles (1-6B) with stirring. Mix for a minute.
  • DTPA trisodium diethylenetriamine pentaacetate
  • Example 1-7 (Preparation step of monomer aqueous solution) An aqueous monomer solution was prepared in the same manner as in Example 1-6 (step of preparing aqueous monomer solution), except that trisodium diethylenetriamine pentaacetate was changed to pentasodium ethylenediaminetetramethylenephosphonate.
  • a water-absorbent resin (1-7A) was obtained in the same manner as in Example 1-6 (pulverization and classification step of dried product).
  • the resulting humidified product (1-7B') was heat-treated using a drying device (rotary heating device with a heating tube) having the basic configuration shown in FIG.
  • This dryer has a cylindrical rotating vessel (volume 35 L) having 10 heating tubes extending in the direction of the rotation axis.
  • a particulate water absorbing agent (EX-1-7) was obtained in the same manner as in Example 1-6 (additive addition step) except that trisodium diethylenetriamine pentaacetate was changed to pentasodium ethylenediaminetetramethylenephosphonate. .
  • Example 1-8 (Preparation step of monomer aqueous solution) A monomer A body aqueous solution was prepared.
  • the resulting particulate hydrous gel (1-8c) was dried using a drying device (rotary heating device with a heating tube) having the basic configuration shown in FIG.
  • This drying apparatus has a cylindrical rotating vessel (volume 35 L) having 10 heating tubes extending in the direction of the rotation axis.
  • steam of 2.7 MPa temperature 228.1 ° C.
  • the inside of the rotating container defined by a contact thermometer
  • the outer wall of the rotating container is also stressed. sufficiently heated.
  • 4.0 kg of particulate hydrous gel (1-8c) at 95 ° C.
  • the rotating container is rotated so that the Froude number Fr0.07, and 65 L / hr of carrier air at 140 ° C. into the rotating container. and dried for 40 minutes. After drying, the dried product (1-8A') collected at the outlet had a solid content of 98.5% by mass.
  • the dried material (1-8A') discharged from the outlet of the heating device is forcibly cooled to 80 ° C. or less by cold air, and then the cooled material is supplied to a one-stage roll mill (pulverizer). and pulverized, and components that passed through an 850 ⁇ m sieve and components that did not pass through a 150 ⁇ m sieve were collected to obtain a water absorbent resin (1-8A).
  • additive addition step An aqueous solution obtained by mixing 10 parts by weight of a 0.1% by weight trisodium diethylenetriamine pentaacetate aqueous solution and 0.1 parts by weight of sodium sulfite with respect to 100 parts by weight of the surface-crosslinked water-absorbing resin particles (1-8B) was stirred. was added over a period of time and mixed for 1 minute.
  • Example 1-9 (Preparation step of monomer aqueous solution) An aqueous monomer solution was prepared in the same manner as in Example 1-6 (step of preparing aqueous monomer solution), except that trisodium diethylenetriamine pentaacetate was changed to pentasodium ethylenediaminetetramethylenephosphonate.
  • a particulate water absorbing agent (EX'-1-9) was obtained in the same manner as in Example 1-6 (additive addition step) except that trisodium diethylenetriamine pentaacetate was changed to pentasodium ethylenediaminetetramethylenephosphonate. rice field.
  • the obtained particulate water-absorbing agent (EX'-1-9) was supplied to a one-stage roll mill (crusher), pulverized, and classified using JIS standard sieves with openings of 850 ⁇ m and 150 ⁇ m.
  • a particulate water-absorbing agent (EX-1-9) was obtained by collecting components that passed through a 850 ⁇ m sieve and did not pass through a 150 ⁇ m sieve.
  • Example 1-10 (Preparation step of monomer aqueous solution) A monomer aqueous solution was prepared in the same manner as in Example 1-6 except that polyethylene glycol diacrylate (average n number 9) was changed to 0.85 parts by mass.
  • the obtained particulate water-absorbing agent (EX'-1-10) was supplied to a one-stage roll mill (pulverizer), pulverized, and classified using JIS standard sieves with openings of 850 ⁇ m and 106 ⁇ m.
  • a particulate water-absorbing agent (EX-1-10) was obtained by collecting components that passed through the 850 ⁇ m sieve and did not pass through the 106 ⁇ m sieve.
  • Example 1-11 (Preparation step of monomer aqueous solution) An aqueous monomer solution was prepared in the same manner as in Example 1-1 (step of preparing aqueous monomer solution).
  • a water-absorbent resin (1-11A) was obtained in the same manner as in Example 1-1 (pulverization and classification step of dried product).
  • additive addition process 10 parts by weight of deionized water was added to 100 parts by weight of the surface-crosslinked water-absorbent resin particles (1-11B) while stirring, and mixed for 1 minute.
  • Example 1-12 According to the manufacturing process shown in FIG. 1 of WO 2020/067310, a series of steps were operated to prepare a hydrous gel polymer (1-12c).
  • n-heptane which is an organic solvent
  • the dispersing device 12 the polymerization device 14, the separation device 16, and the pipes (including joints) connecting them.
  • the liquid-sending pump 18 was operated to start circulation of the hydrophobic organic solvent at a flow rate of 300 mL/min.
  • the entire amount of the organic solvent was introduced into the polymerization device 14 through the dispersing device 12 .
  • the heat exchanger 20 was operated to heat the circulating organic solvent to a temperature of 90°C.
  • a maleic anhydride-modified ethylene/propylene copolymer (trade name: Hiwax (registered trademark) 1105A/Mitsui Chemicals, Inc.) is added as a dispersing aid in an amount of 0.005% per 100% by mass of the hydrophobic organic solvent. It was added in the amount of % by weight.
  • Acrylic acid 48.5% by mass aqueous sodium hydroxide solution and ion-exchanged water are mixed, and further, polyethylene glycol diacrylate (average degree of polymerization: 9) and diethylenetriaminepentaacetic acid/trisodium diethylenetriamine pentaacetate are added as internal cross-linking agents. to prepare a monomer solution (1-12a).
  • sodium persulfate which is a polymerization initiator, and ion-exchanged water were mixed to prepare a 6% by mass sodium persulfate aqueous solution (1-12a').
  • the aqueous monomer solution (1-12b) had a monomer concentration of 43 mass % and a neutralization rate of 75 mol %.
  • the amount of polyethylene glycol diacrylate is 0.020 mol% with respect to 100 mol% of the monomer (acrylic acid), the amount of diethylenetriaminepentaacetic acid/trisodium is 200 ppm with respect to the monomer (acrylic acid), and the excess The amount of sodium sulfate was 0.1 g/mol relative to the monomer (acrylic acid).
  • the monomer aqueous solution (1-12b) was sent to the pipe of the dispersion device at a flow rate of 40 mL/min (47.2 g/min).
  • the monomer aqueous solution (1-12b) thus supplied was dispersed in droplets in the hydrophobic organic solvent by a dispersing device.
  • the dispersion liquid obtained as described above was supplied to the polymerization device 14 .
  • the droplets of the monomer aqueous solution (1-12b) were polymerized while moving in the direction of circulation of the hydrophobic organic solvent in the polymerization apparatus filled with the hydrophobic organic solvent as the continuous phase.
  • the water-containing gel polymer (1-12c) obtained by the series of operations described above is continuously supplied from the polymerization apparatus to the separation apparatus 16 through the junction together with the hydrophobic organic solvent, and in the separation apparatus, the water-containing Gel polymer (1-12c) and organic solvent were separated.
  • a gel granulating device (Dome Grand DG-L1, hole diameter of dome die: 0.5 mm, gap with extrusion action part: 1.2 mm, manufactured by Dalton Co., Ltd.).
  • a water-containing gel polymer (1-12d′) (gel temperature: 90° C.) obtained by adding and mixing an aqueous solution of betaine dimethylaminoacetate (0.20% by mass relative to the solid content of the water-containing gel polymer (1-12c)).
  • a sieved gel (1-12d) was obtained by charging and discharging from the gel sizing apparatus.
  • the sizing gel (1-12d) obtained above was supplied to an agitating dryer and dried in the agitating dryer at a jacket temperature of 200° C. for 50 minutes to give a dried polymer (1-12A′).
  • the dried polymer (1-12A′) is classified using a sieve with an opening particle size of 850 ⁇ m, the non-passing material of the sieve with an opening particle size of 850 ⁇ m is pulverized, and the particles that have passed through the sieve and the particles that have passed through the sieve are separated before pulverization.
  • a mixture of particles passed through a sieve with a particle size of 850 ⁇ m was classified using a sieve with an opening size of 150 ⁇ m. In this way, the section that passed through a sieve with a mesh size of 850 ⁇ m but did not pass through a 150 ⁇ m sieve was collected to obtain a water absorbent resin (1-12A).
  • a surface cross-linking agent solution consisting of 0.015 parts by weight of ethylene glycol diglycidyl ether, 1.0 parts by weight of propylene glycol and 3.0 parts by weight of ion-exchanged water is added to 100 parts by weight of the water absorbent resin (1-12A). was sprayed and uniformly mixed using a high speed continuous mixer.
  • the obtained mixture was introduced into a heat treatment machine adjusted to an ambient temperature of 195 ° C. ⁇ 2 ° C., and after heat treatment for 30 minutes, the powder temperature was forcibly cooled to 60 ° C. to surface-crosslink water absorption.
  • a flexible resin particle (1-12B) was obtained.
  • a mixture of 0.1 parts by weight of diethylenetriaminepentaacetic acid/trisodium and 10 parts by weight of ion-exchanged water was added dropwise and uniformly mixed. After that, the mixture was allowed to stand in a hot air dryer at 60° C. and passed through a JIS standard sieve with an opening of 1000 ⁇ m to obtain a particulate water absorbing agent (EX-1-12) having a water content of 10%.
  • Example 1-13 (Preparation step of monomer aqueous solution) An aqueous monomer solution was prepared in the same manner as in Example 1-1 (step of preparing aqueous monomer solution).
  • the resulting particulate hydrous gel (1-13c) had a solid content of 50% by mass (water content of 50% by mass) and an average gel particle diameter of 321 ⁇ m in terms of solid content.
  • the obtained particulate water-absorbing agent (EX'-1-13) was supplied to a one-stage roll mill (pulverizer), pulverized, and classified using JIS standard sieves with openings of 850 ⁇ m and 106 ⁇ m.
  • a particulate water-absorbing agent (EX-1-13) was obtained by collecting components that passed through a sieve of 850 ⁇ m but did not pass through a sieve of 106 ⁇ m.
  • Example 1-14 (Preparation step of monomer aqueous solution) An aqueous monomer solution was prepared in the same manner as in Example 1-6 (step of preparing aqueous monomer solution).
  • Example 1 (Hydrogel pulverization process) Example 1 except that the minimum clearance between the barrel and the disc of the gel crusher was changed to 2.5 mm (5% of the disc diameter D) in Example 1-6 (Hydrogel crushing step). Particulate hydrous gel (1-14c) was obtained in the same manner as in -6 (pulverization step of hydrous gel). The GGE(2) at the time of gel pulverization was 32 J/g.
  • the resulting particulate hydrous gel (1-14c) had a solid content of 45% by mass (water content of 55% by mass) and an average gel particle diameter of 297 ⁇ m in terms of solid content.
  • Comparative Example 1-1 In Comparative Example 1-1, the “particulate water absorbing agent (EX-12)” disclosed in Example 12 of WO2016/204302 was used as the particulate water absorbing agent (CE-1-1).
  • Comparative Example 1-2 a particulate water absorbing agent (CE-1-2) was obtained in the same manner as in Example 1 disclosed in International Application PCT/JP2020/047821. Specifically, it is as follows.
  • Preparation step of monomer aqueous solution 422.0 parts by mass of acrylic acid, 173.9 parts by mass of 48.5% by mass sodium hydroxide aqueous solution, 2.5 parts by mass of polyethylene glycol diacrylate (average molecular weight: 523), 1. 2.6 parts by mass of a 0% by mass diethylenetriaminepentaacetic acid/trisodium aqueous solution and 403.3 parts by mass of deionized water were charged and mixed to prepare an aqueous monomer solution.
  • the liquid temperature of the aqueous monomer solution exceeded 40° C. due to the heat of neutralization and the heat of dissolution generated during the mixing process.
  • the aqueous monomer solution (1-22a) was poured into a vat-shaped container made of stainless steel (bottom surface: 340 ⁇ 340 mm, height: 25 mm, inner surface: Teflon (registered trademark) coating) while being open to the atmosphere.
  • the time from the start of the second-stage neutralization until the monomer aqueous solution (1-22a) was poured into the vat-shaped container was 65 seconds.
  • the vat-type container is a hot plate (NEO Using HOTPLATE HI-1000 (manufactured by Iuchi Seieido Co., Ltd.), it was heated until the surface temperature reached 50°C.
  • the polymerization reaction started within 1 minute.
  • the aqueous monomer solution (1-22a) was polymerized while expanding and foaming in all directions while generating steam.
  • the resulting polymer then shrunk to a size slightly larger than the bottom of the vat-shaped container.
  • the hydrous gel (1-22b) was taken out from the vat-shaped container. Incidentally, a series of these operations were performed in an atmosphere open state.
  • the particulate hydrous gel (1-22c) had a D50 (mass average particle diameter) of 320 ⁇ m and a ⁇ (logarithmic standard deviation of particle size distribution) of 0.91.
  • Comparative Example 1-3 "water absorbent resin particles (C1)” described in Example 1 of WO2019/221154 were obtained in the same manner as in Example 1 disclosed in WO2019/221154. This is referred to as a particulate water absorbing agent (CE-1-3) in the present application.
  • Comparative Example 1-4 "surface-crosslinked water absorbent resin powder (28)" described in Experimental Example 28 of WO2018/092863 was obtained in the same manner as in Experimental Example 28 disclosed in WO2018/092863. This is referred to as a particulate water absorbing agent (CE-1-4) in the present application.
  • Comparative Example 1-6 a particulate water absorbing agent (CE-1-6) was obtained in the same manner as in Experimental Example 3 disclosed in International Application PCT/JP2021/034800. Specifically, it is as follows.
  • the processing speed of the gel pulverizer is 0.64 kg / min and the strip-shaped hydrous gel is charged at intervals of 2.5 seconds
  • the mass per strip-shaped hydrous gel is 0.0267 kg.
  • the strip-shaped hydrous gel (1-26b) had a polymerization rate of 98.5% by mass and a solid content of 53% by mass.
  • a heat medium of 105°C was circulated inside the jacket to keep the temperature inside the main body (barrel) at 105°C.
  • the rotation speed was set to 100 rpm, and the strip-shaped hydrogel (1-26b) heated to 80 ° C. was heated at a rate of 0.64 kg / min (every 2.5 seconds strip-shaped hydrous gel (1-26b) 1 It was put into the inlet of the twin-screw kneader at a pace of one sheet).
  • 90 ° C at that time, at the same time as the hydrous gel (1-26b), 90 ° C.
  • the resulting particulate hydrous gel (1-26c) had a solid content of 48.2% by mass (water content of 51.8% by mass) and an average gel particle diameter in terms of solid content of 141 ⁇ m.
  • the resulting particulate hydrous gel (1-26c) was dried using a hot air dryer.
  • This dryer is equipped with a basket (bottom size: 30 cm x 20 cm) made of wire mesh with an opening of 1.2 mm.
  • 500 g of the particulate hydrous gel (1-26c) was spread on the bottom surface of the basket so as to be substantially uniform, and hot air at 190°C was blown from below for 30 minutes to obtain a dried product (1-26A'). .
  • the cooled dried product (1-26A') was supplied to a roll mill, pulverized, and classified using JIS standard sieves with mesh sizes of 850 ⁇ m and 150 ⁇ m.
  • a water-absorbing resin (1-26A) was obtained by collecting components that passed through an 850 ⁇ m sieve and did not pass through a 150 ⁇ m sieve.
  • Comparative Example 1-7 In Comparative Example 1-7, the "particulate water absorbing agent (10)" described in Example 12 of JP-A-2006-057075 was used in the same manner as in Example 12 disclosed in JP-A-2006-057075. Obtained. This is referred to as a particulate water absorbing agent (CE-1-7) in the present application.
  • Comparative Example 1-8 a “particulate water absorbing agent (EX-1)” described in Example 1 of WO2015/129917 was obtained in the same manner as in Example 1 disclosed in WO2015/129917. This is referred to as a particulate water absorbing agent (CE-1-8) in the present application.
  • Comparative Example 1-9 the "water absorbent resin" described in Example 5 of WO2009/025235 was obtained in the same manner as in Example 5 disclosed in WO2009/025235. This is referred to as a particulate water absorbing agent (CE-1-9) in the present application.
  • the total volume ratio of communicating pores and the total volume ratio of closed cells were obtained using a particulate water absorbing agent with a particle size of 250 ⁇ m to 425 ⁇ m.
  • three-dimensional image data of a particulate water-absorbing agent with a particle size of 250 ⁇ m to 425 ⁇ m is obtained using the microfocus X-ray CT system, and analyzed using the high-speed three-dimensional analysis software. Analysis results were calculated using Excel.
  • a method for extracting a particulate water-absorbing agent having a particle size of 250 ⁇ m to 425 ⁇ m will be described.
  • JIS standard sieves The IIDA Testing SIEVE/manufactured by Iida Seisakusho Co., Ltd., diameter: 8 cm, sieve opening: 425 ⁇ m/250 ⁇ m
  • a receiver manufactured by Iida Seisakusho Co., Ltd., diameter: 8 cm.
  • particulate water-absorbing agent 10.0 g was added to the top sieve (sieve opening: 425 ⁇ m), and a lid (manufactured by Iida Seisakusho Co., Ltd., diameter: 8 cm) was placed. Subsequently, the lid, the two sieves, and the set of receivers stacked together were shaken for 5 minutes using an IIDA SIEVE SHAKER (TYPE: ES-65 type, SER. No. 0632). After shaking, only the water-absorbent resin remaining on the sieve with an opening of 250 ⁇ m was extracted, and this was used as a particulate water-absorbing agent with a particle size of 250 ⁇ m to 425 ⁇ m. The above operation was performed in a room adjusted to a temperature of 20.0-25.0° C. and a humidity of 35% to 50%.
  • thermosetting spherical fine particles Eposter MV1002/manufactured by Nippon Shokubai Co., Ltd.
  • a plastic cylindrical container with a lid about 1 cm in inner diameter and about 5 cm in height
  • particles having a particle size of 250 ⁇ m to 425 ⁇ m were added.
  • 0.1 g of water-absorbing agent was added, and the mixture was shaken and tapped to mix well, thereby dispersing the particulate water-absorbing agent uniformly in the thermosetting spherical fine particles to prepare a sample.
  • a double-faced tape was attached to the bottom surface of the cylindrical container, and after fixing it to the sample table of the microfocus X-ray CT system, three-dimensional image data was acquired under the following conditions.
  • the particle volume (unit: mm 3 ), the void volume (hereinafter referred to as “closed-cell volume”) (unit: mm 3 ), and the void volume (unit: mm 3 ), and cavity volume (hereinafter referred to as “communication pore volume”) (unit: mm 3 ) were obtained.
  • the above-mentioned particle volume is a value calculated in a state in which the voids (independent cells) and the cavities (communication holes) in the particulate water absorbing agent are filled.
  • the particulate water absorbing agent containing about 200 to 500 particles is present in the measurement target area.
  • the above-mentioned total particle volume of all particles is a value calculated in a state in which the Voids (independent cells) and the Cavities (communication holes) in the particulate water absorbing agent are filled.
  • the total volume ratio (unit: volume %) of the communicating pores which is the average value of all the particulate water-absorbing agents present in the measurement target area, was calculated.
  • H total particle volume of all particles (unit: mm 3 )
  • I Total volume of closed cells of all particles (unit: mm 3 )
  • J Total volume of communicating pores of all particles (unit: mm 3 ) is.
  • Total volume fraction of closed cells I/(H ⁇ J) ⁇ 100 Equation (2) here, H: total particle volume of all particles (unit: mm 3 ) I: Total volume of closed cells of all particles (unit: mm 3 ) J: Total volume of communicating pores of all particles (unit: mm 3 ) is.
  • High viscosity liquid absorption time (Preparation of high viscosity test liquid) 792.8 parts by mass of ion-exchanged water, 7.2 parts by mass of sodium chloride, 35.6 parts by mass of sodium carbonate, 160 parts by mass of glycerin, 0.04 parts by mass of red food coloring, carboxymethylcellulose (manufactured by Aldrich, product number: C5678- 500G) A test liquid consisting of 4.4 parts by mass was prepared. The viscosity of this test liquid was 5 mPa ⁇ s at 23°C and 3.4 mPa ⁇ s at 37°C.
  • a 10 cm wide vinyl tape (Nitto Denko Co., Ltd., Nitto Vinyl Tape No. 21-100TM) was cut to a length of 18 cm and placed on a horizontal laboratory table with the adhesive surface facing up.
  • a plastic frame (the thickness of the frame is 1 cm) having a length of 8 cm and a width of 16 cm, and an outer frame of 10 cm in length and 18 cm in width was attached from above. At this time, the surface of the vinyl tape was prevented from wrinkling. 1.278 g of particulate water absorbing agent was evenly dispersed on the adhesive surface of the vinyl tape.
  • the surface of the vinyl tape was treated as three sections each of which had a length of 8 cm and a width of 5.33 cm, and 0.426 g of the particulate water-absorbing agent was uniformly sprayed on each section.
  • the frame was tilted to allow all of the particulate water absorbing agent to adhere to the adhesive surface of the vinyl tape.
  • the vinyl tape was peeled off from the plastic frame so that the adhering particulate water absorbing agent would not fall off, and the sample was placed on a horizontal laboratory table with the surface to which the particulate water absorbing agent adhered facing up.
  • a non-woven fabric (spunbond non-woven fabric with basis weight of 18.5 g/m 2 ) cut to 10 cm long and 18 cm wide is placed on the vinyl tape to which the particulate water absorbing agent has adhered, and the remaining adhesive surface of the vinyl tape is used.
  • a single layer sheet of particulate water absorbing agent was obtained by sticking.
  • the four corners of the vinyl tape and the four corners of the nonwoven fabric were aligned and pasted together so that the lower surface of the nonwoven fabric was in contact with the particulate water absorbing agent.
  • the central part of the single-layer sheet of particulate water-absorbing agent thus obtained was marked with a black magic pen to set the position of the liquid funnel.
  • a total of 4 points were marked at 27.5 mm portions in 4 directions of 12 o'clock, 3 o'clock, 6 o'clock and 9 o'clock from the center, and used as a mark of the filter paper storage area.
  • the apparatus shown in FIG. 18 is a container (material: transparent acrylic resin) in which a semicircular recess is formed.
  • the filter paper was installed so that the center part was on the bottom surface, and the nonwoven fabric in the filter paper storage area was prevented from being wrinkled.
  • a silicon sheet of 180 mm ⁇ 10 mm was placed along both corners of the bottom of the curved surface of the device, that is, along two sides of 180 mm in length of the monolayer sheet of the particulate water-absorbing agent. One by one to prevent liquid leakage from the side.
  • a funnel adjusted so that 5 g of the high-viscosity test liquid can be put in in 2 seconds was installed at a height of 1 cm from the position of the funnel.
  • Pour 5 g of the high viscosity test liquid into the funnel start the stopwatch at the moment the first liquid touches the single-layer particulate water-absorbing agent sheet, and measure the time until the entire surface of the single-layer particulate water-absorbing agent sheet disappears. was measured and recorded as the liquid uptake rate (sec).
  • the liquid uptake rate is short, it means that the liquid uptake rate is excellent.
  • uptake rate the rate of liquid uptake is referred to as "uptake rate."
  • the single-layer sheet of particulate water-absorbing agent was taken out from the evaluation device with the liquid input side facing upward, and placed on a horizontal laboratory table. placed in Three minutes after the first liquid touched the single-layer sheet of particulate water-absorbing agent, five ⁇ 55 mm filter papers whose total weight (W1 [g]) had been measured in advance were stacked in the center (filter paper storage area), and a weight ( ⁇ 50 mm, weight 1035 g, 5.2 kPa) was placed and a load was applied for 10 seconds.
  • the weight (W2 [g]) of the five filter papers of ⁇ 55 mm was measured, and the difference (W2 - W1) was calculated as the return amount [g] of the single layer sheet of the particulate water absorbing agent. .
  • FIG. 19 is a graph plotting the particulate water-absorbing agents of Examples and Comparative Examples, with the total volume ratio of communicating pores on the x-axis and the total volume ratio of closed cells on the y-axis.
  • FIG. 19 shows the correlation between the total volume ratio of communicating pores and the total volume ratio of closed cells.
  • the particulate water absorbing agents of Examples 1-1 to 1-14 having a total volume ratio of communicating pores of 10% by volume or more and a total volume ratio of closed cells of 0.5% by volume or less are shown on the right side of the graph. It can be seen that the area below is occupied. Absorbents using particulate water-absorbing agents in this region are considered to be excellent in liquid uptake rate and return amount. Further, from FIG.
  • the particulate water absorbing agents (CE-1-1) to (CE-1-9) of Comparative Examples 1-1 to 1-9 are the total volume of the communicating pores in the particulate water absorbing agent of the present invention. It is understood that the requirements for volume fraction and total volume fraction of closed cells are not met.
  • Example 1-1 30 g of the particulate water-absorbing agent (EX-1-1) obtained in Example 1-1 was classified using sieves with mesh sizes of 850/425/250/106 ⁇ m. First, JIS standard sieves (The IIDA TESTING SIEVE / manufactured by Iida Seisakusho Co., Ltd., diameter: 15 cm, sieve opening: 850 ⁇ m / 425 ⁇ m / 250 ⁇ m / 106 ⁇ m) are superimposed in descending order of opening, and the bottom A receiver (manufactured by Iida Seisakusho Co., Ltd., diameter: 15 cm) was placed on top.
  • JIS standard sieves The IIDA TESTING SIEVE / manufactured by Iida Seisakusho Co., Ltd., diameter: 15 cm, sieve opening: 850 ⁇ m / 425 ⁇ m / 250 ⁇ m / 106 ⁇ m
  • a particulate water-absorbing agent (EX-1-1) was added to the top sieve (sieve opening: 850 ⁇ m), and a lid (manufactured by Iida Seisakusho Co., Ltd., diameter: 15 cm) was placed. .
  • the set of stacked lids, two sieves, and receiver was then shaken for 5 minutes using an IIDA SIEVE SHAKER (TYPE: ES-65 type, SER. No. 0632). After shaking, 13.02 g (43.4% by mass) of the particulate water-absorbing agent (fraction A) passed through a sieve with an opening of 850 ⁇ m but did not pass through a sieve with an opening of 425 ⁇ m.
  • a particulate water absorbing agent (RE-1) was obtained by mixing Fraction X, Fraction B and Fraction Z.
  • the liquid uptake speed was 21 sec, and the return amount was 0.4 g.
  • the number of particles that can be measured at one time may be as small as 100 or less, and the measurement parameter when calculating the number of continuous pores and closed cells is insufficient. It is not preferable because it impairs the accuracy of Also, if the X-ray CT measurement is performed using a fraction of 250 ⁇ m or less, the measurement parameter increases, but the measurement accuracy decreases due to the resolution, and data fluctuation increases, which is not preferable. If the particle size is 425/250 (particles of 425 to 250 ⁇ m), sufficient measurement parameters can be secured in X-ray CT measurement, and measurement accuracy can be increased.
  • Example 2-1 Following the production method of either Example 1-1 or 1-2, the amount of the cross-linking agent polyethylene glycol diacrylate (average n number 9) in the "monomer solution preparation step" described in the example and "drying A particulate water-absorbing agent (EX-2-1) was obtained by adjusting the gap of the roll mill in the step of pulverizing and classifying materials. Table 5 shows the physical properties of the particulate water absorbing agent (EX-2-1).
  • Example 2-2 Following the production method of either Example 1-1 or 1-2, the amount of the cross-linking agent polyethylene glycol diacrylate (average n number 9) in the "monomer solution preparation step" described in the example and "drying A particulate water-absorbing agent (EX-2-2) was obtained by adjusting the gap of the roll mill in the step of pulverizing and classifying materials. Table 5 shows the physical properties of the particulate water absorbing agent (EX-2-2).
  • Example 3-1 The pulverized wood pulp is dry-mixed using a mixer, and the resulting mixture is subjected to air papermaking on a wire screen of 400 mesh (opening of 38 ⁇ m) using a batch-type air papermaking apparatus, and a size of 200 mm ⁇ 400 mm. A web of thickness was formed. Next, the longitudinal direction of the web was divided into 5 equal parts, cut into pieces having a size of 80 mm ⁇ 160 mm, and each piece was pressed at a pressure of 7.8 kPa for 1 minute to obtain a thickness of 2.5 mm and a basis weight (basis weight) of 45 g. A pulp pad (corresponding to the second substrate) of 1/m 2 was obtained.
  • a paper pattern of 10 mm long and 60 mm wide was placed.
  • a particulate water absorbing agent (EX-2-1) (spread amount: 150 g/m 2 ) was evenly spread on the surface of the pulp pad on which the paper pattern was placed.
  • part of the particulate water absorbing agent (EX-2-1) is sprayed on the paper pattern, tilt the paper pattern toward the pulp pad on which the particulate water absorbing agent (EX-2-1) is sprayed.
  • a particulate water absorbing agent (EX-2-1) was dropped onto the pulp pad.
  • the pattern paper placed in the center of the pulp pad was removed, and a double-sided tape of 10 mm long and 60 mm wide (manufactured by NICHIBAN; nice stack (general type), adhesive strength 02 (normal), width 10 mm, NWBB-10 ) was attached, and the release paper of the double-sided tape was peeled off.
  • a separately prepared pulp pad (corresponding to the first base material) having a length of 80 mm, a width of 160 mm, a thickness of 2.5 mm, and a basis weight of 45 g/m 2 was added to the pulp pad's particulate water absorbing agent (EX- 2-1) is placed on the surface sprayed, and the central part (length 10 mm, width 60 mm) of the lower pulp pad (second base material) and the upper pulp pad (first base material) is the first 2 was directly attached to the central portion of the base material with a double-faced tape to obtain an absorbent body (1).
  • EX- 2-1 particulate water absorbing agent
  • Example 3-2 A particulate water absorbing agent ( EX-2-1) was evenly dispersed in an amount of 1.92 g (spray amount: 150 g/m 2 ).
  • a nonwoven fabric B cut into a length of 80 mm and a width of 160 mm (mainly composed of olefin, prepared by an air-through method, having a thickness of 1.4 mm, a basis weight of 20 g/m 2 , and corresponding to the first base material ) was placed on the surface of the pulp pad on which the particulate water absorbing agent (EX-2-1) was dispersed to obtain an absorbent body (2).
  • Example 3-3 Three pulp pads (length: 80 mm, width: 160 mm, thickness: 2.5 mm, basis weight: 45 g/m 2 ) prepared in the same manner as in Example 3-1 were stacked so that their longitudinal directions were aligned (see FIG. 16). As shown, it corresponds to the second substrate (each pad corresponds to the third substrate)). 1.92 g of the particulate water absorbing agent (EX-2-1) was applied to the pulp pad on the top (the upper surface of the second base material (surface on the side of the water absorbing layer)) of the three piled pulp pads. Amount: 150 g/m 2 ) was evenly spread.
  • EX-2-1 particulate water absorbing agent
  • a nonwoven fabric B (mainly composed of olefin, prepared by an air-through method, having a thickness of 1.4 mm, a basis weight of 20 g/m 2 , and corresponding to the first base material) was cut into a length of 80 mm and a width of 160 mm. ) was placed on the surface of the pulp pad on which the particulate water absorbing agent (EX-2-1) was dispersed to obtain an absorbent body (3).
  • Example 3-4 An absorbent (4) was obtained by replacing the particulate water absorbing agent (EX-2-1) of Example 3-1 with the particulate water absorbing agent (EX-2-2).
  • Example 3-5 An absorbent (5) was obtained by replacing the particulate water absorbing agent (EX-2-1) of Example 3-2 with the particulate water absorbing agent (EX-2-2).
  • Example 3-6 An absorbent (6) was obtained by replacing the particulate water absorbing agent (EX-2-1) of Example 3-3 with the particulate water absorbing agent (EX-2-2).
  • a non-woven fabric A (mainly composed of pulp fibers and produced by an air-laid method) is obtained by cutting the pulp pads used as the first base material and the second base material in Example 3-1 into a length of 80 mm and a width of 160 mm. (thickness: 0.5 mm, basis weight: 45 g/m 2 ) to obtain an absorbent body (7).
  • Example 3-8 An absorbent body (8) was obtained by replacing the pulp pad used as the second base material in Example 3-2 with the nonwoven fabric A described in Example 3-7.
  • Example 3-9 By replacing the pulp pad used as the second base material in Example 3-3 with the nonwoven fabric A described in Example 3-7 (that is, three sheets of the nonwoven fabric A are stacked (on the second base material equivalent; each nonwoven fabric A corresponds to the third base material), and an absorbent body (9) was obtained.
  • Example 3-10 An absorbent body (10) was obtained by replacing the pulp pad used as the second base material in Example 3-4 with the nonwoven fabric A described in Example 3-7.
  • Example 3-11 An absorbent body (11) was obtained by replacing the pulp pad used as the second base material in Example 3-5 with the nonwoven fabric A described in Example 3-7.
  • Example 3-12 By replacing the pulp pad used as the second base material in Example 3-6 with the nonwoven fabric A described in Example 3-7 (that is, three sheets of the nonwoven fabric A are stacked (second base material Each nonwoven fabric A corresponds to the third base material) to obtain an absorbent body (12).
  • Example 3-13 By changing the size of the absorber (that is, the size of the nonwoven fabric B and the nonwoven fabric A) from Example 3-8 to 300 mm long ⁇ 300 mm wide and the spray amount of the particulate water absorbing agent to 4.5 g (50 g / m 2 ) An absorbent body (13) was obtained.
  • Example 3-14 An absorbent body (14) was obtained by changing the application amount of the particulate water absorbing agent from Example 3-13 to 0.45 g (5 g/m 2 ).
  • the thickness of the liquid-permeable substrates used in Examples 3-1 to 3-14 was measured using a vernier caliper in a state where no pressure was applied to the nonwoven fabric. Also, from the obtained thickness, the bulk density (g/cm 3 ), which is basis weight/thickness, was calculated. The porosity was calculated from the following (formula 1).
  • Porosity (%) [1-(M / (A ⁇ T ⁇ D))] ⁇ 100 (Formula 1)
  • M Mass (g) of base material (fiber substrate)
  • D Density (g/cm 3 ) of the fibers forming the substrate (fiber matrix).
  • the porosity of the nonwoven fabric A was 94%, the porosity of the nonwoven fabric B was 98.5%, and the porosity of the pulp pad was 98.8%.
  • non-woven fabric A and non-woven fabric B correspond to liquid-permeable sheets.
  • the absorber 50 is placed on a liquid-impermeable vinyl sheet 31 so that the first base material is the uppermost surface, and then cut into the same size as the absorber 50 to obtain a liquid-permeable sheet.
  • Nonwoven fabric C (made by a spunbond method, thickness 0.15 mm, basis weight 18 g / m 2 ) is placed (not shown) so that the longitudinal direction is aligned, and a weight of 150 g and a height of 65 mm are placed on it.
  • a liquid injection tube 32 (FIG. 20) having an outer diameter of 49 mm (inner diameter of 39 mm) was placed in the center of the absorbent body 50 as shown in FIG. In this state, 10 ml of a 23° C.
  • 0.9% mass sodium chloride aqueous solution was introduced using a funnel 33 (FIG. 22) capable of introducing liquid at a flow rate of 6 ml/sec.
  • the tip of the funnel 33 was placed at a height of 1.5 cm from the absorber 50 .
  • the absorption speed 1 was defined as the time from the introduction of the liquid to the absorption of all the liquid into the absorbent body 50 .
  • the absorption rate 2 was measured.
  • the absorption rate 3 was measured. Twenty-seven seconds after the third injection of the liquid, the liquid injection tube 32 was removed, and 30 sheets of filter paper (circular qualitative filter paper, model No.
  • Example 3-13 Measurement of absorption rate and return amount> As shown in FIG. 23, the absorber (13) having a length of 30 cm and a width of 30 cm prepared in Examples 3-13 and 3-14 was evaluated for absorption rate and return amount according to the following method.
  • the absorber 50 is placed on the liquid impermeable vinyl sheet 31 on a flat table so that the first base material is the uppermost surface, and then cut into the same size as the absorber 50.
  • Nonwoven fabric C (made by a spunbond method, thickness 0.15 mm, basis weight 18 g / m 2 , not shown) is superimposed on the absorbent body 50, and a weight of 50 g and a height of 65 mm ⁇
  • a liquid injection tube 32 (FIG. 20) having an outer diameter of 49 mm (inner diameter of 39 mm) was placed in the center of the absorbent body 50 as shown in FIG. In this state, 30 ml of a 23° C. 0.9% mass sodium chloride aqueous solution was charged using a funnel 33 (FIG.
  • the tip of the funnel 33 was placed at a height of 1.5 cm from the absorber 50 .
  • the time from the introduction of the liquid to the absorption of all of the liquid into the absorber 50 was measured and used as the absorption speed. 2 minutes and 57 seconds after the liquid was added, the liquid injection cylinder 32 was removed, and 30 sheets of filter paper (circular qualitative filter paper model No. 2, manufactured by ADVANTEC; diameter 110 mm) whose mass was measured in advance were placed with the back surface (dense) facing down.
  • Example 3-14 Measurement of absorption speed and return amount> Regarding the absorber (14) having a length of 30 cm and a width of 30 cm prepared in Example 3-14, in ⁇ Example 3-13: Measurement of absorption rate and return amount>, 0.9% mass sodium chloride aqueous solution input amount at 23 ° C.
  • the absorption rate and the return amount were evaluated by the same evaluation method as the evaluation method for the absorber (13) except that the was changed to 10 ml.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Dispersion Chemistry (AREA)
  • Absorbent Articles And Supports Therefor (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

【課題】液の取り込み速度に優れ、かつ戻り量が低減された吸収体を作製することができる粒子状吸水剤を提供する。 【解決手段】ポリ(メタ)アクリル酸(塩)系吸水性樹脂粒子を主成分とする粒子状吸水剤であって、前記粒子状吸水剤は、外部と通じる空間である連通孔と、外部と通じない閉鎖空間である独立気泡と、を含み、前記連通孔の総体積率は10体積%以上であり、前記独立気泡の総体積率は0.5体積%以下であることを特徴とする、粒子状吸水剤。

Description

粒子状吸水剤、該吸水剤を含む吸収体及び該吸収体を用いた吸収性物品
 本発明は、ポリ(メタ)アクリル酸(塩)系吸水性樹脂粒子を主成分とする粒子状吸水剤、該吸水剤を含む吸収体及び該吸収体を用いた吸収性物品に関する。
 吸水性樹脂(SAP/Super Absorbent Polymer)は、水膨潤性水不溶性の高分子ゲル化剤である。吸水性樹脂を主成分とする粒子状吸水剤は、紙オムツ、生理用ナプキンや成人向け失禁用製品等の衛生物品、農園芸用の土壌保水剤、工業用の止水剤等、様々な用途の吸収性物品に利用されている。このような吸水性樹脂は、原料として多くの単量体や親水性高分子が提案されているが、性能及びコストの観点から、(メタ)アクリル酸及び/又はその塩を単量体として用いたポリ(メタ)アクリル酸(塩)系吸水性樹脂が、最も多く用いられている。
 粒子状吸水剤の主用途である紙オムツの高性能化に伴い、粒子状吸水剤に対して多くの機能(物性)が要求されている。粒子状吸水剤の物性の具体的な例としては、吸水速度、吸水倍率、加圧下吸水倍率、通液性、戻り量(逆戻り)、ゲル強度、水可溶分、粒度分布、耐尿性、抗菌性、耐衝撃性(耐ダメージ性)、粉体流動性、消臭性、耐着色性(白色度)、低粉塵等が挙げられる。
 紙オムツを例に挙げると、粒子状吸水剤(吸水性樹脂)としては、尿漏れ、肌かぶれに対する改善が求められている。例えば、紙オムツにおいて尿が紙オムツの中に取り込まれにくい場合、あるいは、取り込まれても粒子状吸水剤による吸収が遅い場合に尿漏れや肌かぶれが起こると推定されている。このことから、粒子状吸水剤の吸収性を改善しつつ粒子状吸水剤の吸水速度を向上させることが、紙オムツの戻り量、吸収時間を低減し、引いては尿漏れ、肌かぶれの低減につながると考えられている。
 例えば、粒子状吸水剤の吸収性及び吸水速度を向上させるために、吸水性樹脂の粒子形状を改善する技術が提案されている。特許文献1には、発泡重合により得られる、外部と通じる空間である開放気泡と外部と通じない閉鎖空間である独立気泡とを有する吸水性樹脂が通液性及び吸水速度に優れることが開示されている。
国際公開第2013/002387号
 しかしながら、特許文献1に記載の技術により得られた吸収性樹脂を用いて作製した吸収体では戻り量低減効果を発揮するが、高濃度の液(例えば、経血)の吸収、あるいはパルプを使用しない吸収体では液の取り込み速度や戻り量の点で必ずしも十分な効果ではないという問題があった。
 よって、本発明は、液の取り込み速度に優れ、かつ戻り量が低減された吸収体を作製することができる粒子状吸水剤を提供することを目的とする。
 また、本発明の他の目的は、従来よりも液の吸収速度に優れ、かつ戻り量が低減された吸収体を提供することである。
 本発明者らは、上記の課題に鑑み鋭意検討を行った。その結果、ポリ(メタ)アクリル酸(塩)系吸水性樹脂粒子を主成分とする粒子状吸水剤であって、前記粒子状吸水剤は、外部と通じる空間である連通孔と、外部と通じない閉鎖空間である独立気泡と、を含み、前記連通孔の総体積率は10体積%以上であり、前記独立気泡の総体積率は0.5体積%以下であることによって、上記課題が解決されうることを見出し、本発明を完成させるに至った。
 本発明によれば、液の取り込み速度に優れ、かつ戻り量が低減された吸収体を作製することができる粒子状吸水剤が提供される。すなわち、本発明によれば、吸収体において優れた液の取り込み速度及び戻り量を付与する粒子状吸水剤が提供される。
本発明の一実施形態に係る粒子状吸水剤に形成されている空洞(連通孔及び独立気泡)を説明する概略の正面図である。 本発明の実施形態に係る製造方法に用いられるゲル粉砕装置(ミートチョッパー/スクリュー押出機)の一例が示された一部切り欠き側面図である。 図2Aのゲル粉砕装置における押出口に取り付けられる支持具を模式的に示す図である。 本発明の実施形態に係る製造方法に用いられるゲル粉砕装置(複軸型混練機)の一例が示された一部切り欠き側面図である。 図3のゲル粉砕装置の拡大図(本体中央部を上から見た図)である。 押出作用部及び多孔板を有するゲル整粒装置の分類を模式的に示す図である。 ゲル整粒装置における押出し部分を模式的に示す図である。 一実施形態に係るゲル整粒装置(球面状(ドーム状)のダイを有するスクリュー型前押出し式装置)の構成を模式的に示す模式図である。 本発明の実施形態に係る製造方法に用いられる乾燥装置(加熱管付き回転型加熱装置)の一例が示された一部切り欠き側面図である。 本発明の第1の実施形態に係る吸収体において、短手方向に沿って切断した、吸収体の断面を表す模式図である。 図9のA-A線に沿った断面図を表す模式図である 本発明の第1の実施形態に係る吸収体において、間隙の他の実施形態を模式図である。 図9のA-A線に沿った断面図を表す模式図であり、間隙の他の実施形態を示す模式図である。 図9のA-A線に沿った断面図を表す模式図であり、間隙の他の実施形態を示す模式図である。 図9のA-A線に沿った断面図を表す模式図であり、間隙の他の実施形態を示す模式図である。 本発明の第2の実施形態に係る吸収体において、短手方向に沿って切断した、吸収体の断面を表す模式図である。 本発明の第2の実施形態に係る吸収体における他の実施形態を示す図であり、短手方向に沿って切断した、吸収体の断面を表す模式図である。 本発明の一実施形態に係る吸収体の断面を表す模式図である。 液の取り込み時間及び戻り量を測定するための評価装置である。 実施例及び比較例で作製した吸水性樹脂粒子の連通孔及び独立気泡の相関関係を示すグラフである。 戻り量の評価に用いた液注入筒の平面図及び正面図である。 戻り量評価において本願の実施例で用いた吸収体の上に液注入筒を置いた様子を示した模式図であり、吸収体の長手方向から見た模式図と、吸収体の短手方向から見た模式図である。 戻り量評価において漏斗を使用して液注入筒から塩化ナトリウム水溶液を吸収体に投入している様子を示した正面図である。 戻り量評価において本願の実施例で用いた吸収体の上に液注入筒を置いた様子を示した模式図である。
 以下、本発明を最良の形態を示しながら説明する。本明細書の全体にわたり、単数形の表現は、特に言及しない限り、その複数形の概念をも含むことが理解されるべきである。従って、単数形の冠詞(例えば、英語の場合は「a」、「an」、「the」等)は、特に言及しない限り、その複数形の概念をも含むことが理解されるべきである。また、本明細書において使用される用語は、特に言及しない限り、当該分野で通常用いられる意味で用いられることが理解されるべきである。したがって、他に定義されない限り、本明細書中で使用される全ての専門用語及び科学技術用語は、本発明の属する分野の当業者によって一般的に理解されるのと同じ意味を有する。矛盾する場合、本明細書(定義を含めて)が優先する。本発明は、下記の実施形態に限定されるものではなく、特許請求の範囲内で種々改変することができる。
 〔1〕用語の定義
 〔1-1〕「吸水性樹脂」
 本発明における「吸水性樹脂」とは、水膨潤性水不溶性の高分子ゲル化剤を指し、下記の物性を満たすものをいう。すなわち、本明細書において「吸水性樹脂」とは、NWSP 241.0.R2(15)により規定されるCRC(遠心分離機保持容量)(水膨潤性)が5g/g以上であり、かつ、NWSP 270.0.R2(15)により規定されるExt(水可溶成分)が50質量%以下である高分子ゲル化剤を指す。なお、「NWSP」については後述する。
 上記吸水性樹脂は、その用途・目的に応じた設計が可能であり、特に限定されないが、カルボキシル基を有する不飽和単量体を架橋重合させた親水性架橋重合体であることが好ましい。また、全量が架橋重合体である形態に限定されず、上記の各物性(CRC、Ext)が上記数値範囲を満たす限り、添加剤等を含んだ組成物であってもよい。
 本発明における「吸水性樹脂」は表面架橋(別称;後架橋、2次架橋)されたものであってもよく、表面架橋されていないものであってもよい。好ましくは、表面架橋されているものである。なお、本明細書において、「吸水性樹脂粒子」(「吸水性樹脂粉末」とも称する場合がある)とは、粉末状の吸水性樹脂を指し、好ましくは、所定の固形分率(含水率)及び粒度(粒子径)に調整された吸水性樹脂である。また、所定の表面架橋処理が完了した吸水性樹脂粒子は、別途、「表面架橋(後架橋)された吸水性樹脂粒子」ないし「粒子状吸水剤(吸水剤)」と称することもある。
 〔1-2〕「ポリ(メタ)アクリル酸(塩)系吸水性樹脂」
 本発明における「ポリ(メタ)アクリル酸(塩)」とは、ポリ(メタ)アクリル酸及び/又はその塩を指し、「ポリ(メタ)アクリル酸(塩)系吸水性樹脂」とは、主成分として(メタ)アクリル酸及び/又はその塩(以下、「(メタ)アクリル酸(塩)」とも称する)に由来する構造を繰り返し単位として含み、任意成分として内部架橋剤に由来する構造を含む架橋重合体を意味する。ポリ(メタ)アクリル酸(塩)系吸水性樹脂は(メタ)アクリル酸(塩)に由来する構造を繰り返し単位として含み、内部架橋構造を有するポリ(メタ)アクリル酸(塩)の架橋重合体であって、表面架橋されていることが好ましい。
 上記「主成分」とは、(メタ)アクリル酸(塩)の使用量(含有量)が、重合に用いられる単量体全体(架橋剤を除く全単量体)に対して、好ましくは50モル%~100モル%、より好ましくは70モル%~100モル%、更に好ましくは90モル%~100モル%、特に好ましくは実質100モル%であることを意味する。
 ここで、「ポリ(メタ)アクリル酸(塩)」は、未中和でもよいが、好ましくは部分中和又は完全中和されたポリ(メタ)アクリル酸(塩)であり、より好ましくは一価の塩、更に好ましくはアルカリ金属塩又はアンモニウム塩、より更に特に好ましくはアルカリ金属塩、特に好ましくはナトリウム塩である。
 ポリ(メタ)アクリル酸(塩)系吸水性樹脂は、粒子状吸水剤中、粒子状(別称;粉末状)である。本明細書中、粒子状のポリ(メタ)アクリル酸(塩)系吸水性樹脂を「ポリ(メタ)アクリル酸(塩)系吸水性樹脂粒子」と称するが、単に「ポリ(メタ)アクリル酸(塩)系吸水性樹脂」とも称する場合がある。
 〔1-3〕「粒子状吸水剤」
 本明細書において、吸水剤は、ポリ(メタ)アクリル酸(塩)系吸水性樹脂粒子を主成分として含む。本明細書において粒子状吸水剤とは、粒子状(別称;粉末状)の吸水剤を意味し、一粒の粒子状吸水剤であっても、複数個の粒子状吸水剤であっても粒子状吸水剤と称する。「粒子状」とは、粒子の形態を有することを意味し、粒子とは、測定可能な大きさを持つ、固体又は液体の粒状小物体(JIS工業用語大辞典第4版、2002頁)をいう。なお、本明細書において、粒子状吸水剤を単に吸水剤と称する場合もある。
 なお、水性液とは水に限らず、尿、血液、汗、糞、廃液、湿気、蒸気、氷、水と有機溶媒及び/又は無機溶媒との混合物、雨水、地下水等であってもよく、水を含めば特に制限されるものではない。好ましくは、尿、経血、汗、その他の体液を挙げることができる。
 本発明にかかる粒子状吸水剤は、水性液を吸収するための衛生材料として好適に使用されるものである。本発明の粒子状吸水剤は、ポリ(メタ)アクリル酸(塩)系吸水性樹脂粒子を主成分とする。つまり、粒子状吸水剤中にポリ(メタ)アクリル酸(塩)系吸水性樹脂粒子は、好ましくは60~100質量%、70~100質量%、80~100質量%、90~100質量%含まれる。その他、粒子状吸水剤は、他の吸水性樹脂粒子、水、及び/又は、水不溶性無機粒子等の添加剤を任意に含む。粒子状吸水剤の好適な含水率は0.2~30質量%である。すなわち、これらの成分が一体化された吸水性樹脂組成物も粒子状吸水剤の範疇である。また、本発明で使用される粒子状吸水剤は高湿度下での取り扱い性に優れることが好ましい(具体的には、WO2017/170605に記載の吸湿流動性(吸湿ブロッキング率)が、好ましくは30%以下、より好ましくは20%以下、さらに好ましくは10%以下、最も好ましくは5%以下の粒子状吸水剤である。)。
 なお、吸水剤中のポリ(メタ)アクリル酸(塩)系吸水性樹脂粒子の上限は99質量%、更には97質量%、特に95質量%程度であり、好ましくは水や後述の添加剤(水不溶性無機粒子)を更に含む。
 また、本発明の粒子状吸水剤においては、ポリ(メタ)アクリル酸(塩)系吸水性樹脂粒子を主成分とするが、粒子状吸水剤は、その他の吸水性樹脂を含有していてもよい。その他の吸水性樹脂としては、ポリスルホン酸(塩)系吸水性樹脂、無水マレイン酸(塩)系吸水性樹脂、ポリアクリルアミド系吸水性樹脂、ポリビニルアルコール系吸水性樹脂、ポリエチレンオキシド系吸水性樹脂、ポリアスパラギン酸(塩)系吸水性樹脂、ポリグルタミン酸(塩)系吸水性樹脂、ポリアルギン酸(塩)系吸水性樹脂、デンプン系吸水性樹脂、セルロース系樹脂等が挙げられる。
 〔1-4〕「吸収体」
 本発明における「吸収体」とは、液を直接的に吸収する吸液面が表面側に形成された第1の基材と、前記第1の基材の裏面側に配置される吸水層と、を有するものであって、吸水層は、1枚以上の基材、および/または、繊維(好ましくは親水性繊維)に粒子状吸水剤(吸水性樹脂)が担持および/または挟持された構造物をいう。上記吸水層は、粒子状吸水剤の他に、親水性繊維等の繊維材料を含んでいてもよい。そして、吸水層が粒子状吸水剤と親水性繊維とからなる場合には、上記吸収体の構成としては、粒子状吸水剤と親水性繊維とを均一に混合したもの、および/または、層状に形成した親水性繊維間に粒子状吸水剤を挟持したものを含む構成が例示される。なお、上記吸収体の構成は、粒子状吸水剤と親水性繊維とを含む吸水層を不織布やティッシュペーパー等でさらに挟持することにより一体化されてもよく、これら例示の構成に限定されるものではない。さらに、親水性繊維を含まずに粒子状吸水剤を不織布やティッシュペーパー等のシート状基材に、直接粒子状吸水剤を固定して複合化した吸水層(すなわち、粒子状吸水剤とシート状基材とを含む吸水層)も本発明の吸収体になり得る。
 〔1-5〕評価方法の定義
 「NWSP」は「Non-Woven Standard Procedures-Edition 2015」を表し、EDANA(European Disposables And Nonwovens Association、欧州不織布工業会)とINDA(Association of the Nonwoven Fabrics Industry、北米不織布工業会)が、不織布及びその製品の評価法を米国及び欧州で統一して共同で発行したものであり、吸水性樹脂の標準的な測定法を示すものである。特に断りのない限り、本発明では「Non-Woven Standard Procedures-Edition 2015」に準拠して、吸水性樹脂の物性を測定する。NWSPに記載のない評価方法に関しては、実施例に記載された方法及び条件で測定する。
 〔1-5-1〕「CRC」(NWSP 241.0.R2(15))
 「CRC」は、CentrifugeRetentionCapacity(遠心分離機保持容量)の略称であり、粒子状吸水剤(吸水性樹脂)の無加圧下での吸水倍率(「吸水倍率」と称する場合もある)を意味する。具体的には、粒子状吸水剤(吸水性樹脂)0.2gを不織布製の袋に入れた後、大過剰の0.9質量%塩化ナトリウム水溶液中に30分間浸漬して自由膨潤させ、その後、遠心分離機(250G)で3分間、水切りした後の吸水倍率(単位;g/g)のことをいう。なお、重合後及び/又はゲル粉砕後の含水ゲルについては、含水ゲル0.4gを使用し、測定時間を24時間に変更し、且つ固形分補正してCRCを求める。
 〔1-5-2〕「PSD」(NWSP 220.0.R2(15))
 「PSD」は、ParticleSizeDistributionの略称であり、篩分級により測定される粒子状吸水剤(吸水性樹脂)の粒度分布を意味する。なお、質量平均粒子径(D50)及び粒度分布の対数標準偏差(σζ)は、米国特許第7638570号のカラム27~28の(3)質量平均粒子径(D50)及び粒度分布の対数標準偏差に記載された方法と同様の方法で振動分級機(電源60Hz)にて測定される。
 〔1-5-3〕「AAP」(NWSP 242.0.R2(15))
 「AAP」は、AbsorptionAgainstPressureの略称であり、粒子状吸水剤(吸水性樹脂)の加圧下における吸水倍率を意味する。
 具体的には、AAP0.3psi(2.06kPa)は、粒子状吸水剤又は吸水性樹脂0.9gを大過剰の0.9重量%塩化ナトリウム水溶液に対して、1時間、2.06kPa(21g/cm、0.3psi)荷重下で膨潤させた後の吸水倍率(単位;g/g)のことをいう。なお、荷重条件を4.83kPa(49g/cm、0.7psi)に変更して測定する場合もある。この場合、AAP(4.83kPa)と記載する。本発明では、吸水倍率(単位;g/g)は、実施例に記載の条件で測定したAAP0.3psi(2.06kPa)とする。
 〔1-5-4〕「Moisture Content」(NWSP 230.0.R2(15))
 「Moisture Content」は、粒子状吸水剤(吸水性樹脂)の乾燥減量で規定される含水率を意味する。具体的には、粒子状吸水剤(吸水性樹脂)4.0gを105℃で3時間乾燥した際の乾燥減量から算出した値(単位;質量%)のことをいう。なお、本発明において、乾燥後の粒子状吸水剤(吸水性樹脂)については、粒子状吸水剤(吸水性樹脂)1.0gの180℃、3時間の乾燥減量で規定され、乾燥前の含水ゲルについては、含水ゲル2.0gの180℃、24時間の乾燥減量で規定される。
 〔1-6〕その他
 本明細書において、範囲を示す「X~Y」は「X以上、Y以下」を意味する。また、特に注釈のない限り、質量の単位である「t(トン)」は「Metric ton(メトリック トン)」を意味し、「ppm」は「質量ppm」又は「重量ppm」を意味する。更に、「質量」と「重量」、「質量部」と「重量部」、「質量%」と「重量%」はそれぞれ同義語として扱う。また、「~酸(塩)」は「~酸及び/又はその塩」、「(メタ)アクリル」は「アクリル及び/又はメタクリル」をそれぞれ意味する。
 また、「リットル」を「l」又は「L」、「重量%」を「wt%」と便宜上記すことがある。更に、微量成分の測定等を行う場合において、検出限界以下をN.D(Non Detected)と表記する。
 〔2〕「粒子状吸水剤」
 〔2-1〕連通孔及び独立気泡
 本発明の粒子状吸水剤は、ポリ(メタ)アクリル酸(塩)系吸水性樹脂粒子を主成分とする粒子状吸水剤であって、粒子状吸水剤は、連通孔と独立気泡とを含み、連通孔の総体積率は10体積%以上、かつ、独立気泡の総体積率は0.5体積%以下である。ポリ(メタ)アクリル酸(塩)系吸水性樹脂粒子については、〔1-2〕に述べたとおりである。以下では、粒子状吸水剤に含有されるポリ(メタ)アクリル酸(塩)系吸水性樹脂粒子を、単に「吸水性樹脂粒子」と称する場合がある。
 ここで、本発明において、「連通孔」(「Cavity(キャビティ)」とも称される)とは、図1において連通孔1aとして示すように、粒子状吸水剤1に形成されている空洞のうち、粒子状吸水剤1の外部と繋がっている(粒子状吸水剤1の表面に露出している)空洞を指す。すなわち、「連通孔」は、粒子状吸水剤中に存在する外部と通じる空間(空洞)である。当該空洞には、粒子状吸水剤1の表面に形成されている窪みや溝等も含まれる。具体的には、連通孔とは、後述するようにマイクロフォーカスX線CTシステム(inspeXio SMX-100CT/株式会社島津製作所製)を用いて下記条件で3次元画像データを取得し、高速3次元解析ソフト(TRI/3D-VOL-FCS64/ラトックシステムエンジニアリング社製)を用いて当該3次元画像データを実施例に記載の条件で解析したときに、粒子状吸水剤1の表面に存在を確認することができる穴、貫通孔、窪み、溝等を指す。
 本発明において、「独立気泡」(「Void(ボイド)」とも称される)とは、図1において独立気泡1bとして示すように、粒子状吸水剤1に形成されている空洞のうち、粒子状吸水剤1の外部と繋がっていない(粒子状吸水剤1の内部に存在する)気泡等の空洞を指す。すなわち、「独立気泡」は、粒子状吸水剤中に存在する外部と通じない閉鎖した空間(空洞)である。具体的には、独立気泡とは、後述するようにマイクロフォーカスX線CTシステム(inspeXio SMX-100CT/株式会社島津製作所製)を用いて下記条件で3次元画像データを取得し、高速3次元解析ソフト(TRI/3D-VOL-FCS64/ラトックシステムエンジニアリング社製)を用いて当該3次元画像データを実施例に記載の条件で解析したときに、粒子状吸水剤1の内部に存在を確認することができる気泡等の空洞を指す。
 なお、本発明の粒子状吸水剤において、連通孔及び独立気泡を含む粒子は、主に吸水性樹脂粒子であるが、粒子状吸水剤に含まれるその他の粒子が連通孔及び独立気泡を更に含んでいてもよい。粒子状吸水剤において(粒子状吸水剤を構成する全成分において)、全体として、連通孔及び独立気泡が所定の範囲の体積を占めることにより、本発明の効果が発揮される。また、後述の実施例では、粒子状吸水剤を用いて連通孔の総体積率と独立気泡の総体積率とを測定しているが、本発明の連通孔の総体積率及び独立気泡の総体積率の測定方法においては、吸水性樹脂粒子のみを測定対象としても、粒子状吸水剤を測定対象としても、連通孔の総体積率及び独立気泡の総体積率の数値はほぼ変わらない。
 本願の実施例において、吸水性樹脂粒子に対して、添加剤(キレート剤であるDTPA又はEDTMP、無機微粒子であるリン酸三カルシウム、ハイドロタルサイト又はシリカ粒子、無機還元剤である亜硫酸ナトリウム)を添加した粒子状吸水剤と、添加剤を添加していない粒子状吸水剤とを作製している。例えば、実施例1-1と実施例1-11とを比較すると、粒子状吸水剤として添加剤の有無が相違するが、連通孔の総体積率及び独立気泡の総体積率は変化していないのが示されている。これは、X線CT測定の分解能は10μm(ボクセルサイズが0.01(mm/voxel)であることにより分解能が10μmであることが示されている)であり、無機微粒子の大きさはそれ以下であること;キレート剤及び無機還元剤は通常水溶液として添加するため、キレート剤及び無機還元剤と吸水性樹脂粒子とは一体化していること;及び添加剤の添加量も吸水性樹脂粒子に対して1%以下と少ないこと;から、添加剤の添加有無に関わらず、連通孔の総体積率及び独立気泡の総体積率が変化しないものと考えられる。
 以下の連通孔及び独立気泡の説明では、粒子状吸水剤の連通孔及び独立気泡として説明するが、吸水性樹脂粒子としても同様に理解されうる。
 「連通孔の総体積率」とは、粒子状吸水剤の全体積に対する連通孔の全体積の比率を意味し、具体的には、後述の実施例に記載の方法により算出される。「独立気泡の総体積率」とは、粒子状吸水剤の全体積に対する独立気泡の全体積の比率を意味し、具体的には、後述の実施例に記載の方法により算出される。
 本実施形態の粒子状吸水剤は、連通孔の総体積率は10体積%以上、かつ、独立気泡の総体積率は0.5体積%以下であることにより、液の取り込み速度に優れ、かつ戻り量が低減される。すなわち、本実施形態の粒子状吸水剤は、液を速やかに吸収することができ、かつ吸収した後の戻り量が少ない。粒子状吸水剤において連通孔の総体積率が10体積%未満の場合、粒子状吸水剤の高粘度液吸収速度が減少し、戻り量(逆戻り量)が顕著に大きくなる(比較例1-7)。粒子状吸水剤において独立気泡の総体積率が0.5体積%を超える場合、粒子状吸水剤において液の取り込み速度及び戻り量(逆戻り量)が顕著に大きくなる(比較例1-1~1-9)。
 粒子状吸水剤を含む吸水性物品の実使用を想定した場合、様々な使用状況、例えば、体重がかかった状態で排尿される場合や、排尿時は無加圧で膨潤するが動作に伴い加圧される場面、又は血液を吸収する場合など、種々のケースが想定される。本発明者らは、「液を速やかに吸収することができ、かつ吸収した後の戻り量が少ない吸収体(粒子状吸水剤)」という課題の中で、粒子状吸水剤(吸水性樹脂粒子)の形状、すなわち、粒子状吸水剤(吸水性樹脂粒子)の連通孔と独立気泡との存在割合が重要であることを見出し、粒子状吸水剤(吸水性樹脂粒子)における連通孔の総体積率及び独立気泡の総体積率に着目したものである。
 連通孔の総体積率が大きい粒子状吸水剤(吸水性樹脂粒子)は、比表面積が大きくなる傾向にある。ただし、連通孔の総体積率は、比表面積を測定するだけでは十分に評価できないため、粒子表面の凹部分の体積を評価する。連通孔の総体積率が10体積%以上になると、毛細管現象により吸水性樹脂粒子自体が液体を吸収する速度が向上することに加え、吸水性樹脂粒子が膨潤したときのゲル粒子同士の隙間も大きくなり、ゲル粒子が有する連通孔体積部分及びゲル粒子同士の隙間に保持される液体の量が増加する。その結果として、粒子状吸水剤(吸水性樹脂粒子)の吸収性が向上し、液の取り込み速度が向上する。これにより、本発明に係る粒子状吸水剤は、パルプ等の繊維材料の比率の小さい吸収体及び当該吸収体を含む薄型の紙オムツ等の吸収性物品に使用された場合であっても、液の取り込み速度に優れる。独立気泡の総体積率が0.5体積%以下の粒子状吸水剤(吸水性樹脂粒子)は、粒子状吸水剤(吸水性樹脂粒子)に液が吸収される際に、独立気泡による液吸収妨害が発生しないので粒子状吸水剤(吸水性樹脂粒子)の吸収性が向上し、液の取り込み速度が向上する。それに加えて、吸収した液が独立気泡内に入り込むことが低減され、液が吸水性樹脂自体に吸収されやすく、これによりいったん吸収された液が戻ることが低減され、戻り量が低減される。よって、粒子状吸水剤(吸水性樹脂粒子)における連通孔及び独立気泡との存在割合を所定の範囲とすることにより、液を速やかに吸収することができ、かつ吸収した後の戻り量が少ないことが発揮されたものと考えられる。
 一実施形態において、粒子状吸水剤(吸水性樹脂粒子)の連通孔の総体積率は、好ましくは10体積%を超え、より好ましくは11体積%以上、更に好ましくは12体積%以上、特に好ましくは13体積%以上、最も好ましくは14体積%以上である。粒子状吸水剤(吸水性樹脂粒子)における連通孔の総体積率の上限は、粒子状吸水剤(吸水性樹脂粒子)の連通孔の総体積率が大きすぎると、粒子状吸水剤(吸水性樹脂粒子)自体及び膨潤ゲルの機械的強度が著しく低下してしまうことから、好ましくは40体積%以下、より好ましくは35体積%以下、更に好ましくは30体積%以下、特に好ましくは25体積%以下である。一実施形態において、粒子状吸水剤(吸水性樹脂粒子)における独立気泡の総体積率は、好ましくは0.5体積%以下、より好ましくは0.4体積%以下、更に好ましくは0.3体積%以下でありうる。粒子状吸水剤(吸水性樹脂粒子)における独立気泡の総体積率の下限は、特に制限されないが、好ましくは0.01体積%以上である。
 なお、本発明において、「液を速やかに吸収することができ、かつ吸収した後の戻り量が少ない」とは、粒子状吸水剤やパルプ等を含む吸収層を不織布等で積層した吸収体(吸収シート)での評価であって、粒子状吸水剤そのものの評価ではない。また、戻り量評価は、吸収体中に含まれる粒子状吸水剤(吸水性樹脂粒子)が飽和状態とは限らない。
 また、本発明において、「液の取り込み速度」及び「戻り量」は、通常、粒子状吸水剤(吸水性樹脂粒子)の物性評価として用いられている「液の取り込み速度」(あるいは「吸収時間」又は「吸収速度」等)及び「戻り量」(逆戻り、Re-Wetと称されることもある)とは評価方法が異なるものである。従来の評価方法では、粒子状吸水剤(吸水性樹脂粒子)を用いて作製した吸収体を平面に配置し、平面に配置された吸収体に対して液を吸収する速度(すなわち、「吸収速度」)及び戻り量を測定する。本発明においては、U字形状に配置した吸収体に対して、液を吸収する時間(液の取り込み速度)及び戻り量を測定する。すなわち、オムツや生理用品等の衛生用品として使用する際の、実際の使用形態を模した状態での評価である。なお、本明細書中、液の取り込み速度は、液取り込み時間[sec]により表される。また、本発明の液の取り込み速度及び戻り量の測定に用いる液は、高粘度溶液(例えば、23℃における粘度5mPa・sの溶液)である。本明細書中、高粘度溶液を用いたU字評価(U字形状に配置された吸収体による評価)により算出される液の取り込み速度及び戻り量を、「スポット吸収性」と称する。スポット吸収性が優れるとは、液の取り込み速度が高く、かつ戻り量が低いことを意味する。本明細書中、平らな台の上に配置された吸収体に対して、23℃の0.9%質量塩化ナトリウム水溶液を用いて測定された液の吸収する時間を「吸収速度」と称し、U字形状に配置された吸収体に対して、高粘度溶液を用いて測定された液の吸収する時間を「液の取り込み速度」と称する。ただし、「液の取り込み速度」は、一般的な吸収体の物性の評価として、単に「吸収速度」と称する場合もある。
 吸収体のある一部分に局所的に液が導入された場合、導入された液は、吸収体の表面及び内部に拡散しながら吸収されていくため、吸収体への液の取り込み速度は、浸透による吸収(縦方向/厚み方向)と、拡散による吸収(横方向/面方向)とに関係する。一方、吸収体をU字形状とすることにより、液の拡散が制限されるため、浸透による吸収が主な吸収経路となると推測される。すなわち、U字評価を用いることにより、液の自重による拡散に起因する吸収体への液取り込みと、液戻りの抑制が制限された状態で評価することとなり、厚み方向に存在する粒子状吸水剤の吸水性能(液の取り込み速度、戻り量)がより顕著に評価できる。
 また更に、本発明の評価においては、高粘度溶液を用いる。通常、吸水剤の吸収性能の評価には生理食塩水や人工尿として0.5質量%程度の水溶液を用い、その粘度は23℃で1mPa・s程度である。本発明においては高粘度溶液を用いるため、自重による拡散速度が低い。このため、吸収体に導入された液体は生理食塩水や人工尿に比べて吸収体の横方向/面方向への拡散が起こりにくく、液体が導入された位置に局所的に液体が滞留することとなる。このため、本発明の吸収体評価はよりいっそう吸水剤の吸収性能を顕著に評価できると考えられる。
 〔2-2〕CRC(遠心分離機保持容量)
 本発明の粒子状吸水剤のCRCは、25g/g以上であることが好ましく、30g/g以上であることがより好ましく、32g/g以上であることが更に好ましく、33g/g以上であることが更により好ましい。CRCが25g/g以上であることで、吸収量が適切となり、紙おむつ等の衛生物品の吸収体としての性能が確保される。また、本発明の粒子状吸水剤のCRCは、70g/g以下であることが好ましく、60g/g以下であることがより好ましく、50g/g以下であることが更により好ましく、40g/g以下であることが特に好ましい。CRCが70g/g以下であることで、尿や血液等の体液等を吸収する速度が保持されるため、高吸水速度タイプの紙おむつ等への使用にも適する。なお、CRCは、内部架橋剤の種類や量等で制御することができる。なお、本発明の粒子状吸水剤に含まれる吸水性樹脂粒子においても、CRCは粒子状吸水剤と同様の数値範囲が好ましい。
 〔2-3〕加圧下吸水倍率(AAP)
 本発明の粒子状吸水剤のAAP0.3psi(2.06kPa)は、好ましくは20g/g以上、より好ましくは24g/g以上、更に好ましくは26g/g以上、更により好ましくは28g/g以上、特に好ましくは29g/g以上、最も好ましくは30g/g以上である。上限値については特に限定されないが、好ましくは40g/g以下である。AAP0.3psi(2.06kPa)が上記範囲であることで、本発明の効果がより発揮される。また、AAP0.3psi(2.06kPa)が上記範囲の粒子状吸水剤を用いて製造した紙おむつは、パルプからの尿の吸い取り能力に優れ、戻り量を低減でき、肌かぶれや尿漏れを抑制できるようになる。なお、AAPは、粒度の調整や表面架橋剤の変更等により制御することができる。なお、本発明の粒子状吸水剤に含まれる吸水性樹脂粒子においても、AAP0.3psi(2.06kPa)は粒子状吸水剤と同様の数値範囲が好ましい。
 〔2-4〕含水率及び固形分率
 本発明の粒子状吸水剤の含水率は、好ましくは1質量%以上、より好ましくは5質量%以上、更に好ましくは6質量%以上、特に好ましくは7質量%以上、最も好ましくは8質量%以上である。粒子状吸水剤の含水率の上限は、好ましくは15質量%以下、より好ましくは14質量%以下、更に好ましくは13質量%以下、特に好ましくは12質量%以下である。この含水率を上記範囲内とすることで、粉体特性(例えば、流動性、搬送性、耐ダメージ性等)に優れた吸水剤が得られる。また、本発明の粒子状吸水剤の固形分率は、好ましくは85質量%~99質量%、より好ましくは86質量%~95質量%、更に好ましくは87質量%~94質量%、特に好ましくは88質量%~93質量%、最も好ましくは88質量%~92質量%である。なお、本発明の粒子状吸水剤に含まれる吸水性樹脂粒子においても、含水率及び固形分率は粒子状吸水剤と同様の数値範囲が好ましい。
 〔2-5〕粒度
 本発明の粒子状吸水剤の質量平均粒子径(D50)は、好ましくは200μm以上、より好ましくは200μm~600μm、更に好ましくは230μm~550μm、特に好ましくは250μm~500μmである。また、粒子状吸水剤における粒子径106μm未満の粒子の割合は、好ましくは10質量%以下、より好ましくは8質量%以下、更に好ましくは6質量%以下である。また、粒子状吸水剤における粒径850μm超の粒子の割合は、好ましくは5質量%以下、より好ましくは3質量%以下、更に好ましくは1質量%以下である。この粒子状吸水剤は、粒子径106μm~850μmの粒子を、好ましくは90質量%以上、より好ましくは95質量%以上、更に好ましくは97質量%以上、特に好ましくは99質量%以上含む。理想的には、粒子状吸水剤は、粒子径106μm~850μmの粒子を100質量%で含む。本発明に係る粒子状吸水剤は、粒子径250μm~425μmの粒子を、好ましくは30質量%以上、より好ましくは35質量%以上、更に好ましくは36質量%以上、特に好ましくは37質量%以上含む。粒子状吸水剤において粒子径250μm~425μmの粒子の割合の上限は、特に制限されないが、実用上、一実施形態として、90質量%以下、85質量%以下、80質量%以下、75質量%以下、70質量%以下、65質量%以下でありうる。粒子径250μm~425μmの粒子の割合が上記範囲であることにより、本発明の効果がより発揮される。粒度分布の対数標準偏差(σζ)は、好ましくは0.20~0.50、より好ましくは0.25~0.40、更に好ましくは0.27~0.35である。なお、本発明の粒子状吸水剤に含まれる吸水性樹脂粒子においても、粒度は粒子状吸水剤と同様の数値範囲が好ましい。
 〔2-6〕高粘度液吸収時間
 高粘度液吸収時間とは、生理食塩水の代わりに高粘度液を用いて行う吸水性樹脂の吸収時間である。高粘度液吸収時間の測定は、JISK 7224-1996年度「高吸水性樹脂の吸水速度試験法 解説」に記載されている基準に準拠し、使用する生理食塩水を実施例に示した方法で調製した高粘度試験液に変更して行う。
 本発明の粒子状吸水剤の高粘度液吸収時間は、好ましくは140秒以下、より好ましくは135秒以下、更に好ましくは130秒以下、更により好ましくは120秒以下、特に好ましくは110秒以下、最も好ましくは100秒以下である。下限値については特に限定されないが、好ましくは5秒以上、より好ましくは10秒以上である。
 高粘度液吸収時間が上記範囲であることにより、短時間で所定量の液を吸収することができる。紙オムツ等の吸収性物品の吸収体に使用した際に、使用者が肌の濡れを感じる時間が少なくなり、不快感を与えにくくなるとともに、漏れ量も減少することができる。なお、本発明の粒子状吸水剤に含まれる吸水性樹脂粒子においても、高粘度液吸収時間は粒子状吸水剤と同様の数値範囲が好ましい。
 〔2-7〕水不溶性無機粒子
 本発明の粒子状吸水剤は、水不溶性無機粒子を更に含むことが好ましい。
 粒子状吸水剤が、水不溶性無機粒子を含むことで、粒子状吸水剤の吸湿流動性を、向上させることができる。また、水不溶性無機粒子を添加することで、吸収性物品の吸収量の向上を図ることができる。更に、吸水性樹脂粒子(組成物)は、製造後の保管によって吸収性物品を製造する際に流動性を失っている場合がある。かような流動性を失った吸水性樹脂粒子(組成物)に対して、水不溶性無機粒子を混合して好適には吸収体を成形することで、性能を維持したまま、吸水性樹脂粒子(組成物)の流動性が回復するので、生産性が向上する。ここで、吸湿流動性とは、高湿条件下に保管された場合の粒子状吸水剤の流動性を指し、吸水性樹脂を含む粒子状吸水剤は一般的に吸湿によりその流動性が低下する。
 水不溶性無機粒子としては、ハイドロタルサイト等の多元金属化合物、二酸化ケイ素(シリカ)、水酸化アルミニウム、二酸化チタン、酸化アルミニウム、酸化マグネシウム、酸化亜鉛、タルク、金属リン酸塩(例えば、リン酸三カルシウム等のリン酸カルシウム、リン酸バリウム、リン酸アルミニウム)、金属硼酸塩(例えば、ホウ酸チタン、ホウ酸アルミニウム、ホウ酸鉄、ホウ酸マグネシウム、ホウ酸マンガン、ホウ酸カルシウム)、珪酸又はその塩、粘土、珪藻土、ゼオライト、ベントナイト、カオリン、活性白土等が挙げられる。中でも、本発明の効果が顕著に得られることから、水不溶性無機粒子が多元金属化合物、二酸化ケイ素、水酸化アルミニウム、タルク、及びリン酸三カルシウムから選ばれる少なくとも1種を含むことが好ましく、ハイドロタルサイト、二酸化ケイ素、水酸化アルミニウム及びリン酸三カルシウムから選ばれる少なくとも1種を含むことがより好ましい。
 〔3〕粒子状吸水剤の製造方法
 本発明に係る粒子状吸水剤の製造方法は、重合工程、乾燥工程及び表面架橋工程を有している。好ましくは、この製造方法は、更に、重合工程と同時にゲル粉砕工程又は重合工程の後にゲル粉砕工程、乾燥工程の前にゲル整粒工程、表面架橋工程の前に、冷却工程、乾燥物の粉砕工程、分級工程を有し、表面架橋工程の後に、添加剤の添加工程を含む。その他には、単量体水溶液の調整工程、分離工程、各種添加剤の添加工程、微粉除去工程及び微粉リサイクル工程を含んでもよい。更に、目的に応じて各種の公知の工程を含むことができる。以下に、本発明にかかわる粒子状吸水剤の製造工程〔3-1〕~〔3-11〕について示す。
 〔3-1〕単量体水溶液の調製工程
 本工程は、単量体(例えば(メタ)アクリル酸(塩))を主成分として含む水溶液(以下、「単量体水溶液」と称する)を調製する工程である。なお、得られる吸水性樹脂の吸水性能が低下しない範囲で、単量体のスラリー液を使用することもできるが、本項では便宜上、単量体水溶液について説明を行う。
 また、上記「主成分」とは、(メタ)アクリル酸(塩)の使用量(含有量)が、吸水性樹脂の重合反応に供される単量体(内部架橋剤は除く)全体に対して、通常50モル%以上、好ましくは70モル%以上、より好ましくは90モル%以上(上限は100モル%)であることをいう。
 ((メタ)アクリル酸)
 本発明では、得られる粒子状吸水剤の物性及び生産性の観点から、単量体として(メタ)アクリル酸及び/又はその塩(以下「(メタ)アクリル酸(塩)」と称する)を用いる。
 上記「(メタ)アクリル酸」は、公知の(メタ)アクリル酸でよく、重合禁止剤として好ましくはメトキシフェノール類、より好ましくはp-メトキシフェノールを、アクリル酸の重合性や粒子状吸水剤の色調の観点から、好ましくは200ppm以下、より好ましくは10~160ppm、更に好ましくは20~100ppmを含んでいればよい。また、(メタ)アクリル酸中の不純物については、米国特許出願公開第2008/0161512号に記載された化合物が本発明にも適用される。
 また、上記「(メタ)アクリル酸塩」は、上記(メタ)アクリル酸を下記塩基性組成物で中和したものである。本発明において(メタ)アクリル酸に含まれるカルボキシル基の一部又は全部が中和された中和塩を単量体として用いることができる。例えば、(メタ)アクリル酸塩としては一価のカチオンとの塩であることが好ましく、アルカリ金属塩、アンモニウム塩及びアミン塩から選ばれる少なくとも1種であることがより好ましく、アルカリ金属塩であることが更に好ましく、ナトリウム塩、リチウム塩及びカリウム塩から選ばれる少なくとも1種であることがより更に好ましく、ナトリウム塩が特に好ましい。(メタ)アクリル酸塩として、市販の(メタ)アクリル酸塩(例えば、(メタ)アクリル酸ナトリウム)でもよいし、粒子状吸水剤の製造プラント内で中和して得られたものでもよい。
 (塩基性組成物)
 本発明において、「塩基性組成物」とは、塩基性化合物を含有する組成物を指し、例えば、市販の水酸化ナトリウム水溶液等が該当する。
 上記塩基性化合物として、具体的には、アルカリ金属の炭酸塩や炭酸水素塩、アルカリ金属の水酸化物、アンモニア、有機アミン等が挙げられる。これらの中でも、得られる粒子状吸水剤の物性の観点から、強塩基性であることが望まれる。即ち、水酸化ナトリウム、水酸化カリウム、水酸化リチウム等のアルカリ金属の水酸化物が好ましく、水酸化ナトリウムがより好ましい。
 (中和)
 本発明における中和として、(メタ)アクリル酸に対する中和(重合前)又は(メタ)アクリル酸を架橋重合して得られる含水ゲル状架橋重合体に対する中和(重合後)(以下、「後中和」と称する)の何れかを選択又は併用することができる。また、これらの中和は、連続式でもバッチ式でもよく特に限定されないが、生産効率等の観点から連続式が好ましい。
 なお、中和を行う装置、中和温度、滞留時間等の条件については、国際公開第2009/123197号や米国特許出願公開第2008/0194863号に記載された条件が本発明にも適用される。
 本発明における中和率は、単量体の酸基に対して、好ましくは10~90モル%、より好ましくは40~85モル%、更に好ましくは50~80モル%、特に好ましくは60~75モル%である。該中和率が10モル%未満の場合、吸水倍率が著しく低下することがある。一方、該中和率が90モル%を超える場合、加圧下吸水倍率の高い吸水性樹脂が得られないことがある。
 上記中和率は、後中和の場合でも同様である。また、最終製品としての粒子状吸水剤の中和率についても、上記中和率が適用される。なお、中和率75モル%とは、(メタ)アクリル酸25モル%及び(メタ)アクリル酸塩75モル%の混合物を意味する。また、該混合物を(メタ)アクリル酸部分中和物と称する場合もある。
 (他の単量体)
 本発明において、「他の単量体」とは、上記(メタ)アクリル酸(塩)以外の単量体を指し、他の単量体をアクリル酸(塩)と併用して粒子状吸水剤を製造することができる。
 上記他の単量体として、水溶性又は疎水性の不飽和単量体が挙げられる。具体的には、米国特許出願公開第2005/0215734に記載された化合物(但し、(メタ)アクリル酸は除く)が本発明にも適用される。
 (内部架橋剤)
 本発明で使用される内部架橋剤として、米国特許第6241928号に記載された化合物が本発明にも適用される。これらの中から反応性を考慮して1種又は2種以上の化合物が選択される。本発明においては、吸水性能を考慮して、内部架橋剤を用いた架橋体を表面処理することが好ましい。
 また、得られる吸水性樹脂の吸水性能等の観点から、好ましくは重合性不飽和基を2個以上有する化合物、より好ましくは下記乾燥温度で熱分解性を有する化合物、更に好ましくは(ポリ)アルキレングリコール構造単位を有する重合性不飽和基を2個以上する化合物が、内部架橋剤として用いられる。
 上記重合性不飽和基として、好ましくはアリル基、(メタ)アクリレート基、より好ましくは(メタ)アクリレート基が挙げられる。また、上記(ポリ)アルキレングリコール構造単位としてポリエチレングリコールが好ましく、n数として好ましくは1~100、より好ましくは6~50である。
 したがって、本発明では、好ましくは(ポリ)アルキレングリコールジ(メタ)アクリレート又は(ポリ)アルキレングリコールトリ(メタ)アクリレート、より好ましくは(ポリ)エチレングリコールジ(メタ)アクリレートが用いられる。
 上記内部架橋剤の使用量は、単量体全体に対して、好ましくは0.0001~10モル%、より好ましくは0.001~1モル%である。該使用量を上記範囲内とすることで所望する吸水性樹脂が得られる。なお、該使用量が少なすぎる場合、得られる含水ゲル状架橋重合体の強度が不足し作業性等が問題となる虞があり、該使用量が多すぎる場合、吸水倍率が低下する傾向にある。
 本発明では、所定量の内部架橋剤を予め単量体水溶液に添加しておき、重合と同時に架橋反応する方法が好ましく適用される。一方、該手法以外に、重合中や重合後に内部架橋剤を添加して後架橋する方法や、ラジカル重合開始剤を用いてラジカル架橋する方法、電子線、紫外線等の活性エネルギー線を用いた放射線架橋する方法等を採用することもできる。また、これらの方法を併用することもできる。
 (その他、単量体水溶液に添加される物質)
 本発明において、得られる吸水性樹脂の物性向上の観点から、下記の物質を単量体水溶液の調製時に添加することもできる。
 具体的には、澱粉、澱粉誘導体、セルロース、セルロース誘導体、ポリビニルアルコール、ポリアクリル酸(塩)、ポリアクリル酸(塩)架橋体等の親水性高分子を、単量体水溶液中、好ましくは50重量%以下、より好ましくは20重量%以下、更に好ましくは10重量%以下、特に好ましくは5重量%以下(下限は0重量%)で添加したり、炭酸塩、アゾ化合物、気泡等の発泡剤、界面活性剤、ジエチレントリアミン5酢酸(塩)、エチレンジアミンテトラメチレンホスホン酸(塩)等のキレート剤、乳酸(塩)等のヒドロキシカルボン酸化合物、連鎖移動剤等を、単量体水溶液中、好ましくは5重量%以下、より好ましくは1重量%以下、更に好ましくは0.5重量%以下(下限は0重量%)で添加したりすることができる。
 また、上記物質は、単量体水溶液に添加される形態のみならず、重合途中で添加される形態でもよいし、これらの形態を併用することもできる。
 なお、親水性高分子として水溶性樹脂又は吸水性樹脂を使用する場合には、グラフト重合体又は吸水性樹脂組成物(例えば、澱粉-アクリル酸重合体、PVA-アクリル酸重合体等)が得られる。これらの重合体、吸水性樹脂組成物も本発明の範疇である。
 (単量体成分の濃度)
 本工程において、単量体水溶液を調製する際に、上記の各物質が添加される。該単量体水溶液中の単量体成分の濃度としては特に限定されないが、吸水性樹脂の物性の観点から、好ましくは10~80重量%、より好ましくは20~75重量%、更に好ましくは30~70重量%である。
 また、水溶液重合又は逆相懸濁重合を採用する場合、水以外の溶媒を必要に応じて併用することもできる。この場合、溶媒の種類は特に限定されない。
 なお、上記「単量体成分の濃度」とは、下記(式i)で求められる値であり、単量体水溶液の重量には、グラフト成分や吸水性樹脂、逆相懸濁重合における疎水性溶媒の重量は含めない。
(単量体成分の濃度(重量%))=(単量体成分の重量)/(単量体水溶液の重量)×100  (式i)。
 〔3-2〕重合工程
 本工程は、上記単量体水溶液の調製工程で得られた(メタ)アクリル酸(塩)系単量体水溶液を重合させて、含水ゲル状架橋重合体(以下、「含水ゲル」と称する)を得る工程である。
 (重合開始剤)
 本発明で使用される重合開始剤は、重合形態等によって適宜選択されるため、特に限定されないが、例えば、熱分解型重合開始剤、光分解型重合開始剤、又はこれらの重合開始剤の分解を促進する還元剤を併用したレドックス系重合開始剤等が挙げられる。具体的には、米国特許第7265190号に開示された重合開始剤のうち、1種又は2種以上が用いられる。なお、重合開始剤の取扱性や粒子状吸水剤又は吸水性樹脂の物性の観点から、好ましくは過酸化物又はアゾ化合物、より好ましくは過酸化物、更に好ましくは過硫酸塩が使用される。
 該重合開始剤の使用量は、単量体に対して、好ましくは0.001~1モル%、より好ましくは0.001~0.5モル%である。また、該還元剤の使用量は、単量体に対して、好ましくは0.0001~0.02モル%である。
 なお、上記重合開始剤に代えて、放射線、電子線、紫外線等の活性エネルギー線を照射して重合反応を実施してもよく、これらの活性エネルギー線と重合開始剤を併用してもよい。
 (重合形態)
 本発明に適用される重合形態としては、特に限定されないが、吸水特性や重合制御の容易性等の観点から、好ましくは噴霧液滴重合、水溶液重合、逆相懸濁重合、より好ましくは水溶液重合、逆相懸濁重合、更に好ましくは水溶液重合が挙げられる。中でも、連続水溶液重合が特に好ましく、連続ベルト重合、連続ニーダー重合の何れでも適用される。
 具体的な重合形態として、連続ベルト重合は米国特許第4893999号、同第6241928号、米国特許出願公開第2005/215734号等に、連続ニーダー重合は米国特許第6987151号、同第6710141号等に、それぞれ開示されている。これらの連続水溶液重合を採用することで、吸水性樹脂の生産効率が向上する。
 また、上記連続水溶液重合の好ましい形態として、「高温開始重合」や「高濃度重合」が挙げられる。「高温開始重合」とは、単量体水溶液の温度を好ましくは30℃以上、より好ましくは35℃以上、更に好ましくは40℃以上、特に好ましくは50℃以上(上限は沸点)の温度で重合を開始する形態をいい、「高濃度重合」とは、単量体濃度を好ましくは30重量%以上、より好ましくは35重量%以上、更に好ましくは40重量%以上、特に好ましくは45重量%以上(上限は飽和濃度)で重合を行う形態をいう。これらの重合形態を併用することもできる。
 また、本発明においては、空気雰囲気下で重合を行うこともできるが、得られる吸水性樹脂の色調の観点から、窒素やアルゴン等の不活性ガス雰囲気下で重合を行ってもよい。この場合、例えば、酸素濃度を1容積%以下に制御することが好ましい。なお、単量体水溶液中の溶存酸素についても、不活性ガスで置換(例えば、溶存酸素;1mg/l未満)しておくことが好ましい。
 また、水溶液重合の形態としては、単量体水溶液を静置状態で重合する静置重合法、攪拌装置内で重合する攪拌重合法、などで本発明を実施することができる。静置重合法では、エンドレスベルトを用いるのが好ましい。ベルトは重合熱を接材面から逃しにくい樹脂ないしゴム製のベルトが好ましい。
 本発明に適用される重合形態として逆相懸濁重合を採用することもでき、国際公開第2009/025235号、第2013/018571号、第2016/182082号、第2020/067310等に開示されている。バッチ式逆相懸濁重合でも、連続式逆相懸濁重合でもよいが、各工程及び工程間におけるそれぞれの操作を連続的に実施でき、長時間の運転により大量生産が可能となる点で連続式逆相懸濁重合が好ましく、更に好ましくは液相液滴連続重合である。
 〔3-3〕細断工程
 細断工程は、重合工程後ゲル粉砕工程前に、含水ゲル状架橋重合体を、ゲル粉砕装置に投入可能な大きさに切断又は粗砕する任意の工程である。特に、上記重合工程がベルト重合であり、シート状又はブロック状の含水ゲルが得られる場合に、この細断工程を実施することが好ましい。したがって、本発明の一実施形態では、重合工程後に得られる含水ゲル状架橋重合体がシート状であり、ゲル粉砕工程前に、シート状の含水ゲル状架橋重合体を細断する細断工程を更に含む。細断工程における含水ゲルを切断又は粗砕する手段は特に限定されず、ロータリーカッター、ローラーカッター、ギロチンカッター等が用いられる。細断するサイズは、後述するゲル粉砕装置に投入できる範囲であれば特に限定されないが、細断後の含水ゲルの大きさとして、好ましくは1mm~3mであり、より好ましくは5mm~2.5mであり、特に好ましくは1cm~2mである。なお、本発明の目的が達成される場合、細断工程を実施しなくてもよい。例えば、逆相懸濁重合を行った場合は粒子状の含水ゲル状架橋重合体が得られるため、本工程は不要である。
 〔3-4〕ゲル粉砕工程
 本工程は、上記重合後に、この重合工程で得られた含水ゲル状架橋重合体を粉砕して細粒化することにより、粒子状含水ゲル状架橋重合体(以下、「粒子状含水ゲル」)を得る任意の工程である。目的とする形状及び性能の(表面架橋された)吸水性樹脂粒子が高収率で得られるように、粒子状含水ゲルの粒子径が、後述する好ましい範囲に調整される。なお、所定の粒子径の粒子状含水ゲルを得るために、本工程を2回以上実施してもよい。なお、本発明の目的が達成される場合、ゲル粉砕工程を実施しなくてもよい。例えば、気相重合や逆相懸濁重合を行った場合は粒子状の含水ゲル状架橋重合体が得られるため、本工程は不要である。
 本発明において、ゲル粉砕工程では、吸水性能(液の取り込み速度及び戻り量)を損なうことない限り、ゲル粉砕装置の種類は特に限定されない。ゲル粉砕装置としては、例えば、バッチ式又は連続式の双腕型ニーダー等、複数の回転撹拌翼を備えたゲル粉砕機、1軸押出機、2軸押出機、ミートチョッパー等のスクリュー押出し機、2軸以上の複軸型混練機(ニーダー)、カッターミル等のゲル粉砕機等が挙げられる。なお、上記重合工程がニーダー重合の場合、重合工程とゲル粉砕工程とが同時に実施されている。
 一実施形態において、ゲル粉砕工程では、ミートチョッパー、2軸以上の複軸型混練機が好ましく用いられる。特に、水溶液重合により含水ゲルを得た場合、ゲル粉砕工程において、ミートチョッパー、2軸以上の複軸型混練機を用いることにより微細な粒子を形成することができる。これにより、吸水性樹脂粒子を得たときに、微細な粒子の凝集体として連通孔を数多く形成でき、かつ、独立気泡を低減できる。よって、吸水性樹脂粒子に形成された連通孔及び独立気泡の存在割合を制御しやすく、本発明の効果を更に発揮することができる。すなわち、好ましい実施形態において、水溶液重合の後、ミートチョッパーによるゲル粉砕工程、又は2軸以上の複軸型混練機によるゲル粉砕工程が行われる。なお、上記以外のゲル粉砕条件や形態については、国際公開第2011/126079号に開示される内容が、本発明に好ましく適用される。
 (ゲル流動化剤)
 本実施形態において、ゲル粉砕工程前及び/又はゲル粉砕工程中に、ゲル流動化剤を添加してもよい。これにより、ゲル流動化剤を含む粒子状含水ゲルが得られる。ゲル流動化剤の添加により、後述する乾燥工程において、含水ゲル粒子同士の付着又は接着が抑制され、連通孔の形成が促進され、独立気泡の形成が抑制されることで、得られる吸水性樹脂の吸水性能が向上するという効果が得られる。また、後述する乾燥後の粉砕工程における負荷が低減され、微粉発生量が減少するという効果も得られる。更に、乾燥工程において攪拌乾燥を行う場合には、得られる粒子状乾燥重合体の粒子径が製品粒子径に近づくため、上記効果が顕著になる。得られる粒子状含水ゲルの各粒子が均一にゲル流動化剤を含むとの観点から、ゲル粉砕工程中の添加が好ましい。なお、重合工程で逆相懸濁重合を行う場合等、ゲル粉砕工程を要しない場合にも、少なくとも乾燥工程前に、粒子状含水ゲルにゲル流動化剤を添加することが好ましい。
 ゲル流動化剤の添加量は、含水ゲル又は粒子状含水ゲルの含水率やゲル流動化剤の種類に応じて適宜設定される。その添加量は、含水ゲルの固形分に対して、好ましくは0.001質量%~0.5質量%、より好ましくは0.01質量%~0.3質量%、更に好ましくは0.02質量%~0.2質量%である。
 このゲル流動化剤の例として、アニオン性、カチオン性、ノニオン性及び両性の界面活性剤、並びにこれらの低分子型又は高分子型の界面活性剤、高分子滑剤等が挙げられる。
 (界面活性剤)
 具体的には、ゲル流動化剤に用いられる界面活性剤として、(1)ショ糖脂肪酸エステル、ポリグリセリン脂肪酸エステル、ソルビタン脂肪酸エステル、ポリオキシエチレンソルビタン脂肪酸エステル、ポリオキシエチレングリセリン脂肪酸エステル、ソルビトール脂肪酸エステル、ポリオキシエチレンソルビトール脂肪酸エステル、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルフェニルエーテル、ポリオキシエチレンヒマシ油、ポリオキシエチレン硬化ヒマシ油、アルキルアリルホルムアルデヒド縮合ポリオキシエチレンエーテル、ポリオキシエチレンポリオキシプロピレンブロックコポリマー、ポリオキシエチレンポリオキシプロピルアルキルエーテル、ポリエチレングリコール脂肪酸エステル、アルキルグルコシド、N-アルキルグルコンアミド、ポリオキシエチレン脂肪酸アミド、ポリオキシエチレンアルキルアミン、ポリオキシエチレンアルキルエーテルのリン酸エステル、及びポリオキシエチレンアルキルアリルエーテルのリン酸エステルなどのノニオン性界面活性剤、(2)カプリルジメチルアミノ酢酸ベタイン、ラウリルジメチルアミノ酢酸ベタイン、ミリスチルジメチルアミノ酢酸ベタイン、ステアリルジメチルアミノ酢酸ベタイン等のアルキルジメチルアミノ酢酸ベタイン;ラウリン酸アミドプロピルベタイン、ヤシ油脂肪酸アミドプロピルベタイン、パーム核油脂肪酸アミドプロピルベタイン等のアルキルアミドプロピルベタイン、ラウリルヒドロキシスルホベタイン等のアルキルヒドロキシスルホベタイン、2-アルキル-N-カルボキシメチル-N-ヒドロキシエチルイミダゾリニウムベタイン等のアルキルカルボキシメチルヒドロキシエチルイミダゾリニウムベタインなどの両性界面活性剤、(3)ラウリルアミノジ酢酸モノナトリウム、ラウリルアミノジ酢酸カリウム、ミリスチルアミノジ酢酸ナトリウム等のアルキルアミノジ酢酸モノアルカリ金属などのアニオン性界面活性剤、(4)長鎖アルキルジメチルアミノエチル4級塩などのカチオン性界面活性剤等が挙げられる。これらのうち、2種以上を併用してもよい。
 (高分子滑剤)
 本実施形態において、本発明の目的が達成される範囲内で、以下に例示する高分子滑剤を、上記単量体水溶液や含水ゲルに添加することができる。
 上記高分子滑剤として、具体的には、無水マレイン酸変性ポリエチレン、無水マレイン酸変性ポリプロピレン、無水マレイン酸変性エチレン・プロピレン共重合体、無水マレイン酸変性エチレン・プロピレン・ジエン三元共重合体(EPDM)、無水マレイン酸変性ポリブタジエン、無水マレイン酸・エチレン共重合体、無水マレイン酸・プロピレン共重合体、無水マレイン酸・エチレン・プロピレン共重合体、無水マレイン酸・ブタジエン共重合体、ポリエチレン、ポリプロピレン、エチレン・プロピレン共重合体、酸化型ポリエチレン、酸化型ポリプロピレン、酸化型エチレン・プロピレン共重合体、エチレン・アクリル酸共重合体、エチルセルロース、エチルヒドロキシエチルセルロース、ポリエチレングリコールのようなポリアルキレンオキサイド等が挙げられる。これらの分子量(重量平均分子量)は、好ましくは200~200万、より好ましくは400~100万の範囲で適宜選択される。これらのうち、2種以上を併用してもよい。
 また、ゲル流動化剤として、これらの高分子滑剤と上記界面活性剤とを併用してもよい。界面活性剤と高分子滑剤とを併用する場合、その合計添加量は、重合形態、単量体水溶液の組成及び含水ゲルの含水率に応じて適宜設定される。単量体水溶液に添加する場合には単量体成分に対する濃度として、含水ゲルに添加する場合にはその固形分率に対して、両方に添加する場合には上記の合計として設定される。これらのゲル流動化剤は、逆相懸濁重合を行う際に使用する分散助剤と重複していてもよい。
 界面活性剤と高分子滑剤との合計添加量は、好ましくは1.0質量%以下、より好ましくは0.5質量%以下であり、好ましくは0.05質量%以上、特に好ましくは0.1質量%以上である。
 (過酸化水素)
 本実施形態において、乾燥工程以前の工程において、過酸化水素を添加してもよい。乾燥工程以前の工程において過酸化水素を添加し、乾燥工程又はそれ以降の工程において加熱することにより、乾燥工程以降において熱が加わった際に、過酸化水素により吸水性樹脂中の架橋構造が切断され、ゲル粉砕やゲル整粒工程での連通孔や独立気泡の形成に影響することなく吸収倍率(CRC)を効率的に高めることができる。より具体的には、重合工程以前で過酸化水素を前記単量体水溶液に添加する及び/又はゲル破砕工程中に含水ゲルに添加することが好ましい。
 過酸化水素の単量体水溶液及び/又は含水ゲルに対する添加量は、選択する重合条件や乾燥前に残存する過酸化水素量(ppm)を考慮して適宜設定されるが、例えば、得られる吸水性樹脂の物性、特には吸収倍率(CRC)の向上を考慮すると、単量体水溶液又は含水ゲル状架橋重合体の固形分質量(%)に対して、合計量で好ましくは50ppm(0.005質量%)以上であり、より好ましくは50ppm(0.005質量%)~10000ppm(1.0質量%)、さらに好ましくは100ppm(0.01質量%)~5000ppm(0.5質量%)である。
 過酸化水素の添加方法は、特に限定されるものではないが、添加が容易であることから、過酸化水素を溶解した水溶液で添加することが好ましく、その濃度は、特に限定されるものではないが、通常1~40質量%程度である。また、過酸化水素水溶液には、メチルアルコール、エチルアルコール、n-プロピルアルコール、イソプロピルアルコール等の少量の親水性溶媒を含有させてもよい。過酸化水素又は過酸化水素溶液を添加する際の温度は特に問わず、例えば-10~100℃の範囲であればよく、より好ましくは0~30℃である。
 また、過酸化水素を添加する場合、乾燥工程以降において、含水ゲル状架橋重合体及び/又は乾燥重合体は、その最高到達温度が160℃を超えるよう加熱されることが好ましい。このような加熱により、過酸化水素により吸水性樹脂中の架橋構造が切断され、吸収倍率(CRC)の高い粒子状吸水剤を得ることができる。
 (表面張力)
 ゲル流動化剤の種類と添加量とは、ゲル粉砕工程及び乾燥工程における粒子状含水ゲルの流動性等を考慮して適宜調整される。得られる吸水性樹脂の吸収性物品(おむつ)での実使用における戻り量等から、最終製品の吸水性樹脂の表面張力が過度に低下しない種類や量のゲル流動化剤が好ましい。例えば、吸水性樹脂の表面張力(生理食塩水中の吸水性樹脂の分散液の表面張力)が、好ましくは55mN/m以上、より好ましくは60mN/m以上、更に好ましくは65mN/m以上となるように、ゲル流動化剤の種類及び量が選択される。この表面張力はWO2015/129917に記載の方法で測定される。
 (含水ゲルの固形分率)
 ゲル粉砕工程に供される含水ゲルの固形分率(以下、ゲル固形分率)は、25質量%以上が好ましい。ゲル粉砕後の含水ゲル粒子同士の凝集抑制、粉砕に要するエネルギー、乾燥効率及び吸収性能の観点から、ゲル固形分率は25質量%~75質量%がより好ましく、30質量%~70質量%が更に好ましく、35質量%~65質量%がより更に好ましく、40質量%~60質量%が特に好ましい。
 (粒子状含水ゲルの含水率)
 粒子状含水ゲルの含水率(以下、ゲル含水率)は、下記実施例に記載した測定方法によって求められる。後述する乾燥工程における粒子状含水ゲルの流動性の観点から、ゲル含水率は25質量%以上が好ましく、30質量%以上がより好ましく、35質量%以上が更に好ましく、40質量%以上が特に好ましく、43質量%以上が極めて好ましい。過度の高濃度重合は吸水性樹脂の物性を低下させる可能性があり、乾燥効率及び吸収性能の観点から、ゲル含水率は75質量%以下が好ましく、60質量%以下がより好ましく、55質量%以下が特に好ましい。
 (粒子状含水ゲルの粒度)
 得られる吸水性樹脂の粒子径及び連通孔及び独立気泡の存在割合の制御の観点から、ゲル粉砕工程を経て得られる粒子状含水ゲル(乾燥前の粒子状含水ゲル)の質量平均粒子径は、固形分換算で、好ましくは10μm~1000μm、より好ましくは20μm~800μm、更に好ましくは40μm~500μm、特に好ましくは50μm~300μm、最も好ましくは60μm~200μmである。なお、固形分換算の粒子状含水ゲルの平均粒子径(固形分換算の平均ゲル粒子径)は、WO2016/204302の「含水ゲル粒子の乾燥物に換算した重量平均粒子径(μm)」に記載の方法により測定できる。
 (ミートチョッパーによるゲル粉砕)
 一実施形態において、ゲル粉砕工程では、図2Aに示すミートチョッパー100(スクリュー押出機)を用いたゲル粉砕が好ましい(図2Aの詳細はWO2013/0023187を参照)。従来のミートチョッパー100を用いたゲル粉砕では、押出口16にはダイス(「ダイプレート」又は「多孔板」とも称する)が備えられているが、本発明のゲル粉砕工程においてミートチョッパー100を用いた場合は、このようなダイスを用いずにゲル粉砕を行うのが好ましい。ダイスがミートチョッパーの押出口16に設けられないことにより、粉砕の際にゲルにかかる圧力が緩和され、粉砕されたゲル粒子同士の過度の密着が抑えられることで、吸水性樹脂中の連通孔を十分に保持できる。本実施形態では、ミートチョッパー100の押出口16には、ダイスの代わりに支持具17を設けている。
 図2Bに支持具17の一実施形態を示す。支持具17は、押出口16において、スクリュー13を支持する部材である。図2Bに示す支持具17において、領域17aは、粉砕された粒子状含水ゲルが通過する部分であり、領域17bは、スクリュー13の軸を支持する部分である。よって、領域17bは、スクリュー13の軸が貫通する部分であり、粒子状含水ゲルは通過しない。支持具17の形状は、スクリュー13の軸を支えるのに必要最小限の強度を有していればよく、特に制限されないが、図2Bに示される支持具17は、できるだけ開口率を大きく(穴の数をできるだけ少なくし、1つの穴の大きさをできるだけ大きく)した形状であり、好ましい。開口率の定義は、領域17a(粉砕された粒子状含水ゲルが通過する部分)の面積を分子とし、支持具17の外径Dの円面積を母数として算出した値となる。なお、本願実施例では開口率56%の支持具を使用している。
 また、ミットチョッパーによる粉砕は、好ましくは2回以上、より好ましくは3回以上、ミートチョッパーを通過させるのが好ましい。本発明において、含水ゲルをゲル粉砕するためのゲル粉砕エネルギー(Gel Grinding Energy,GGE)は、上限値として、60[J/g]以下が好ましく、50[J/g]以下がより好ましく、40[J/g]以下が更に好ましい。また、下限値としては、18[J/g]以上が好ましく、20[J/g]以上がより好ましく、25[J/g]以上が更に好ましい。例えば、本発明において、含水ゲルをゲル粉砕するためのゲル粉砕エネルギー(GGE(1))は、18~60[J/g]であり、好ましくは20~50[J/g]であり、より好ましくは25~40[J/g]である。また、含水ゲルをゲル粉砕するためのゲル粉砕エネルギー(GGE(2))は、18~60[J/g]であり、好ましくは20~50[J/g]であり、より好ましくは25~40[J/g]である。当該GGE(1)、GGE(2)を上記範囲内に制御することで、適切なせん断・圧縮力を含水ゲルに与えながらゲル粉砕することができる。なお、上記ゲル粉砕エネルギー(GGE(1))は、ゲル粉砕機の空運転時のエネルギーを含んで規定され、ゲル粉砕エネルギー(GGE(2))は、ゲル粉砕機の空運転時のエネルギーを差し引いて規定される。複数回のゲル粉砕を行った場合は、各粉砕で与えられたゲル粉砕エネルギーを合計する。
 ゲル粉砕エネルギーとは、国際公開第2011/126079号(米国特許出願公開第2013/026412号明細書、米国特許出願公開第2016/332141号明細書に対応)に記載され、含水ゲル状架橋重合体をゲル粉砕する際、ゲル粉砕装置が必要とする単位重量(含水ゲル状架橋重合体の単位重量)あたりの機械的エネルギーを意味し、ゲル粉砕装置が三相交流電力で駆動する場合、下記(式a-1)により算出される。
ゲル粉砕エネルギーGGE(1)[J/g]
={31/2×電圧×電流×力率×モーター効率}/{1秒間にゲル粉砕装置に投入される含水ゲルの重量}  ・・・(式a-1)。
 ここで、力率及びモーター効率は、ゲル粉砕装置の稼働条件等によって変化する装置固有の値であり、0~1までの値をとる。ゲル粉砕装置が単相交流電力で駆動する場合、上記式中の31/2を1に変更することで算出される。上記(式a-1)において、電圧の単位は[V]、電流の単位は[A]、含水ゲルの質量の単位は[g]である。
 ゲル粉砕機の空運転時のエネルギーを差し引いて規定されるゲル粉砕エネルギーGGE(2)は、下記(式a-2)により算出される。
ゲル粉砕エネルギーGGE(2)[J/g]
={√3×電圧×(ゲル粉砕時の電流-空運転時の電流)×力率×モーター効率}/{1秒間にゲル粉砕装置に投入される含水ゲルの重量}  ・・・(式a-2)。
 上記(式a-2)において、力率及びモーター効率は、(式a-1)と同様に、ゲル粉砕装置の稼働条件等によって変化する装置固有の値であり、0~1までの値をとる。上記(式a-2)において、電圧の単位は[V]、電流の単位は[A]、含水ゲルの質量の単位は[g]である。
 ミートチョッパー(スクリュー押出機)を用いたゲル粉砕としては、上述のダイスの構成(押出口16においてダイスを使用しない代わりに支持具17を使用する)とゲル粉砕エネルギーとを除けば、WO2013/0023187に記載の条件が本発明に適用できる。
 (2軸以上の複軸型混練機によるゲル粉砕)
 一実施形態において、ゲル粉砕工程では、図3及び図4に示す複軸型混練機を用いたゲル粉砕が好ましい。図3及び図4に示されるように、重合工程後のゲル粉砕工程において、投入口、複数の回転軸を内蔵する本体、排出口を有するゲル粉砕装置が用いられる。それぞれの回転軸は粉砕手段を有する。このゲル粉砕装置では、投入口から本体内に連続的に投入された含水ゲル状架橋重合体が、各回転軸が有する粉砕手段により50℃以上で粉砕され、粒子状含水ゲル状架橋重合体として、排出口から連続的に取り出される。すなわち、投入口から本体内に投入された含水ゲル状架橋重合体は、50℃以上を保ちつつ投入口から排出口まで移動しながら、各回転軸が有する粉砕手段により粉砕される。尚、本発明において、本体とは、複数の回転軸及び粉砕手段が設置される胴体部分(図3の符号208)を意味し、バレル、トラフ、ケーシング等とも称される。
 前記複軸型混錬機は、連続式である限り、縦型(含水ゲルの進行方向が上下方向)であってもよく、横型又は水平型(含水ゲルの進行方向が左右方向又は水平方向)であってもよい。また、縦型及び横型のゲル粉砕装置において、水平方向に対して0°~90°の傾斜を有してもよい。例えば、図3に示される横型連続粉砕装置の場合、必要に応じて適宜傾斜が設けられるが、その傾斜は、投入口から排出口に向かって(即ち、含水ゲルの進行方向に対して)、下向きであってもよく、上向きであってもよい。通常、その傾斜角度は0°~10°であり、好ましくは0°~1°であり、特に好ましくは0°である。
 前記複軸型混錬機では、投入口から投入された含水ゲルは、排出口から排出されるまでの間に、含水ゲルに過度の圧力をかけることなく目的とする粒度にまで粉砕される。したがって、この複軸型混錬機では、従来の押出機(ミートチョッパー)のように、ダイスから押し出すことを必須とせず、目的とする粒度に調整された粒子状含水ゲルが排出口から取り出される。前記複軸型混錬機を用いることにより、粉砕の際にゲルにかかる圧力が緩和され、粉砕されたゲル粒子同士の過度の密着が抑えられることで、吸水性樹脂中の連通孔を十分に保持できる。
 50℃以上で連続的にゲル粉砕を行う観点から、前記複軸型混錬機は、加熱手段及び/又は保温手段を有することが好ましい。加熱手段及び/又は保温手段としては特に限定されないが、含水ゲル及び粒子状含水ゲルの付着及び凝集防止の観点から、対流伝熱による直接伝熱及び/又は熱媒で加熱されたゲル粉砕装置の加熱面(含水ゲルとの接触面、熱源部分)からの熱伝導による間接伝熱による加熱手段が好ましい。より好ましい加熱手段は、直接伝熱では通気加熱式、間接伝熱では外壁加熱式である。
 含水ゲルへの過度の負荷を低減する観点から、好ましくは、本体の外面に、加熱手段及び/又は保温手段、より好ましくは加熱手段を備える。この保温手段としては、例えば、本体の外面の一部又は全面(好ましくは本体の外表面の50%以上、より好ましくは80%以上、特に好ましくは全面)を、断熱材で被覆する方法が挙げられる。また、加熱手段としては、電気トレス、スチームトレス、熱媒で加熱されたジャケット等が例示される。本発明において求められる連通孔を有する吸水性樹脂粒子を得るには、従来技術の範囲で想定されるよりも、温度変化による含水ゲル粒子の付着性及び流動性の変動による影響が大きいことがわかった。その結果、含水ゲルの粉砕に必要なエネルギーや、粉砕されたゲル粒子同士の密着性が、温度によって大きく変動することが、本発明における検討により明らかになった。複軸型混錬機が、上記加熱手段及び/又は保温手段を備えることにより、より好ましい温度域でゲル粉砕工程を実施することができる。また、季節や昼夜といった気温差の影響によるゲル粉砕の質の悪化を避けることができる。更に、ゲル粉砕装置の立ち上げ時にも、スムーズに安定運転に誘導することも可能になる。
 本発明の効果が得られる限り、それぞれの回転軸が有する粉砕手段の種類は特に限定されない。例えば、含水ゲルに対する剪断作用を有するものとして、各種形状のディスクが挙げられる。ディスクは、チップ、パドル、エレメント、ニーディング、ローター等と称される場合がある。ディスクの形状は特に限定されず、円板状、楕円状、略三角形状等から適宜選択される。異なる形状のディスクを組み合わせて使用することも可能であり、その配列は、目的とする粒子状含水ゲルの粒子径、粉砕に要するエネルギーの観点から適宜調整される。また、粉砕手段として、アーム、羽根、ブレード、カットディスク(CD)等が併用されてもよい。
 例えばそれぞれの回転軸が粉砕手段として、円板状又は楕円状のディスクを有する場合、このディスクの最大径D(Diameter;直径の異なる複数のディスクを使用する場合は、最大ディスクの直径)に対する本体内部の有効長さL(Length)の比は、L/Dとして定義される。このL/Dは、5~40が好ましく、6~30がより好ましく、6.5~20が更に好ましい。尚、この有効長さLとは、図3に示されるように、投入口から排出口を含めた本体(バレル)部分の軸方向長さ(全長)を意味する。
 また、ディスク及び本体(バレル)の間の距離(クリアランス)は、場所によって異なる場合もある。ディスク外周と本体(バレル)の内壁との距離が最短となる距離を最小クリアランスCとしたとき、最小クリアランスCは、ディスクの最大径Dに対して、20%以下が好ましく、15%以下がより好ましく、10%以下が更により好ましく、5%以下が特に好ましい。上記上限値以下であれば、ゲル粉砕時にバレルとディスクとの間でのせん断力が強くなり、ゲル粉砕効率が良好となる。また、最小クリアランスCは、ディスクの最大径Dに対して、0.2%以上が好ましく、0.5%以上がより好ましく、1%以上が更に好ましい。上記下限値以上であれば、ディスクと本体(バレル)内壁との接触が抑制され、磨耗による金属異物混入が抑制される。本発明の好適な形態は、最小クリアランスCは、ディスクの最大径Dに対して、0.2~20%である。
 前記複軸型混錬機の複数の回転軸の回転数は、等速でもよく、非等速でもよく、装置によって適宜設定されるが、好ましくは1rpm~1000rpm、より好ましくは3rpm~500rpm、更に好ましくは5rpm~300rpmの範囲である。また、各回転軸の回転数が異なる場合、一の回転軸の回転数に対する他の回転軸の回転数の比率は、通常1~10の範囲であり、好ましくは1~2の範囲である。
 また、この複数の回転軸が、粉砕手段としてディスクを有する場合、下記(式b)で定義されるディスクの周速(V)は、等速でもよく、非等速でもよく、装置によって適宜設定されるものであるが、0.05m/s~5m/sが好ましく、0.1m/s~5m/sがより好ましく、0.15m/s~3m/sが更に好ましく、0.2m/s~2m/sが特に好ましい。上記範囲を超えると、含水ゲルに係る剪断力が過大になり、粉砕後の含水ゲル粒子の物性劣化及び過度の圧密が発生するため好ましくない。また、上記範囲を下回ると、ゲル粉砕工程における単位時間当たりの処理量が減少するため好ましくない。また、各回転軸が有するディスクの周速が異なる場合、一の回転軸における周速に対する他の回転軸における周速の比率は、通常1~10の範囲であり、好ましくは1~2の範囲である。
 周速(V)(m/s)=πD×n/60 ・・・ (式b)
 ここで、(式b)中、Vはディスクの周速(単位;m/s)、Dはディスクの最大径(単位;m)、nは単位時間当たりのディスクの回転数(単位;rpm)である。
 また、複数の回転軸の回転方向は、それぞれの回転軸が同じ方向に回転する同方向型であってもよく、それぞれの回転軸が反対方向に回転する異方向型であってもよい。同方向型装置ではセルフクリーニング性が期待でき、異方向型装置では強力な剪断力が期待できる。各回転軸の回転方向は、前述した粉砕手段の配列(ディスクパターン)との組み合わせにより適宜選択される。
 前記複軸型混錬機は、本体内部に、水及び/又は水蒸気を供給する機能を備えることが好ましい。水及び/又は水蒸気(好ましくは、水及び水蒸気)を供給しながらゲル粉砕を行うことで、所望の連通孔を十分に含む吸水性樹脂粒子を得ることができる。したがって、本発明の一実施形態によれば、ゲル粉砕工程において、本体の内部に水及び/又は水蒸気が供給される。水及び/又は水蒸気を供給する手段として、ゲル粉砕装置に、複数の投入口を備えてもよい。この水及び/又は水蒸気の投入口の設置位置は問わないが、好ましくは、含水ゲルの投入口側に設置される。また、水と水蒸気とが、それぞれ異なる投入口から供給されてもよい。
 水蒸気添加に際しては特に限定されないが、例えば、空気、ドライエアー、窒素等のガスを水蒸気に混合し、混合気体として添加してもよい。添加される水蒸気の圧力は特に限定されないが、好ましくは0.2~0.8MPaである。水及び/又は水蒸気(混合気体を含む)の温度は特に限定されないが、好ましくは50℃以上、より好ましくは60℃以上、更に好ましくは70℃以上、特に好ましくは80℃以上である。過度の昇温と含水ゲルの乾燥を抑制する観点から、200℃以下が好ましく、170℃以下がより好ましく、150℃以下が更に好ましく、120℃以下が更により好ましく、100℃以下が特に好ましい。好ましい形態は、本体の内部に供給される水及び/又は水蒸気の温度が50~120℃である。前記複軸型混錬機の含水ゲル及び粒子状含水ゲルの温度を、用いられる水及び/又は水蒸気(混合気体を含む)の温度並びに投入量によって調整することも可能である。この場合、水蒸気及び/又は混合気体は直接伝熱の熱媒とし作用して、本体内部の含水ゲル及び粒子状含水ゲルが所定の温度に加熱又は保温される。尚、添加する水及び/又は水蒸気(混合気体を含む)に、後述するゲル流動化剤、架橋剤、酸化剤、還元剤、重合開始剤等の添加剤を配合してもよい。
 この水及び/又は水蒸気の供給量としては、含水ゲルの固形分換算による質量に対して、それぞれ、0.1質量%~50質量%が好ましく、0.5質量%~40質量%がより好ましく、1質量%~30質量%が更に好ましい。
 前記複軸型混錬機は、好ましくは本体の外面に、加熱手段及び/又は保温手段を備えるが、本体の外面に設置されたジャケット等に温水やオイルのような液状の熱媒を導入してもよく、加熱されたガス(熱風)を熱媒として導入してもよい。これら熱媒は、間接伝熱の熱媒として作用する。間接伝熱の加熱効率及び/又は保温効率の観点から、熱媒の温度は、好ましくは50℃以上、より好ましくは60℃以上、更に好ましくは70℃以上、特に好ましくは80℃以上である。一方、過度の昇温と含水ゲルの乾燥を抑制する観点から、熱媒の温度は、200℃以下が好ましく、170℃以下がより好ましく、150℃以下が更に好ましく、130℃以下が更により好ましく、110℃以下が特に好ましい。特に好ましい熱媒は、温水又は水蒸気である。また、熱媒の温度は一定温度でもよいし、ゲル粉砕途中で適宜変更してもよい。
 より好ましくは、含水ゲルが前記複軸型混錬機に投入される前に、本体内部(内表面)の温度が、50℃以上、より好ましくは60℃以上、更に好ましくは70℃以上、更により好ましくは80℃以上に加熱されていることが好ましい。これにより、本体の内表面への含水ゲルの付着が低減される。また、これにより、得られる吸水性樹脂粒子が十分に連通孔を含み、吸水性能が更に向上する。すなわち、前記複軸型混錬機によるゲル粉砕では、含水ゲルの投入前、ゲル粉砕開始時に、本体の内表面が前述した温度以上に加熱されていることが好ましい。より好ましくは、本体の内表面及び複数の回転軸並びに各回転軸が有する粉砕手段の外表面が、前述した温度以上に加熱されていることが好ましい。一方、過度の昇温と含水ゲルの乾燥を抑制する観点から、含水ゲルがゲル粉砕装置に投入される前において、本体内部(内表面)の加熱温度は、200℃以下が好ましく、170℃以下がより好ましく、150℃以下が更に好ましく、130℃以下が更により好ましく、110℃以下が特に好ましい。例えば、本体に備えられたジャケット内部に熱媒を循環させて保持することにより、本体内部(内表面)の温度を所望の範囲に調節することができる。ゲル粉砕工程における温度を50℃以上に保持する観点から、ゲル粉砕工程において本体内部(内表面)の温度は上記範囲に保持されていることが好ましい。
 ここで、「含水ゲル状架橋重合体を50℃以上で連続的に粉砕する」とは、図3の(A)で示す区間、つまり投入口を過ぎてから排出口に至るまでの区間において、含水ゲル状架橋重合体の温度を50℃以上に維持しながら、含水ゲル状架橋重合体を連続的に粉砕することをいう。例えば、複軸型混錬機の投入口に投入される含水ゲル状架橋重合体の温度T1を50℃以上とし、装置本体の外側に設置されたジャケットの熱媒温度を50℃以上とすれば、図3の(A)の区間において含水ゲル状架橋重合体の温度を50℃以上に維持でき、含水ゲル状架橋重合体を50℃以上で連続的に粉砕することができる。また、例えば、複軸型混錬機の投入口に投入される含水ゲル状架橋重合体の温度T1が50℃以下であっても、投入口部分で高温の水及び/又は水蒸気を供給する、装置本体のジャケット熱媒温度を高温に設定するなどして、含水ゲル状架橋体重合体を急速に昇温させ、(A)部分では50℃以上として連続的に粉砕する場合も含まれる。
 含水ゲル状架橋重合体を連続的に粉砕する温度は、好ましくは50℃以上であるが、より好ましくは60℃以上、更に好ましくは70℃以上、更により好ましくは80℃以上である。
 含水ゲル状架橋重合体を連続的に粉砕する温度の上限は、特に制限されるものではないが、過度の昇温と含水ゲルの乾燥を抑制する観点から、200℃以下が好ましく、170℃以下がより好ましく、150℃以下が更に好ましく、130℃以下が更により好ましく、110℃以下が特に好ましい。
 図3及び4には、本発明に好適に用いられる複軸型混錬機(ゲル粉砕装置)200の一例が示されている。図3は、このゲル粉砕装置200の一部切り欠き側面図であり、図4は、このゲル粉砕装置200の拡大図(本体中央部を上から見た図)である。以下、図3及び図4を用いて、このゲル粉砕装置200の基本構成及び使用方法を説明する。
 図示される通り、このゲル粉砕装置200は、投入口204、本体208、2本の回転軸206、排出口210、駆動装置214及びガス投入口216を備えている。尚、本体208は、バレルとも称される。図1においては、紙面の直交方向に沿って2本の回転軸206が設けられている。回転軸206は、本体208の長さ方向に延在している。回転軸206は、その一端が本体208を貫通して、駆動装置214に接続されている。図示されないが、このゲル粉砕装置200では、回転軸206の他端は、その後方に設置されている軸受けベアリングで回転自在に支持されている。つまり、回転軸206はその両端で保持された形態となっている。但し、本発明に係る製造方法におけるゲル粉砕装置は、このような両軸持ちの形態に限定されるものではなく、本発明の目的が達成される限り、排出口210の後方に軸受けベアリングを有さない、所謂片軸持ち構造であってもよい。投入口204、ガス投入口216、ゲル流動化剤投入口217及び排出口210は、それぞれ、本体208に固定され、本体208の内部と連通している。図3における左右方向は、本体208の長さ方向であり、回転軸206の軸方向である。図示されないが、本体208はジャケット構造を有している。
 図4には、ゲル粉砕装置200の本体208の一部が示されている。図示される通り、このゲル粉砕装置200では、2本の回転軸206が、本体208に内蔵されている。2本の回転軸206の外周には、それぞれ、粉砕手段212が設けられている。すなわち、粉砕手段212及び回転軸206は、別体として構成されている。この実施形態では、回転軸206は、粉砕手段212として複数のディスクを有している。図4における上下方向は、本体208の幅方向である。図4における左右方向は、本体208の長さ方向であり、回転軸206の軸方向である。
 このゲル粉砕装置200を用いてゲル粉砕工程を実施する好適な一形態では、始めに、図示されないジャケットに熱媒体を循環させて、本体208を加温する。その後、駆動装置214(例えば、モーター)により各回転軸206を回転させる。回転軸206の回転にともなって、スクリュー206及び粉砕手段212である複数のディスクが回転する。
 次に、含水ゲルを投入口204に連続的に投入する。この際、投入口204には、同時に水又は水蒸気を投入してもよい。また、ガス投入口216には水蒸気又は水を投入してもよい。水及び水蒸気により、含水ゲル及び本体208が加温され、所定の温度に保温される。
 本体208に投入された含水ゲルは、排出口210に向かって移動する。
 含水ゲルは、本体208内において、粉砕手段212(即ち、複数のディスク)と接触する。含水ゲルは、回転する複数のディスクによる剪断作用によって細粒化される。含水ゲルは、粉砕手段212の剪断作用により、粉砕されつつ、排出口210に向かって移動する。排出口210では、所定の粒度に調整された粒子状含水ゲルが取り出される。
 ゲル粉砕装置の回転軸は、複数のディスクを有している。複数のディスクの形状は、同一であっても異なっていてもよいが、異なることが好ましい。ディスクの組合せは、例えば特許文献(特開2005-35212号公報)などを参考に含水ゲルの物性、得たい粉砕ゲルのサイズ等に応じて、適宜変更される。
 このような基本構成を備えたゲル粉砕装置(複軸型混錬機)の例として、例えば、二軸以上の複軸型混練機(ニーダー)が挙げられる。具体的には、2軸、3軸、4軸又は8軸の混練機が挙げられる。このゲル粉砕装置は、生産効率の観点から連続式が好適に用いられる。具体的には、ゲル粉砕装置として、CKH型連続混練機(本田鐵工(株))、2軸押出機TEX((株)日本製鋼所)、2軸押出機TEXαIII((株)日本製鋼所)、コンティニュアースニーダー(CONTINUOUS KNEADER、(株)ダルトン)、KRCハイブリッドリアクタ(KRC HYBRID REACTER、(株)栗本鐵工所)、KRCニーダー(KURIMOTO-READCO CONTINUOUS KNEADER、(株)栗本鐵工所)、KEXエクストルーダー(KEX EXTRUDER、(株)栗本鐵工所)、KEXDエクストルーダー(KEXD EXTRUDER、(株)栗本鐵工所)、双腕型ニーダールーダー(KNEADER-RUDER、(株)モリヤマ)、2軸混練押出機TEX-SSG(東芝機械(株))、2軸混練押出機TEX-CS(東芝機械(株))、2軸混練押出機TEX-SX(東芝機械(株))、2軸混練押出機TEX-DS(東芝機械(株))、2軸混練押出機TEX-A(東芝機械(株))、2軸混練押出機TEX-B(東芝機械(株))、2軸混練押出機TEX-BS(東芝機械(株))4軸、8軸混練押出機WDRシリーズ((株)テクノベル)等が例示される。したがって、本発明の好ましい実施形態において、ゲル粉砕装置は、連続式の複軸型混練機である。
 複軸型混練機による粉砕において、含水ゲルをゲル粉砕するためのゲル粉砕エネルギー(GGE)が、上限値として、150[J/g]以下であるのが好ましく、130[J/g]以下であるのがより好ましく、120[J/g]以下であるのが更に好ましい。また、下限値としては、20[J/g]以上が好ましく、40[J/g]以上がより好ましく、50[J/g]以上が更に好ましい。例えば、本発明において、含水ゲルをゲル粉砕するためのゲル粉砕エネルギー(GGE(1))は、20~150[J/g]であり、好ましくは40~130[J/g]であり、より好ましくは50~120[J/g]である。また、GGE(2)は、20~150[J/g]であり、好ましくは40~130[J/g]であり、より好ましくは50~120[J/g]である。当該GGE(1)、CGE(2)を上記範囲内に制御することで、適切なせん断・圧縮力を含水ゲルに与えながらゲル粉砕することができる。
 (ゲル温度)
 複軸型混練機によるゲル粉砕において、含水ゲル状架橋重合体を50℃以上で連続的に粉砕する観点から、ゲル粉砕工程において、ゲル粉砕装置の投入口に投入される含水ゲル状架橋重合体の温度T1(以下、「投入口におけるゲル温度T1」又は単に「ゲル温度T1」とも称する)は、50℃以上であることが好ましい。このゲル温度T1は、好ましくは、投入口に設置された温度計にて測定される。ゲル粉砕された含水ゲルの装置への付着防止の観点から、このゲル温度T1は、60℃以上が好ましく、吸水性樹脂粒子の吸水性能を更に向上させる観点から、70℃以上がより好ましく、80℃以上が更に好ましい。過度の乾燥を抑制する観点から、ゲル温度T1は130℃以下が好ましく、110℃以下がより好ましく、100℃以下が更に好ましく、90℃以下が特に好ましい。これと同様の理由から、粉砕時のゲル温度は、好ましくは130℃以下である。なお、ゲル温度T1は、ゲル粉砕装置に投入される含水ゲル状架橋重合体について、重合熱で温度が上昇した含水ゲル状架橋重合体を保温する、あるいは得られた含水ゲル状架橋重合体を加温することにより、所望の範囲内に調節することができる。
 ゲル粉砕された含水ゲル同士の凝集抑制の観点から、ゲル粉砕装置から排出される粒子状含水ゲル状架橋重合体の温度T2(以下、「排出口におけるゲル温度T2」又は単に「ゲル温度T2」とも称する)は、60℃~140℃が好ましく、70℃~130℃がより好ましく、80℃~120℃が更により好ましく、80℃~115℃が特に好ましく、100~115℃が最も好ましい。好ましくは、温度T2が係る温度範囲であり、かつ温度T1が前述した温度範囲となるように設定される。このゲル温度T2は、好ましくは、排出口に設置された温度計にて測定される。なお、ゲル温度T2は、ゲル粉砕装置の加熱手段及び/又は保温手段の設定温度、更には、ゲル粉砕装置内部での含水ゲル状架橋重合体の滞留時間を適宜調整することにより、所望の範囲内に調節することができる。
 複軸型混練機によるゲル粉砕では、上述したゲル流動化剤を添加するのが好ましい。ゲル流動化剤は、1回で添加しても、2回以上に分割して複数回添加してもよく、添加する位置も混練機のいずれの位置であってもよい。ゲル流動化剤を複数回に分割して添加する場合は、異なる位置で添加するのが好ましい。一実施形態では、複軸型混練機による粉砕において、複軸型混練機のゲル投入口付近(例えば、図3中、短冊状含水ゲルを投入する投入口204)とゲル排出口付近(図3中、ゲル流動化剤投入口217)とでゲル流動化剤を分割して添加する。ゲル流動化剤を分割添加することにより、粉砕ゲル同士の付着や融着が抑制される。ゲル粉砕工程において図3及び図4に示す複軸型混練機を用いた場合、小さい粒径の粒子状含水ゲルを得ることができるが、ゲル流動化剤を添加することにより、吸水性樹脂粒子において、粒子の過度な凝集を抑制することができ、連通孔が塞がることを抑制できる。これにより、吸水性樹脂粒子において連通孔及び独立気泡の存在割合の変動を抑制でき、本発明の効果を向上することができる。
 〔3-5〕分離工程
 上記重合工程において逆相懸濁重合を行った場合、分離工程において、得られた含水ゲル状架橋重合体と疎水性有機溶媒とを分離する。分離工程で用いる装置の種類及び構造については吸水性能(液の取り込み速度及び戻り量)を損なうことがない限り、特に限定されないが、例えば、ろ過、沈降、遠心分離、圧搾等の公知の装置を利用することができる。また、重合工程で用いた攪拌羽を有する攪拌装置を用いて常圧又は減圧下で加熱し、共沸脱水することにより疎水性有機溶媒と分離してもよい。バッチ式逆相懸濁重合においては常圧又は減圧下での共沸脱水が好適に行われる。
 連続式懸濁重合の場合は、重合工程において形成された含水ゲルが、連続相をなす疎水性有機溶媒とともに反応装置から連続的に排出される。上述した通り、疎水性有機溶媒と含水ゲルは、例えば、ろ過、沈降、遠心分離、圧搾等の公知の方法により分離できる。また、好ましい形態としては、本工程で分離した疎水性有機溶媒を回収し、配管を通じて分散装置に循環させる循環型のプロセスが好ましい。
 〔3-6〕ゲル整粒工程
 上記重合工程において逆相懸濁重合を行った場合、上記分離工程で疎水性有機溶媒から分離された含水ゲル重合体を、押出作用部及び多孔板を有するゲル整粒装置を用いて含水ゲルを整粒することが好ましい。これにより、整粒された含水ゲル重合体(以後、ゲル整粒後の含水ゲルを整粒ゲルと表す)が得られる。
 「ゲル整粒装置」
 本明細書において、「ゲル整粒」とは、粒子状含水ゲルからなる湿塊を多孔板の小孔から円柱状に押し出すことにより、ほぼ均一な形状及びサイズを有する粒を作製する操作である。つまり、多孔板を用いることにより、前工程の溶媒分離工程で過度に凝集した粗大凝集物の形状になっている含水ゲルは解砕され、小粒径の単粒子状の含水ゲルは適度な凝集状態とされる。したがって、本工程によって、比較的粒子径の均一な造粒形状の含水ゲル(整粒ゲル)であって、連通孔を十分に含有する凝集体を得ることができる。なお、整粒ゲルは単粒子状の含水ゲルを含んでいてもよい。
 ゲル整粒工程において使用される「押出作用部及び多孔板を有するゲル整粒装置」としては、押出作用部と、多孔板(ダイ又はスクリーン)とを有し、押出作用部が通常は多孔板に向かって内容物を押出し供給する押出し部材を有し、多孔板から材料を押し出すことにより一定サイズの粒を作製可能な装置であれば特に限定されない。
 図5は、押出作用部及び多孔板を有するゲル整粒装置の分類を模式的に示す図である。押出作用部及び多孔板を有するゲル整粒装置は、押出作用部の構造から、スクリュー形式、回転多孔ダイス形式、及び回転ブレード形式に大別される。
 スクリュー形式のゲル整粒装置310は、回転駆動されるスクリュー311(押出作用部に相当する)と、小孔312が形成されたダイス313(多孔板に相当する)とを有する。投入された材料(矢印314を参照)は、回転駆動されたスクリュー311によってダイス313に向かって押出し供給され、ダイス313の小孔312から押し出される(矢印315を参照)。スクリュー形式のゲル整粒装置310は、材料が押し出される方向から、横押出し方式と、前押出し方式とがある。横押出し方式の場合、図示例のように、ダイス313は、スクリュー311の回転軸が伸びている方向と平行な方向に配置され、材料は、スクリュー311の回転軸と交差する方向に押し出される。前押出し方式の場合、ダイス313は、スクリュー311の回転軸と直交する方向に配置され、材料は、スクリュー311の回転軸が伸びている方向に押し出される。
 スクリュー形式のゲル整粒装置としては、スクリュー型前押出し式整粒機、スクリュー型横押出し式整粒機、スクリュー型前処理兼用押出し式整粒機などが用いられうる。スクリュー型横押出し式整粒機としては、アキラ機工株式会社製のニーダー付一軸押出し造粒機が挙げられる。スクリュー型前押出し式整粒機としては、株式会社ダルトン製のツインドームグランシリーズが挙げられる。スクリュー型前処理兼用押出し式整粒機としては、株式会社ダルトン製のマルチグランが挙げられる。
 回転多孔ダイス形式のゲル整粒装置320は、ロール321(押出作用部に相当する)と、小孔322が形成され回転駆動される回転ダイス323(多孔板に相当する)とを有する。ロール321は、回転ダイス323の内側に配置される。回転ダイス323とロール321との間に投入された材料(矢印324を参照)は、ロール321によって回転ダイス323の小孔322から押し出される(矢印325を参照)。
 回転多孔ダイス形式のゲル整粒装置としては、ロール型リングダイ式押出し整粒機が用いられうる。ロール型リングダイ式押出し整粒機としては、株式会社ダルトン製のディスクペレッターが挙げられる。
 回転ブレード形式のゲル整粒装置330は、回転駆動されるパドル331(押出作用部に相当する)と、小孔332が形成された円筒状ダイス333(多孔板に相当する)とを有する。パドル331は、円筒状ダイス333の内側に配置される。パドル331の上方には、回転駆動される押込み羽根336が配置される。投入された材料(矢印334を参照)は、回転駆動された押込み羽根336及びパドル331によって円筒状ダイス333に向かって押出し供給され、円筒状ダイス333の小孔332から押し出される(矢印335を参照)。
 回転ブレード形式のゲル整粒装置としては、ブレード型バスケット式押出し整粒機、ブレード型オシレーティング式押出し整粒機などが用いられうる。ブレード型オシレーティング式押出し整粒機としては、フロイント・ターボ株式会社製の円筒造粒機が挙げられる。ゲル整粒工程において使用される「押出作用部及び多孔板を有するゲル整粒装置」は、好ましくは、スクリュー型前押出し式整粒機又はスクリュー型横押出し式整粒機であり、より好ましくはスクリュー型前押出し式整粒機である。
 ここで、「多孔板」とは、粒子を一定のサイズにするための、多数の孔を有する部材であり、ダイ又はスクリーンに対応するものである。多孔板の形状は特に制限されず、平面状、曲面状、球面状(ドーム形状)などが採用されうる。例えばスクリュー型前押出し式押出し整粒機であれば、スクリューの先端部分にドーム形状のダイが配置されている。また、スクリュー型横押出し式押出し整粒機であれば、スクリューの外周部分に曲面状のスクリーンが配置されている。このときの押出し羽根も、球面状(すなわち、そのエッジの輪郭が球面の一部を形成するような形状)とされていることが好ましい。このように、ダイ又はスクリーンを球面状にし、押出し羽根の先端も球状にすることにより、孔径の小さなダイでも押出し整粒を容易に行うことができ生産性がより向上し、更に強度の強い整粒粒子が任意の粒子径で得られる。なお、この「球面」には、真円や楕円などの円の回転してできる軌跡面、更には複数の円を組み合わせて回転させて得られる軌跡面、半球面、曲面、双曲面、放物面など平面以外の面が広く含まれる。
 更に、この多孔板(ダイ又はスクリーン)の孔の形は特に限定されず、真円状、楕円状、六角形等の多角形、三角形状等、使用に適した形状に任意に選択することが可能であるが、整粒強度の観点から真円状、楕円状が好ましい。孔径についても特に制限されないが、1.5mm以下であることが好ましく、1.0mm以下であることがより好ましく、0.8mm以下であることが更により好ましい。かような上限以下であることで、得られる整粒ゲルのサイズが必要以上に増大することが防止され、粒径と連通孔総体積率が適切な吸水性樹脂粒子を得ることができる。孔径は、好ましくは0.3~1.5mmであり、より好ましくは0.3~0.8mmである。多孔板の孔径が0.3mm以上であれば、押出し操作を実施する際に効率よく押出すことができる。なお、上記孔径については以下のように定義する。まず、孔が真円でない場合は孔の短径と長径の相乗平均値を孔径として採用する。また、多孔板の孔の各孔径が異なる場合は、全ての孔の孔径を算出し、その相加平均値を多孔板の孔の孔径として採用する。更に多孔板の押出し作用部側からその反対側までの間で多孔板の孔径が変化する(多孔板の厚み方向において孔径が変化する)場合は、その中で孔径が最少となる値を採用する。
 多孔板(ダイ又はスクリーン)の厚みについても特に限定されないが、ゲル整粒装置の特性上、孔径が小さい場合には多孔板の厚みを薄くしないと押出し整粒が困難となる場合がある。したがって、多孔板(ダイ又はスクリーン)の厚みは、好ましくは多孔板の孔径の0.1~5倍程度であり、より好ましくは孔径の0.2倍~3倍であり、更に好ましくは孔径の0.5~2倍である。多孔板(ダイ又はスクリーン)の厚みが孔径の5倍以下であれば、孔部分での抵抗の増大が防止され、押出し整粒をスムーズに実施することができる。一方、多孔板の厚みが孔径の0.1倍以上であれば、整粒強度の低下が防止されうる。
 図6は、ゲル整粒装置における押出し部分を模式的に示す図である。図中符号「CL」は、ゲル整粒装置340における多孔板343(ダイ又はスクリーン)と押出作用部341との間の隙間を示している。図示例では、押出作用部341はスクリューから構成されている。押出作用部341が押出し羽根を有する場合には、隙間CLは、押出し羽根のエッジからゲル整粒装置340の多孔板343裏面までの距離である。また、図中符号「d」は、多孔板343の小孔342の孔径を示している。なお、図中の白抜き矢印344は、ゲルの押出し方向を示している。
 ゲル整粒装置340における多孔板343(ダイ又はスクリーン)と押出作用部341との間の隙間CL(押出作用部341が押出し羽根を有する場合には、押出し羽根エッジからゲル整粒装置340の多孔板343裏面までの距離)は、好ましくは0.1~10.0mmであり、より好ましくは、多孔板343の孔径dが0.3~1.5mmのとき、ゲル整粒装置340における多孔板343(ダイ又はスクリーン)と押出作用部341との間の隙間CL(押出作用部341が押出し羽根を有する場合には、押出し羽根エッジからゲル整粒装置340の多孔板343裏面までの距離)は、好ましくは0.1mm~10.0mmである。上記隙間が0.1mm以上であれば、多孔板343とスクリュー341とが接近し過ぎることによって多孔板343が損傷し、当該多孔板343の寿命が短くなるのを防止することができる。一方、上記隙間が10.0mm以下であれば、押出し操作を実施する際の圧力が増大することによって、含水ゲルの一次粒子同士が過度に密着し、凝集体中の連通孔が潰れ、連通孔の総体積率が低下するのを防止することができる。ここで、例えばスクリュー型前押出し式整粒機の場合には、押出作用部としてストレートスクリューがあり、このストレートスクリューとダイとの間が均圧部と称されるが、この均圧部の厚みが「多孔板(ダイ又はスクリーン)と押出作用部との間の隙間(クリアランス)」に相当する。また、横押出出し式整粒機の場合には、ダイがストレートスクリューの周囲に配置されているが、このダイとストレートスクリューとの間の距離がクリアランスに相当する。なお、上記隙間の長さ(距離)は、多孔板と押出作用部との間の隙間の最も短い長さ(距離)である。
 なお、回転ブレード形式(ブレード型バスケット式押出し整粒機及びブレード型オシレーティング式押出し整粒機)の場合は、回転ブレードのエッジから多孔板の裏面までの距離が多孔板と押し出し作用部の間の隙間CLとなり、押し出し整粒機と同様の数値範囲であることが好ましい。回転多孔ダイス形式(ロール型リングダイ式押出し整粒機)の場合は、当該隙間は実質0となるため、この限りではない。
 図7は、上述したような球面状(ドーム状)のダイを有するスクリュー型前押出し式整粒機の構成を模式的に示す模式図である。このスクリュー型前押出し式整粒機400においては、押出作用部としての送りスクリュー420が、ギヤーボックス410内の歯車機構を介して駆動部(図示せず)に接続され、スクリューケース430の内部に収納されている。また、上記スクリューケース430の頂部には、原料を投入するための投入ホッパー440が設けられ、スクリューケース430の前部には球面状ダイ450が取り付けられている。そして、送りスクリュー420の先端部は球面状とされ、この球面状先端部420aには1枚又は複数枚の球面状押出し羽根460が設けられている。この球面状押出し羽根460のエッジ460aの輪郭が上記球面状ダイ450の球面状裏面450aに沿った形状とされるとともに、上記球面状先端部420aの表面上に螺旋状に形成されている。このため、球面状押出し羽根460のエッジ460aの回転軌跡と上記球面状裏面450aとの間には等間隔の間隔(クリアランス)が全面にわたって形成されることになる。
 (含水ゲル温度)
 整粒装置に入る含水ゲルの温度の下限は特に制限はないが、整粒効率及び含水ゲルへのダメージの抑制の観点から好ましくは60℃以上、より好ましくは70℃、更に好ましくは80℃以上である。整粒装置投入時の含水ゲル温度の上限は特に制限はないが、一般的に100℃以下である。
 本ゲル整粒工程において、前述したゲル流動化剤等を添加することもできる。
 ゲル流動化剤は、上記の通りゲル整粒工程で添加することができるが、逆相懸濁重合法を採用した場合、それ以外の添加方法として、分離工程で疎水性有機溶媒から分離した含水ゲルに添加する、乾燥工程前の整粒ゲルに添加する、単量体水溶液調製工程で単量体水溶液に添加することが挙げられる。また、分散工程で分散助剤として用いる界面活性剤、高分子添加剤と重複してもよい。
 ゲル流動化剤として挙げられる界面活性剤及び高分子滑剤の合計添加量は、ゲル整粒機に投入するゲルの固形分に対して好ましくは1.0質量%以下、より好ましくは0.5質量%以下であり、好ましくは0.01質量%以上、特に好ましくは0.05質量%以上である。
 〔3-7〕乾燥工程
 本工程は、上記重合工程及び/又はゲル粉砕工程で得られた粒子状含水ゲル、ゲル整粒工程で得られた整粒ゲルを所望する樹脂固形分まで乾燥させて乾燥重合体を得る工程である。該樹脂固形分は、乾燥減量(吸水性樹脂1gを180℃で3時間加熱した際の重量変化)から求められ、好ましくは80重量%以上、より好ましくは85~99重量%、更に好ましくは90~98重量%、特に好ましくは92~97重量%である。
 上記粒子状含水ゲルの乾燥方法としては、特に限定されないが、例えば、加熱乾燥、熱風乾燥、減圧乾燥、流動層乾燥、赤外線乾燥、マイクロ波乾燥、ドラムドライヤー乾燥、疎水性有機溶媒との共沸脱水による乾燥、高温の水蒸気を利用した高湿乾燥等が挙げられる。中でも乾燥効率の観点から、熱風乾燥が好ましく、通気ベルト上で熱風乾燥を行うバンド乾燥(通気バンド式乾燥機)がより好ましい。
 上記熱風乾燥における乾燥温度(熱風の温度)としては、吸水性樹脂の色調や乾燥効率の観点から、好ましくは120~250℃、より好ましくは150~200℃である。なお、熱風の風速や乾燥時間等、上記乾燥温度以外の乾燥条件については、乾燥に供する粒子状含水ゲルの含水率や総重量及び目的とする樹脂固形分に応じて、適宜設定すればよく、バンド乾燥を行う際には、国際公開第2006/100300号、同第2011/025012号、同第2011/025013号、同第2011/111657号等に記載される諸条件が適宜適用される。バンド乾燥によって、乾燥後の吸水性樹脂の連通孔及び独立気泡の存在割合が適切な粒子状吸水剤を得ることができる。
 一実施形態では、乾燥工程における乾燥装置として、加熱装置が用いられる。この加熱装置は、その内部に粒子状含水ゲルを収容して回転する回転容器と、この回転容器の内部に位置して、その軸方向に延在し、かつこの回転容器とともに回転する複数の加熱管とを備えている。本願明細書において、この構成を有する加熱装置を、「回転型加熱装置」又は「加熱管付き回転型加熱装置」と称する場合がある。より好ましくは、この加熱装置は、その回転容器の外周面に、更に他の加熱手段を備えている。この加熱装置では、回転容器に収容された粒子状含水ゲルが、この容器の回転によって攪拌され、複数の加熱管との接触又は加熱管からの熱伝導によって、加熱される。複数の加熱管の輻射熱等により回転容器内面も加熱されるが、必要に応じて、粒子状含水ゲルは、回転容器の外周面に位置する加熱手段により、更に加熱される。この加熱装置では、必要により撹拌翼等他の攪拌手段も併用されるが、主として、粒子状含水ゲルを収容する回転容器の回転及びこの回転容器とともに回転する複数の加熱管の作用によって、粒子状含水ゲルが容器内で流動するため、被乾燥物である粒子状含水ゲルに対する機械的及び熱的ダメージが少ない。これにより、乾燥工程における微粉発生及び物性劣化が抑制される。更に、この加熱装置では、加熱管からの間接伝熱により乾燥されるため、熱風による乾燥(通気バンド式乾燥機や通気加熱式ロータリーキルン)のような乾燥物の飛散もなく、大量の廃ガス処理も要しないという利点がある。また、この加熱装置では、主として回転容器の回転により被乾燥物が流動するため、撹拌翼等で撹拌する連続攪拌乾燥機のように、粘着性を有する粒子状含水ゲルの撹拌に大きなエネルギーを要することもなく、乾燥後の吸水性樹脂の物性低下(例;吸水性能の低下、可溶成分の増加)、微粉発生、乾燥時の凝集等が回避されるという利点もある。
 乾燥工程において、回転型加熱装置を用いることにより、微粉発生が抑制されるとともに、乾燥工程において連通孔が塞がれることが抑制される。このため、乾燥工程において回転型加熱装置を用いることが好適な実施形態の一例である。これにより、適切な連通孔と独立気泡の存在割合の吸水性樹脂粒子を得ることができ、本発明の効果を向上することができる。
 一実施形態において、本発明に係る吸水性樹脂粒子は、ゲル粉砕工程においてダイスを使用しないミートチョッパーにおいて複数回のゲル粉砕が行われ、乾燥工程において回転型加熱装置が用いられる。これにより、粉砕されたゲル粒子同士の圧密が抑制されることで連通孔が塞がれにくくなることと、及び吸水性樹脂粒子において微細な粒子の凝集体として連通孔を数多く形成でき、かつ独立気泡を低減でき、本発明の効果をより向上することができる。
 一実施形態において、本発明に係る吸水性樹脂粒子は、ゲル粉砕工程において複軸型混練機が用いられ、乾燥工程において回転型加熱装置が用いられる。これにより、吸水性樹脂粒子において微細な粒子の凝集体として連通孔を数多く形成でき、かつ独立気泡を低減でき、本発明の効果をより向上することができる。すなわち、好ましい実施形態において、水溶液重合の後、2軸以上の複軸型混練機によるゲル粉砕工程、続いて回転型加熱装置による乾燥工程が行われる。
 本実施形態に用いられる加熱装置として、例えば水蒸気管付き回転型乾燥機が挙げられる。具体例としては、スチームチューブドライヤー(株式会社栗本鐵工所製)、スチームチューブドライヤー(宇部興産機械株式会社製)、スチームチューブドライヤー(月島機械株式会社製)、スチームチューブドライヤー(三井造船株式会社製)等挙げられる。
 図8には、加熱管付き回転型加熱装置502の一例が示されている。以下、図8を用いて、この加熱装置502の基本構成を説明する。加熱管付き回転型加熱装置の使用方法、及び加熱管付き回転型加熱装置を用いた乾燥工程及び表面処理工程については、WO2018/092863に記載の条件が本発明にも適用される。
 図8に図示される通り、この加熱装置502は、主部504、投入部及び取り出し部506、スチーム出入り部508を有している。主部504は、回転容器510、多数の加熱管512、第一歯車514、第二歯車516を有している。回転容器510は、概して円筒状である。図8における左右方向は、この回転容器510の軸方向である。
 この回転容器510の中に、多数の加熱管512が収容されている。それぞれの加熱管512は、回転容器510の軸方向に延在して、回転容器510の両端を貫通している。後述する通り、多数の加熱管512は、軸方向において、いずれも回転容器510の内周面とは接触していない。
 第一歯車514は、回転容器510の外周面に固定されている。第二歯車516は、第一歯車514と噛み合っている。
 投入及び取り出し開口部506より、乾燥、加熱対象物の投入、及び処理物の取り出しを行う。なお、乾燥途中の粒子状含水ゲルに表面架橋剤溶液を添加する場合は、投入及び取り出し開口部506からスプレー等で噴霧添加すればよい。
 スチーム出入り部508は、スチーム入口544及びドレーン546を有している。スチーム入口544は、多数の加熱管512と連通している。ドレーン546も、多数の加熱管512と連通している。
 この加熱装置502によって乾燥工程が実施されるには、スチーム入口544から加熱管512に向かってスチームが導入される。このスチームにより、回転容器510の中の温度が高まる。スチームの一部は、熱交換によって冷却される。冷却されたスチームは、水となり、ドレーン546から排出される。水となり排出されたスチームを補うように、スチーム入口544から連続的にスチームが導入されることにより、回転容器510内部の温度が制御される。
 回転容器510の中には、ガスが導入される。ガスは、回転容器510の中に充満する。過剰なガスは回転容器510から排出される。
 第二歯車516が、図示されない駆動手段(例えばモーター)により回転させられる。第二歯車516の回転により第一歯車514が回転し、さらに回転容器510が回転する。回転容器510と共に、多数の加熱管512も回転する。図示されないが、パッキンによって回転容器510とスチーム出入り部508は縁切りがされているので、回転容器510が回転してもスチーム出入り部508は回転しない。
 〔3-8〕粉砕工程、分級工程
 本工程は、上記乾燥工程で得られた乾燥重合体を粉砕(粉砕工程)し、所定範囲の粒度に調整(分級工程)して、吸水性樹脂(表面架橋を施す前の、粉末状の吸水性樹脂を便宜上「吸水性樹脂」と称する)を得る工程である。
 本発明の粉砕工程で使用される機器としては、例えば、ロールミル、ハンマーミル、スクリューミル、ピンミル等の高速回転式粉砕機、振動ミル、ナックルタイプ粉砕機、円筒型ミキサー等が挙げられ、必要により併用される。
 また、本発明の分級工程での粒度調整方法としては、特に限定されないが、例えば、JIS標準篩(JIS Z8801-1(2000))を用いた篩分級や気流分級等が挙げられる。なお、吸水性樹脂の粒度調整は、上記粉砕工程、分級工程に限定されず、重合工程(特に逆相懸濁重合や噴霧液滴重合)、その他の工程(例えば、造粒工程、微粉回収工程)で適宜実施できる。
 上記工程で得られる吸水性樹脂(表面架橋工程前の吸水性樹脂、いわゆるベースポリマー)は、重量平均粒子径(D50)として、好ましくは200~600μm、より好ましくは200~550μm、更に好ましくは250~500μmである。また、粒子径106μm未満の粒子の割合は、好ましくは10重量%以下、より好ましくは5重量%以下、更に好ましくは1重量%以下であり、粒子径850μm以上の粒子の割合は、好ましくは5重量%以下、より好ましくは3重量%以下、更に好ましくは1重量%以下である。なお、これらの粒子の割合の下限値としては、何れの場合も少ないほど好ましく、0重量%が望まれるが、0.1重量%程度でもよい。更に、粒度分布の対数標準偏差(σζ)は、好ましくは0.20~0.50、より好ましくは0.25~0.40、更に好ましくは0.27~0.35である。なお、これらの粒度は、米国特許第7638570号やEDANA ERT420.2-02に開示されている測定方法に準じて、標準篩を用いて測定される。
 上述した粒度は、表面架橋後の吸水性樹脂(以下、便宜上「吸水性樹脂粒子」又は「吸水性樹脂粉末」と称する場合がある)のみならず、最終製品としての粒子状吸水剤についても適用される。そのため、吸水性樹脂粒子において、上記範囲の粒度を維持するように、表面架橋処理(表面架橋工程)されることが好ましく、表面架橋工程以降に整粒工程を設けて粒度調整されることがより好ましい。
 〔3-9〕表面架橋工程
 本工程は、上述した工程を経て得られる吸水性樹脂粒子の表面層(吸水性樹脂粒子の表面から数10μmの部分)に、更に架橋密度の高い部分を設ける工程であり、混合工程、加熱処理工程及び冷却工程(任意)から構成される。
 該表面架橋工程において、吸水性樹脂粒子表面でのラジカル架橋や表面重合、表面架橋剤との架橋反応等により表面架橋された吸水性樹脂(吸水性樹脂粒子)が得られる。
 (表面架橋剤)
 本発明で使用される表面架橋剤としては、特に限定されないが、有機又は無機の表面架橋剤が挙げられる。中でも、吸水性樹脂の物性や表面架橋剤の取扱性の観点から、カルボキシル基と反応する有機表面架橋剤が好ましい。例えば、米国特許7183456号に開示される1種又は2種以上の表面架橋剤が挙げられる。より具体的には、多価アルコール化合物、エポキシ化合物、ハロエポキシ化合物、多価アミン化合物又はそのハロエポキシ化合物との縮合物、オキサゾリン化合物、オキサゾリジノン化合物、多価金属塩、アルキレンカーボネート化合物(例えばエチレンカーボネート)、環状尿素化合物等が挙げられる。
 有機表面架橋剤の具体例として、(ジ、トリ、テトラ、ポリ)エチレングリコール、(ジ、ポリ)プロピレングリコール、1,3-プロパンジオール、2,2,4-トリメチルー1,3-ペンタンジオール、(ポリ)グリセリン、2-ブテンー1,4-ジオール、1,4-ブタンジオール、1,3-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、トリメチロールプロパン、ジ又はトリエタノールアミン、ペンタエリスリトール、ソルビトール等のポリアルコール化合物;エチレングリコールジグリシジルエーテル、(ポリ)エチレングリコールジグリシジルエーテル、(ジ、ポリ)グリセロールポリグリシジルエーテル、グリシドール等のエポキシ化合物;2-オキサゾリドン、N-ヒドロキシエチル-2-オキサゾリドン、1,2-エチレンビスオキサゾリン等のオキサゾリン化合物;1,3-ジオキソラン-2-オン(エチレンカーボネート)、4-メチル-1,3-ジオキソラン-2-オン、4,5-ジメチル-1,3-ジオキソラン-2-オン、4,4-ジメチル-1,3-ジオキソラン-2-オン、4-エチル-1,3-ジオキソラン-2-オン、4-ヒドロキシメチル-1,3-ジオキソラン-2-オン、1,3-ジオキサン-2-オン、4-メチル-1,3-ジオキサン-2-オン、4,6-ジメチル-1,3-ジオキサン-2-オン、1,3-ジオキソパン-2-オン等のアルキレンカーボネート化合物;エピクロロヒドリン、エピブロムヒドリン、α-メチルエピクロロヒドリン等のハロエポキシ化合物、及び、その多価アミン付加物(例えばハーキュレス製カイメン;登録商標);γ-グリシドキシプロピルトリメトキシシラン、γーアミノプロピルトリエトキシシラン等のシランカップリング剤;3-メチル-3-オキセタンメタノール、3-エチル-3-オキセタンメタノール、3-ブチル3-オキセタンメタノール、3-メチル-3-オキセタンエタノール、3-エチル-3-オキセタンエタノール、3-ブチル3-オキセタンエタノール、3-クロロメチル-3-メチルオキセタン、3-クロロメチル-3-エチルオキセタン、多価オキセタン化合物などのオキセタン化合物、2-イミダゾリジノン等の環状尿素化合物等が挙げられる。
 前記多価アルコールとしては、炭素数が2~8の多価アルコールが好ましく、炭素数3~6の多価アルコールがより好ましく、炭素数3ないし4の多価アルコールが更に好ましい。更に、ジオールが好ましく、エチレングリコール、プロピレングリコール、1,3-プロパンジオール、1,4-ブタンジオールが例示され、プロピレングリコール(1,2-プロパンジオール)、1,3-プロパンジオール、1,4-ブタンジオールから選ばれる多価アルコールが好ましい。
 また、エポキシ化合物としてはポリグリシジル化合物が好ましく、エチレングリコールジグリシジルエーテルが好適に使用される。
 上記有機表面架橋剤に加えて、表面架橋をより効果的に行う観点から、イオン結合性表面架橋剤としてポリアミンポリマーなどの多価カチオン性ポリマーを併用してもよい。
 該表面架橋剤の使用量(複数使用の場合は合計使用量)は、吸水性樹脂粒子100質量部に対して、好ましくは0.01~10質量部、より好ましくは0.01~5質量部である。また、該表面架橋剤は水溶液として添加することが好ましく、この場合、水の使用量は、吸水性樹脂粒子100質量部に対して、好ましくは0.1~20質量部、より好ましくは0.5~10質量部である。更に必要に応じて、親水性有機溶媒を使用する場合、その使用量は、吸水性樹脂粒子100質量部に対して、好ましくは10質量部以下、より好ましくは5質量部以下である。
 (混合工程)
 本工程は、吸水性樹脂粒子と上記表面架橋剤とを混合する工程である。該表面架橋剤の混合方法については、特に限定されないが、予め表面架橋剤溶液を作製しておき、該液を吸水性樹脂質量部に対して、好ましくは噴霧又は滴下して、より好ましくは噴霧して混合する方法が挙げられる。
 該混合を行う装置としては、特に限定されないが、好ましくは高速撹拌型混合機、より好ましくは高速撹拌型連続混合機が挙げられる。重合工程において逆相懸濁重合を採用した場合は、分離工程において有機溶媒を留去又は共沸脱水する際に表面架橋剤を添加し、溶媒分離と同時に表面架橋を行ってもよい。
 (加熱処理工程)
 本工程は、上記混合工程から排出された混合物に熱を加えて、吸水性樹脂粒子の表面上で架橋反応を起させる工程である。
 該架橋反応を行う装置としては、特に限定されないが、好ましくはパドルドライヤーが挙げられる。該架橋反応での反応温度は、使用される表面架橋剤の種類に応じて適宜設定されるが、好ましくは50~300℃、より好ましくは100~200℃である。
 (冷却工程)
 本工程は、上記加熱処理工程後に必要に応じて設置される任意の工程である。
 該冷却を行う装置としては、特に限定されないが、好ましくは加熱処理工程で使用される装置と同一仕様の装置であり、より好ましくはパドルドライヤーである。熱媒を冷媒に変更することで、冷却装置として使用できるためである。なお、上記加熱処理工程で得られた吸水性樹脂粒子は、該冷却工程において、好ましくは40~80℃、より好ましくは50~70℃に、必要に応じて強制冷却される。
 〔3-10〕添加剤添加工程
 本工程は、上記表面架橋工程で得られた吸水性樹脂粒子に、多価金属塩、カチオン性ポリマー、キレート剤、無機還元剤、ヒドロキシカルボン酸化合物、水不溶性無機粒子、界面活性剤、非高分子水溶性化合物等の添加剤を添加する工程である。上述したように、該添加剤は上記表面架橋剤(水溶液)と同時に、吸水性樹脂粒子と混合することもできる。
 (多価金属塩及び/又はカチオン性ポリマー)
 得られる吸水性樹脂の通液性、吸湿流動性等の向上の観点から、多価金属塩及び/又はカチオン性ポリマーを添加してもよい。
 上記多価金属塩及び/又はカチオン性ポリマーとして、具体的には、国際公開第2011/040530号の「〔7〕多価金属塩及び/又はカチオン性ポリマー」に開示された化合物及びその使用量が、本発明に適用される。
 (キレート剤)
 得られる吸水性樹脂の色調(着色防止)、劣化防止等の観点から、キレート剤を添加してもよい。
 上記キレート剤として、具体的には、国際公開第2011/040530号の「〔2〕キレート剤」に開示された化合物及びその使用量が、本発明に適用される。
 (無機還元剤)
 得られる吸水性樹脂の色調(着色防止)、劣化防止、残存モノマー低減等の観点から、無機還元剤を添加してもよい。
 上記無機還元剤として、具体的には、国際公開第2011/040530号の「〔3〕無機還元剤」に開示された化合物及びその使用量が、本発明に適用される。
 (α-ヒドロキシカルボン酸化合物)
 得られる吸水性樹脂の色調(着色防止)等の観点から、α-ヒドロキシカルボン酸を添加してもよい。なお、「α-ヒドロキシカルボン酸化合物」とは、分子内にヒドロキシル基を有するカルボン酸又はその塩のことで、α位にヒドロキシル基を有するヒドロキシカルボン酸である。
 上記α-ヒドロキシカルボン酸化合物として、具体的には、国際公開第2011/040530号の「〔6〕α-ヒドロキシカルボン酸化合物」に開示された化合物及びその使用量が、本発明に適用される。
 (水不溶性無機粒子)
 吸水性樹脂粒子の流動性改善等の観点から、水不溶性無機粒子を添加してもよい。具体的には、上記〔2-7〕の欄で記載した水不溶性無機粒子が挙げられる。
 (界面活性剤)
 得られる吸水性樹脂の物性(例えば、吸水速度)向上等の観点から、界面活性剤を添加してもよい。
 上記界面活性剤として、具体的には、国際公開第97/017397号や米国特許第6107358号に開示された界面活性剤、即ち、ノニオン性界面活性剤、アニオン性界面活性剤、カチオン性界面活性剤、両性界面活性剤等が挙げられる。
 (非高分子水溶性化合物)
 吸水性樹脂の粉塵低減等の観点から、非高分子水溶性化合物を添加してもよい。国際公開第2014/034667号の「非高分子水溶性化合物」に開示された化合物及びその使用量が、本発明に適用される。
 本発明においては、上述した添加剤以外の添加剤を、吸水性樹脂に種々の機能を付加させるため、添加することもできる。該添加剤として、具体的には、リン原子を有する化合物、酸化剤、有機還元剤、金属石鹸等の有機粉末、消臭剤、抗菌剤、パルプや熱可塑性繊維等が挙げられる。
 該添加剤の使用量(添加量)は、その用途に応じて適宜決定されるため、特に限定されないが、吸水性樹脂粒子100重量部に対して、好ましくは3重量部以下、より好ましくは1重量部以下である。また、該添加剤は、上記工程とは別の工程で添加することもできる。
 〔3-11〕その他の工程
 本発明においては、上述した工程以外に、造粒工程、整粒工程、微粉除去工程、微粉の再利用工程等を必要に応じて設けることができる。また、輸送工程、貯蔵工程、梱包工程、保管工程等の1種又は2種以上の工程を更に含んでもよい。なお、「整粒工程」は、表面架橋工程以降の微粉除去工程や吸水性樹脂が凝集し、所望の大きさを超えた場合に分級、粉砕を行う工程を含む。また、「微粉の再利用工程」は、本発明のように微粉をそのまま添加する形態の他、大きな含水ゲルにして、吸水性樹脂の製造工程の何れかの工程に添加する工程を含む。
 〔4〕粒子状吸水剤の用途
 本発明の粒子状吸水剤は、吸水を目的とした用途に用いられ、吸収体として広く使用される。また、当該吸収体を含む吸収物品として用いられる。特に、本発明の粒状吸水剤は、加圧下での逆戻りが低減されることから、吸収物品の中でも、ヒトまたは動物が使用する、尿や血液等の体液を吸収するための衛生物品に適した吸収体(すなわち、後述する「装着タイプの吸収体」)として、好適に用いられる。また、ある物(例えば、床、ベッドシーツ等)の上に配置して用いられるヒトまたは動物の尿や血液等の体液を吸収するための衛生物品に適した吸収体(すなわち、後述する「配置タイプの吸収体」)としても、好適に用いられる。装着タイプの吸収体としては、例えば、紙オムツ、失禁パッド、生理用ナプキン等が挙げられ、配置タイプの吸収体としては、ペットシート、介護用防水シーツ、災害用簡易トイレ等が挙げられる。その他の吸収性物品の一例としては、例えば、ネコ砂、ドリップ吸収材、鮮度保持材、結露防止シート、等が挙げられる。その他の吸水性樹脂の用途としては、土壌保水剤、育苗用シート、種子コーティング材、使い捨てカイロ、冷却用バンダナ、保冷剤、医療用廃液固化剤、残土固化材、水損防止廃液ゲル化剤、吸水土のう、湿布材、化粧品用増粘剤、電気・電子材料通信ケーブル用止水材、ガスケットパッキング、肥料用徐放剤、各種徐放剤(空間除菌剤、芳香剤等)、創傷保護用ドレッシング材、結露防止用建築資材、油中水分除去剤等が挙げられる。また本発明の粒子状吸水剤は、塗料、接着剤、アンチブロッキング剤、光拡散剤、艶消し剤、化粧板用添加剤、人工大理石用添加剤、トナー用添加剤等として、吸水・膨潤させ樹脂や基材に混合する用途でも使用することができる。
 すなわち、本発明の好適な一実施形態は、上記形態の粒子状吸水剤を含む吸収体である。
 また、本発明の他の好適な一実施形態は、上記形態の吸収体を含む衛生物品である。
 吸収体としては、粒子状吸水剤と繊維基材(例えば、親水性繊維)とを主成分して成形された吸収材が挙げられる。上記吸収体中の粒子状吸水剤と親水性繊維との合計重量に対する粒子状吸水剤の含有量(コア濃度)は、20~100重量%、より好ましくは25~90重量%、特に好ましくは30~80重量%、最も好ましくは40~80重量%が更に好ましい。上記吸収体中のコア濃度が高いほど、吸収体や吸収物品等の製造時における粒子状吸水剤の吸水性能の影響をより受けるものとなる。このような吸収体は、例えば、親水性繊維等の繊維基材と粒子状吸水剤とをブレンド又はサンドイッチして成形される。用いられる繊維基材としては、例えば、粉砕された木材パルプ等の親水性繊維、コットンリンターや架橋セルロース繊維、レーヨン、綿、羊毛、アセテート、ビニロン等が挙げられる。これらの繊維基材は、好ましくはエアレイドしてなるものがよい。
 また、吸収体としては、2枚のシート(例えば、不織布)間に吸水性樹脂を固定化した(パルプレスの)吸収性シートであってもよい。
 また、上記吸収物品とは、上記吸収体、液透過性を有する表面シート及び液不透過性を有する背面シートを備えてなるものである。上記吸収性物品は、吸収体(吸収コア)を製造し、該吸収コアを、液透過性を有する表面シートと液不透過性を有する背面シートでサンドイッチする。その後、必要に応じて、弾性部材、拡散層、粘着テープ等を装備することにより、大人用紙オムツや生理用ナプキン等の吸収物品が得られる。なお、このとき、上記吸収コアは、例えば、密度0.06~0.50[g/cm]、坪量0.01~0.20[g/cm]の範囲に圧縮成形される。
 以下では、上記形態の粒子状吸水剤を含む吸収体の好ましい形態を説明する。
 〔4-1〕装着タイプの吸収体(装着タイプ)
 一実施形態において、本発明の粒子状吸水剤を含む吸収体は、ヒトや動物に装着する吸収体性物品を構成する吸収体として用いられる。本実施形態において、吸収体は、液を直接的に吸収する吸液面が表面側に形成された第1の基材と、前記第1の基材の裏面側に配置される吸水層と、を有する吸収体であって、前記吸水層は、ポリ(メタ)アクリル酸(塩)系吸水性樹脂粒子を主成分として含む粒子状吸水剤を含み、前記粒子状吸水剤は、外部と通じる空間である連通孔と、外部と通じない閉鎖空間である独立気泡と、を含み、前記連通孔の総体積率は、10体積%以上であり、前記独立気泡の総体積率は、0.5体積%以下であり、下記(a)及び(b)の少なくとも1つを満たす、吸収体:(a)前記吸水層において前記粒子状吸水剤が含まれる領域が、実質的に前記粒子状吸水剤を含まない間隙を隔てて配置され、前記間隙は前記吸収体の長手方向に伸びて形成される;(b)前記第1の基材は、空隙率が95%以上の液体透過性シートである。
 本実施形態の吸収体は、まず、特定の粒子状吸水剤、すなわち上記形態の粒子状吸水剤を用いていることに特徴を有する。よって、本実施形態に係る吸収体において、粒子状吸水剤は、ポリアクリル酸(塩)系吸水性樹脂粒子を主成分とする粒子状吸水剤であって、連通孔と独立気泡とを含む形状を有し、連通孔の総体積率は10体積%以上、かつ、独立気泡の総体積率は0.5体積%以下である。以下では、ポリアクリル酸(塩)系吸水性樹脂粒子を主成分とし、連通孔と独立気泡とを含む形状を有し、連通孔の総体積率は10体積%以上、かつ、独立気泡の総体積率は0.5体積%以下である粒子状吸水剤を、「特定の粒子状吸水剤」と称する場合がある。特定の粒子状吸水剤の構成については、上述のとおりである。特定の粒子状吸水剤を吸水層に用いることで、液の取り込み速度が高く、かつ戻り量が低減した吸収体とすることができる。本実施形態では、この優れた吸収性能を有する特定の粒子状吸水剤を用いて、さらに優れた吸収性能を発現することができる構成を見出したものである。
 なお、本明細書中、液の吸収速度は、吸収体において所定の量の液体が吸収される時間を示し、上記時間が短いことが良好とされる。また、戻り量(逆戻り量又はRe-wetとも称される)とは、吸収体に吸収された液体が、吸収体に圧力が加わることにより放出される液体の量を示し、戻り量は少ないことが良好とされる。
 本実施形態の吸収体は、吸水層が特定の粒子状吸水剤を含むことに加えて、下記(a)及び(b)の少なくとも1つを満たすことが好ましい:(a)前記吸水層において前記粒子状吸水剤が含まれる領域が、実質的に前記粒子状吸水剤を含まない間隙を隔てて配置され、前記間隙は前記吸収体の長手方向に伸びて形成される;(b)前記第1の基材は、空隙率が95%以上の液体透過性シートである。
 かかる構成によって、液の取り込み速度が高く、かつ戻り量が低減された吸収体、すなわち、液の取り込み速度及び戻り量が有意に優れた吸収体とすることができる。本実施形態の吸収体は、第1の基材の表面は、液を直接的に吸収する吸液面を形成する。本明細書中、「直接的」とは、吸水層に接触する前に、液体が基材に接触、または、基材を透過することである。本形態において、吸水層に含有されていた粒子状吸水剤の一部が第1の基材を透過して第1の基材上に移動して一部露出しても、それは吸水層が配置されているとはみなさない。なお、当該移動の要因は、例えば、吸収体が最終製品となり、輸送や運搬がなされて生じた振動などが想定される。第1の基材上に粒子状吸水剤を意図的に散布又は配置したような場合は、本形態の範疇ではない。
 本実施形態の別の形態において、第1の基材の表面が直接的に吸収する吸液面であるため、第1の基材上には吸水層が配置されていない。よって、本実施形態に係る吸収体は、液を直接的に吸収する吸液面が表面側に形成された第1の基材と、前記第1の基材の裏面側に配置される吸水層と、を有する、吸収体であって、前記第1の基材の表面側には吸水層が配置されておらず、前記吸水層は、ポリ(メタ)アクリル酸(塩)系吸水性樹脂粒子を主成分として含む粒子状吸水剤を含み、前記粒子状吸水剤は、外部と通じる空間である連通孔と外部と通じない閉鎖空間である独立気泡とを含み、前記連通孔の総体積率は、10体積%以上であり、前記独立気泡の総体積率は、0.5体積%以下であり、下記(a)及び(b)の少なくとも1つを満たす、吸収体:(a)前記吸水層において前記粒子状吸水剤が含まれる領域が、実質的に前記粒子状吸水剤を含まない間隙を隔てて配置され、前記間隙は前記吸収体の長手方向に伸びて形成される;(b)前記第1の基材は、空隙率が95%以上の液体透過性シートである。
 本発明者らは、従来の吸収体においては、本願の実施例における戻り量の測定において、戻り量が顕著に多いことを見出した。つまり、断続的に複数回(特に、3回以上)の液の導入があると、通常の構成であれば、液量が設定の吸収量以上となって過剰な「戻り」が発生してしまう。これに対し、本実施形態では、(a)及び(b)の少なくとも1つの構成を満たすことにより、吸液面より導入された液を、吸液面上に滞留することなく(さらには、導入した液を局所的に滞ることなく)、吸水機能を担う下層の吸水層に液を効率的に送り込むことができる。
 (a)の構成によれば、吸水層において粒子状吸水剤が含まれる領域が、実質的に粒子状吸水剤を含まない間隙を隔てて配置され、間隙は前記吸収体の長手方向に伸びて形成されている。ここで、粒子状吸水剤が含まれる領域の間に存在する間隙は、液の導入があった場合に、第1の基材から吸水層へと液が導入される際の通液路として機能することができる。すなわち、通液路が存在することにより、吸液面より導入された液を、吸液面上に滞留することなく(さらには、導入した液が局所的に滞ることなく)、吸水層に液を効率的に送り込むことができる。具体的には、第1の基材中を通過した液(例えば、尿)が、吸水層の表面全体と間隙とに導入される。間隙に導入された液は、粒子状吸水剤が含まれる領域に対し、通液を妨げる粒子状吸水剤がなく、拡散しやすくなる。液が拡散した結果、液を導入した部位の粒子状吸水剤の液吸収量が多く、液導入部から離れた部位の粒子状吸水剤の液吸収量が少なくなるといった、液の吸収量に偏りが生まれることを防止する。このため、粒子状吸水剤が飽和膨潤した部位が発生する、つまり、液を吸収できない部位が発生して戻り量が増加するといった作用を防止することができる。よって、結果として、戻り量が低減できるものと考えられる。
 また、間隙が、吸収体の長手方向に伸びた形状であることにより、液が吸液面に局所的に導入された場合であっても、吸水層に達した液を面方向に拡散しやすくなる。また、本実施形態の吸収体は、優れた吸収性能を有する特定の粒子状吸水剤を吸水層に用いている。特定の粒子状吸水剤を含む吸水層において吸収体の長手方向に延びた形状の間隙を設けることにより、液が吸液面に局所的に導入された場合の拡散が効率的に発揮される。すなわち、特定の粒子状吸水剤は、優れた吸収性能(液の取り込み速度)を有しているため、局所的に導入された液もすぐ吸収することができるが、その周辺の粒子状吸水剤にも液が導入される構成(すなわち、吸収体の長手方向に伸びた間隙を設けること)により、その周辺の粒子状吸水剤の吸収性能も十分に利用することができる。よって、本構成とすることにより、特定の粒子状吸水剤の吸収性能をさらに優れたものとできる。
 また、例えば、粒子状吸水剤が液を吸収して膨潤した場合、粒子状吸水剤が含まれる領域はその体積が増加するため、間隙とされていた領域まで膨潤した粒子状吸水剤が侵入し、間隙が減少してしまう場合がある。この場合、断続的に複数回の液の導入があったとしても、間隙の減少に応じて徐々に液の吸収能力が低下することが考えられる。そして、間隙の減少に伴い、間隙を液が通過しにくくなり、粒子状吸水剤が部分的に飽和膨潤しやすくなるため、吸水層から液が放出される場合は、第1の基材の吸液面まで逆戻りする量が徐々に増加していくことになる。これにより、逆戻りした液が肌まで上がる(肌に接する)ことになり、不快感を生じることになる。
 これに対し、本実施形態の吸収体は、上述のように特定の粒子状吸水剤を吸水層に用いており、さらに吸水層において吸収体の長手方向に伸びた間隙を設けることにより、粒子状吸水剤の吸収性能を最大限に活用できるため、このような逆戻りを有意に低減できることを見出した。すなわち、本実施形態によれば、特定の粒子状吸水剤と(a)の構成とにより、優れた吸収体となることを見出したものである。
 (b)の構成によれば、第1の基材は、空隙率が95%以上の液体透過性シートである。ここで、本明細書中、「基材の空隙率」とは、「基材を構成する繊維基質」の空隙率を意味し、下記(式1)で表される。
 空隙率(%)=[1-(M/(A×T×D))]×100   (式1)
  M:基材(繊維基質)の質量(g)
  A:基材(繊維基質)の面積(cm
  T:基材(繊維基質)の厚み(cm)
  D:基材(繊維基質)を形成する繊維の密度(g/cm)。
 第1の基材の空隙率が95%以上の液体透過性シートの場合、第1の基材中において多くの空隙が存在し、液体が導入された場合に流路を形成しやすい。これにより、吸液面(第1の基材の上面)より導入された液を、吸液面上に滞留することなく(さらには、導入した液を局所的に滞らせることなく)、吸水層全面に液を効率的に送り込むことができる。具体的には、第1の基材中を液が通過する際において液の面方向の拡散性が高く、拡散された液(例えば、尿)を、吸水層の表面全体に広く隈なく移行する(マイグレートする)からと考えられる。すなわち、吸収された液が吸水層に到達する際には、液は面方向に拡散されており、ゆえに、液が多量に吸水層に導入されても、吸水層は局所でなく面方向に広がった液を吸収することになる。よって、吸水層において十分に液を吸収及び保持することができる。そして、いったん液が吸水層に吸液されると、特定の粒子状吸水剤の優れた吸収性能により、吸水層で吸収した液が逆戻りして第1の基材の吸液面まで逆戻りすることを有意に低減することができ、これにより逆戻りした液が肌まで上がる(肌に接する)ことを抑制することできる。
 また、本実施形態に係る吸収体は、例えば、走ることを覚え始めの、膀胱がまだ小さな乳児が昼間等の活動的に動き回っている時間帯に使用する吸収性物品(例えば、オムツ)として好適であるが、無論使用形態がこれに限定されるわけではない。また、本明細書中に記載したメカニズム等が本願の請求の範囲の技術的範囲を限定することはない。
 以下、添付した図面を参照しながら、本実施形態を説明する。なお、図面の説明において同一の要素には同一の符号を付し、重複する説明を省略する。また、図面の寸法比率は、説明の都合上誇張されており、実際の比率とは異なる場合がある。
 第1の実施形態:「(a)の構成による吸収体」
 本発明の第1の実施形態に係る吸収体は、液を直接的に吸収する吸液面が表面側に形成された第1の基材と、前記第1の基材の裏面側に配置される吸水層と、を有する吸収体であって、前記吸水層は、特定の粒子状吸水剤を含み、(a)前記吸水層において前記粒子状吸水剤が含まれる領域が、実質的に前記粒子状吸水剤を含まない間隙を隔てて配置され、前記間隙は前記吸収体の長手方向に伸びて形成される;を満たす吸収体である。
 一実施形態において、第1の実施形態に係る吸収体は、第1の基材と、第2の基材と、前記第1の基材と前記第2の基材との間に位置する吸水層と、を有する。すなわち、一実施形態において、吸収体は、第2の基材を更に含み、吸水層は、第1の基材と第2の基材との間に位置する。
 第1の実施形態について、図9~図14に基づいて説明する。図9は、第1の実施形態に係る吸収体において、短手方向に沿って切断した、吸収体の断面を表す模式図である。図10は、図9のA-A線に沿った上からの断面図を表す模式図である。図11は、第1の実施形態に係る吸収体において、間隙の他の形態を表す模式図である。図12~図14は、図9のA-A線に沿った上からの断面図を表す模式図であり、間隙の他の実施形態を示す模式図である。図9及び図11において、矢印は、吸収される液が導入される方向を示している。
 図9に示すように、吸収体50は、第1の基材51と、吸水層52と、第2の基材53とを含む。吸水層52は、第1の基材51及び第2の基材53に挟持された構造となっている。第1の基材51は、吸水層52に対して吸収される液(吸液される液)が導入される側に位置する。すなわち、第1の基材51は、液体の排出側(例えば紙オムツでは肌側)に配置される。第1の基材51と第2の基材53との間に吸水層52が配置される。
 吸水層52には、粒子状吸水剤54が含まれている。図9において、吸水層52は、第1の基材51及び第2の基材53の間に粒子状吸水剤54が存在している状態を示す。一部の粒子状吸水剤54は各基材51,53から脱離していてもよい。粒子状吸水剤54(粒子状吸水剤54が含まれる領域)は、実質的に粒子状吸水剤54を含まない間隙55を隔てて配置されている。間隙55は、第1の基材51と第2の基材53との間に形成されている。したがって、吸水「層」とは、シートのような連続体だけを指すのではなく、第1の基材51及び第2の基材53間に一定の厚さと長さとをもって存在するものであればいずれの形態であってもよい。例えば、吸水層52は、第1の基材51と第2の基材53との間に、一定の厚さと長さとを有して断続的に存在していてもよい。
 吸水層52は、第1の基材51に接触している(もしくは、固着している)粒子状吸水剤54及び第2の基材53に接触している(もしくは、固着している)粒子状吸水剤54を含む。一部の粒子状吸水剤54は、各基材51,53に接触していなくてもよい(もしくは、固着していなくてもよい。各基材51,53から脱離していてもよい)。各基材51,53に粒子状吸水剤54を固着させる場合、例えば、接着剤を使用すればよい。
 第1の基材51内には、粒子状吸水剤54が存在してもよい。第1の基材51内の粒子状吸水剤54としては、例えば、第1の基材51に接触した(もしくは、固着させた)粒子状吸水剤54や、第2の基材53に接触した(もしくは、固着させた)粒子状吸水剤54が脱離して、第1の基材51内に捕捉された粒子状吸水剤54であってもよい。
 本実施形態において、第1の基材51と、吸水層52における粒子状吸水剤54とは、直接又は接着剤を介して接することが好ましく、及び/又は、第2の基材53と、吸水層52における粒子状吸水剤54とは、直接又は接着剤を介して接することが好ましい。
 間隙55は、吸水層において一部に形成されていればよく、吸水層の一部において、粒子状吸水剤が含まれる領域が、実質的に前記粒子状吸水剤を含まない間隙を隔てて配置されていればよい。
 ここで、図10に示すように、間隙55は、吸収体50の長手方向に伸びて形成されている。図10において、間隙55は、吸収体50の長手方向及び短手方向の中央に配置されている。例えば、吸収体50が長さ160mm×幅80mmのサイズを有する場合、間隙55は長さ60mm×幅10mmのサイズである。
 本実施形態に係る吸収体50は、間隙55の領域に粒子状吸水剤54が散布、配置されないため、間隙55の領域は、実質的に粒子状吸水剤54を含有しない。この間隙55の領域に粒子状吸水剤54以外の添加剤等を含有してもよい。例えば、間隙55は、第1の基材51と第2の基材53とが直接又は接着剤を介して接することにより形成されていてもよい。または、間隙55は、第1の基材51が粒子状吸水剤54(粒子状吸水剤54が含まれる領域)に追随した形状となってもよい。この場合、図11に示すように、第1の基材51は、粒子状吸水剤54が含まれる領域上で粒子状吸水剤54が含まれる領域を覆うような形状となり、間隙55上では、粒子状吸水剤54が含まれる領域の上側面に沿った後、第2の基材53に向けて沈み込む形状となる。あるいは、第2の基材53が粒子状吸水剤54(粒子状吸水剤54が含まれる領域)に追随した形状となってもよい。この場合、第2の基材53は、粒子状吸水剤54が含まれる領域下で粒子状吸水剤54が含まれる領域を覆うような形状となり、間隙55下では、粒子状吸水剤54が含まれる領域の下側面に沿った後、第1の基材51に向けて持ち上げる形状となる(図示略)。
 第1の基材51及び/又は第2の基材53が粒子状吸水剤54に追随した形状となる場合、第1の基材51と第2の基材53とが接することにより粒子状吸水剤54が含まれる領域が隔たれている。本実施形態において、このような場合も、第1の基材51と第2の基材53とが接触しているが、通液路が維持されているので間隙55とみなす。吸水層52に第1の基材51(場合によっては第1の基材51及び第2の基材53)が入り込むことにより、吸水層52が隔てられるため、当該形態において吸水層52は断続的に存在する。また、第1の基材51の端部と第2の基材53の端部とを重ね合わすことにより、吸収体50の端部が第1の基材51と第2の基材53とにより閉じられる場合もある(図示略)。この場合においても、吸水層52の端部において第1の基材51(場合によっては第1の基材51及び第2の基材53)が入り込むことにより、吸水層52の端部において、吸水層52が存在しない状態となる。
 吸収体50において、第2の基材53上の一部に粒子状吸水剤54の非存在領域が設けられることにより、間隙55が形成される。本実施形態の吸収体50において、間隙55(すなわち、粒子状吸水剤54の非存在領域)は、吸収体50の長手方向に沿って伸びて設けられる。これにより、通液路としての機能が効果的に発揮できる。間隙55が長手方向に沿って設けられる形状としては、例えば、直線状、曲線状、又は波型であってもよい。間隙55は、連続した形状であれば、その設けられる位置は制限されないが、吸収性の観点から、吸収体50の短手方向における中央であるのが好ましい。間隙55の長さ(長手方向における長さ)は、本実施形態の効果が発揮できる範囲であれば制限されないが、吸収性の観点から、吸収体50の長さ(長手方向の長さ)に対して、1/50~1/1であるのが好ましく、より好ましくは1/20~1/1、さらに好ましくは1/10~1/1である。また、間隙55の幅(短手方向における長さ)は、本実施形態の効果が発揮できる範囲であれば制限されないが、吸収性の観点から、吸収体50の幅(短手方向の長さ)に対して、1/50~1/1であるのが好ましく、より好ましくは1/20~1/1、さらに好ましくは1/10~1/1である。また、間隙55は、1つであっても複数であってもよい。間隙55の形態の一例を図7~図9に示す。
 間隙55は、長手方向に伸びて配置された部分が一部分あればよい。例えば、図12(A)に示すように、間隙55が吸収体50の長手方向の一端部から他端部まで形成されていてもよい。また、図12(B)~(D)に示すように、長手方向に伸びた間隙55に対して直交、又は角度を有して交差する間隙55がさらに1以上設けられていてもよい。図13(A)~(C)に示すように、長手方向に伸びた間隙55が複数設けられていてもよく、間隙55が断続的に設けられていてもよい。図14(A)~(D)に示すように、間隙55は、波形、V型、O型及びこれらを組み合わせた形状であってもよい。
 第2の実施形態:「(b)の構成による吸収体」
 本実施形態の第2の実施形態に係る吸収体は、液を直接的に吸収する吸液面が表面側に形成された第1の基材と、前記第1の基材の裏面側に配置される吸水層と、を有する吸収体であって、前記吸水層は、特定の粒子状吸水剤を含み、(b)前記第1の基材は、空隙率が95%以上である液体透過性シートである;を満たす吸収体である。
 一実施形態において、第2の実施形態に係る吸収体は、第1の基材と、第2の基材と、前記第1の基材と前記第2の基材との間に位置する吸水層と、を有する。すなわち、一実施形態において、吸収体は、第2の基材を更に含み、吸水層は、第1の基材と第2の基材との間に位置する。
 第2の実施形態について、図15及び図16に基づいて説明する。図15は、第2の実施形態に係る吸収体50において、短手方向に沿って切断した、吸収体50の断面を表す模式図である。図16は、第2の実施形態に係る吸収体における他の実施形態を示す図であり、短手方向に沿って切断した、吸収体の断面を表す模式図である。第2の実施形態では、吸水層52において間隙55が設けられないこと、第1の基材の空隙率が特定の範囲であること、第2の基材が積層構造となること以外は、第1の実施形態と同様である。第2の実施形態において、第1の実施形態と同様の構成は省略する。すなわち、図15及び図16における説明は、図9~図14の説明(符号)が同様に適用できる。
 図15に示すように、吸収体50は、第1の基材51と、吸水層52と、第2の基材53とを含む。吸水層52は、第1の基材51及び第2の基材53に挟持された構造となっている。第1の基材51は、吸水層52に対して吸収される液(吸液される液)が導入される側に位置する。すなわち、第1の基材51は、液体の導入側(例えば紙オムツでは肌側)に配置される。第1の基材51と第2の基材53との間に吸水層52が配置される。吸水層52には、粒子状吸水剤54が含まれている。図15において、吸水層52は、第1の基材51及び第2の基材53の間に粒子状吸水剤54が存在している状態を示す。
 第2の実施形態において、第1の基材51は、空隙率が95%以上の液体透過性シートであり、第1の基材51は、空隙率が、好ましくは95.5%以上、より好ましくは96%以上、さらに好ましくは96.5%以上、特に好ましくは97.5%以上、最も好ましくは98%以上の液体透過性シートである。第1の基材の空隙率は、上記した方法に従って算出された値を採用する。第1の基材の空隙率は、嵩密度、目付量、材質、網目構造、製造工程条件などによって制御可能である。
 第2の実施形態において、第2の基材53は、第3の基材53aを重ねることによって形成されていてもよい。例えば、図16に示すように、第2の基材53は、第3の基材53aが複数(例えば、3層)積層されることにより形成されている。これにより、吸収された液が第2の基材53に達した際に拡散され、第2の基材における液保持量が増えるため、吸収速度及び戻り量をさらに向上することができる。第3の基材53aは、2層以上積層されるのが好ましく、3層以上積層されるのがより好ましい。積層させる第3の基材53aの上限は、実用上、10層以下である。
 本実施形態は、上述した実施形態に限定されるものではなく、特許請求の範囲内で種々改変することができる。
 以下、本実施形態に係る吸収体を構成する各部材について詳細に説明する。なお、以下の説明において、特に言及しないかぎり、第1の実施形態及び第2の実施形態のどちらにも適用されるものとする。
 [1]第1の基材
 第1の基材は、吸液される液が導入される側に位置する、液体透過性の基材である。なお、吸液される液とは水に限らず、尿、血液、汗、糞、廃液、湿気、蒸気、氷、水と有機溶媒及び/又は無機溶媒との混合物、雨水、地下水等であってもよく、水を含んでいれば特に制限されるものではない。好ましくは、尿、経血、汗、その他の体液を挙げることができる。
 本実施形態の第1の実施形態に係る吸収体において、第1の基材としての上記液体透過性の基材は、液体を透過することができる素材、構成および形状であれば特に制限されない。例えば、親水性繊維と熱融着性樹脂や接着剤などとを混合してシート状に加工した液体透過性シート(例えば不織布)でもよく、熱融着性樹脂や接着剤などを使用せずに親水性繊維を圧縮しただけの層状の成形物(例えばパルプ製のパッド)でもよい。なお、本明細書中、「液体透過性の基材」とは、液体を透過することができれば、素材、構成および形状は特に制限されない。「液体透過性シート」とは、親水性繊維と熱融着性樹脂や接着剤などとが混合され、シート状に加工されたものであるという点に制限される。よって、「液体透過性シート」と称する場合は、親水性繊維のみで形成されることがなく、かつ形状がシート状であるという限定された液体透過性の基材である。
 本実施形態の第2の実施形態に係る吸収体において、第1の基材としての上記液体透過性の基材は、液拡散性および戻り量の観点から、液体透過性に加えて保形性が高いことが好ましい。よって、第2の実施形態における第1の基材は、親水性繊維と熱融着性樹脂や接着剤などとを混合してシート状に加工した液体透過性シート(例えば不織布)であるのが好ましい。
 第1の基材が、液体透過性の基材であり、かつ、吸液される側に位置することで、本実施形態の効果である吸収体の性能(逆戻り量、面方向の漏れなど)を充分に発揮することができる。液体透過性の基材の透水性は、透水係数(JIS A1218:2009)が1×10-5cm/sec以上であることが好ましい。該透水係数は、より好ましくは1×10-4cm/sec以上、さらにより好ましくは1×10-3cm/sec以上、特に好ましくは1×10-2cm/sec以上、最も好ましくは1×10-1cm/sec以上である。
 第1の実施形態において、第1の基材は、目付量が3~100g/mであるのが好ましく、5~90g/mであるのがより好ましく10~80g/mであるのがさらに好ましい。第1の基材の目付量がかような範囲であることにより、結果として吸収体の吸収速度がさらに高まり、戻り量をさらに低減できる。第2の実施形態において、第1の基材51は、目付量が3~100g/mであるのが好ましく、5~90g/mであるのがより好ましく10~80g/mであるのがさらに好ましい。第1の基材の目付量がかような範囲であることにより、第1の基材において液が効率的に拡散でき、結果として吸収体の吸収速度がさらに高まり、戻り量をさらに低減できる。
 第1の実施形態及び第2の実施形態において、第1の基材の厚みは、例えば40%RH~50%RHにおいて、好ましくは0.01mm以上10mm以下であり、より好ましくは0.03m以上9mm以下であり、さらに好ましくは0.05mm以上8mm以下であり、特に好ましくは0.07mm以上7mm以下であり、最も好ましくは0.09mm以上6mm以下である。第1の基材の厚みがかような範囲であることにより、第1の基材の吸液面と、吸水層及び第2の基材との距離が十分に確保でき、いったん吸水層及び第2の基材へと達した液が逆戻りするのを有意に低減できる。第2の実施形態における第1の基材の厚みは、上記したとおりである。
 なお、本願における第1の基材、第2の基材、吸収体の厚みは、ノギスを用いて測定した。測定点数は、測定対象のシートにおいて、異なる箇所を5点とし、各箇所について2回測定し、測定値は合計5点の平均値とした。厚み測定時は、測定対象のシートに圧力が出来るだけかからないようにして、厚みを測定した。
 第1の基材の厚みや目付量は、第1の基材を構成する材料、第1の基材の製法などによって制御することができ、これらのバランスで第1の基材の厚みや目付量が定まる。
 「基材を構成する材料」
 第1の基材を構成する材料としては、例えば、紙(衛生用紙、例えばティッシュペーパー、トイレットペーパー及びタオル用紙)、木材から得られるメカニカルパルプやケミカルパルプ、セミケミカルパルプ、溶解パルプ等のセルロース繊維、レーヨン、アセテート等の人工セルロース繊維等の親水性繊維、ネット、不織布、織布、フィルム等が挙げられる。本実施形態の第1の実施形態においては、透水性の観点から、第1の基材は、好ましくはパルプ等の親水性繊維または不織布が使用される。本実施形態の第2の実施形態においては、透水性と保形性の観点から、第1の基材は、好ましくは不織布が使用される。
 使用される親水性繊維または不織布としては特に限定されないが、液体浸透性、柔軟性及び吸収体とした際の強度の観点から、ポリエチレン(PE)、ポリプロピレン(PP)等のポリオレフィン繊維、ポリエチレンテレフタレート(PET)、ポリトリメチレンテレフタレート(PTT)、ポリエチレンナフタレート(PEN)等のポリエステル繊維、ナイロン等のポリアミド繊維、レーヨン繊維、その他の合成繊維や、綿、絹、麻、パルプ(セルロース繊維)等が挙げられる。
 第1の基材として用いられうる不織布の材質としては、レーヨン繊維、ポリオレフィン繊維、ポリエステル繊維、パルプ繊維及びこれらが混合された繊維などが好ましく、ポリオレフィン繊維であることがより好ましい。これらの繊維は親水化処理が施されていてもよい。
 また、第1の基材として用いられうる不織布は、特に限定されるものではなく、エアスルー法;エアレイド法;スパンボンド法;スパンレース法など、いずれの方法により得られたものであってもよい。
 なお、エアスルー法は、PE/PPやPE/PETなどの熱融着可能な複合繊維に熱風を吹きつけて、熱融着を行うとともに、繊維の間に含まれる空気の量を増やし、嵩を高くし、密度を低くする加工のことをいう。また、エアレイド法は、空気の流れに乗せて均一分散させ、金網上に吸い取らせて不織布を作る方法であり、パルプ繊維の分散に空気を利用しているため、嵩を高くし、密度を低くすることができる。第1の基材がエアスルー不織布であることにより、吸収される液が第1の基材の吸液面に接した後、速やかに第1の基材の中へ導入されやすい。すなわち、第1の基材をエアスルー不織布にすることにより、吸水力が低く、通液力の高い第1の基材とすることができ、吸収体における逆戻り量を有意に低減することができる。
 第1の実施形態においては、第1の基材は、パルプ等の親水性繊維のみで形成された基材、エアスルー法又はエアレイド法で得られた不織布(エアレイド不織布又はエアスルー不織布)であることが好ましく、エアスルー不織布がより好ましい。第1の実施形態の形一実施態において、第1の基材は、エアレイド不織布及びパルプからなる群より選択される少なくとも1種を含む。第2の実施形態においては、第1の基材は、エアスルー不織布が好ましい。
 [2]第2の基材
 第2の基材が、液体透過性の基材であり、かつ、吸液される側の反対側に位置することで、本実施形態の効果である吸収体の性能(逆戻り量、面方向の漏れなど)を充分に発揮することができる。本実施形態の第1の実施形態および第2の実施形態に係る吸収体において、第2の基材としての上記液体透過性の基材は、液体を透過することができる素材、構成および形状であれば特に制限されない。例えば、親水性繊維と熱融着性樹脂や接着剤などとを混合してシート状に加工した液体透過性シート(例えば不織布)でもよく、熱融着性樹脂や接着剤などを使用せずに親水性繊維を圧縮しただけの層状の成形物(例えばパルプ製のパッド)でもよい。液体透過性の基材の透水性は、透水係数(JIS A1218:2009)が1×10-5cm/sec以上であることが好ましい。該透水係数は、より好ましくは1×10-4cm/sec以上、さらにより好ましくは1×10-3cm/sec以上、特に好ましくは1×10-2cm/sec以上、最も好ましくは1×10-1cm/sec以上である。
 第1の実施形態及び第2の実施形態において、第2の基材の厚みは、例えば40%RH~50%RHにおいて、好ましくは0.01mm以上50mm以下であり、より好ましくは0.05mm以上45mm以下であり、さらに好ましくは0.1mm以上40mm以下であり、特に好ましくは0.15mm以上35mm以下であり、最も好ましくは0.2mm以上30mm以下である。なお、第2の実施形態において、第2の基材が第3の基材が複数積層されることにより形成される場合は、第2の基材の厚みは複数の第3の基材の合計の厚みを意味する。
 第1の実施形態において、第2の基材は、目付量が5~500g/mであるのが好ましく、10~400g/mであるのがより好ましく15~350g/mであるのがさらに好ましい。第2の基材の目付量がかような範囲であることにより、結果として吸収体の吸収速度がさらに高まり、戻り量をさらに低減できる。第2の実施形態において、第2の基材は、目付量が5~750g/mであるのが好ましく、10~650g/mであるのがより好ましく15~550g/mであるのがさらに好ましい。第2の基材の目付量がかような範囲であることにより、第1の基材において液が効率的に拡散でき、結果として吸収体の吸収速度がさらに高まり、戻り量をさらに低減できる。
 第2の基材の厚み、目付量は、第2の基材を構成する材料、第2の基材の製法などによって制御することができ、これらのバランスで第2の基材の厚みや嵩密度が定まる。
 「基材を構成する材料」
 第2の基材を構成する材料は、第1の基材と同様のものが適用できる。第1の実施形態及び第2の実施形態において、透水性の観点から、第2の基材は、好ましくはパルプ等の親水性繊維及び不織布が使用される。また、不織布の材質としては、第1の基材と同様のものが適用でき、例えば、レーヨン繊維、ポリオレフィン繊維、ポリエステル繊維、パルプ繊維及びこれらが混合された繊維などが好ましく、ポリオレフィン繊維であることがより好ましい。
 また、第2の基材として用いられうる不織布は、特に限定されるものではなく、エアスルー法;エアレイド法;スパンボンド法;スパンレース法など、いずれの方法により得られたものであってもよい。なお、スパンレース法は、繊維を高圧水流により攻絡させる方法で、接着剤を使用しない方法である。また、エアレイド法は、粉砕パルプをエアで分散させ吸引ケージロールやスクリーンメッシュベルトで受け止めてウェブを成形し、表面に接着剤や熱融着繊維等を用いて熱プレスする方法である。
 第2の基材は、パルプ等の親水性繊維のみで形成された基材、エアレイド法で得られたもの(エアレイド不織布)又はスパンレース法で得られたもの(スパンレース不織布)であることが好ましく、パルプ等の親水性繊維のみで形成された基材又はエアレイド不織布がより好ましく、エアレイド不織布がさらに好ましい。一実施形態において、第2の基材は、エアレイド不織布及びパルプからなる群より選択される少なくとも1種を含む。第2の基材がパルプ等の親水性繊維のみで形成された基材、エアレイド不織布又はスパンレース不織布であることにより、吸収体における吸収速度を向上させ、戻り量を有意に低減することができる。
 第2の実施形態において、第2の基材が第3の基材を重ねることによって形成される場合、第2の基材は、第3の基材を重ねることによって形成されるものであるのが好ましい。この場合、吸収体における吸収速度を向上させ、戻り量を有意に低減することができる。
 [3]吸水層
 本実施形態に係る吸収体における吸水層は、特定の粒子状吸水剤を含む。第1の実施形態及び第2の実施形態において、吸収体に含有される粒子状吸水剤(好ましくは、特定の粒子状吸水剤)の含有量は、好ましくは50~400g/mであり、より好ましくは75~380g/mであり、さらに好ましくは100~350g/mである。
 本実施形態に係る吸収体は、吸水層において、特定の粒子状吸水剤の他に、他の粒子状吸水剤、パルプ、消臭剤、抗菌剤、香料、各種の無機粉末、顔料、染料、吸水性繊維、酸化剤、還元剤等を含んでいてもよい。本実施形態に係る吸収体においては、粒子状吸水剤とパルプ等の親水性繊維とを混合した吸水層であってもよい。この場合、例えば、粒子状吸水剤と、粉砕した親水性繊維とをミキサー等の混合機を用いて乾式混合し、得られた混合物を、例えば、空気抄造等によってウェブ状に成形した後、必要により圧縮成形して製造する方法等により吸水層が作製できる。このような吸水層として、図17に一例を示す。
 図17は、本実施形態の第2の実施形態に係る吸収体50において、短手方向に沿って切断した、吸収体50の断面を表す模式図である。また、図17の形態は、吸水層の形態が異なること、吸水層の形態が異なることにより第2の基材を必須としないこと以外は、図15及び図16と同様である。図17に示すように、吸収体50の吸水層52には、粒子状吸水剤54と親水性繊維56とが含まれている。なお、当該吸水層の形態は、第1の実施形態においても同様に適用される。よって、第1の実施形態においても、粒子状吸水剤54と親水性繊維56とを含む吸水層を有する吸収体50の場合、第2の基材53を有していなくてもよい。
 第2の実施形態の一実施形態において、第1の実施形態のように、吸水層において粒子状吸水剤が含まれる領域が、実質的に粒子状吸水剤を含まない間隙を隔てて配置され、間隙は前記吸収体の長手方向に伸びて形成されていてもよい。よって、第2の実施形態において、図9~図14の形態が同様に適用できる。第2の実施形態の一実施形態において、吸水層において粒子状吸水剤が含まれる領域が、実質的に粒子状吸水剤を含まない間隙を隔てて配置され、間隙は前記吸収体の長手方向に伸びて形成され、第2の基材が第3の基材を重ねることによって形成される。この場合、吸収体における吸収速度を向上させ、戻り量を有意に低減することができる。
 (粒子状吸水剤)
 吸水層は、特定の粒子状吸水剤を含む。なお、別途記載のない限り、吸水剤が複数種類の粒子状吸水剤の混合物である場合は、以下の記載は、当該混合物の物性に関する説明である。すなわち、粒子状吸水剤の物性は、吸水層に含まれるすべての粒子状吸水剤を混合した場合の物性である。また、粒子状吸水剤の物性は、吸収体から、綿状パルプなどが混じらないように粒子状吸水剤のみを取り出して物性を測定してもよい。
 本実施形態に係る吸収体は、吸水層において、ポリアクリル酸(塩)系吸水性樹脂粒子を主成分とし、連通孔と独立気泡とを含む形状を有し、連通孔の総体積率は10体積%以上、かつ、独立気泡の総体積率は0.5体積%以下である、特定の粒子状吸水剤を含む。このような特定の粒子状吸水剤については上述のとおりである。
 〔4-2〕配置タイプの吸収体
 一実施形態において、本発明の粒子状吸水剤を含む吸収体は、ある物(例えば、ベッド、床等)の上に配置して用いられる吸収体物品に適している。本実施形態の吸収体も、装着タイプの吸収体と同様に、特定の粒子状吸水剤、すなわち上記形態の粒子状吸水剤を用いていることに特徴を有する。よって、配置タイプの吸収体は、吸水層を有し、前記吸水層は、ポリ(メタ)アクリル酸(塩)系吸水性樹脂粒子を主成分として含む粒子状吸水剤を含み、前記粒子状吸水剤は、外部と通じる空間である連通孔と、外部と通じない閉鎖空間である独立気泡と、を含み、前記連通孔の総体積率は、10体積%以上であり、前記独立気泡の総体積率は、0.5体積%以下である。特定の粒子状吸水剤を吸水層に用いることで、液の取り込み速度が高く、かつ戻り量が低減した吸収体とすることができる。本実施形態では、この優れた吸収性能を有する特定の粒子状吸水剤を用いて、さらに優れた吸収性能を発現することができる構成を見出したものである。
 配置タイプの吸収体としては、特定の粒子状吸水剤を含む吸水層をそのまま吸収体としてもよい。この場合、吸収体(吸水層)と、吸収体(吸水層)を覆うように配置される液体透過性シートと、液体透過性シートとともに吸収体(吸水層)を挟み込むように配置された液体不透過性シートと、により後述の吸収性物品(〔4-3〕参照)となりうる。吸収体(吸水層)としては、特定の粒子状吸水剤を紙、ティッシュ又は不織布で包んだもの、又はパルプ、綿等と特定の粒子状吸水剤とを混合したものを紙、ティッシュ、不織布等で包んだものを使用することができる。吸収体(吸水層)は、液体透過性シートと液体不透過性シートの中央付近に配置され、ヒトまたは動物が排泄した尿等の排泄物を吸収する。
 この場合、吸収体(吸水層)は、溝が形成されていてもよい。溝は、吸収体(吸水層)をロールで圧し、あるいは、吸収体を構成する成分(粒子状吸水剤、パルプ、綿等)の厚さを薄くする等の方法によって形成することができる。溝は、連続的であっても、断続的であってもよい。また、吸収体(吸水層)の全面にエンボス加工を施してもよい。この場合、吸収体(吸水層)の全面又は一部において、吸収体(吸水層)上に複数の凹部が形成される。凹部は、吸収体(吸水層)をロールで圧する所謂エンボス加工プロセスによって形成することができる。凹部の形状は、特に制限されず、四角、三角、その他の多角形、丸、楕円等とすることができる。溝及び凹部の幅、深さは、特に制限されず、適宜調整される。
 一実施形態において、配置タイプの吸収体は、第1の基材と、前記第1の基材の裏面側に配置される吸水層と、を有する吸収体であってもよい。すなわち、一実施形態において、配置タイプの吸収体は、液を直接的に吸収する吸液面が表面側に形成された第1の基材と、前記第1の基材の裏面側に配置される吸水層と、を有する吸収体であって、前記吸水層は、ポリ(メタ)アクリル酸(塩)系吸水性樹脂粒子を主成分として含む粒子状吸水剤を含み、前記粒子状吸水剤は、外部と通じる空間である連通孔と、外部と通じない閉鎖空間である独立気泡と、を含み、前記連通孔の総体積率は、10体積%以上であり、前記独立気泡の総体積率は、0.5体積%以下であり、下記(a)及び(b)の少なくとも1つを満たす、吸収体:(a)前記吸水層において前記粒子状吸水剤が含まれる領域が、実質的に前記粒子状吸水剤を含まない間隙を隔てて配置され、前記間隙は前記吸収体の長手方向に伸びて形成される;(b)前記第1の基材は、空隙率が95%以上の液体透過性シートである。本実施形態において、好ましくは、吸収体は、上記(b)を満たす吸収体である。また、本実施形態において、より好ましくは、吸収体は、第1の基材と、第2の基材と、前記第1の基材と前記第2の基材との間に位置する吸水層と、を有する。すなわち、一実施形態において、吸収体は、第2の基材を更に含み、吸水層は、第1の基材と第2の基材との間に位置する。
 本実施形態において、第1の基材、第2の基材、吸水層については、下記の吸水層における粒子状吸水剤の目付量以外は、上述の装着タイプの吸収体と同様のものが使用できる。配置タイプの吸収体としては、比較的大きな面積(例えば、20cm×20cm以上)で用いられる。この場合においては、粒子状吸水剤の目付量は、5~100g/mであるのが好ましい。
 〔4-3〕吸収性物品
 本発明の一実施形態に係る吸収性物品は、〔4-1〕及び〔4-2〕で説明されている吸収体を、液体透過性シート及び液体不透過性シートによって挟持した構造を有している。ここで、液体透過性シートは、第1の基材側に位置し、液体不透過性シートが、第2の基材側に位置している。すなわち、本発明の一実施形態に係る吸収性物品は、本発明の吸収体を液体透過性シートと、液体不透過性シートとで挟持することによりなり、液体透過性シートが、第1の基材側に位置し、液体不透過性シートが、前記第2の基材側に位置している。なお、吸収性物品における液体透過性シートは、上述の第1の基材において用いられる液体透過性シートとは別に用意されるものである。吸収性物品の具体例としては、紙オムツ、失禁パッド、生理用ナプキン、ペットシート、介護用防水シーツ、災害用簡易トイレ、食品用ドリップシート、電力ケーブルの止水剤などが挙げられる。
 液体透過性シート及び液体不透過性シートとしては、吸収性物品の技術分野で公知のものを、特に制限なく用いることができる。また、吸収性物品は、公知の方法によって製造することができる。
 以下の実験例に従って本発明をより具体的に説明するが、本発明はこれらの説明に限定解釈されるものではなく、各実験例に開示された技術的手段を適宜組み合わせて得られる実験例も、本発明の範囲に含まれるものとする。実施例において「部」あるいは「%」の表示を用いる場合があるが、特に断りがない限り、「質量部」あるいは「質量%」を表す。また、特記しない限り、各操作は、室温(25℃)で行われる。
 〔実施例1-1〕
 (単量体水溶液の調製工程)
 アクリル酸300質量部、48質量%水酸化ナトリウム水溶液100質量部、ポリエチレングリコールジアクリレート(平均n数9)0.65質量部、0.1質量%エチレンジアミンテトラメチレンホスホン酸5ナトリウム水溶液16.4質量部、及び脱イオン水273.2質量部からなる単量体水溶液を調製した。
 38℃に調温した上記単量体水溶液を定量ポンプで連続供給した後、更に48質量%水酸化ナトリウム水溶液150.6質量部をラインミキシングにて連続混合した。なお、この時、中和熱によって単量体水溶液の液温は87℃まで上昇した。
 (単量体水溶液の重合工程)
 更に、4質量%過硫酸ナトリウム水溶液14.6質量部をラインミキシングにて連続混合した後、両端に堰を備えた平面状の重合ベルトを有する連続重合機に、厚みが10mmとなるように連続的に供給した。その後、重合時間3分間で連続的に重合を行って、帯状の含水ゲル状架橋重合体(1-1a)を得た。得られた帯状の含水ゲル(1-1a)を、重合ベルトの進行方向に対して幅方向に、等間隔に連続して切断することで、切断長300mmの短冊状含水ゲル(1-1b)を得た。
 (含水ゲルの粉砕工程)
 スクリュー押出機に得られた短冊状含水ゲル(1-1b)を投入して、ゲル粉砕を行った。該スクリュー押出機として、スクリュー軸の外径が86mmであり、先端部(押出口)に直径100mm、厚さ10mmの支持具(図2B参照)を有する、図2Aに示すミートチョッパー100を使用し、含水ゲル(1-1b)と同時に80℃の温水、水蒸気及び10質量%濃度のラウリルジメチルアミノ酢酸ベタイン水溶液を供給しながらゲル粉砕(第1ゲル粉砕)を行った。なお、含水ゲル(1-1b)の固形分に対して80℃の温水は1質量%、水蒸気は1質量%、ラウリルジメチルアミノ酢酸ベタインは有効成分として0.05質量%となるように供給した。続いて、同様に温水、水蒸気及びラウリルジメチルアミノ酢酸ベタイン水溶液を供給しながら、第1ゲル粉砕で得られた粉砕ゲルを更にゲル粉砕(第2ゲル粉砕)した。続いて、同様に温水、水蒸気及びラウリルジメチルアミノ酢酸ベタイン水溶液を供給しながら、第2ゲル粉砕で得られた粉砕ゲルを更にゲル粉砕(第3ゲル粉砕)した。続いて、同様に温水、水蒸気及びラウリルジメチルアミノ酢酸ベタイン水溶液を供給しながら、第3ゲル粉砕で得られた粉砕ゲルを更にゲル粉砕(第4ゲル粉砕)した。なお、第1ゲル粉砕、第2ゲル粉砕、第3ゲル粉砕、第4ゲル粉砕いずれもスクリュー軸回転数は65rpmで行った。GGE(2)は第1ゲル粉砕、第2ゲル粉砕、第3ゲル粉砕、第4ゲル粉砕のトータルで35J/gであった。
 得られた粒子状含水ゲル(1-1c)は、固形分率が49質量%(含水率が51質量%)、固形分換算の平均ゲル粒子径が135μmであった。
 (粒子状含水ゲルの乾燥工程)
得られた粒子状含水ゲル(1-1c)を、熱風乾燥機を用いて乾燥した。この乾燥機は、目開き1.2mmの金網からなる籠(底面のサイズ30cm×20cm)を備えている。粒子状含水ゲル(1-1c)500gを、この籠の底面に略均一になるように広げ、下方から190℃の熱風を30分間送風することにより、乾燥物(1-1A’)を得た。
 (乾燥物の粉砕、分級工程)
 冷却した乾燥物(1-1A’)をロールミルに供給して粉砕し、目開き850μm及び150μmのJIS標準篩を用いて分級した。850μmの篩を通過し、150μmの篩を通過しない成分を採取して、吸水性樹脂(1-1A)を得た。
 (吸水性樹脂の表面架橋工程)
次に、吸水性樹脂(1-1A)100質量部に、エチレングリコールジグリシジルエーテル0.025質量部、エチレンカーボネート0.3質量部、プロピレングリコール0.5質量部及び脱イオン水2.0質量部からなる表面架橋剤溶液を噴霧して混合した。この混合物を200℃で30分間加熱処理することにより、表面架橋された吸水性樹脂粒子(1-1B)を得た。
 (添加剤の添加工程)
表面架橋された吸水性樹脂粒子(1-1B)100重量部に対して、キレート剤として、0.1重量%のエチレンジアミンテトラメチレンホスホン酸5ナトリウム水溶液10重量部を攪拌しながら添加し、1分間混合した。
 次いで60℃の熱風乾燥機中に30分間放置してから、目開き850μmの金網を通過させ、リン酸三カルシウム0.5重量部を混合した。混合は表面架橋された吸水性樹脂粒子(1B)30gを容量225mlのマヨネーズ瓶にリン酸三カルシウムと共に入れ、ペイントシェーカーを用いて3分間振とうし、粒子状吸水剤(EX-1-1)を得た。
 〔実施例1-2〕
 (単量体水溶液の調製工程)
 エチレンジアミンテトラメチレンホスホン酸5ナトリウムをジエチレントリアミン5酢酸3ナトリウムに変更した以外は実施例1-1と同様にして、単量体水溶液を調製した。
 (単量体水溶液の重合工程)
 実施例1-1の(単量体水溶液の重合工程)と同様にして、短冊状含水ゲル(1-2b)を得た。
 (含水ゲルの粉砕工程)
 実施例1の(含水ゲルの粉砕工程)と同様にして、粒子状含水ゲル(1-2c)を得た。
 (粒子状含水ゲルの乾燥工程)
 実施例1-1の(粒子状含水ゲルの乾燥工程)と同様にして、乾燥物(1-2A’)を得た。
 (乾燥物の粉砕、分級工程)
 実施例1-1の(乾燥物の粉砕、分級工程)と同様にして、吸水性樹脂(1-2A)を得た。
 (吸水性樹脂の表面架橋工程)
 得られた吸水性樹脂(1-2A)100質量部に対して、エチレングリコールジグリシジルエーテル0.025質量部、エチレンカーボネート0.3質量部、プロピレングリコール0.5質量部及び脱イオン水2.0質量部からなる表面架橋剤溶液を、連続式高速撹拌乾燥機(ホソカワミクロン社製タービュライザー)にて噴霧混合して、加湿物(1-2B’)を得た。
 得られた加湿物(1-2B’)を、図8に示される基本構成を備えた乾燥装置(加熱管付き回転型加熱装置)を用いて加熱処理した。この乾燥機は、その内部に回転軸方向に延在する10本の加熱管を有する円筒状の回転容器(容積35L)を備えている。
 始めに、回転型加熱装置の各加熱管に、ゲージ圧1.8MPa(温度210℃)の水蒸気を導入し、回転容器の内表面を予め180℃超に加熱し、更に回転容器の外壁をトレスで充分に加熱した。次いで、乾燥機内に加湿物(1-2B’)を4.0kg投入し、フルード数Fr0.07となるように回転容器を回転させて、30分間加熱処理を行った。加熱処理後、乾燥機から取り出した吸水性樹脂を80℃以下に冷却して、表面架橋された吸水性樹脂粒子(1-2B)を得た。
 (添加剤の添加工程)
 エチレンジアミンテトラメチレンホスホン酸5ナトリウムをジエチレントリアミン5酢酸3ナトリウムに変更し、リン酸三カルシウム0.5質量部をハイドロタルサイト(DHT-6、協和化学工業社製)0.2重量部に変更した以外は実施例1-1の(添加剤の添加工程)と同様にして、粒子状吸水剤(EX-1-2)を得た。
 〔実施例1-3〕
 (単量体水溶液の調製工程)
 実施例1-2の(単量体水溶液の調製工程)と同様にして、単量体水溶液を調製した。
 (単量体水溶液の重合工程)
 実施例1-1の(単量体水溶液の重合工程)と同様にして、短冊状含水ゲル(1-3b)を得た。
 (含水ゲルの粉砕工程)
 実施例1-1の(含水ゲルの粉砕工程)と同様にして、粒子状含水ゲル(1-3c)を得た。
 (粒子状含水ゲルの乾燥工程)
 得られた粒子状含水ゲル(1-3c)を、図8に示される基本構成を備えた乾燥装置(加熱管付き回転型加熱装置)を用いて乾燥した。この乾燥装置は、その内部に回転軸方向に延在する10本の加熱管を有する円筒状の回転容器(容積35L)を備えている。はじめに、各加熱管に2.7MPa(温度228.1℃)の水蒸気を導入して、回転容器内部(接触温度計で規定)を予め200℃超に加熱した後、更に回転容器の外壁もトレスで十分に加熱した。次いで、95℃の粒子状含水ゲル(1-3c)を4.0kg投入し、フルード数Fr0.07となるように回転容器を回転させて、回転容器内へ140℃のキャリア空気を65L/hrで供給し、40分間乾燥を行った。乾燥後、取り出し口で採取した乾燥物(1-3A’)は、固形分率98.5質量%であった。
 (乾燥物の粉砕、分級工程)
 続いて、加熱装置の取り出し口から排出された乾燥物(1-3A’)を、冷風により、強制的に80℃以下に冷却した後、その冷却物を1段のロールミル(粉砕機)に供給して粉砕し、850μmの篩を通過し、150μmの篩を通過しない成分を採取して、吸水性樹脂(1-3A)を得た。
 (吸水性樹脂粒子の表面架橋工程)
 得られた吸水性樹脂(1-3A)100質量部に、エチレングリコールジグリシジルエーテル0.2質量%及び水3質量%を含む表面架橋剤溶液を噴霧し、150℃で30分間加熱することにより、表面架橋された吸水性樹脂粒子(1-3B)を得た。
 (添加剤の添加工程)
 実施例1-1の(添加剤の添加工程)にて、エチレンジアミンテトラメチレンホスホン酸5ナトリウムをジエチレントリアミン5酢酸3ナトリウムに変更し、リン酸三カルシウム0.5重量部の代わりに疎水性シリカ(AEROSIL R-972、日本アエロジル株式会社製)0.3質量部を混合した以外は実施例1-1と同様にして、粒子状吸水剤(EX-1-3)を得た。
 〔実施例1-4〕
 (単量体水溶液の調製工程)
 実施例1-1の(単量体水溶液の調製工程)と同様にして、単量体水溶液を調製した。
 (単量体水溶液の重合工程)
 実施例1-1の(単量体水溶液の重合工程)と同様にして、短冊状含水ゲル(1-4b)を得た。
 (含水ゲルの粉砕工程)
 実施例1-1の(含水ゲルの粉砕工程)と同様にして、粒子状含水ゲル(1-4c)を得た。
 (粒子状含水ゲルの乾燥及び表面架橋工程)
 実施例1-3の乾燥装置へ、95℃の粒子状含水ゲル(1-4c)を投入してから10分経過後に、乾燥途中の粒子状含水ゲル(1-4c)の固形分に対して、エチレングリコールジグリシジルエーテル0.16質量%及び水2質量%を含む表面架橋剤溶液を、乾燥装置機内へノズルを挿入して噴霧添加した以外は、実験例3の(粒子状含水ゲルの乾燥工程)と同様にして、表面架橋された吸水性樹脂粒子(1-4B)を得た。
 (添加剤の添加工程)
 実施例1-1の(添加剤の添加工程)にて、リン酸三カルシウム0.5重量部の代わりにハイドロタルサイト0.6質量部を混合した以外は実施例1-1と同様にして、粒子状吸水剤(EX’-1-4)を得た。
 (粉砕、分級工程)
 得られた粒子状吸水剤(EX’-1-4)を1段のロールミル(粉砕機)に供給して粉砕し、目開き850μm及び150μmのJIS標準篩を用いて分級した。850μmの篩を通過し、150μmの篩を通過しない成分を採取して、粒子状吸水剤(EX-1-4)を得た。
 〔実施例1-5〕
 (単量体水溶液の調製工程)
 ポリエチレングリコールジアクリレート(平均n数9)を1.19質量部に変更し、エチレンジアミンテトラメチレンホスホン酸5ナトリウムをジエチレントリアミン5酢酸3ナトリウムに変更し、60質量%濃度の乳酸ナトリウム水溶液を3.1質量部追加した以外は実施例1-1と同様にして、単量体水溶液を調製した。
 (単量体水溶液の重合工程)
 実施例1-1の(単量体水溶液の重合工程)と同様にして、短冊状含水ゲル(1-5b)を得た。
 (含水ゲルの粉砕工程)
 スクリュー押出機に得られた短冊状含水ゲル(1-5b)を投入して、ゲル粉砕を行った。該スクリュー押出機として、スクリュー軸の外径が86mmであり、先端部(押出口)に直径100mm、厚さ10mmの支持具(図2B参照)を有する、図2Aに示すミートチョッパー100を使用し、含水ゲル(1-5b)と同時に80℃の温水、水蒸気、10質量%濃度のラウリルジメチルアミノ酢酸ベタイン水溶液及び5質量%濃度の過酸化水素水溶液を供給しながらゲル粉砕(第1ゲル粉砕)を行った。なお、含水ゲル(1-5b)の固形分に対して80℃の温水は1質量%、水蒸気は1質量%、ラウリルジメチルアミノ酢酸ベタインは有効成分として0.05質量%、過酸化水素は有効成分として0.09質量%となるように供給した。続いて、同様に温水、水蒸気、ラウリルジメチルアミノ酢酸ベタイン水溶液及び過酸化水素水溶液を供給しながら、第1ゲル粉砕で得られた粉砕ゲルを更にゲル粉砕(第2ゲル粉砕)した。続いて、同様に温水、水蒸気、ラウリルジメチルアミノ酢酸ベタイン水溶液及び過酸化水素水溶液を供給しながら、第2ゲル粉砕で得られた粉砕ゲルを更にゲル粉砕(第3ゲル粉砕)した。続いて、同様に温水、水蒸気、ラウリルジメチルアミノ酢酸ベタイン水溶液及び過酸化水素水溶液を供給しながら、第3ゲル粉砕で得られた粉砕ゲルを更にゲル粉砕(第4ゲル粉砕)した。なお、第1ゲル粉砕、第2ゲル粉砕、第3ゲル粉砕、第4ゲル粉砕いずれもスクリュー軸回転数は65rpmで行った。GGE(2)は第1ゲル粉砕、第2ゲル粉砕、第3ゲル粉砕、第4ゲル粉砕のトータルで32J/gであった。
 得られた粒子状含水ゲル(1-5c)は、固形分率が48.0質量%(含水率が52.0質量%)、固形分換算の平均ゲル粒子径が149μmであった。
 (粒子状含水ゲルの乾燥及び表面架橋工程)
 実施例1-4の(粒子状含水ゲルの乾燥及び表面架橋工程)と同様にして、表面架橋された吸水性樹脂粒子(1-5B)を得た。
 (添加剤の添加工程)
 表面架橋された吸水性樹脂粒子(1-5B)100重量部に対して、0.1重量%のジエチレントリアミン5酢酸3ナトリウム水溶液10重量部と亜硫酸ナトリウム0.1質量部を混合した水溶液を攪拌しながら添加し、1分間混合した。
 次いで60℃の熱風乾燥機中に30分間放置してから、目開き850μmの金網を通過させ、リン酸三カルシウム0.3重量部を混合した。混合は表面架橋された吸水性樹脂粒子(5B)30gを容量225mlのマヨネーズ瓶にリン酸三カルシウムと共に入れ、ペイントシェーカーを用いて3分間振とうし、粒子状吸水剤(EX’-1-5)を得た。
 (粉砕、分級工程)
 得られた粒子状吸水剤(EX’-5)を1段のロールミル(粉砕機)に供給して粉砕し、目開き850μm及び106μmのJIS標準篩を用いて分級した。850μmの篩を通過し、106μmの篩を通過しない成分を採取して、粒子状吸水剤(EX-1-5)を得た。
 〔実施例1-6〕
(単量体水溶液の調製工程)
 アクリル酸300質量部、48質量%水酸化ナトリウム水溶液100質量部、ポリエチレングリコールジアクリレート(平均n数9)0.65質量部、0.1質量%ジエチレントリアミン5酢酸3ナトリウム水溶液16.4質量部、脱イオン水273.2質量部からなる単量体水溶液を作成した。
 38℃に調温した上記単量体水溶液を定量ポンプで連続供給した後、更に48質量%水酸化ナトリウム水溶液150.6質量部をラインミキシングにて連続混合した。なお、この時、中和熱によって単量体水溶液の液温は87℃まで上昇した。
 (単量体水溶液の重合工程)
 更に、4質量%過硫酸ナトリウム水溶液14.6質量部をラインミキシングにて連続混合した後、両端に堰を備えた平面状の重合ベルトを有する連続重合機に、厚みが10mmとなるように連続的に供給した。その後、重合時間3分間で連続的に重合をおこなって、帯状の含水ゲル状架橋重合体(1-6a)を得た。得られた帯状の含水ゲル(1-6a)を、重合ベルトの進行方向に対して幅方向に、等間隔に連続して切断することで、切断長300mmの短冊状含水ゲル(1-6b)を得た。
 (含水ゲルの粉砕工程)
 ゲル粉砕装置として、同方向に回転する2本の回転軸を内蔵する本体(バレル)を備えた2軸混練機を使用して、短冊状含水ゲル(1-6b)のゲル粉砕をおこなった。それぞれの回転軸には、主に粉砕手段である円板状ディスクが設けられている。バレルはジャケット構造であり、このジャケットを貫通し、本体内部に水蒸気を投入するガス投入口を有するものであった。また、粉砕された粒子状含水ゲル(1-6c)の排出口に近い位置に、ジャケットを貫通し、本体内部にゲル流動化剤を投入する溶液投入口を有するものであった。
 始めに、ジャケットの内部に105℃の熱媒を循環させ、本体(バレル)内部の温度を105℃に保持した。その後、回転数50rpmに設定して、80℃に加温した短冊状含水ゲル(1-6b)を0.25kg/minの速度(2.5秒毎に短冊状含水ゲル(1-6b)1枚のペース)で、2軸混練機の投入口に投入した。その際、含水ゲル(1-6b)と同時に、90℃の水、更に、ゲル流動化剤として10質量%濃度のラウリルジメチルアミノ酢酸ベタイン水溶液を供給し、更に、1質量%濃度の過酸化水素水溶液を投入口から供給し、更に、0.6MPaの水蒸気をガス投入口から供給した。90℃の水の供給量は、短冊状含水ゲル(1-6b)の固形分に対して11.8質量%であった。0.6MPaの水蒸気の投入量は、短冊状含水ゲル(1-6b)の固形分に対して9.7質量%であった。ラウリルジメチルアミノ酢酸ベタインの有効成分としての投入量は、短冊状含水ゲル(1-6b)の固形分に対して0.08質量%であった。過酸化水素の有効成分としての投入量は、短冊状含水ゲル(1-6b)の固形分に対して0.01質量%であった。また、出口付近にて10質量%濃度のラウリルジメチルアミノ酢酸ベタイン水溶液を供給した。ラウリルジメチルアミノ酢酸ベタインの有効成分としての投入量は、短冊状含水ゲル(1-6b)の固形分に対して0.08質量%であった。ゲル粉砕に使用したディスクの直径Dは50mmであり、バレルとディスクとの間の最小クリアランスは1mm(ディスク直径Dの2%)であった。なお、ゲル粉砕時のGGE(2)は89J/gであった。
 得られた粒子状含水ゲル(1-6c)は、固形分率が45質量%(含水率が55質量%)、固形分換算の平均ゲル粒子径が132μmであった。
 (粒子状含水ゲルの乾燥工程)
 得られた粒子状含水ゲル(1-6c)を、熱風乾燥機を用いて乾燥した。この乾燥機は、目開き1.2mmの金網からなる籠(底面のサイズ30cm×20cm)を備えている。粒子状含水ゲル(1-6c)500gを、この籠の底面に略均一になるように広げ、下方から190℃の熱風を30分間送風することにより、乾燥物(1-6A’)を得た。
 (乾燥物の粉砕、分級工程)
 冷却した乾燥物(1-6A’)をロールミルに供給して粉砕し、目開き850μm及び150μmのJIS標準篩を用いて分級した。850μmの篩を通過し、150μmの篩を通過しない成分を採取して、吸水性樹脂(1-6A)を得た。
 (吸水性樹脂の表面架橋工程)
 次に、吸水性樹脂(1-6A)100質量部に、エチレングリコールジグリシジルエーテル0.025質量部、エチレンカーボネート0.3質量部、プロピレングリコール0.5質量部及び脱イオン水2.0質量部からなる表面架橋剤溶液を噴霧して混合した。この混合物を200℃で30分間加熱処理することにより、表面架橋された吸水性樹脂粒子(1-6B)を得た。
 (添加剤の添加工程)
 表面架橋された吸水性樹脂粒子(1-6B)100重量部に対して、キレート剤として、0.1重量%のDTPA(ジエチレントリアミン5酢酸3ナトリウム)水溶液10重量部を攪拌しながら添加し、1分間混合した。
 次いで60℃の熱風乾燥機中に30分間放置してから、目開き850μmの金網を通過させ、リン酸三カルシウム0.5重量部を混合した。混合は表面架橋された吸水性樹脂粒子(6B)30gを容量225mlのマヨネーズ瓶にリン酸三カルシウムと共に入れ、ペイントシェーカーを用いて3分間振とうし、粒子状吸水剤(EX-1-6)を得た。
 〔実施例1-7〕
 (単量体水溶液の調製工程)
 ジエチレントリアミン5酢酸3ナトリウムをエチレンジアミンテトラメチレンホスホン酸5ナトリウムに変更した以外は実施例1-6の(単量体水溶液の調製工程)と同様にして、単量体水溶液を調製した。
 (単量体水溶液の重合工程)
 実施例1-6の(単量体水溶液の重合工程)と同様にして、短冊含水ゲル(1-7b)を得た。
 (含水ゲルの粉砕工程)
 実施例1-6の(含水ゲルの粉砕工程)と同様にして、粒子状含水ゲル(1-7c)を得た。
 (粒子状含水ゲルの乾燥工程)
 実施例1-6の(粒子状含水ゲルの乾燥工程)と同様にして、乾燥物(1-7A’)を得た。
 (乾燥物の粉砕、分級工程)
 実施例1-6の(乾燥物の粉砕、分級工程)と同様にして、吸水性樹脂(1-7A)を得た。
 (吸水性樹脂の表面架橋工程)
 得られた吸水性樹脂(1-7A)100質量部に対して、エチレングリコールジグリシジルエーテル0.025質量部、エチレンカーボネート0.3質量部、プロピレングリコール0.5質量部及び脱イオン水2.0質量部からなる表面架橋剤溶液を、連続式高速撹拌乾燥機(ホソカワミクロン社製タービュライザー)にて噴霧混合して、加湿物(1-7B’)を得た。
 得られた加湿物(1-7B’)を、図8に示される基本構成を備えた乾燥装置(加熱管付き回転型加熱装置)を用いて加熱処理した。この乾燥機は、その内部に回転軸方向に延在する10本の加熱管を有する円筒状の回転容器(容積35L)を備えている。
 始めに、回転型加熱装置の各加熱管に、ゲージ圧1.8MPa(温度210℃)の水蒸気を導入し、回転容器の内表面を予め180℃超に加熱し、更に回転容器の外壁をトレスで充分に加熱した。次いで、乾燥機内に加湿物(1-7B’)を4.0kg投入し、フルード数Fr0.07となるように回転容器を回転させて、30分間加熱処理を行った。加熱処理後、乾燥機から取り出した吸水性樹脂を80℃以下に冷却して、表面架橋された吸水性樹脂粒子(1-7B)を得た。
 (添加剤の添加工程)
 ジエチレントリアミン5酢酸3ナトリウムをエチレンジアミンテトラメチレンホスホン酸5ナトリウムに変更した以外は実施例1-6の(添加剤の添加工程)と同様にして、粒子状吸水剤(EX-1-7)を得た。
 〔実施例1-8〕
 (単量体水溶液の調製工程)
 ポリエチレングリコールジアクリレート(平均n数9)を0.85質量部に変更し、60質量%濃度の乳酸ナトリウム水溶液を1.8質量部追加した以外は実施例1-6と同様にして、単量体水溶液を調製した。
 (単量体水溶液の重合工程)
 実施例1-6の(単量体水溶液の重合工程)と同様にして、短冊状含水ゲル(1-8b)を得た。
 (含水ゲルの粉砕工程)
 実施例1-6の(含水ゲルの粉砕工程)と同様にして、粒子状含水ゲル(1-8c)を得た。
 (粒子状含水ゲルの乾燥工程)
 得られた粒子状含水ゲル(1-8c)を、図8に示される基本構成を備えた乾燥装置(加熱管付き回転型加熱装置)を用いて乾燥した。この乾燥装置は、その内部に回転軸方向に延在する10本の加熱管を有する円筒状の回転容器(容積35L)を備えている。はじめに、各加熱管に2.7MPa(温度228.1℃)の水蒸気を導入して、回転容器内部(接触温度計で規定)を予め200℃超に加熱した後、更に回転容器の外壁もトレスで十分に加熱した。次いで、95℃の粒子状含水ゲル(1-8c)を4.0kg投入し、フルード数Fr0.07となるように回転容器を回転させて、回転容器内へ140℃のキャリア空気を65L/hrで供給し、40分間乾燥を行った。乾燥後、取り出し口で採取した乾燥物(1-8A’)は、固形分率98.5質量%であった。
 (乾燥物の粉砕、分級工程)
 続いて、加熱装置の取り出し口から排出された乾燥物(1-8A’)を、冷風により、強制的に80℃以下に冷却した後、その冷却物を1段のロールミル(粉砕機)に供給して粉砕し、850μmの篩を通過し、150μmの篩を通過しない成分を採取して、吸水性樹脂(1-8A)を得た。
 (吸水性樹脂の表面架橋工程)
 得られた吸水性樹脂(1-8A)100質量部に、エチレングリコールジグリシジルエーテル0.2質量%及び水3質量%を含む表面架橋剤溶液を噴霧し、150℃で30分間加熱することにより、表面架橋された吸水性樹脂粒子(1-8B)を得た。
 (添加剤の添加工程)
 表面架橋された吸水性樹脂粒子(1-8B)100重量部に対して、0.1重量%のジエチレントリアミン5酢酸3ナトリウム水溶液10重量部と亜硫酸ナトリウム0.1質量部を混合した水溶液を攪拌しながら添加し、1分間混合した。
 次いで60℃の熱風乾燥機中に30分間放置してから、目開き850μmの金網を通過させ、ハイドロタルサイト0.2重量部を混合した。混合は表面架橋された吸水性樹脂粒子(1-8B)30gを容量225mlのマヨネーズ瓶にハイドロタルサイトと共に入れ、ペイントシェーカーを用いて3分間振とうし、粒子状吸水剤(EX-1-8)を得た。
 〔実施例1-9〕
 (単量体水溶液の調製工程)
 ジエチレントリアミン5酢酸3ナトリウムをエチレンジアミンテトラメチレンホスホン酸5ナトリウムに変更した以外は実施例1-6の(単量体水溶液の調製工程)と同様にして、単量体水溶液を調製した。
 (単量体水溶液の重合工程)
 実施例1-6の(単量体水溶液の重合工程)と同様にして、短冊状含水ゲル(1-9b)を得た。
 (含水ゲルの粉砕工程)
 実施例1-6の(含水ゲルの粉砕工程)と同様にして、粒子状含水ゲル(1-9c)を得た。
 (粒子状含水ゲルの乾燥及び表面架橋工程)
 実施例1-8の乾燥装置へ、95℃の粒子状含水ゲル(1-9c)を投入してから10分経過後に、乾燥途中の粒子状含水ゲル(1-9c)の固形分に対して、エチレングリコールジグリシジルエーテル0.16質量%及び水2質量%を含む表面架橋剤溶液を、乾燥装置機内へノズルを挿入して噴霧添加した以外は、実験例1-8の(粒子状含水ゲルの乾燥工程)と同様にして、表面架橋された吸水性樹脂粒子(1-9B)を得た。
 (添加剤の添加工程)
 ジエチレントリアミン5酢酸3ナトリウムをエチレンジアミンテトラメチレンホスホン酸5ナトリウムに変更した以外は実施例1-6の(添加剤の添加工程)と同様にして、粒子状吸水剤(EX’-1-9)を得た。
 (粉砕、分級工程)
 得られた粒子状吸水剤(EX’-1-9)を1段のロールミル(粉砕機)に供給して粉砕し、目開き850μm及び150μmのJIS標準篩を用いて分級した。850μmの篩を通過し、150μmの篩を通過しない成分を採取して、粒子状吸水剤(EX-1-9)を得た。
 〔実施例1-10〕
 (単量体水溶液の調製工程)
 ポリエチレングリコールジアクリレート(平均n数9)を0.85質量部に変更した以外は実施例1-6と同様にして、単量体水溶液を調製した。
 (単量体水溶液の重合工程)
 実施例1-6の(単量体水溶液の重合工程)と同様にして、短冊状含水ゲル(1-10b)を得た。
 (含水ゲルの粉砕工程)
 供給する過酸化水素水溶液の濃度を5質量%とし、過酸化水素の有効成分としての投入量を、短冊状含水ゲル(1-10b)の固形分に対して0.1質量%としたこと以外は実施例1-6の(含水ゲルの粉砕工程)と同様にして、粒子状含水ゲル(1-10c)を得た。得られた粒子状含水ゲル(1-10c)は、固形分率が45.2質量%(含水率が54.8質量%)、固形分換算の平均ゲル粒子径が148μmであった。ゲル粉砕時のGGE(2)は75J/gであった。
 (粒子状含水ゲルの乾燥及び表面架橋工程)
 実施例1-9の(粒子状含水ゲルの乾燥及び表面架橋工程)と同様にして、表面架橋された吸水性樹脂粒子(1-10B)を得た。
 (添加剤の添加工程)
 リン酸三カルシウム0.5質量部をハイドロタルサイト0.3質量部に変更した以外は実施例1-6の(添加剤の添加工程)と同様にして、粒子状吸水剤(EX’-1-10)を得た。
 (粉砕、分級工程)
 得られた粒子状吸水剤(EX’-1-10)を1段のロールミル(粉砕機)に供給して粉砕し、目開き850μm及び106μmのJIS標準篩を用いて分級した。850μmの篩を通過し、106μmの篩を通過しない成分を採取して、粒子状吸水剤(EX-1-10)を得た。
 〔実施例1-11〕
 (単量体水溶液の調製工程)
 実施例1-1の(単量体水溶液の調製工程)と同様にして、単量体水溶液を調製した。
 (単量体水溶液の重合工程)
 実施例1-1の(単量体水溶液の重合工程)と同様にして、短冊状含水ゲル(1-11b)を得た。
 (含水ゲルの粉砕工程)
 実施例1-1の(含水ゲルの粉砕工程)と同様にして、粒子状含水ゲル(1-11c)を得た。
 (粒子状含水ゲルの乾燥工程)
 実施例1-1の(粒子状含水ゲルの乾燥工程)と同様にして、乾燥物(1-11A’)を得た。
 (乾燥物の粉砕、分級工程)
 実施例1-1の(乾燥物の粉砕、分級工程)と同様にして、吸水性樹脂(1-11A)を得た。
 (吸水性樹脂の表面架橋工程)
 実施例1-1の(吸水性樹脂の表面架橋工程)と同様にして、表面架橋された吸水性樹脂粒子(1-11B)を得た。
 (添加剤の添加工程)
 表面架橋された吸水性樹脂粒子(1-11B)100重量部に対して、脱イオン水10重量部を攪拌しながら添加し、1分間混合した。
 次いで60℃の熱風乾燥機中に30分間放置してから、目開き850μmの金網を通過させ、粒子状吸水剤(EX-1-11)を得た。
 〔実施例1-12〕
 国際公開第2020/067310号の図1に示す製造プロセスに従って、一連の工程を運転し、含水ゲル重合体(1-12c)を調製した。
 まず、有機溶媒であるn-ヘプタンを、分散装置12、重合装置14、上記分離装置16及びこれらを接続する配管(接合部を含む)内に投入した。続いて、送液ポンプ18を稼働させて、流量300mL/分で疎水性有機溶媒の循環を開始した。なお有機溶媒はその全量を分散装置12を介して重合装置14に投入した。また、熱交換器20を稼働させて、上記循環する有機溶媒の温度が90℃となるように加熱した。次に、分散助剤として無水マレイン酸変性エチレン・プロピレン共重合体(商品名:ハイワックス(登録商標)1105A/三井化学株式会社)を、上記疎水性有機溶媒100質量%に対して0.005質量%の量で添加した。
 アクリル酸、48.5質量%の水酸化ナトリウム水溶液及びイオン交換水を混合し、更に、内部架橋剤であるポリエチレングリコールジアクリレート(平均重合度:9)及びジエチレントリアミン5酢酸・3ナトリウムを配合することで、単量体溶液(1-12a)を調製した。また、別途、重合開始剤である過硫酸ナトリウム及びイオン交換水を混合することで、6質量%の過硫酸ナトリウム水溶液(1-12a’)を作製した。
 続いて、上記操作で得られた単量体溶液(1-12a)と過硫酸ナトリウム水溶液(1-12a’)とを混合装置10に供給して混合することで、単量体水溶液(1-12b)を作製した。該単量体水溶液(1-12b)のモノマー濃度は43質量%であり、中和率は75モル%であった。また、ポリエチレングリコールジアクリレートの量は単量体(アクリル酸)100モル%に対して0.020モル%、ジエチレントリアミン5酢酸・3ナトリウムの量は単量体(アクリル酸)に対して200ppm、過硫酸ナトリウムの量は単量体(アクリル酸)に対して0.1g/モルであった。
 単量体水溶液(1-12b)を、流量40mL/分(47.2g/分)で、分散装置の配管に送液した。供給された上記単量体水溶液(1-12b)は、分散装置によって上記疎水性有機溶媒中で液滴状に分散した。
 次いで、上記のようにして得られた分散液を、重合装置14に供給した。上記単量体水溶液(1-12b)からなる液滴は、上記連続相である疎水性有機溶媒が満たされた重合装置内を疎水性有機溶媒の循環方向に移動しながら重合した。上記一連の操作で得られた含水ゲル重合体(1-12c)は、上記疎水性有機溶媒とともに連続的に重合装置から接合部を介して分離装置16に供給され、該分離装置において、該含水ゲル重合体(1-12c)と有機溶媒とが分離された。
 ゲル整粒装置(ドームグラン DG-L1、ドームダイの孔径:0.5mm、押出作用部との隙間:1.2mm、株式会社ダルトン製)に、予めゲル流動化剤として3.5質量%のラウリルジメチルアミノ酢酸ベタイン水溶液(含水ゲル重合体(1-12c)の固形分率に対して0.20質量%)を添加混合した含水ゲル重合体(1-12d’)(ゲル温度:90℃)を投入し、ゲル整粒装置から排出させることで整粒ゲル(1-12d)を得た。
 続いて、上記で得られた整粒ゲル(1-12d)を撹拌型乾燥機へ供給し、撹拌型乾燥機中、ジャケット温度200℃にて50分間乾燥して乾燥重合体(1-12A’)を得た。乾燥重合体(1-12A’)を目開き粒子径850μmの篩を用いて分級し、当該目開き粒子径850μmの篩の非通過物を粉砕し、篩を通過した粒子と粉砕前に目開き粒子径850μmの篩を通過した粒子を混ぜ合わせたものを目開き粒子径150μmの篩を用いて分級した。このようにして目開き粒子径850μmの篩を通過し、150μmの篩を通過しない区画を回収し、吸水性樹脂(1-12A)を得た。
 最後に吸水性樹脂(1-12A)100質量部に対して、エチレングリコールジグリシジルエーテル0.015質量部、プロピレングリコール1.0質量部及びイオン交換水3.0質量部からなる表面架橋剤溶液をスプレーで噴霧して、高速連続混合機を用いて均一に混合した。
 得られた混合物を雰囲気温度195℃±2℃に調温した熱処理機に導入して、30分間加熱処理を行った後、粉温を60℃まで強制的に冷却することで表面架橋された吸水性樹脂粒子(1-12B)を得た。
 上記吸水性樹脂粒子(1-12B)100重量部に対して、ジエチレントリアミン5酢酸・3ナトリウム0.1重量部及びイオン交換水10重量部からなる混合液を滴下し、均一に混合した。その後、60℃の熱風乾燥機中に静置させ、目開き1000μmのJIS標準篩に通過させることで整粒し、含水率10%の粒子状吸水剤(EX-1-12)を得た。
 〔実施例1-13〕
 (単量体水溶液の調製工程)
 実施例1-1の(単量体水溶液の調製工程)と同様にして、単量体水溶液を調製した。
 (単量体水溶液の重合工程)
 実施例1-1の(単量体水溶液の重合工程)と同様にして、短冊状含水ゲル(1-13b)を得た。
 (含水ゲルの粉砕工程)
 実施例1-1の(含水ゲルの粉砕工程)にて、第4ゲル粉砕をしなかったこと以外は実施例1-1の(含水ゲルの粉砕工程)と同様にして、粒子状含水ゲル(1-13c)を得た。GGE(2)は第1ゲル粉砕、第2ゲル粉砕、第3ゲル粉砕のトータルで25J/gであった。
 得られた粒子状含水ゲル(1-13c)は、固形分率が50質量%(含水率が50質量%)、固形分換算の平均ゲル粒子径が321μmであった。
 (粒子状含水ゲルの乾燥及び表面架橋工程)
 実施例1-3の乾燥装置へ、95℃の粒子状含水ゲル(1-13c)を投入してから10分経過後に、乾燥途中の粒子状含水ゲル(1-13c)の固形分に対して、エチレングリコールジグリシジルエーテル0.16質量%及び水2質量%を含む表面架橋剤溶液を、乾燥装置機内へノズルを挿入して噴霧添加した以外は、実施例1-3の(粒子状含水ゲルの乾燥工程)と同様にして、表面架橋された吸水性樹脂粒子(1-13B)を得た。
 (添加剤の添加工程)
 実施例1-1の(添加剤の添加工程)にて、リン酸三カルシウム0.5重量部の代わりにハイドロタルサイト0.6質量部を混合した以外は実施例1-1と同様にして、粒子状吸水剤(EX’-1-13)を得た。
 (粉砕、分級工程)
 得られた粒子状吸水剤(EX’-1-13)を1段のロールミル(粉砕機)に供給して粉砕し、目開き850μm及び106μmのJIS標準篩を用いて分級した。850μmの篩を通過し、106μmの篩を通過しない成分を採取して、粒子状吸水剤(EX-1-13)を得た。
 〔実施例1-14〕
 (単量体水溶液の調製工程)
 実施例1-6の(単量体水溶液の調製工程)と同様にして、単量体水溶液を調製した。
 (単量体水溶液の重合工程)
 実施例1-6の(単量体水溶液の重合工程)と同様にして、短冊状含水ゲル(1-14b)を得た。
 (含水ゲルの粉砕工程)
 実施例1-6の(含水ゲルの粉砕工程)にて、ゲル粉砕装置のバレルとディスクとの間の最小クリアランスを2.5mm(ディスク直径Dの5%)に変更したこと以外は実施例1-6の(含水ゲルの粉砕工程)と同様にして、粒子状含水ゲル(1-14c)を得た。なお、ゲル粉砕時のGGE(2)は32J/gであった。
 得られた粒子状含水ゲル(1-14c)は、固形分率が45質量%(含水率が55質量%)、固形分換算の平均ゲル粒子径が297μmであった。
 (粒子状含水ゲルの乾燥工程)
実施例1-6の(粒子状含水ゲルの乾燥工程)と同様にして、乾燥物(1-14A’)を得た。
 (乾燥物の粉砕、分級工程)
 実施例1-6の(乾燥物の粉砕、分級工程)と同様にして、吸水性樹脂(1-14A)を得た。
 (吸水性樹脂の表面架橋工程)
 実施例1-6の(吸水性樹脂の表面架橋工程)と同様にして、表面架橋された吸水性樹脂粒子(1-14B)を得た。
 (添加剤の添加工程)
 実施例1-6の(添加剤の添加工程)と同様にして、粒子状吸水剤(EX-1-14)を得た。
 〔比較例1-1〕
 比較例1-1では、国際公開2016/204302号実施例12に開示された「粒子状吸水剤(EX-12)」を、粒子状吸水剤(CE-1-1)とした。
 〔比較例1-2〕
 比較例1-2では、国際出願PCT/JP2020/047821に開示された実施例1と同様にして、粒子状吸水剤(CE-1-2)を得た。具体的には、下記のとおりである。
 (単量体水溶液の調製工程)
 容量2Lのポリプロピレン製の容器に、アクリル酸422.0質量部、48.5質量%水酸化ナトリウム水溶液173.9質量部、ポリエチレングリコールジアクリレート(平均分子量:523)2.5質量部、1.0質量%ジエチレントリアミン5酢酸・3ナトリウム水溶液2.6質量部、及び脱イオン水403.3質量部を投入し、混合することで単量体水溶液を調製した。当該単量体水溶液の液温は、前記混合の過程で発生した中和熱及び溶解熱によって、40℃を超えていた。
 (重合工程)
 次に、前記単量体水溶液を攪拌しながら冷却し、液温が40℃となった時点で、40℃に調温した48.5質量%水酸化ナトリウム水溶液178.7質量部を、大気開放状態で約20秒間掛けて前記単量体水溶液に投入し、混合した(二段目の中和を開始)。これにより、単量体水溶液(1-22a)を調製した。このとき、前記単量体水溶液(1-22a)の液温は、前記混合の過程で発生した中和熱及び溶解熱によって、約78℃まで上昇していた。また、前記単量体水溶液に前記水酸化ナトリウム水溶液を混合し始めた直後は、析出物が観察されたものの、次第に溶解して、調製された単量体水溶液(1-22a)は透明な均一溶液となった。
 そして、攪拌状態の前記単量体水溶液(1-22a)に、木下式ガラスボールフィルター(フィルター粒子No.4/木下理化工業株式会社製)を用いて、窒素ガスを圧力0.1MPa、流量0.1L/分の条件下で5秒間導入した。続いて、単量体水溶液(1-22a)に、4.5質量%過硫酸ナトリウム水溶液18.4質量部を加えた。その後、直ちに、ステンレス製のバット型容器(底面340×340mm、高さ25mm、内面:テフロン(登録商標)コーティング)に、当該単量体水溶液(1-22a)を大気開放状態で流し込んだ。尚、二段目の中和を開始した時点からバット型容器に前記単量体水溶液(1-22a)を流し込むまでの時間は65秒間とした。また、当該バット型容器は、ホットプレート(NEO
 HOTPLATE HI-1000/株式会社井内盛栄堂社製)を用いて、表面温度が50℃となるまで加熱した。
 前記単量体水溶液(1-22a)を前記バット型容器に流し込んだ後、1分以内に重合反応が開始した。当該重合反応においては、水蒸気を発生しながら四方八方に膨張発泡しながら単量体水溶液(1-22a)の重合が進行した。その後、得られた重合体は、バット型容器の底面よりも若干大きいサイズにまで収縮した。重合反応の開始から2分間経過後に、含水ゲル(1-22b)をバット型容器から取り出した。尚、これら一連の操作は、大気開放状態で行った。
 (ゲル粉砕工程)
 次に、前記重合反応で得られた含水ゲル(1-22b)を、1個当たりの質量が60g程度となるように切断した後、ミートチョッパー(HL-G22SN、プレート孔径6.0mm/レマコム株式会社製)を用いてゲル粉砕し、粒子状含水ゲル(1-1)を得た。前記含水ゲル(1-1)の投入量は凡そ360g/分であり、当該含水ゲル(1-22b)の投入と並行して、90℃に調温した脱イオン水を25g/分でミートチョッパーに添加しながらゲル粉砕を行い、粒子状含水ゲル(1-22c)を得た。
 前記粒子状含水ゲル(1-22c)のD50(質量平均粒子径)は320μmであり、σζ(粒度分布の対数標準偏差)は0.91であった。
 (乾燥工程)
 次に、前記粒子状含水ゲル(1-22c)を目開き300μmの金網上に広げて載せ、熱風乾燥機に入れた。その後、190℃の熱風を30分間通気させることで粒子状含水ゲル(1-22c)を乾燥させ、乾燥重合体(1-22A’)を得た。当該乾燥重合体(1-22A’)中に未乾燥物はなかった。
 (分級工程)
 次に、前記乾燥重合体(1-22A’)をロールミル(WML型ロール粉砕機/有限会社井ノ口技研社製)に投入して粉砕した後、目開き710μm及び150μmの2種類のJIS標準篩を用いて分級した。この操作によって、目開き710μmの篩を通過し、目開き150μmの篩上に残留した不定形破砕状の表面架橋前の吸水性樹脂(1-22A)を得た。
 (表面架橋工程)
 次に、前記表面架橋前の吸水性樹脂(1-22A)100質量部に対して、エチレンカーボネート0.4質量部、プロピレングリコール0.7質量部、脱イオン水2.9質量部、及びポリオキシエチレン(20)ソルビタンモノステアレート(花王株式会社製)0.001質量部からなる表面架橋剤水溶液を噴霧添加して均一に混合した。その後、得られた混合物を200℃で40分間、加熱処理することで表面架橋を行った。次いで、当該混合物を、目開き710μm及び150μmの2種類のJIS標準篩を用いて分級した。この操作によって、目開き710μmの篩を通過し、目開き150μmの篩上に残留した粒子状吸水剤(CE-1-2)を得た。
 〔比較例1-3〕
 比較例1-3では、WO2019/221154に開示された実施例1と同様にして、WO2019/221154の実施例1に記載の「吸水性樹脂粒子(C1)」を得た。これを本願では粒子状吸水剤(CE-1-3)とした。
 〔比較例1-4〕
 比較例1-4では、WO2018/092863に開示された実験例28と同様にして、WO2018/092863の実験例28に記載の「表面架橋された吸水性樹脂粉末(28)」を得た。これを本願では粒子状吸水剤(CE-1-4)とした。
 〔比較例1-5〕
 比較例1-5では、WO2018/092863に開示された実験例18と同様にして、WO2018/092863の実験例18に記載の「吸水性樹脂(18)」を得た。これを本願では粒子状吸水剤(CE-1-5)とした。
 〔比較例1-6〕
 比較例1-6では、国際出願PCT/JP2021/034800に開示された実験例3と同様にして、粒子状吸水剤(CE-1-6)を得た。具体的には、下記のとおりである。
 (単量体水溶液の調製工程)
 アクリル酸300質量部、48質量%水酸化ナトリウム水溶液100質量部、ポリエチレングリコールジアクリレート(平均n数9)0.61質量部、0.1質量%ジエチレントリアミン5酢酸3ナトリウム水溶液16.4質量部、脱イオン水273.2質量部からなる単量体水溶液を作成した。
 次に、38℃に調温した上記単量体水溶液を定量ポンプで連続供給した後、更に48質量%水酸化ナトリウム水溶液150.6質量部をラインミキシングにて連続混合した。尚、この時、中和熱によって単量体水溶液の液温は87℃まで上昇した。
 (単量体水溶液の重合工程)
 更に、4質量%過硫酸ナトリウム水溶液14.6質量部をラインミキシングにて連続混合した後、両端に堰を備えた平面状の重合ベルトを有する連続重合機に、厚みが10mmとなるように連続的に供給した。その後、重合時間3分間で連続的に重合をおこなって、帯状(シート状)の含水ゲル状架橋重合体(1-26a)を得た。得られた帯状の含水ゲル(1-26a)を、後述するゲル粉砕装置での処理スピードと投入間隔に合わせて切断し、幅数cmの短冊状含水ゲル(1-26b)を得た。例えば、ゲル粉砕装置の処理スピードを0.64kg/minとし、短冊状含水ゲルを2.5秒間隔で投入する場合、短冊状含水ゲル1枚当たりの質量を0.0267kgとする。尚、短冊状含水ゲル(1-26b)の重合率は98.5質量%、固形分率は53質量%であった。
 (含水ゲルの粉砕工程)
 ゲル粉砕装置として、同方向に回転する2本の回転軸を内蔵する本体(バレル)を備えた2軸混練機を使用して、短冊状含水ゲル(1-26b)のゲル粉砕をおこなった。それぞれの回転軸には、主に粉砕手段である円板状ディスクが設けられている。バレルはジャケット構造であり、このジャケットを貫通し、本体内部に水蒸気を投入するガス投入口を有するものであった。
 始めに、ジャケットの内部に105℃の熱媒を循環させ、本体(バレル)内部の温度を105℃に保持した。その後、回転数100rpmに設定して、80℃に加温した短冊状含水ゲル(1-26b)を0.64kg/minの速度(2.5秒毎に短冊状含水ゲル(1-26b)1枚のペース)で、2軸混練機の投入口に投入した。その際、含水ゲル(1-26b)と同時に、90℃の水を投入口から供給し、更に、0.6MPaの水蒸気をガス投入口から供給し、更に、10質量%濃度のラウリルジメチルアミノ酢酸ベタイン水溶液を投入口から供給した。90℃の水の供給量は、短冊状含水ゲル(1-26b)の固形分に対して11.8質量%であった。0.6MPaの水蒸気の投入量は、短冊状含水ゲル(1-26b)の固形分に対して9.7質量%であった。ラウリルジメチルアミノ酢酸ベタインの固形分としての投入量は、短冊状含水ゲル(1-26b)の固形分に対して0.15質量%であった。ゲル粉砕に使用したディスクの直径Dは50mmであり、バレルとディスクとの間の最小クリアランスは1mm(ディスク直径Dの2%)であった。なお、ゲル粉砕時のGGE(2)は125J/gであった。
 得られた粒子状含水ゲル(1-26c)は、固形分率が48.2質量%(含水率が51.8質量%)、固形分換算の平均ゲル粒子径が141μmであった。
 (粒子状含水ゲルの乾燥工程)
 得られた粒子状含水ゲル(1-26c)を、熱風乾燥機を用いて乾燥した。この乾燥機は、目開き1.2mmの金網からなる籠(底面のサイズ30cm×20cm)を備えている。粒子状含水ゲル(1-26c)500gを、この籠の底面に略均一になるように広げ、下方から190℃の熱風を30分間送風することにより、乾燥物(1-26A’)を得た。
 (乾燥物の粉砕、分級工程)
 冷却した乾燥物(1-26A’)をロールミルに供給して粉砕し、目開き850μm及び150μmのJIS標準篩を用いて分級した。850μmの篩を通過し、150μmの篩を通過しない成分を採取して、吸水性樹脂(1-26A)を得た。
 (吸水性樹脂の表面架橋工程)
 次に、吸水性樹脂(1-26A)100質量部に、エチレングリコールジグリシジルエーテル0.025質量部、エチレンカーボネート0.3質量部、プロピレングリコール0.5質量部及び脱イオン水2.0質量部からなる表面架橋剤溶液を噴霧して混合した。この混合物を200℃で35分間加熱処理することにより、粒子状吸水剤(CE-1-6)を得た。
 〔比較例1-7〕
 比較例1-7では、特開2006-057075号公報に開示された実施例12と同様にして、特開2006-057075号公報の実施例12に記載の「粒子状吸水剤(10)」を得た。これを本願では粒子状吸水剤(CE-1-7)とした。
 〔比較例1-8〕
 比較例1-8では、WO2015/129917に開示された実施例1と同様にして、WO2015/129917の実施例1に記載の「粒子状吸水剤(EX-1)」を得た。これを本願では粒子状吸水剤(CE-1-8)とした。
 〔比較例1-9〕
 比較例1-9では、WO2009/025235に開示された実施例5と同様にして、WO2009/025235の実施例5に記載の「吸水性樹脂」を得た。これを本願では粒子状吸水剤(CE-1-9)とした。
 [評価方法]
 実施例1-1~1-14で得られた粒子状吸水剤(EX-1-1)~(EX-1-14)及び比較例1-1~1-9で得られた粒子状吸水剤(CE-1-1)~(CE-1-9)について、「連通孔の総体積率[体積%]」、「独立気泡の総体積率[体積%]」、「高粘度液吸収時間」、「CRC」、「AAP2.06kPa」、「含水率」、「スポット吸収性」を測定した。「CRC」、「AAP2.06kPa」、「含水率」は、上述に記載の方法により測定した。評価結果は、表2、表3に示した。
 「連通孔の総体積率[体積%]及び独立気泡の総体積率[体積%]の測定」
 本発明に係る粒子状吸水剤の総体積に占める、連通孔の総体積率(単位:体積%)及び独立気泡の総体積率(単位:体積%)は、マイクロフォーカスX線CTシステム(inspeXio SMX-100CT/株式会社島津製作所製)を用いて、粒子状吸水剤の3次元画像データを取得し、高速3次元解析ソフト(TRI/3D-VOL-FCS64/ラトックシステムエンジニアリング社製)を用いて当該3次元画像データを解析し、Microsoft Excelを用いて計算することにより求めた。連通孔の総体積率及び、独立気泡の総体積率は、250μm~425μmの粒度の粒子状吸水剤を用いて求めた。具体的には、250μm~425μmの粒度の粒子状吸水剤の3次元画像データを、前記マイクロフォーカスX線CTシステムを用いて取得し、前記高速3次元解析ソフトを用いて解析した後に、それらの解析結果をExcelを用いて算出した。
 具体的な算出方法について記載する。初めに、250μm~425μmの粒度の粒子状吸水剤の抽出方法を記載する。まず、JIS標準の篩(The IIDA TESTING SIEVE/株式会社飯田製作所製、直径:8cm、篩の目開き:425μm/250μm)を、上から目開きの大きい順に重ね合わせ、一番下に受器(株式会社飯田製作所製、直径:8cm)を重ねた。続いて、一番上の篩(篩の目開き:425μm)に、粒子状吸水剤10.0gを投入し、蓋(株式会社飯田製作所製、直径:8cm)をした。続いて、重ね合わせた蓋、2つの篩、及び受器のセットを、IIDA SIEVE SHAKER(TYPE:ES-65型、SER.No.0632)を用いて、5分間振とうさせた。振とう後、目開き250μmの篩上に残存した吸水性樹脂のみを抽出し、これを250μm~425μmの粒度の粒子状吸水剤とした。前記操作は、温度が20.0~25.0℃、かつ湿度が35%から50%の間に調整された室内で実施した。
 プラスチック製の蓋付き円筒型容器(内径約1cm、高さ約5cm)に熱硬化性球状微粒子(エポスターMV1002/株式会社日本触媒製)0.3gを投入した後、250μm~425μmの粒度の粒子状吸水剤0.1gを投入し、シェイキングやタッピングを行ないよく振り混ぜることで、熱硬化性球状微粒子中に粒子状吸水剤を均一に分散させてサンプルを作製した。続いて、前記円筒型容器の底面に両面テープを貼り付け、前記マイクロフォーカスX線CTシステムの試料台に固定した後、下記条件で3次元画像データを取得した。
Figure JPOXMLDOC01-appb-T000001
 前記高速3次元解析ソフトを用いて、下記手順に沿って解析を実施した。
 1.メニュー欄から、粒子計測>3D粒子>粒子分離>巨大粒子分離を選択した。
 2.EVCパネル上のBinarizeタブでL-Wを選択し、W値は初期値のままで、L値を初期値から「1」大きい値に変更し、円形の計測対象領域を抽出した。続いて、全てのスライス画像にこの処理を適用した。この操作により抽出した画像データを(A)とし、BCパネル上のbin5ch(b5)に保管した。
 3.EVCパネル上のBinarizeタブでL-Wを選択し、W値は初期値のままで、L値を初期値から「37580」に変更し、計測対象領域における全粒子状吸水剤を抽出した。続いて、全てのスライス画像にこの処理を適用した。この操作により抽出した粒子画像データを(B)とし、BCパネル上のbinDch(bD)に保管した。
 4.粒子画像データ(B)を基にして、先ず、EVCパネル上のBinaryタブでErs Sml を選択し、粒子サイズが10voxcel以下である、ノイズと考えられる粒子を除去した。続いて、EVCパネル上のBinaryタブでInvertを選択し、粒子が抽出されている領域とされていない領域とを反転させた。続いて、EVCパネル上のBinaryタブでErs Sml を選択し、粒子サイズが1voxcel以下である、ノイズと考えられる粒子を除去した。次いで、EVCパネル上の3DタブでLabelingを選択し、更に体積及びMaxを選択し、最も体積の大きな領域のみを抽出した。ここで、Label Countが1と表示されていることを確認した上で、EVCパネル上のBinaryタブでInvertを再度選択することで、計測対象領域においてノイズを除去すると共に、全粒子をVoid(独立気泡)が埋まった状態で抽出した。これらの操作により抽出した粒子画像データを(C)とし、BCパネル上のbin2ch(b2)に保管した。
 5.LOpタブ(チャンネル間論理演算処理)で、対象1は「2」を、対象2は「D」を選択し、更に「SUB」を選択し、実行を押すことで、粒子画像データ(C)から粒子画像データ(B)を引いた。その後、EVCパネル上のBinaryタブでErs Sml を選択し、粒子サイズが1voxcel以下である、ノイズと考えられる粒子を除去することで、Void(独立気泡)を抽出した。これらの操作により抽出した粒子画像データを(D)とし、BCパネル上のbin6ch(b6)に保管した。
 6.粒子画像データ(C)を基にして、EVCパネル上の3Dタブで8連結周囲を選択し、膨張処理(Dilation)を2回行った後、収縮処理(Erosion)を2回行った。この操作により抽出した粒子画像データを(E)とし、BCパネル上のbin1h(b1)に保管した。
 7.LOpタブ(チャンネル間論理演算処理)で、対象1は「1」を、対象2は「2」を選択し、更に「SUB」を選択し、実行を押すことで、粒子画像データ(E)から粒子画像データ(C)を引いた。この操作により、Cavity(連通孔)を抽出した。得られた粒子画像データを(F)とし、BCパネル上のbin7ch(b7)に保管した。
 8.粒子画像データ(E)を基にして、巨大粒子分離パネル上で小粒子抽出を選択し(大粒子抽出は選択しない)、くびれ割合、Repair Filter Size、及びRepair Mrg Sml Diameter を何れも「0」に設定して、粒子の分離及び色分けを行った。
 9.EVCパネル上の3DタブでLabelingを選択し、更に座標値(サイクル)を選択すると共に微小粒子サイズを「100」に設定し、粒子の分離操作を行った。これらの操作により抽出した粒子画像データを(G)とし、BCパネル上のbin1ch(b1)に保管した。
 10.メニュー欄から、粒子計測>3D粒子中Void(独立気泡)>分離後計測を選択した。
 11.分離後計測パネル上で、単位としてvoxcelを選択し、続いてエッジ粒子除去を選択し、更に計測項目として表面積計算及びVoid(独立気泡)計算を選択し、計測ROI指定としてBinary 5chを選択して計算処理を行った。
 12.前記10の計算処理によって得られたデータを、ExcelのCSV形式で抽出した。
 以上の操作により、計測対象領域に存在する全ての粒子状吸水剤に対し、1粒子毎に、粒子体積(単位:mm)、Void体積(以下、「独立気泡体積」)(単位:mm)、及びCavity体積(以下、「連通孔体積」)(単位:mm)のデータが得られた。なお、前記の粒子体積は、粒子状吸水剤中の該Void(独立気泡)及び該Cavity(連通孔)が埋まった状態で算出された値である。また、前記計測対象領域には、200個~500個程度の粒子を含む粒子状吸水剤が存在している。
 (連通孔の総体積率[体積%]の算出)
 次に、Excelで抽出した1粒子毎の粒子体積(単位:mm)、独立気泡体積(単位:mm)、及び連通孔体積(単位:mm)のデータを用いて、連通孔の総体積率[体積%]を算出した。まず、1粒子毎の粒子体積(単位:mm)、独立気泡体積(単位:mm)、及び連通孔体積(単位:mm)をそれぞれ合計し、全粒子の粒子総体積(H)(単位:mm)、独立気泡の総体積(I)(単位:mm)、及び連通孔の総体積(J)(単位:mm)を算出した。なお、前記の全粒子の粒子総体積は、粒子状吸水剤中の該Void(独立気泡)及び該Cavity(連通孔)が埋まった状態で算出された値である。次に下記式(1)に基づいて、計測対象領域に存在する全ての粒子状吸水剤の平均値となる、連通孔の総体積率(単位:体積%)を算出した。
 連通孔の総体積率=J/(H-I)×100 …式(1)
ここで、
H:全粒子の粒子総体積(単位:mm
I:全粒子の独立気泡の総体積(単位:mm
J:全粒子の連通孔の総体積(単位:mm
である。
 (独立気泡の総体積率[体積%]の算出)
 下記式(2)に基づいて、計測対象領域に存在する全ての粒子状吸水剤の平均値となる、独立気泡の総体積率(単位:体積%)を算出した。
 独立気泡の総体積率=I/(H-J)×100 …式(2)
ここで、
H:全粒子の粒子総体積(単位:mm
I:全粒子の独立気泡の総体積(単位:mm
J:全粒子の連通孔の総体積(単位:mm
である。
 「高粘度液吸収時間」
 (高粘度試験液の作製)
 イオン交換水792.8質量部、塩化ナトリウム7.2質量部、炭酸ナトリウム35.6質量部、グリセリン160質量部、赤色食用色素0.04質量部、カルボキシメチルセルロース(アルドリッチ社製、品番:C5678-500G)4.4質量部からなる試験液を作製した。本試験液の粘度は23℃で5mPa・s、37℃で3.4mPa・sであった。
 (高粘度液吸収時間[sec]の測定)
 液温23℃に調整した高粘度試験液50gを100mLビーカーに計り取り、長さ40mmで太さ8mmの円筒型攪拌子で600rpmで攪拌する中に、粒子状吸水剤2.00gを投入し、吸収時間を(秒)を測定した。終点は、JISK 7224-1996年度「高吸水性樹脂の吸水速度試験方法 解説」に記載されている基準に準じ、粒子状吸水剤が高粘度試験液を吸液して試験液がスターラーチップを覆うまでの時間を、高粘度液吸収時間(秒)として測定した。
 「スポット吸収性」(「液取り込み時間及び戻り量」)
 本発明に係る粒子状吸水剤に関して、下記の吸収体を作製して評価を行なった。
 (粒子状吸水剤単層シートの作製)
 幅10cmのビニルテープ(日東電工社製、日東ビニールテープNo.21-100TM)を切断長18cmに切断し、その粘着面を上にして、水平な実験台の上に置き、内枠の縦の長さが8cm、横の長さが16cmであり、外枠の縦の長さが10cm、横の長さが18cmである、プラスチック製の枠(枠の厚みは1cm)を上から張り付けた。この時、ビニルテープ面にしわができないようにした。ビニルテープの粘着面に対して、粒子状吸水剤1.278gを均一に散布した。この時、ビニルテープ面を、1区画が縦8cm、横5.33cmの3区画として捉え、1区画に対して粒子状吸水剤を0.426gずつ均一に散布した。散布後、枠を傾けることですべての粒子状吸水剤をビニルテープの粘着面に粘着させた。プラスチック製の枠から、粘着した粒子状吸水剤が落ちないようにビニルテープを剥がし、粒子状吸水剤が粘着した面を上にして水平な実験台の上に置いた。粒子状吸水剤が粘着したビニルテープの上から、縦10cm、横18cmにカットした不織布(目付量18.5g/mのスパンボンド不織布)を乗せ、ビニルテープの残った粘着面を利用して張り付け、粒子状吸水剤単層シートを得た。この時、ビニルテープの四隅と不織布の四隅を合わせて貼り合わせるようにし、不織布の下面が粒子状吸水剤と触れるようにした。得られた粒子状吸水剤単層シートの中心部に黒マジックペンで印をつけ、液入れ漏斗位置とした。また中心部から12時、3時、6時、9時の4方向27.5mm部分に1点ずつ、合計4か所の印をつけ、ろ紙置き場の目印とした。
 (粒子状吸水剤単層シートの試験液の取り込み速度及び戻り量)
 不織布部分を上にして、粒子状吸水剤単層シートを図18に示す評価装置の枠内曲面に完全に沿わせて設置した。なお、図18の装置は、半円状の凹部が内部に形成された容器(材質:透明アクリル樹脂)であり、凹部のサイズは、円の直径122mm×幅102mm(深さ61mm)である。この時、底面に中心部が来るように設置し、ろ紙置き場部分の不織布にしわができないようにした。評価装置の曲面部に合わせて、180mm×10mmのシリコンシート(厚み2mm)を装置の曲面部の底部両隅に、すなわち粒子状吸水剤単層シートの長さ180mmの2つの辺上に沿わせて1つずつ乗せ、サイドからの液漏れが起こらないようにした。
 液入れ漏斗位置から高さ1cmの部分に、高粘度試験液5gが2秒で投入できるように調整した漏斗を設置した。漏斗に高粘度試験液5gを投入して最初の液が粒子状吸水剤単層シートに触れた瞬間にストップウォッチを始動し、粒子状吸水剤単層シート面上の液面すべて消えるまでの時間を計測し、液取り込み速度(sec)として記録した。なお、液取り込み速度が短い場合、液取り込み速度に優れることを意味する。以下の表2~4では、液の取り込み速度を「取込速度」と表記する。
 最初の液が粒子状吸水剤単層シートに触れてから2分50秒後、液投入面を上に向けた状態で粒子状吸水剤単層シートを評価装置から取り出し、水平な実験台の上に置いた。最初の液が粒子状吸水剤単層シートに触れてから3分後、中心部(ろ紙置き場)にあらかじめ総重量(W1[g])を測定したΦ55mmのろ紙を5枚重ねて置き、錘(Φ50mm、重量1035g、5.2kPa)を置いて10秒間荷重をかけた。錘を置いて10秒後、上記Φ55mmのろ紙5枚の重量(W2[g])を測定し、その差(W2-W1)を粒子状吸水剤単層シートの戻り量[g]として算出した。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 図19は、x軸を連通孔の総体積率とし、y軸を独立気泡の総体積率として、実施例及び比較例の粒子状吸水剤についてプロットしたグラフである。図19によれば、連通孔の総体積率と独立気泡の総体積率との相関関係が示されている。図19より、連通孔の総体積率が10体積%以上及び独立気泡の総体積率が0.5体積%以下である実施例1-1~1-14の粒子状吸水剤は、グラフの右下の領域を占めていることがわかる。この領域となる粒子状吸水剤を用いた吸収体は、液取り込み速度及び戻り量に優れていると考えられる。また、図19より、比較例1-1~1-9の粒子状吸水剤(CE-1-1)~(CE-1-9)は、本発明の粒子状吸水剤における連通孔の総体積率及び独立気泡の総体積率の規定を満たしていないことが理解される。
 〔参考例〕
 目開き425μmの篩を通過し,目開き250μmを通過しない粒子のX線CT測定により求められる、連通孔の総体積率及び独立気泡の総体積率が規定を満たす粒子状吸水剤を用いることにより、吸収体の液の取り込み速度の向上及び戻り量の減少が達成できることを示すために、下記参考例を示す。
 〔参考例1-1〕
 実施例1-1で得られた粒子状吸水剤(EX-1-1)30gを、目開き850/425/250/106μmの篩で分級した。まず、JIS標準の篩(The IIDA TESTING SIEVE/株式会社飯田製作所製、直径:15cm、篩の目開き:850μm/425μm/250μm/106μm)を、上から目開きの大きい順に重ね合わせ、一番下に受器(株式会社飯田製作所製、直径:15cm)を重ねた。続いて、一番上の篩(篩の目開き:850μm)に、粒子状吸水剤(EX-1-1)30.0gを投入し、蓋(株式会社飯田製作所製、直径:15cm)をした。続いて、重ね合わせた蓋、2つの篩、及び受器のセットを、IIDA SIEVE SHAKER(TYPE:ES-65型、SER.No.0632)を用いて、5分間振とうさせた。振とう後、目開き850μmの篩を通過し,目開き425μmを通過しない粒子状吸水剤(フラクションA)は13.02g(43.4質量%)であった。目開き425μmの篩を通過し,目開き250μmを通過しない吸水剤(フラクションB)は11.40g(38.0質量%)であった。目開き250μmの篩を通過し、目開き106μmを通過しない粒子状吸水剤(フラクションC)は5.58g(18.6質量%)であった。
 比較例1-5で得られた粒子状吸水剤(CE-1-5)30gを、同様に目開き850/425/250/106μmの篩で分級した。目開き850μmの篩を通過し,目開き425μmを通過しない粒子状吸水剤(フラクションX)は12.90g(43.0質量%)であった。目開き425μmの篩を通過し,目開き250μmを通過しない粒子状吸水剤(フラクションY)は11.46g(38.2質量%)であった。目開き250μmの篩を通過し,目開き106μmを通過しない粒子状吸水剤(フラクションZ)は5.64g(18.8質量%)であった。
 フラクションX、フラクションB及びフラクションZを混合して、粒子状吸水剤(RE-1)を得た。粒子状吸水剤(RE-1)を用いて吸収体評価を行なった結果、液取り込み速度は21secであり、戻り量は0.4gであった。
 〔参考例1-2〕
 フラクションA、フラクションY及びフラクションCを混合して、粒子状吸水剤(RE-2)を得た。粒子状吸水剤(RE-2)を用いて吸収体評価を行なった結果、液の取り込み速度は29secであり、戻り量は0.7gであった。
 以上参考例1-1及び1-2より、目開き425μmの篩を通過し、目開き250μmを通過しない粒子のX線CT測定により求められる、連通孔の総体積率及び独立気泡の総体積率が規定を満たす吸水剤を用いることにより、吸収体の液の取り込み速度の向上及び戻り量の減少が達成できることが示されている。具体的には、参考例1-1は実施例1-1と同様に、液の取り込み速度及び戻り量は良好である。参考例1-2は比較例1-5と同様に液の取り込み速度及び戻り量は悪化している。以上の結果から、吸収体評価における液の取り込み速度及び戻り量を支配するのは目開き425μmの篩を通過し、目開き250μmを通過しないフラクションであり、吸水剤全体の35質量%以上を占めていることが好ましいことが分かる。
Figure JPOXMLDOC01-appb-T000004
 (425/250粒度でのX線CT測定が好ましい理由)
 425μm以上のフラクションを用いてX線CT測定を行うと、一度に測定できる粒子数が100個以下と少なくなることがあり、連通孔及び独立気泡を算出する際の測定母数が不足し、データの正確性が損なわれるため好ましくない。また250μm以下のフラクションを用いてX線CT測定を行うと、測定母数は増加するが分解能の関係で測定精度が低下し、データの振れが大きくなるため好ましくない。425/250粒度(425~250μmの粒子)であれば、X線CT測定において十分な測定母数を確保でき、かつ測定精度も高くすることができる。
 〔実施例2-1〕
 実施例1-1、1-2のいずれかの製法にならい、実施例に記載された「単量体溶液の調製工程」における架橋剤ポリエチレングリコールジアクリレート(平均n数9)の量及び「乾燥物の粉砕、分級工程」におけるロールミルのギャップを調整することにより、粒子状吸水剤(EX-2-1)を得た。粒子状吸水剤(EX-2-1)の物性を表5に示す。
 〔実施例2-2〕
 実施例1-1、1-2のいずれかの製法にならい、実施例に記載された「単量体溶液の調製工程」における架橋剤ポリエチレングリコールジアクリレート(平均n数9)の量及び「乾燥物の粉砕、分級工程」におけるロールミルのギャップを調整することにより、粒子状吸水剤(EX-2-2)を得た。粒子状吸水剤(EX-2-2)の物性を表5に示す。
Figure JPOXMLDOC01-appb-T000005
 [実施例3-1]
 木材粉砕パルプを、ミキサーを用いて乾式混合し、得られた混合物を、400メッシュ(目開き38μm)のワイヤースクリーン上で、バッチ型空気抄造装置を用いて空気抄造を行い、200mm×400mmの大きさのウェブを成形した。次いで、上記ウェブの長手方向を5等分して80mm×160mmの大きさに切り出し、各々を7.8kPaの圧力で1分間プレスすることにより、厚み2.5mm、坪量(目付量)が45g/mであるパルプ製パッド(第2の基材に相当する)を得た。縦80mm、横160mmの大きさに成形されたパルプ製パッド中央に縦10mm、横60mmの型紙を設置した。次にパルプ製パッド上の型紙を設置した面に粒子状吸水剤(EX-2-1)1.92g(散布量:150g/m)を均一に散布した。型紙の上に粒子状吸水剤(EX-2-1)の一部が散布された場合、粒子状吸水剤(EX-2-1)を散布しているパルプ製パッドに向かって型紙を傾けて、粒子状吸水剤(EX-2-1)をパルプ製パッドの上に落とした。その後パルプ製パッドの中央に設置した型紙は取り除き、取り除いた個所に、縦10mm、横60mmの両面テープ(NICHIBAN製;ナイスタック(一般タイプ)、粘着力02(普通)、幅10mm、NWBB-10)を貼り付け、両面テープのはく離紙を剥がした。次に、別途作成した縦80mm、横160mm、厚み2.5mm、坪量45g/mのパルプ製パッド(第1の基材に相当する)を、パルプ製パッドの粒子状吸水剤(EX-2-1)が散布された面に載せ、下方のパルプ製パッド(第2の基材)と上方のパルプ製パッド(第1の基材)の中央部(縦10mm、横60mm)は、第2の基材の中央部に貼り付けた両面テープで直接貼り合わせ、吸収体(1)を得た。
 [実施例3-2]
 実施例3-1と同一の手法で作成されたパルプ製パッド(縦80mm、横160mm、厚み2.5mm、坪量45g/m、第2の基材に相当する)へ粒子状吸水剤(EX-2-1)を1.92g(散布量:150g/m)均一に散布した。次に、縦80mm、横160mmに切断した不織布B(オレフィンを主成分とし、エアスルー法で作成されたものであり、厚み1.4mm、坪量20g/m、第1の基材に相当する)を、パルプ製パッドの粒子状吸水剤(EX-2-1)が散布された面に載せ、吸収体(2)を得た。
 [実施例3-3]
 実施例3-1と同様の手法で作成されたパルプ製パッド(縦80mm、横160mm、厚み2.5mm、坪量45g/m)を長手方向が合うように3枚重ねた(図16に示すように、第2の基材に相当する(各パッドが第3の基材に相当する))。3枚重ねたパルプ製パッドのうち、最も上(第2の基材の上面(吸水層側の面))のパルプ製パッドへ粒子状吸水剤(EX-2-1)を1.92g(散布量:150g/m)均一に散布した。次に、縦80mm、横160mmに切断した、不織布B(オレフィンを主成分とし、エアスルー法で作成されたものであり、厚み1.4mm、坪量20g/m、第1の基材に相当する)を、パルプ製パッドの粒子状吸水剤(EX-2-1)が散布された面に載せ、吸収体(3)を得た。
 [実施例3-4]
 実施例3-1の粒子状吸水剤(EX-2-1)を粒子状吸水剤(EX-2-2)に置き換えることにより、吸収体(4)を得た。
 [実施例3-5]
 実施例3-2の粒子状吸水剤(EX-2-1)を粒子状吸水剤(EX-2-2)に置き換えることにより、吸収体(5)を得た。
 [実施例3-6]
 実施例3-3の粒子状吸水剤(EX-2-1)を粒子状吸水剤(EX-2-2)に置き換えることにより、吸収体(6)を得た。
 [実施例3-7]
 実施例3-1において第1の基材及び第2の基材として用いたパルプ製パッドを縦80mm、横160mmに切断した不織布A(パルプ繊維を主成分とし、エアレイド法で作成されたものであり、厚み0.5mm、坪量45g/m)に置き換えることで、吸収体(7)を得た。
 [実施例3-8]
 実施例3-2において第2の基材として用いたパルプ製パッドを実施例3-7に記載の不織布Aに置き換えることで、吸収体(8)を得た。
 [実施例3-9]
 実施例3-3において第2の基材として用いたパルプ製パッドを実施例3-7に記載の不織布Aに置き換えることで(すなわち、不織布Aが3枚重ねられてる(第2の基材に相当;各不織布Aが第3の基材に相当)、吸収体(9)を得た。
 [実施例3-10]
 実施例3-4において第2の基材として用いたパルプ製パッドを実施例3-7に記載の不織布Aに置き換えることで、吸収体(10)を得た。
 [実施例3-11]
 実施例3-5において第2の基材として用いたパルプ製パッドを実施例3-7に記載の不織布Aに置き換えることで、吸収体(11)を得た。
 [実施例3-12]
 実施例3-6において第2の基材として用いたパルプ製パッドを実施例3-7に記載の不織布Aに置き換えることで(すなわち、不織布Aが3枚重ねられている(第2の基材に相当;各不織布Aが第3の基材に相当)、吸収体(12)を得た。
 [実施例3-13]
 実施例3-8から吸収体のサイズ(すなわち、不織布Bおよび不織布Aのサイズ)を縦300mm×横300mm、粒子状吸水剤の散布量を4.5g(50g/m)へ変更することで吸収体(13)を得た。
 [実施例3-14]
 実施例3-13から粒子状吸水剤の散布量を0.45g(5g/m)へ変更することで吸収体(14)を得た。
 〔液体透過性の基材について〕
 実施例3-1~3-14で用いた液体透過性の基材、すなわち不織布A、不織布B、パルプ製パッドの厚みは、ノギスを用い、不織布に圧がかからない状態における厚みを測定した。また、求めた厚みから、目付/厚さである嵩密度(g/cm)を計算した。空隙率は下記(式1)より算出した。
 空隙率(%)=[1-(M/(A×T×D))]×100   (式1)
  M:基材(繊維基質)の質量(g)
  A:基材(繊維基質)の面積(cm
  T:基材(繊維基質)の厚み(cm)
  D:基材(繊維基質)を形成する繊維の密度(g/cm)。
 不織布Aの空隙率は94%、不織布Bの空隙率は98.5%、パルプ製パッドの空隙率は98.8%であった。
 なお、実施例3-1~3-14で用いた液体透過性の基材のうち、液体透過性シートに相当する基材は不織布Aおよび不織布Bである。
 〔吸収体評価方法〕
 <実施例3-1~3-12:吸収速度及び戻り量の測定>
 図20~図22に示されるように、実施例3-1~3-12において作成した縦8cm、横16cmの吸収体(1)~(12)について、以下の方法に従って、吸収速度及び戻り量を評価した。
 平面な台の上で、吸収体50を液体不透過性のビニールシート31の上に第1基材が最上面になるように置き、次に吸収体50と同一の寸法に切断した液体透過性の不織布C(スパンボンド法で作成されたものであり、厚み0.15mm、坪量18g/m)を長手方向が合うように載せ(図示しない)、その上に重さ150gの高さ65mm×外径49mm(内径39mm)の液注入筒32(図20)を図21に示されるように吸収体50の中央に置いた。この状態で、流速6ml/秒で液投入が可能な漏斗33(図22)を使用して23℃の0.9%質量塩化ナトリウム水溶液10mlを投入した。尚、漏斗33の先端は、吸収体50から1.5cmの高さとなるように設置した。液を投入してから、液がすべて吸収体50へ吸収されるまでの時間を測定し、吸収速度1とした。1回目の液投入から3分後、同様の操作を繰り返し、吸収速度2を測定した。さらに2回目の液投入から3分後、同様の操作を繰り返し、吸収速度3を測定した。3回目の液投入から27秒後に液注入筒32を外し、予め質量を測定した濾紙(円形定性ろ紙 型式 No.2、ADVANTEC製;直径55mm)30枚を、うら面(密)を下側にして吸収体50及び不織布Cの中央に載せ、直径50mmの円筒形の錘(1036(±2g)をさらに載せて、10秒間保持した。10秒後、錘を除去し、濾紙の質量増分から戻り量(g)を測定した。尚、錘を外してから戻り量の測定を開始するまでの時間は約3秒であった。
 <実施例3-13:吸収速度及び戻り量の測定>
 図23に示されるように、実施例3-13、3-14において作成した縦30cm、横30cmの吸収体(13)について、以下の方法に従って、吸収速度及び戻り量を評価した。
 平面な台の上に、吸収体50を液体不透過性のビニールシート31の上に第1基材が最上面になるように置き、次に吸収体50と同一の寸法に切断した液体透過性の不織布C(スパンボンド法で作成されたものであり、厚み0.15mm、坪量18g/m、図示しない)を吸収体50に重ねて載せ、その上に重さ50gの高さ65mm×外径49mm(内径39mm)の液注入筒32(図20)を図23に示されるように吸収体50の中央に置いた。この状態で、流速6ml/秒で液投入が可能な漏斗33(図22)を使用して23℃の0.9%質量塩化ナトリウム水溶液30mlを投入した。尚、漏斗33の先端は、吸収体50から1.5cmの高さとなるように設置した。液を投入してから、液がすべて吸収体50へ吸収されるまでの時間を測定し、吸収速度とした。液投入から2分57秒後に液注入筒32を外し、予め質量を測定した濾紙(円形定性ろ紙型式No.2、ADVANTEC製;直径110mm)30枚を、うら面(密)を下側にして吸収体50及び不織布Cの中央に載せ、底面が直径100mmの円筒形の錘(2749(±2g)をさらに載せて、30秒間保持した。30秒後、錘を除去し、濾紙の質量増分から戻り量(g)を測定した。尚、錘を外してから戻り量の測定を開始するまでの時間は約3秒であった。
 <実施例3-14:吸収速度及び戻り量の測定>
 実施例3-14において作成した縦30cm、横30cmの吸収体(14)について、<実施例3-13:吸収速度及び戻り量の測定>において23℃の0.9%質量塩化ナトリウム水溶液投入量を10mlへ変更したこと以外は吸収体(13)に対する評価方法と同様の評価方法にて吸収速度及び戻り量を評価した。
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
 本出願は、2021年2月26日に出願された日本特許出願番号第2021-030521号および2021年2月26日に出願された日本特許出願番号第2021-030524号に基づいており、その開示内容は、その全体が参照により本明細書に組みこまれる。
  1  粒子状吸水剤
  1a  連通孔
  1b  独立気泡
  12  台
  13  スクリュー
  14  供給口
  15  ホッパー
  16  押出口
  17  支持具
  18  回転刃
  19  リング
  20  逆戻り防止部材
  20a 帯状突起(逆戻り防止部材)
  21  モーター
  31  ビニールシート
  32  液注入筒
  33  漏斗
  50  吸収体
  51  第1の基材
  52  吸水層
  53  第2の基材
  53a  第3の基材
  54  粒子状吸水剤
  55  間隙
  56  親水性繊維
  100  ミートチョッパー
  200  ゲル粉砕装置
  204  投入口
  206  回転軸
  208  本体(バレル)
  210  排出口
  212  粉砕手段
  214  駆動装置
  216  ガス投入口
  217  ゲル流動化剤投入口
  310  ゲル整粒装置
  311  スクリュー
  312  小孔
  313  ダイス
  320  ゲル整粒装置
  321  ロール
  322  小孔
  323  回転ダイス
  330  ゲル整粒装置
  331  パドル
  332  小孔
  333  円筒状ダイス
  336  押込み羽根
  340  ゲル整粒装置
  343  多孔板
  341  押出作用部
  342  小孔
  400  スクリュー型前押出し式整粒機、
  420  送りスクリュー、
  420a  球面状先端部、
  410  ギヤーボックス、
  430  スクリューケース、
  440  投入ホッパー、
  450  球面状ダイ、
  450a  球面状裏面、
  460  球面状押出し羽根
  460a  球面状押出し羽根のエッジ
  502  加熱装置
  504  主部
  506  投入部及び取り出し部
  508  スチーム出入り部
  510  回転容器
  512  加熱管
  514  第一歯車
  516  第二歯車
  544  スチーム入口
  546  ドレーン

Claims (6)

  1.  ポリ(メタ)アクリル酸(塩)系吸水性樹脂粒子を主成分とする粒子状吸水剤であって、
     前記粒子状吸水剤は、外部と通じる空間である連通孔と、外部と通じない閉鎖空間である独立気泡と、を含み、
     前記連通孔の総体積率は10体積%以上であり、
     前記独立気泡の総体積率は0.5体積%以下であることを特徴とする、粒子状吸水剤。
  2.  CRCが25g/g以上である、請求項1に記載の粒子状吸水剤。
  3.  AAP0.3psi(2.06kPa)が20g/g以上である、請求項1又は2に記載の粒子状吸水剤。
  4.  含水率が5質量%以上である、請求項1~3のいずれか1項に記載の粒子状吸水剤。
  5.  高粘度液の吸収時間が140秒以下である、請求項1~4のいずれか1項に記載の粒子状吸水剤。
  6.  請求項1~5のいずれか1項に記載の粒子状吸水剤を用いた吸収体。
PCT/JP2022/007925 2021-02-26 2022-02-25 粒子状吸水剤、該吸水剤を含む吸収体及び該吸収体を用いた吸収性物品 WO2022181771A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP22759805.9A EP4299651A1 (en) 2021-02-26 2022-02-25 Granular water absorbent, absorbent body containing said water absorbent, and absorbent article using said absorbent body
JP2023502543A JPWO2022181771A1 (ja) 2021-02-26 2022-02-25
CN202280017405.9A CN116887915A (zh) 2021-02-26 2022-02-25 颗粒状吸水剂、包含该吸水剂的吸收体及使用了该吸收体的吸收性物品
KR1020237028612A KR20230138488A (ko) 2021-02-26 2022-02-25 입자상 흡수제, 해당 흡수제를 포함하는 흡수체, 및 해당 흡수체를 사용한 흡수성 물품
US18/547,815 US20240299907A1 (en) 2021-02-26 2022-02-25 Particulate water absorbent, absorbent body containing water absorbent, and absorbent article using absorbent body

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2021-030524 2021-02-26
JP2021030524 2021-02-26
JP2021030521 2021-02-26
JP2021-030521 2021-02-26

Publications (1)

Publication Number Publication Date
WO2022181771A1 true WO2022181771A1 (ja) 2022-09-01

Family

ID=83047548

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/007925 WO2022181771A1 (ja) 2021-02-26 2022-02-25 粒子状吸水剤、該吸水剤を含む吸収体及び該吸収体を用いた吸収性物品

Country Status (5)

Country Link
US (1) US20240299907A1 (ja)
EP (1) EP4299651A1 (ja)
JP (1) JPWO2022181771A1 (ja)
KR (1) KR20230138488A (ja)
WO (1) WO2022181771A1 (ja)

Citations (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4893999A (en) 1985-12-18 1990-01-16 Chemische Fabrik Stockhausen Gmbh Apparatus for the continuous production of polymers and copolymers of water-soluble monomers
WO1997017397A1 (de) 1995-11-03 1997-05-15 Basf Aktiengesellschaft Wasserabsorbierende, schaumförmige, vernetzte hydrogel-polymere
US6107358A (en) 1996-08-23 2000-08-22 Nippon Shokubai Co., Ltd. Water-absorbent resin and method for production thereof
US6241928B1 (en) 1998-04-28 2001-06-05 Nippon Shokubai Co., Ltd. Method for production of shaped hydrogel of absorbent resin
US6710141B1 (en) 1999-11-20 2004-03-23 Basf Aktiengesellschaft Method for continuously producing cross-linked fine-particle geleous polymerizates
JP2005035212A (ja) 2003-07-17 2005-02-10 Japan Steel Works Ltd:The ニーディングディスク、ディスクおよび混練方法
US20050215734A1 (en) 2004-03-24 2005-09-29 Yorimichi Dairoku Method for continuous production of water-absorbent resin
US6987151B2 (en) 2001-09-12 2006-01-17 Dow Global Technologies Inc. Continuous polymerization process for the manufacture of superabsorbent polymers
JP2006057075A (ja) 2004-03-29 2006-03-02 Nippon Shokubai Co Ltd 不定形破砕状の粒子状吸水剤
WO2006100300A1 (de) 2005-03-24 2006-09-28 Basf Aktiengesellschaft Verfahren zur herstellung wasserabsorbierender polymere
US7183456B2 (en) 2000-09-20 2007-02-27 Nippon Shokubai Co., Ltd. Water-absorbent resin and production process therefor
US7265190B2 (en) 2002-11-07 2007-09-04 Nippon Shokubai Co., Ltd. Process and apparatus for production of water-absorbent resin
US20080161512A1 (en) 2005-04-07 2008-07-03 Takaaki Kawano Production Process of Polyacrylic Acid (Salt) Water-Absorbent Resin
US20080194863A1 (en) 2005-09-07 2008-08-14 Basf Se Neutralization Process
WO2009025235A1 (ja) 2007-08-23 2009-02-26 Sumitomo Seika Chemicals Co., Ltd. 衛生材用途に適した吸水性樹脂
WO2009123197A1 (ja) 2008-03-31 2009-10-08 株式会社日本触媒 吸水性樹脂を主成分とする粒子状吸水剤の製造方法及びその製造装置
US7638570B2 (en) 2003-02-10 2009-12-29 Nippon Shokubai Co., Ltd. Water-absorbing agent
WO2011025013A1 (ja) 2009-08-28 2011-03-03 株式会社日本触媒 吸水性樹脂の製造方法
WO2011040530A1 (ja) 2009-09-30 2011-04-07 株式会社日本触媒 粒子状吸水剤及びその製造方法
WO2011111657A1 (ja) 2010-03-08 2011-09-15 株式会社日本触媒 粒子状含水ゲル状架橋重合体の乾燥方法
WO2011126079A1 (ja) 2010-04-07 2011-10-13 株式会社日本触媒 ポリアクリル酸(塩)系吸水性樹脂粉末の製造方法及びポリアクリル酸(塩)系吸水性樹脂粉末
WO2013002387A1 (ja) 2011-06-29 2013-01-03 株式会社日本触媒 ポリアクリル酸(塩)系吸水性樹脂粉末及びその製造方法
WO2013018571A1 (ja) 2011-08-03 2013-02-07 住友精化株式会社 吸水性樹脂粒子、吸水性樹脂粒子を製造する方法、吸収体、吸収性物品及び止水材
WO2013023187A1 (en) 2011-08-10 2013-02-14 Qualcomm Incorporated Maintenance of mobile device rf beam
WO2014034667A1 (ja) 2012-08-27 2014-03-06 株式会社日本触媒 粒子状吸水剤及びその製造方法
WO2015129917A1 (ja) 2014-02-28 2015-09-03 株式会社日本触媒 ポリ(メタ)アクリル酸(塩)系粒子状吸水剤及び製造方法
WO2016182082A1 (ja) 2015-05-14 2016-11-17 株式会社日本触媒 重合性液体組成物の分散方法及び球状重合体粒子の製造方法
WO2016204302A1 (ja) 2015-06-19 2016-12-22 株式会社日本触媒 ポリ(メタ)アクリル酸(塩)系粒子状吸水剤及び製造方法
WO2017170605A1 (ja) 2016-03-28 2017-10-05 株式会社日本触媒 粒子状吸水剤
WO2018092863A1 (ja) 2016-11-16 2018-05-24 株式会社日本触媒 吸水性樹脂粉末の製造方法、並びに粒子状含水ゲルの乾燥装置及び乾燥方法
JP2019519663A (ja) * 2016-12-23 2019-07-11 エルジー・ケム・リミテッド 多孔性高吸水性樹脂の製造方法及び多孔性高吸水性樹脂
WO2019221154A1 (ja) 2018-05-16 2019-11-21 株式会社日本触媒 吸水性樹脂粒子の製造方法
WO2020067310A1 (ja) 2018-09-27 2020-04-02 株式会社日本触媒 吸水性樹脂の製造方法
JP2021030521A (ja) 2019-08-21 2021-03-01 京セラドキュメントソリューションズ株式会社 画像形成装置及び画像形成装置の制御方法
JP2021030524A (ja) 2019-08-21 2021-03-01 キヤノンファインテックニスカ株式会社 記録装置

Patent Citations (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4893999A (en) 1985-12-18 1990-01-16 Chemische Fabrik Stockhausen Gmbh Apparatus for the continuous production of polymers and copolymers of water-soluble monomers
WO1997017397A1 (de) 1995-11-03 1997-05-15 Basf Aktiengesellschaft Wasserabsorbierende, schaumförmige, vernetzte hydrogel-polymere
US6107358A (en) 1996-08-23 2000-08-22 Nippon Shokubai Co., Ltd. Water-absorbent resin and method for production thereof
US6241928B1 (en) 1998-04-28 2001-06-05 Nippon Shokubai Co., Ltd. Method for production of shaped hydrogel of absorbent resin
US6710141B1 (en) 1999-11-20 2004-03-23 Basf Aktiengesellschaft Method for continuously producing cross-linked fine-particle geleous polymerizates
US7183456B2 (en) 2000-09-20 2007-02-27 Nippon Shokubai Co., Ltd. Water-absorbent resin and production process therefor
US6987151B2 (en) 2001-09-12 2006-01-17 Dow Global Technologies Inc. Continuous polymerization process for the manufacture of superabsorbent polymers
US7265190B2 (en) 2002-11-07 2007-09-04 Nippon Shokubai Co., Ltd. Process and apparatus for production of water-absorbent resin
US7638570B2 (en) 2003-02-10 2009-12-29 Nippon Shokubai Co., Ltd. Water-absorbing agent
JP2005035212A (ja) 2003-07-17 2005-02-10 Japan Steel Works Ltd:The ニーディングディスク、ディスクおよび混練方法
US20050215734A1 (en) 2004-03-24 2005-09-29 Yorimichi Dairoku Method for continuous production of water-absorbent resin
JP2006057075A (ja) 2004-03-29 2006-03-02 Nippon Shokubai Co Ltd 不定形破砕状の粒子状吸水剤
WO2006100300A1 (de) 2005-03-24 2006-09-28 Basf Aktiengesellschaft Verfahren zur herstellung wasserabsorbierender polymere
US20080161512A1 (en) 2005-04-07 2008-07-03 Takaaki Kawano Production Process of Polyacrylic Acid (Salt) Water-Absorbent Resin
US20080194863A1 (en) 2005-09-07 2008-08-14 Basf Se Neutralization Process
WO2009025235A1 (ja) 2007-08-23 2009-02-26 Sumitomo Seika Chemicals Co., Ltd. 衛生材用途に適した吸水性樹脂
WO2009123197A1 (ja) 2008-03-31 2009-10-08 株式会社日本触媒 吸水性樹脂を主成分とする粒子状吸水剤の製造方法及びその製造装置
WO2011025012A1 (ja) 2009-08-28 2011-03-03 株式会社日本触媒 吸水性樹脂の製造方法
WO2011025013A1 (ja) 2009-08-28 2011-03-03 株式会社日本触媒 吸水性樹脂の製造方法
WO2011040530A1 (ja) 2009-09-30 2011-04-07 株式会社日本触媒 粒子状吸水剤及びその製造方法
WO2011111657A1 (ja) 2010-03-08 2011-09-15 株式会社日本触媒 粒子状含水ゲル状架橋重合体の乾燥方法
US20160332141A1 (en) 2010-04-07 2016-11-17 Nippon Shokubai Co., Ltd. Method for producing water absorbent polyacrylic acid (salt) resin powder, and water absorbent polyacrylic acid (salt) resin powder
WO2011126079A1 (ja) 2010-04-07 2011-10-13 株式会社日本触媒 ポリアクリル酸(塩)系吸水性樹脂粉末の製造方法及びポリアクリル酸(塩)系吸水性樹脂粉末
US20130026412A1 (en) 2010-04-07 2013-01-31 Nippon Shokubai Co. Ltd Method for producing water absorbent polyacrylic acid (salt) resin powder, and water absorbent polyacrylic acid (salt) resin powder
JP2015083693A (ja) * 2010-04-07 2015-04-30 株式会社日本触媒 ポリアクリル酸(塩)系吸水性樹脂粉末の製造方法及びポリアクリル酸(塩)系吸水性樹脂粉末
WO2013002387A1 (ja) 2011-06-29 2013-01-03 株式会社日本触媒 ポリアクリル酸(塩)系吸水性樹脂粉末及びその製造方法
WO2013018571A1 (ja) 2011-08-03 2013-02-07 住友精化株式会社 吸水性樹脂粒子、吸水性樹脂粒子を製造する方法、吸収体、吸収性物品及び止水材
WO2013023187A1 (en) 2011-08-10 2013-02-14 Qualcomm Incorporated Maintenance of mobile device rf beam
WO2014034667A1 (ja) 2012-08-27 2014-03-06 株式会社日本触媒 粒子状吸水剤及びその製造方法
WO2015129917A1 (ja) 2014-02-28 2015-09-03 株式会社日本触媒 ポリ(メタ)アクリル酸(塩)系粒子状吸水剤及び製造方法
WO2016182082A1 (ja) 2015-05-14 2016-11-17 株式会社日本触媒 重合性液体組成物の分散方法及び球状重合体粒子の製造方法
WO2016204302A1 (ja) 2015-06-19 2016-12-22 株式会社日本触媒 ポリ(メタ)アクリル酸(塩)系粒子状吸水剤及び製造方法
WO2017170605A1 (ja) 2016-03-28 2017-10-05 株式会社日本触媒 粒子状吸水剤
WO2018092863A1 (ja) 2016-11-16 2018-05-24 株式会社日本触媒 吸水性樹脂粉末の製造方法、並びに粒子状含水ゲルの乾燥装置及び乾燥方法
JP2019519663A (ja) * 2016-12-23 2019-07-11 エルジー・ケム・リミテッド 多孔性高吸水性樹脂の製造方法及び多孔性高吸水性樹脂
WO2019221154A1 (ja) 2018-05-16 2019-11-21 株式会社日本触媒 吸水性樹脂粒子の製造方法
WO2020067310A1 (ja) 2018-09-27 2020-04-02 株式会社日本触媒 吸水性樹脂の製造方法
JP2021030521A (ja) 2019-08-21 2021-03-01 京セラドキュメントソリューションズ株式会社 画像形成装置及び画像形成装置の制御方法
JP2021030524A (ja) 2019-08-21 2021-03-01 キヤノンファインテックニスカ株式会社 記録装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Glossary of Technical Terms in Japanese Industrial Standards", pages: 2002

Also Published As

Publication number Publication date
US20240299907A1 (en) 2024-09-12
KR20230138488A (ko) 2023-10-05
JPWO2022181771A1 (ja) 2022-09-01
EP4299651A1 (en) 2024-01-03

Similar Documents

Publication Publication Date Title
JP6093751B2 (ja) ポリアクリル酸(塩)系吸水性樹脂粉末の製造方法及びポリアクリル酸(塩)系吸水性樹脂粉末
JP6310046B2 (ja) 吸水性樹脂粉末
JP4758669B2 (ja) 不定形破砕状の粒子状吸水剤
KR102297636B1 (ko) 겔 분쇄 장치, 폴리아크릴산(염)계 흡수성 수지 분말의 제조 방법, 및 흡수성 수지 분말
JP6532894B2 (ja) 吸水剤及びその製造方法、並びに評価方法及び測定方法
EP2891520B1 (en) Particulate water-absorbing agent and method for manufacturing same
KR100847553B1 (ko) 부정형 분쇄상의 입자상 흡수제
JP5599513B2 (ja) ポリアクリル酸(塩)系吸水性樹脂粉末及びその製造方法
JP5286627B2 (ja) 水性液体を吸収することができる粉末状架橋ポリマー
JP4261853B2 (ja) 吸水性樹脂、吸水性樹脂粒子、およびその製造方法
BRPI0711452B1 (pt) Processo para a preparação de uma estrutura polimérica absorvente de água, estrutura polimérica absorvente de água, compósito, processo para a preparação de um compósito, uso da estrutura polimérica absorvente de água ou uso do compósito e uso de um sal
JP2006055833A (ja) 吸水性樹脂を主成分とする粒子状吸水剤
JP7273067B2 (ja) 吸水性樹脂を主成分とする吸水剤及びその製造方法
JP7217268B2 (ja) 吸水性シート、吸水性シートの製造方法および吸収性物品
JP7149341B2 (ja) 粒子状吸水剤の製造方法および粒子状吸水剤
WO2022181771A1 (ja) 粒子状吸水剤、該吸水剤を含む吸収体及び該吸収体を用いた吸収性物品
JP2022175089A (ja) ポリ(メタ)アクリル酸(塩)系吸水性樹脂、及び吸収体
JP6508947B2 (ja) ポリアクリル酸(塩)系吸水剤の製造方法
WO2024210144A1 (ja) ポリ(メタ)アクリル酸(塩)系吸水性樹脂及び吸収性物品
CN116887915A (zh) 颗粒状吸水剂、包含该吸水剂的吸收体及使用了该吸收体的吸收性物品
WO2023190494A1 (ja) 吸水性樹脂粉末の製造方法
JP2023085896A (ja) 吸収性物品
JP2023082544A (ja) 吸収性物品
WO2024204126A1 (ja) 粒子状吸水剤、当該粒子状吸水剤を含む吸収体および当該吸収体を含む衛生製品
JP2023092252A (ja) ポリ(メタ)アクリル酸(塩)系吸水性樹脂、及び吸収体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22759805

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023502543

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20237028612

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020237028612

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 18547815

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 202280017405.9

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 202347062533

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2022759805

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022759805

Country of ref document: EP

Effective date: 20230926